
Indigo2 IMPACT™ Compression
Programmer’s Guide

Document Number 007-3278-001

Indigo2 IMPACT™ Compression Programmer’s Guide
Document Number 007-3278-001

CONTRIBUTORS

Written by Carolyn Curtis
Illustrated by Carolyn Curtis
Production by Laura Cooper
Engineering contributions by Gregory Poist, Matthew Hall, Chuck Jerian, and

Howard Chartock
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, OpenGL, Indigo, Indy, and IRIS are
registered trademarks and Graphics Library, GL, Indigo2 IMPACT, Cosmo
Compress, and Galileo Video are trademarks of Silicon Graphics, Inc. MIPS and
R3000 are registered trademarks of MIPS Technologies, Inc. X Window System is a
trademark of Massachusetts Institute of Technology.

iii

Contents

List of Figures vii

List of Tables ix

About This Guide xi
Audience xi
Structure of This Document xi
Conventions xiii

1. Indigo2 IMPACT Compression Features and Capabilities 1
Using Indigo2 IMPACT Compression and Video Options 3
Using the Indigo2 IMPACT Compression Option With the Compression
Library 4
Using the Indigo2 IMPACT Compression Option With the Video Library 4

2. Programming With the Compression Library 7
Error Handling 8
Opening an IMPACT Compression Session 9
Using the Still Image Interface 10
Using the Sequential Frame Interface 13

Compressing a Sequence of Frames 14
Decompressing a Sequence of Frames 18

Using the Buffering Interface 23
Creating a Buffer 26
Managing Buffers 28
Producing and Consuming Data in Buffers 30
Hardware Buffer Flushing and Latency 33
Creating a Buffered Record and Play Application 34
Creating Buffered Multiprocess Record and Play Applications 38

iv

Contents

3. Programming With the Video Library 41
Video Library Capabilities 42

VL System Software Architecture 43
Library and Header Files 46
VL Architectural Model of Video Devices 46

The VL Programming Model 50
Performing Preliminary Steps 52
Opening a Connection to the Video Daemon 53
Specifying Nodes on the Data Path 53
Creating and Setting Up the Data Path 54

Creating the Path 54
Getting the Device ID 55
Adding a Node 55
Setting Up the Data Path 56
Specifying the Path-Related Events to Be Captured 58

Setting Parameters for Data Transfer to or From Memory or
Codec Nodes 59

Setting Node Controls for Data Transfer 59
Transferring Video Data to and From Devices 73

Creating a Buffer for Video Data 73
Registering the VL Buffer 75
Starting Data Transfer 76
Reading Data From the Buffer 77

Ending Data Transfer 81
Example Programs 82

4. Using the CL With Indigo2 IMPACT Compression 85
Adding Indigo2 IMPACT Compression Support to an Application 86

Determining the JPEG Codec 86
Controlling Compression and Decompression Operation 87

Using Indigo2 IMPACT Compression Image Formats 88
Getting Compressed Image Information 90

Contents

v

Specifying Memory-to-Memory Compression and Decompression 91
Memory-to-Memory Compression 92
Memory-to-Memory Decompression 93
Interleaving 94

Compressing and Decompressing Video Through External Connections 95
Video-to-Memory Compression 95
Memory-to-Video Decompression 98
Setting Interlacing for NTSC and PAL 100

5. Using VL Controls 101
VL Control Type and Values 103
VL Control Fraction Ranges 104
VL Control Classes 105
VL Control Groupings 106

6. Using Compression Library Parameters 109
Compression Library Parameter Definitions 109

Image Frame Dimension Parameters 109
Data Format Parameters 110
Buffer Parameters 111
Compression Ratio and Quality Parameters 112
JPEG and MPEG Parameters 112

Setting and Querying Compression Library Parameters 113
Using Frame Type Parameters 120

7. Using Compression Library Algorithms 123
Choosing a Compression Library Algorithm 123
Querying Compression Library Algorithms 126

Getting a List of Algorithms 126
Getting an Algorithm Scheme or Name 127
Getting License Information 128

Controlling JPEG Compressed Image Quality 129
Specifying a JPEG Quality Factor 130
Defining and Using Custom JPEG Quantization Tables 130
Specifying a Bit Rate Target 131

vi

Contents

8. Porting Cosmo Compress Applications to Indigo2 IMPACT
Compression 133
Hardware Differences 133
Software Differences 135

A. VL Controls and CL Parameters for the Indigo2 IMPACT Compression
Option 137
Device Node Controls 137
Codec Node Parameters 138
Memory Node Controls 142
Memory Node DMA Controls 144
Analog Input and Output Device Controls 146

Index 149

vii

List of Figures

Figure 2-1 Ring Buffer 25
Figure 2-2 Snapshots of Buffer State During Producing and

Consuming Processes 31
Figure 2-3 Flow of Data in a Buffered Compression and

Decompression Scheme 32
Figure 3-1 VL System Components 43
Figure 3-2 Simple VL Path 47
Figure 3-3 Simple VL Blending 48
Figure 3-4 Decimation 63
Figure 3-5 Clipping an Image 65
Figure 3-6 Zoom (Decimation), Size, and Offset 66
Figure 3-7 Field Dominance 71
Figure 3-8 vlGetNextValid(), vlGetLatestValid(), and vlPutFree() 78

ix

List of Tables

Table 2-1 Compression Library Calls 8
Table 2-2 Still Image Interface Calls 10
Table 2-3 Sequential Frame Interface Calls 13
Table 2-4 Typical Stream Header Contents 19
Table 2-5 Additional Video Stream Header Contents 20
Table 2-6 Buffering Interface Calls 23
Table 3-1 Video Formats for Indigo2 IMPACT Compression 50
Table 3-2 Video Library Calls for Data Transfer 52
Table 3-3 VL Event Masks 58
Table 3-4 Data Transfer Controls 60
Table 3-5 Dimensions for Timing Choices 61
Table 3-6 VL_FORMAT 62
Table 3-7 Packing Types for Eight Bits per Component 62
Table 3-8 VL_RATE Values (Items per Second) 67
Table 3-9 Padding and Scaling Controls 72
Table 3-10 Buffer Size Requirements 75
Table 3-11 Buffer-Related Calls 77
Table 3-12 Calls for Extracting Data From a Buffer 79
Table 4-1 Indigo2 IMPACT Compression Image Format

Parameters 89
Table 4-2 Indigo2 IMPACT Compression

Video Field Dimensions 97
Table 4-3 Indigo2 IMPACT Compression Field Widths for

Compression With Decimation 98
Table 4-4 Indigo2 IMPACT Compression Field Widths for

Decompression 99
Table 5-1 Device-Independent VL Controls for Indigo2 IMPACT

Video 102

x

Table 5-2 VL Control Groupings 106
Table 7-1 Capabilities of Image and Video Algorithms 125
Table A-1 Indigo2 IMPACT Compression Device Node Controls 137
Table A-2 Indigo2 IMPACT Compression Image Format

Parameters 138
Table A-3 Indigo2 IMPACT Compression Memory

Node Controls 142
Table A-4 Indigo2 IMPACT Compression Memory Node DMA

Controls 144
Table A-5 Indigo2 IMPACT Compression Analog Input Device

Controls 146
Table A-6 Indigo2 IMPACT Compression Analog Output Device

Controls 147

xi

About This Guide

The Indigo2 IMPACT™ Compression motion JPEG option card from Silicon
Graphics® provides two independent channels of full-resolution,
full-motion, real-time video compression or decompression for the Indigo2

IMPACT family of desktop workstations.

Indigo2 IMPACT Compression fully utilizes all calls and controls in the
Silicon Graphics Compression Library (CL), and works with other Silicon
Graphics programming libraries as well, such as the Video Library (VL).

This guide explains features of the CL and VL for IMPACT Compression and
gives step-by-step instructions for creating programs using CL, VL, or both
that make use of Indigo2 IMPACT Compression board capabilities.

Audience

This guide is written for the sophisticated user with a background in
C programming who wishes to develop programs for Indigo2 IMPACT
Compression capabilities, with or without interaction with its on-board
video capability or the Indigo2 IMPACT Video option.

Structure of This Document

This guide contains the following chapters and appendix:

• Chapter 1, “Indigo2 IMPACT Compression Features and Capabilities,”
explains how the Indigo2 IMPACT Compression board works with the
Compression Library and presents features of the CL.

• Chapter 2, “Programming With the Compression Library,” presents the
CL’s three interfaces for compressing and decompressing image, audio,
and video data.

xii

About This Guide

• Chapter 3, “Programming With the Video Library,” explains how to
open a connection to the video daemon and set up a data path, how to
set data transfer parameters, how to display video data onscreen, how
to transfer video data, and how to end data transfer by presenting an
annotated sample program that displays live video input in a graphics
window.

• Chapter 4, “Using the CL With Indigo2 IMPACT Compression,”
explains how to add Indigo2 IMPACT Compression support to an
application, use Indigo2 IMPACT Compression image formats, get
compressed image information, specify memory-to-memory
compression and decompression, and how to compress and
decompress video through external connections to analog video or
Indigo2 IMPACT Compression.

• Chapter 5, “Using VL Controls,” explains VL control type and values,
VL control fraction ranges, VL control classes, and VL control
groupings.

• Chapter 6, “Using Compression Library Parameters,” describes the
Compression Library parameters and summarizes how to use them.

• Chapter 7, “Using Compression Library Algorithms,” explains how to
query and use Compression Library algorithms.

• Chapter 8, “Porting Cosmo Compress Applications to Indigo2 IMPACT
Compression,” explains hardware and software differences between
the two options.

• Appendix A, “VL Controls and CL Parameters for the Indigo2 IMPACT
Compression Option,” summarizes the VL controls and CL parameters
for Indigo2 IMPACT Compression.

An index completes this guide.

Conventions

xiii

Conventions

These type conventions and symbols are used in this guide:

Helvetica Bold Hardware labels

Italics Executable names, filenames, IRIX commands, manual or
book titles, new terms, program variables, tools, utilities,
variable command line arguments, variable coordinates,
and variables to be supplied by the user in examples, code,
and syntax statements

Bold Function name

Fixed-width type

 Error messages, prompts, and on-screen text

Bold fixed-width type

User input, including keyboard keys (printing and
nonprinting); literals supplied by the user in examples,
code, and syntax statements (see also <>)

“” (Double quotation marks) On-screen menu items and
references in text to document section titles

[] (Brackets) Surrounding optional syntax statement
arguments

<> (Angle brackets) Surrounding nonprinting keyboard keys,
for example, <Esc>, <Ctrl-D>

1

Chapter 1

1. Indigo2 IMPACT Compression Features and
Capabilities

The Indigo2 IMPACT Compression motion JPEG option card from Silicon
Graphics provides two independent channels for compression and
decompression for the Indigo2 IMPACT family of desktop workstations.
Besides compressing and decompressing still images, Indigo2 IMPACT
Compression enables an Indigo2 IMPACT workstation to input and output
compressed video and record it to disk or videotape. When Indigo2 IMPACT
Video is also installed in the workstation, you can input and output CCIR
601 digital video.

Designed to work with the Indigo2 IMPACT Video, Indigo2 IMPACT
Compression overcomes the obstacle presented by the colossal data streams
that video sources generate. Thus, Indigo2 IMPACT Compression is a
powerful tool for video production, digital video distribution, motion video
analysis, and video-based training. Indigo2 IMPACT Compression is an
integral part of the digital studio that combines leading computer graphics,
image processing, digital video, and high-quality video in an efficient
desktop environment.

Note: The Indigo2 IMPACT Compression option does not perform audio
compression.

For applications that demand broadcast quality, Indigo2 IMPACT
Compression with Indigo2 IMPACT Video allows compressed digital video
streams to be used as elements in sophisticated effects such as real-time
keying, blending, and video texture mapping. The option provides an ideal
environment for broadcast-quality nonlinear editing, spot playback, and still
storage.

Indigo2 IMPACT Compression is an integral part of the Silicon Studio
solution for film and video production, which integrates 2D and 3D
graphics, image processing, digital audio, and high-quality video in a single
environment.

2

Chapter 1: Indigo2 IMPACT Compression Features and Capabilities

Indigo2 IMPACT Compression features include

• the ability to encode or decode the board’s two channels in any
combination

• capture and playback of full-resolution full-motion video to and from
memory or disk in real time:

– 60 fields or 30 frames per second compression and decompression
of full-resolution NTSC video

– 50 fields or 25 frames per second compression and decompression
of full-resolution PAL video

– single-frame compression and decompression

• composite or S-Video capture, and playback with genlock capability

• compression ratios as low as 2:1

• during real-time compression, scaling of full-size fields by half in the
horizontal or vertical direction or both

• real-time color-space conversion in memory-to-memory decompression
or uncompressed video capture or playback modes

• during decompressing to main memory or uncompressed video
capture, image scaling for flexible viewing of video clips and for
processing transitions and effects

• compatibility with all Indigo2 IMPACT graphics solutions

• data formats: 8-bit per component 4:2:2 YUV, XBGR, or RGBX (32 bits
per pixel, 8 bits per component)

• capture of uncompressed data to memory; playback of uncompressed
data from memory

Indigo2 IMPACT Compression has these modes of operation:

• capture of uncompressed video from the base analog input or optional
Indigo2 IMPACT Video option into a memory buffer

• playback of uncompressed video from a memory buffer to the base
analog output or optional Indigo2 IMPACT Video option

• compressing video from the base analog input or optional Indigo2

IMPACT Video option into a memory buffer

Using Indigo2 IMPACT Compression and Video Options

3

• decompressing video from a buffer to the base analog output or
optional Indigo2 IMPACT Video option

• compressing an image stored in memory into another area of memory

• decompressing a stored compressed image into another area of
memory

Because of the high data rates produced by video sources, your priorities
might alternate between image quality on the one hand and storage size and
transmission bandwidth on the other. Indigo2 IMPACT Compression adjusts
to your needs with a wide range of compression ratios under complete
software control.

Indigo2 IMPACT Compression works with the Compression Library, a
complete API for compressing single images, video-streaming applications,
and more.

In this chapter:

• “Using Indigo2 IMPACT Compression and Video Options” on page 3
summarizes how the compression board and the Indigo2 IMPACT
Video option interact.

• “Using the Indigo2 IMPACT Compression Option With the
Compression Library” on page 4 introduces the CL.

• “Using the Indigo2 IMPACT Compression Option With the Video
Library” on page 4 introduces the VL.

Using Indigo2 IMPACT Compression and Video Options

The Indigo2 IMPACT Compression option can be used as a simple analog
capture and playback device for video, or with the Indigo2 IMPACT Video
option for capture and playback and for CCIR 601 digital video.

The Indigo2 IMPACT Compression option’s real-time compression and
decompression enables you to perform nonlinear editing and real-time
playback from disk of special effects, composites, and animations. The
Indigo2 IMPACT Compression option uses JPEG, the ideal compression
algorithm for these postproduction processes because it preserves
individual video frames.

4

Chapter 1: Indigo2 IMPACT Compression Features and Capabilities

Using the Indigo2 IMPACT Compression Option With the Compression Library

The Silicon Graphics Compression Library (CL) was designed to exploit the
full capabilities of the Indigo2 IMPACT Compression option:

• compression ratios

• data formats

• in conjunction with the Video Library, capture and playback to and
from video destinations

• digital movie recording, editing, and playback

The CL provides three interfaces, for successively more complex
compression: a still image API for single images, a sequential access API for
video-streaming applications, and a buffered interface. Chapter 2,
“Programming With the Compression Library,” explains these interfaces in
detail.

The CL works with other Silicon Graphics Digital Media libraries—Audio
Library (AL) and Movie Library (ML)—as well as the Video Library (VL).

Note: Although the CL supports audio compression, the Indigo2 IMPACT
Compression board does not.

Using the Indigo2 IMPACT Compression Option With the Video Library

The Video Library provides a software interface to the Indigo2 IMPACT
Compression board, which lets applications

• capture live video in system memory

• encode graphics to video in real time

• produce full-rate video output

The Video Library (VL) is a collection of device-independent and
device-dependent C language calls for Silicon Graphics workstations
equipped with video options. The VL provides generic video tools,
including simple tools for importing and exporting digital data to and from
Silicon Graphics systems or third-party video devices that adhere to the
Silicon Graphics architectural model for video devices.

Using the Indigo2 IMPACT Compression Option With the Video Library

5

Chapter 3, “Programming With the Video Library,” explains the basics of
using the VL to create video programs for Indigo2 IMPACT Compression.

Note: See page 10 for information on the order of operation between CL and
VL calls.

7

Chapter 2

2. Programming With the Compression Library

This chapter describes how to use the Compression Library API to compress
and decompress image and video data. The CL provides three interfaces for
successively more complex compression:

• still image API for single images

• sequential access API for video-streaming applications where the input
is live, or where there is no control over playback and the amount of
compressed data for each frame is known in advance

• buffered interface that includes the calls of the sequential interface, plus
buffer-management routines to access compressed data and
uncompressed framebuffers

Note: Using the CL with video options is explained in detail in Chapter 4,
“Using the CL With Indigo2 IMPACT Compression.”

In this chapter:

• “Error Handling” on page 8 describes the CL error-handling facility.

• “Opening an IMPACT Compression Session” on page 9 explains the
steps required for starting a session.

• “Using the Still Image Interface” on page 10 explains how to compress
still images with a single call.

• “Using the Sequential Frame Interface” on page 13 explains how to
compress or decompress sequential data using a compressor or
decompressor.

• “Using the Buffering Interface” on page 23 explains how to use internal
or external buffering to implement random access or multi-threaded
compression or decompression applications.

8

Chapter 2: Programming With the Compression Library

Table 2-1 lists calls explained in this chapter.

Error Handling

In the CL, file I/O is handled by the caller. The CL has an error handler that
prints error messages to stderr. Most CL routines return a negative error code
upon failure.

You can override the default error-handling routine and establish an
alternate compression error-handling routine using clSetErrorHandler().

The function prototype for clSetErrorHandler() is

CL_ErrFunc clSetErrorHandler(CL_ErrFunc efunc)

where

efunc is a pointer to an error handling routine declared as

void ErrorFunc(CLhandle handle, int code, const
char* fmt,...)

The returned value is a pointer to the previous error-handling routine.

The code fragment in Example 2-1 demonstrates how to silence error
reporting for a section of code.

Table 2-1 Compression Library Calls

Compression and Decompression Buffers Miscellaneous

clCompress()
clDecompress()
clOpenCompressor()
clOpenDecompressor()
clCloseCompressor()
clCloseDecompressor()
clCompressImage()
clDecompressImage()

clCreateBuf()
clDestroyBuf()
clQueryBufferHdl()
clQueryHandle()
clQueryFree()
clUpdateHead()
clUpdateTail()
clDoneUpdatingHead()
clQueryValid()
clQuery()
clUpdate()

clSetErrorHandler()
clQuerySchemeFromName()
clQueryScheme()
clGetParams()
clSetParams()
clReadHeader()
clQueryMaxHeaderSize()

Opening an IMPACT Compression Session

9

Example 2-1 Using a Custom Error-Handling Routine

#include <cl.h>
...
CL_ErrFunc originalErrorHandler;
void SilentCLError(CLhandle handle, int errorCode,

const char* fmt, ...)
{
/* ignore all CL errors */
}

...
originalErrorHandler = clSetErrorHandler(silentCLError);
/* cl errors here will go unnoticed */

...
clSetErrorHandler(originalErrorHandler);
/* back to normal reporting of CL errors */
...

Note: If an application attempts to decompress data that is not valid JPEG
data, the decompressor can hang.

Opening an IMPACT Compression Session

Unlike the Cosmo Compress™ option, the Indigo2 IMPACT Compression
option does not have a predefined scheme value; that is, no scheme pound
define is specified for IMPACT Compression. Instead, applications use
clQuerySchemeFromName() to query the CL whether a scheme with the
name impact is available in the system.

If the scheme is available, the return from this function specifies the scheme
identifier to pass to the CL routines. As other schemes are added to the
Compression Library on a specific workstation, the actual value assigned to
Indigo2 IMPACT Compression can change.

Example 2-2 Querying the Scheme Name

#include <cl.h>
int scheme;
CLhandle clHandle;

10

Chapter 2: Programming With the Compression Library

scheme = clQuerySchemeFromName (CL_ALG_VIDEO, "impact");
if (scheme < 0) {
 fprintf(stderr, "compression scheme ;’impact’ is not configured\n");
 return;

}
clOpenCompressor (scheme, &clHandle);

In modes where the CL and VL interact to control the Indigo2 IMPACT
Compression hardware, applications must follow an ordering of when
events are requested. For all operations involving a
CL_EXTERNAL_DEVICE, the order of startup is:

1. vlBeginTransfer()

2. clCompress() or clDecompress()

The call to clCompress() or clDecompress() actually starts the device
operating. If the vlBeginTransfer() is initiated after the CL operation,
indeterminate data is captured or the first fields of output are lost.

Using the Still Image Interface

Table 2-2 lists the calls explained in this section.

The single image method is designed to make still image compression as
simple as possible. The still image interface consists of two calls, one for
compression and one for decompression. No interframe
compression/decompression, such as the method that takes advantage of
similarities between frames in MPEG, is possible with this interface.

A simple interface exists for compressing or decompressing still images with
a single call. To compress a still image, use clCompressImage(), which
compresses the data from the specified frameBuffer, stores the compressed
image in compressedData, and stores its resulting size in compressedBufferSize.

Table 2-2 Still Image Interface Calls

Compression Decompression Miscellaneous

clCompressImage() clDecompressImage() clQueryMaxHeaderSize()

Using the Still Image Interface

11

Pass to clCompressImage() the compression scheme; the width, height, and
format of the image; the desired compression ratio; pointers to reference the
buffer containing the image and the buffer that is to store the compressed
data; and a pointer to return the size of the compressed data.

You should allocate a buffer large enough to store the compressed data. In
most cases, a buffer the size of the source image plus the maximum header
size, which you can get by calling clQueryMaxHeaderSize(), is sufficient.
When calculating the data storage of the source image, you can use the CL
macro CL_BytesPerPixel() to determine the number of bytes per pixel for
certain packing formats.

The function prototypes for the compress and decompress image routines
are

int clCompressImage(int compressionScheme, int width,
int height, int originalFormat, float compressionRatio,
void *frameBuffer, int *compressedBufferSizePtr,
void *compressedData)

int clDecompressImage(int decompressionScheme, int width,
int height, int originalFormat,int compressedBufferSize,
void *compressedData, void *frameBuffer)

where

compressionScheme
is the compression or decompression scheme to use.

width is the width of the image.

height is the height of the image.

originalFormat is the format of the original image to (de)compress. For
video, use

• CL_RGB

• CL_RGBX

• CL_RGBA

• CL_RGB332

• CL_GRAYSCALE

• CL_YUV

12

Chapter 2: Programming With the Compression Library

• CL_YUV422

• CL_YUV422DC

compressionRatio
is the target compression ratio. The resulting quality
depends on the value of this parameter and on the
algorithm that is used. Use 0.0 to specify a nominal value.
The nominal values for some of the algorithms are

• MVC1 = 5.3:1

• JPEG = 15.0:1

• MPEG = 48.0:1

frameBuffer is a pointer to the framebuffer that contains the
uncompressed image data.

compressedBufferSizePtr
is a pointer to the size, in bytes, of the compressed data
buffer. If it is specified as a nonzero value, the size indicates
the maximum size of the compressed data buffer. The value
pointed to is overwritten by clCompressImage() when it
returns the actual size of the compressed data.

compressedBufferSize
is the size of the compressed data in bytes.

compressedBuffer
is a pointer to the compressed data buffer.

Use clDecompressImage() to decompress an image. clDecompressImage()
decompresses the data that is stored in compressedBuffer, whose size is
compressedBufferSize, and stores the resulting image in frameBuffer.

The values of the state parameters used with the other compression library
calls have no effect on these routines, but their defaults do. The arguments
width, height, originalFormat, and compressionRatio function the same as the
state parameters by the same names but are given as direct arguments to
facilitate the single-command interface.

Example 2-3 demonstrates how to compress and decompress a color image
using the JPEG algorithm. The image is 320 pixels wide by 240 pixels high
and its data is in the RGBX format.

Using the Sequential Frame Interface

13

Example 2-3 Compressing and Decompressing a Single Frame

/* Compress and decompress a 320 by 240 RGBX image with JPEG
*/
int frameIndex, compressedBufferSize,
maxCompressedBufferSize;
int *compressedBuffer, frameBuffer[320][240];

/* malloc a big enough buffer */
maxCompressedBufferSize = 320 * 240 *
CL_BytesPerPixel(CL_RGBX)
 +
clQueryMaxHeaderSize(CL_JPEG);
compressedBuffer = (int *)malloc(maxCompressedBufferSize);

/* Compress and decompress it */
clCompressImage(CL_JPEG, 320, 240, CL_RGBX, 15.0,
 frameBuffer, &compressedBufferSize, compressedBuffer);
clDecompressImage(CL_JPEG, 320, 240, CL_RGBX,
 compressedBufferSize, compressedBuffer, frameBuffer);

Note: If an application attempts to decompress data that is not valid JPEG
data, the decompressor can hang.

Using the Sequential Frame Interface

Table 2-3 lists the calls explained in this section.

Table 2-3 Sequential Frame Interface Calls

Compression Decompression Miscellaneous

clOpenCompressor() clOpenDeompressor() clGetParams()

clCloseCompressor() clCloseDecompressor() clSetParams()

clCompress() clDecompress() clQueryScheme()

clCompressImage() clDecompressImage() clReadHeader()

clQueryMaxHeaderSize()

14

Chapter 2: Programming With the Compression Library

The sequential interface is designed for video-streaming applications where
the input is live, or where there is no control over playback and the amount
of compressed data for each frame is known in advance; in fact, an error is
reported if insufficient data is passed.

This interface is more complex, requiring a series of compress or decompress
calls to be encapsulated within an open-close block. Each compressor or
decompressor keeps state information appropriate to the selected
compression algorithm in parameters that you can query and set.

This section describes how to work with sequential frames of video data. See
“Using the Buffering Interface” on page 23 for a description of how to work
with nonsequential data, or for situations where the decompression rate is
different from the compression rate.

Compressing a Sequence of Frames

To compress sequential data and video streams, use a compressor. A
compressor is an abstraction that modularizes compression operations.

To compress a sequence of frames, follow these steps:

1. Open a compressor to establish the beginning of a sequence of
compression calls.

2. Compress frames one at a time, storing the compressed data after each
frame has been compressed.

3. Close the compressor to deallocate the resources associated with that
compressor.

Each of these steps is discussed in detail in the following sections.

Opening a Compressor

Call clOpenCompressor() to open a compressor for a given algorithm. Its
function prototype is

int clOpenCompressor(int scheme, CLhandle *handlePtr)

Using the Sequential Frame Interface

15

where

scheme is the compression scheme to use.

handlePtr is a pointer, which is overwritten by the returned handle of
the compressor that is used by subsequent calls to identify
the compressor.

More than one compressor can be open at a time. Use the handle that is
returned in handle to identify a specific compressor.

Compressing Frames

After a compressor has been opened, call clCompress() to compress the data.
Pass to clCompress() the handle returned by clOpenCompressor(), the
number of frames to be compressed, and pointers to reference the
framebuffer containing the data frames, the size of the data, and the location
of the buffer that is to store the compressed data.

The function prototype for clCompress() is

int clCompress(CLhandle handle, int numberOfFrames,
void *frameBuffer, int *compressedDataSize,
void *compressedBuffer);

where

handle is a handle to the compressor

numberOfFrames
is the number of frames to compress: generally 1 for video
data, or either CL_CONTINUOUS_BLOCK or
CL_CONTINUOUS_NONBLOCK to continue compression
until either the framebuffer is marked as done or
clCloseCompressor() is called. With
CL_CONTINUOUS_NONBLOCK, the call to clCompress()
returns immediately while the compression occurs in a
separate thread; CL_CONTINUOUS_BLOCK blocks until
compression is completed.

frameBuffer is a pointer to the location of the buffer that contains the
data that is to be compressed. Using a NULL argument here
invokes the buffered interface that is described in “Using
the Buffering Interface” on page 23. An error is reported if

16

Chapter 2: Programming With the Compression Library

no buffer exists. Some compressors allow a value of
CL_EXTERNAL_DEVICE, indicating a direct connection to
an external video source.

compressedDataSize
is a pointer to the returned size of the compressed data in
bytes.

compressedBuffer
is a pointer to the location where the compressed data is to
be written. Using a NULL argument here invokes the
buffered interface that is described in “Using the Buffering
Interface” on page 23.

Call clCompress() once to compress numberOfFrames sequential frames.
clCompress() reads the raw data from the location pointed to by frameBuffer
and writes the compressed data to the location pointed to by
compressedBuffer. clCompress() returns either the number of frames
successfully compressed, or in the case of
CL_CONTINUOUS_NONBLOCK, returns SUCCESS immediately.

The size of the compressed data is stored in compressedDataSize, even if this
size exceeds the COMPRESSED_BUFFER_SIZE state parameter. If
COMPRESSED_BUFFER_SIZE is less than the actual size returned by
clCompress(), then the data returned in compressedBuffer is not complete.

An application-allocated compressed buffer must be at least
COMPRESSED_BUFFER_SIZE bytes. This parameter should be determined
by calling clGetParams() after the framebuffer dimensions are defined by
clSetParams(). It is not required to set the COMPRESSED_BUFFER_SIZE,
because the default is the largest possible compressed data size, which is
computed from the given parameters.

Note: Parameters are explained in detail in Chapter 6, “Using Compression
Library Parameters.”

Using the Sequential Frame Interface

17

Closing a Compressor

To close a compressor, call clCloseCompressor() with the handle of the
compressor you wish to close. This frees resources associated with the
compressor.

The code fragment in Example 2-4 demonstrates how to compress a series of
frames using the CL_MVC1 algorithm. A compressor is opened, and then a
compression loop is entered, where frames are accessed one at a time and
compressed using the selected algorithm, then written to a data buffer. The
compressor is closed when all of the frames have been compressed.

Example 2-4 Compressing a Series of Frames

#include <dmedia/cl.h>

int pbuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_COMPRESSED_BUFFER_SIZE, 0
};
 ...
/* Compress a series of frames */
clOpenCompressor(CL_MVC1, &handle);

/* set parameters */
pbuf[0][1] = 320;
pbuf[1][1] = 240;
clSetParams(handle, (int *)pbuf, 4);
/* allocate the required size buffer */
clGetParams(handle, (int *)pbuf, 6);
compressedBuffer = malloc(pbuf[2][1]);

for(i = 0; i < numberOfFrames; i++)
{
 /* Get a frame from somewhere */
 ...
 clCompress(handle, 1, frameBuffer, &compressedBufferSize,
 compressedBuffer);
 /* Write the compressed data to somewhere else. */
 ...
}
clCloseCompressor(handle);

18

Chapter 2: Programming With the Compression Library

Decompressing a Sequence of Frames

Decompressing sequential data and video streams requires the use of a
decompressor. A decompressor is an abstraction that modularizes
decompression operations.

To decompress a sequence of frames, follow these steps:

1. Query the stream header to get the compression scheme used.

2. Open a decompressor to establish the beginning of a sequence of
decompression calls.

3. Decompress frames one at a time, storing the decompressed data after
each frame has been decompressed.

4. Close the decompressor to deallocate the resources associated with that
decompressor.

Each of these steps is discussed in detail in the following sections.

Getting Stream Information

To determine which scheme to pass to the decompressor, use
clQueryScheme() to get the scheme from the 16 bytes of the stream header
(see Table 2-4 for a list of typical header contents, and Table 2-5 for a list of
additional video stream header contents). clQueryScheme() returns the
scheme, or the (negative) error code when an error occurs.

Once you determine the scheme, you can open the decompressor and read
the header using clReadHeader(), which returns the actual size of the
header, or zero if none is detected. Use clQueryMaxHeaderSize(), which
returns the maximum size of the header, or zero if none is detected, to
determine the size of the header to send to clReadHeader(). You should free
the space used for the header buffer when you are finished with it.

clReadHeader() is generally called before clCreateBuf() to help calculate the
compressed buffer size. It uses the data passed to it without affecting the
buffering. clReadHeader() also sets up any state parameters that can be
determined from the header.

Using the Sequential Frame Interface

19

The function prototypes are

int clQueryScheme(void *header)

int clQueryMaxHeaderSize(int scheme)

int clReadHeader(CLhandle handle, int headerSize,void *header)

where

header is a pointer to a buffer containing at least 16 bytes of the
header.

scheme is the decompression scheme to use.

handle is a handle to the decompressor.

headerSize is the maximum size of the header in bytes.

header is a pointer to a buffer containing the header.

A typical header begins with a start code and a size, followed by
parameter-value pairs such as those listed in Table 2-4.

Note: For complete information on algorithms used with the Indigo2

IMPACT Compression option, see Chapter 7, “Using Compression Library
Algorithms.” For information on parameters, see Chapter 6, “Using
Compression Library Parameters.”

Table 2-4 Typical Stream Header Contents

Parameter Information supplied

CL_ALGORITHM_ID Algorithm scheme

CL_ALGORITHM_VERSION Version of the algorithm

CL_INTERNAL_FORMAT Format of images immediately before compression

CL_NUMBER_OF_FRAMES Number of frames in the sequence

CL_FRAME_RATE Frame rate

20

Chapter 2: Programming With the Compression Library

In addition, video algorithms usually supply the width and height
parameters listed in the header, as shown in Table 2-5.

The code fragment in Example 2-5 demonstrates how to query a stream
header and read its contents.

Example 2-5 Getting the Decompression Scheme From a Header

#include <cl.h>
...
int decompressionScheme;
...
/*
 * Determine the scheme from the first 16 bytes of the
 * header(from the beginning of video data)
*/
header = malloc(16);
read(inFile, header, 16);
decompressionScheme = clQueryScheme(header);
if(decompressionScheme < 0) {

fprintf(stderr, “Unknown compression scheme in stream
header.0);

exit(0);
}
free(header);

clOpenDecompressor(decompressionScheme, &decompressorHdl);

/* Find out how big the header can be. */
headerSize = clQueryMaxHeaderSize(decompressionScheme);
if(headerSize > 0) {

/* Read the header from the beginning of video data */
header = malloc(headerSize);
lseek(inFile, 0, SEEK_SET);

read(inFile, header, headerSize);
}

Table 2-5 Additional Video Stream Header Contents

Parameter Information Supplied

CL_IMAGE_WIDTH Width

CL_IMAGE_HEIGHT Height

Using the Sequential Frame Interface

21

Opening a Decompressor

Call clOpenDecompressor(), with the desired compression scheme and a
pointer for returning a handle, to open a decompressor for a given
algorithm. Its function prototype is

int clOpenDecompressor(int scheme, CLhandle *handlePtr)

where

scheme is the decompression scheme to use

handlePtr is a pointer to the returned handle of the decompressor that
is used by subsequent calls to identify the decompressor.

More than one decompressor can be open at a time. Use the handle that is
returned in handle to identify a specific decompressor.

Decompressing Frames

After a decompressor has been opened, call clDecompress() to decompress
the data. Pass to clDecompress() the handle returned by
clOpenDecompressor(), the number of frames to be decompressed, the size
of the data, and pointers to reference the decompressed data and the
framebuffer that contains the compressed frames.

The function prototype for clDecompress() is

int clDecompress (CLhandle handle, int numberOfFrames,
 int compressedDataSize, void *compressedData
 void *frameBuffer);

where

handle is a handle to the decompressor.

numberOfFrames
is the number of frames to decompress: generally 1 for
video data, or either CL_CONTINUOUS_BLOCK or
CL_CONTINUOUS_NONBLOCK to continue
decompression until either the framebuffer is marked as
done or clCloseDecompressor() is called. With
CL_CONTINUOUS_NONBLOCK, the call to
clDecompress() returns immediately while the

22

Chapter 2: Programming With the Compression Library

compression occurs in a separate thread;
CL_CONTINUOUS_BLOCK blocks until compression is
completed. Using a NULL argument invokes the buffered
interface that is described in “Using the Buffering Interface”
on page 23.

compressedDataSize
is a pointer to the returned size of the decompressed data in
bytes.

compressedData
is a pointer to the location where the decompressed data is
to be written.

frameBuffer is a pointer to the location of the framebuffer that contains
the data that is to be decompressed. Some compressors
allow a value of CL_EXTERNAL_DEVICE, indicating a
direct connection to an external video source. Using a
NULL argument invokes the buffered interface that is
described in “Using the Buffering Interface” on page 23. An
error is reported if no buffer exists.

Closing a Decompressor

To close a decompressor, call clCloseDecompressor() with the handle of the
decompressor you wish to close.

The code fragment in Example 2-6 demonstrates how to decompress a series
of 320 × 240 (32-bit) RGBX frames by using the CL_MVC1 algorithm. A
decompressor is opened, then a decompression loop is entered, where
frames are accessed one at a time and decompressed by using the selected
algorithm, then written to a location such as the screen. The decompressor is
closed when all of the frames have been compressed.

Example 2-6 Decompressing a Series of Frames

#include <cl.h>
...
int compressedBufferSize;
int compressedBuffer[320][240], frameBuffer[320][240];
int width, height, k;
static int paramBuf[][2] = {
 CL_IMAGE_WIDTH, 0,

Using the Buffering Interface

23

 CL_IMAGE_HEIGHT, 0,
 CL_ORIGINAL_FORMAT, 0,
};
width = 320;
height = 240;

clOpenDecompressor(CL_MVC1, &decompressorHdl);
paramBuf[0][1] = width;
paramBuf[1][1] = height;
paramBuf[2][1] = CL_RGBX;
clSetParams(decompressorHdl, (int *)paramBuf,

sizeof(paramBuf) / sizeof(int));

for (k = 0; k < numberOfFrames; k++)
{ /* Decompress each frame and display it */
 dataSize = GetCompressedVideo(k, frameSize, data);
 clDecompress(decompressorHdl, 1, dataSize, data,

frameBuffer);
 lrectwrite(0, 0, width-1, height-1,

(unsigned int *)frameBuffer);
}
/* Close Decompressor */
clCloseDecompressor(decompressorHdl);

Using the Buffering Interface

Table 2-6 lists the calls explained in this section.

Table 2-6 Buffering Interface Calls

Creating and Destroying
Buffers

Managing Buffers

clCreateBuf() clQueryFree()

clDestroyBuf() clUpdateHead()

clQueryBufferHdl() clUpdateTail()

clQueryHandle() clQueryValid()

clDoneUpdatingHead()

24

Chapter 2: Programming With the Compression Library

The buffered interface is designed for

• VCR-like control over the video stream

• maximum efficiency by buffering compressed data and uncompressed
frames

• blocking and nonblocking access

• transparent buffering for hardware acceleration or for multiprocessor
operation

• multi-threaded applications

This interface includes the calls of the sequential interface, plus
buffer-management routines to access the compressed data and the
uncompressed framebuffers.

The buffer management routines allow blocking and nonblocking access
and accumulation of compressed data and decompressed frames. The
compression or decompression modules can each be placed in separate
processes. Separating the processes allows the compression or
decompression process to get ahead a few frames, which is advantageous for
algorithms such as MPEG, which compress the data using techniques that
take advantage of similarities between frames, and it also facilitates
hardware acceleration.

Buffers manage compression and decompression for data that is accessed
randomly, or when it is necessary to separate the task into several processes
or across multiple processors. Buffering allows the accumulation of
compressed data to be independent of that of decompressed frames. The
buffering interface can be used for multi-threaded applications.

Buffers are implemented as ring buffers in libcl. A ring buffer contains a
number of blocks of arbitrary size. It maintains a pointer to the buffer

clQuery()

clUpdate()

Table 2-6 (continued) Buffering Interface Calls

Creating and Destroying
Buffers

Managing Buffers

Using the Buffering Interface

25

location, a size, and pointers to the head of newest and tail of oldest valid
data. Separate processes can be producing (adding to the buffer) and
consuming (removing from the buffer).

Figure 2-1 is a conceptual drawing of a ring buffer.

Figure 2-1 Ring Buffer

The circle represents the ring buffer. The shaded part of the circle contains
frames or data, depending on the buffer type; the blank part is free space.
The size of the data (or the number of frames) available and the size of the
space (or the number of frames of space) are shown by the arrows within the
circles. Head marks the location where new data or frames, depending on
the buffer type, are inserted. Tail marks the location where the oldest data or
frames, depending on the buffer type, are removed. The head and tail march
around the circle as data or frames, depending on the buffer type, are
produced and consumed. The double vertical bar at the top signifies the
discontinuity between the end of the buffer and the beginning of the buffer
in linear physical memory.

Note: The Indigo2 IMPACT Compression hardware is optimized for use in
the asynchronous ring-buffer modes of operation of the CL. Both the
compressed and uncompressed channels to main memory are buffered;
flushing those buffers slows processing. Applications that require real-time
operation must use the ring-buffer modes of the CL.

DMA operations on Indigo2 IMPACT Compression vary depending upon
the number of bytes available to transfer. The device driver attempts to
transfer data in large blocks, but can step it down to less efficient, smaller
block sizes to transfer data out of a ring buffer completely. The minimum
transfer size supported by the Indigo2 IMPACT Compression option is eight
bytes.

Size

Space
HeadTail

26

Chapter 2: Programming With the Compression Library

Creating a Buffer

The buffer management routines allow buffer space to be allocated by the
library (internal) or by the application (external). A buffer often already
exists in memory where the frames exist (on compression) or need to be
placed (on decompression). External buffering allows this to happen
without having to copy the data to or from an internal buffer. An external
buffer is managed entirely within libcl as a ring buffer.

Use clCreateBuf() to create an internal or external buffer. Use
clDestroyBuf() to destroy an internal or external buffer. If clDecompress()
or clCompress() is called with NULL for the compressed data or framebuffer
parameters, then the buffer specified by clCreateBuf() is used. An error is
reported if no buffer was created.

The function prototypes are

CLbufferHdl * clCreateBuf (CLhandle handle, int bufferType,
 int blocks, int blockSize, void **bufferPtr)

int clDestroyBuf (CLbufferHdl bufferHdl)

where

handle is the handle to the compressor or decompressor.

bufferType specifies the type of the ring buffer, which can be either

• CL_FRAME for a framebuffer

• CL_DATA for a data buffer

blocks specifies the number of blocks in the buffer.

blockSize specifies the size in bytes of the block. This value is either 1
for data buffering or a multiple of the frame size for frame
buffering.

bufferPtr is a pointer to a pointer to the ring buffer. If it points to a
NULL pointer, it specifies an internally allocated buffer, and
the value it points to receives the buffer pointer.

bufferHdl is a handle to the buffer.

Using the Buffering Interface

27

The handle returned in bufferHdl is used in subsequent buffering calls, with
which you can get the buffer handle or the compressor or decompressor
handle.

Use clQueryBufferHdl() to get the buffer handle from a compressor or
decompressor handle. Its function prototype is

CLbufferHdl clQueryBufferHdl(CLhandle handle,
 int bufferType, void **bufferPtr2)

Use clQueryHandle() to get the compressor or decompressor handle from a
buffer handle. Its function prototype is

CLhandle clQueryHandle(CLbufferHdl bufferHdl)

The code fragment in Example 2-7 demonstrates how to create and use an
internal buffer.

Example 2-7 Creating and Using an Internal Buffer

#include <cl.h>
CLhandle handle;
CLbufferHdl bufferHdl;
void *buffer;
 ...
clOpenCompressor(CL_MVC1, &handle);

/* Create a buffer of 10 blocks of size 10000 */
buffer = NULL;
bufferHdl = clCreateBuf(handle, CL_DATA, 10, 10000, &buffer);
bufferHdl = clQueryBufferHdl(handle, CL_DATA, &buffer);
handle = clQueryHandle(bufferHdl);
 ...
clDestroyBuf(bufferHdl);
clCloseCompressor(handle);

The code fragment in Example 2-8 demonstrates how to create and use an
external buffer.

Example 2-8 Creating and Using an External Buffer

#include <cl.h>
CLhandle handle;
CLbufferHdl bufferHdl;
void *buffer;

28

Chapter 2: Programming With the Compression Library

clOpenCompressor(CL_MVC1, &handle);

/* Create a buffer of 10 blocks of size 10000 */
buffer = malloc(10*10000);
bufferHdl = clCreateBuf(handle, CL_DATA, 10, 10000, &buffer);
bufferHdl = clQueryBufferHdl(handle, CL_DATA, &buffer);
handle = clQueryHandle(bufferHdl);
 ...
clDestroyBuf(bufferHdl);
clCloseCompressor(handle);

Managing Buffers

The buffer management routines are used for both uncompressed (or
decompressed) frames and compressed data. When used for compressed
data, they return the number of blocks (of selectable byte size) of valid
contiguous data (or free space for data). When used for frames, they return
the actual number of valid contiguous frames (or free space for frames).

Use clQueryFree() to find out how much free space is available and where it
is located.

Use clUpdateHead() to notify the library that data has been placed in the
ring buffer and to update the head pointer.

Use clQueryValid() to find out how many blocks of valid data are available
and where they are located.

Use clUpdateTail() to notify the library that valid data has been consumed
from the ring buffer and that data is no longer needed.

Use clDoneUpdatingHead() to notify a decompressor that no more data will
be arriving, in which case clDecompress() returns when the buffer empties.

The function prototypes are

int clQueryFree (CLbufferHdl bufferHdl, int space,
 void **freeData, int *wrap)

int clUpdateHead (CLbufferHdl bufferHdl, int amountToAdd)

int clQueryValid (CLbufferHdl bufferHdl, int amount,
 void **ValidData, int *wrap)

Using the Buffering Interface

29

int clUpdateTail (CLbufferHdl bufferHdl, int amountToRelease)

int clDoneUpdatingHead (CLbufferHdl bufferHdl)

where

bufferHdl is a handle to a compressor buffer.

space is the number of blocks of free space in the framebuffer to
wait for. If it is zero, then the current number of blocks of
space is returned without waiting.

freeData is a pointer to the returned pointer to the location where
data or frames can be placed.

wrap is the number of blocks that have wrapped to the beginning
of the ring buffer (see Figure 2-2 and the accompanying
discussion). If it is greater than zero, then the end of the ring
buffer has been reached and the routine return value will
not increase (on subsequent calls) until either
clUpdateHead() for free space or clUpdateTail() for valid
data has been called.

amountToAdd is the number of blocks of free space that were written by
the caller and are ready to be consumed by the library.

amount is the number of blocks of valid data in the data buffer to
wait for. If it is zero, then the number of blocks currently
available is returned without waiting.

validData is a pointer to the returned pointer to the location where
valid data can be retrieved.

amountToRelease
is the number of blocks of valid data that were consumed by
the call and can be reused by the library.

Each compressor or decompressor can have a (compressed) data buffer and
a (uncompressed) framebuffer.

The block size for the uncompressed framebuffer must be a multiple of the
size of one frame. This value, multiplied by the number of blocks specified,
determines how many frames ahead a decompressor can get if you allow it
to work ahead.

30

Chapter 2: Programming With the Compression Library

Producing and Consuming Data in Buffers

Figure 2-2 on page 31 shows snapshots of the buffer state over time as a
sequence of produce and consume processes operate on the buffer. Initially,
the buffer is empty and both head and tail point to the beginning of the
buffer. When head and tail are equal, the buffer is either empty or full—in
this case, the buffer is empty. The library keeps track internally of whether
the buffer is empty or full.

In the first frame of Figure 2-2, a process begins producing—adding data to
the buffer. First, a call is made to clQueryFree() to determine how much free
space is available. An amount equal to the entire buffer size is returned. Data
is written to the buffer, then the location of head is updated to point to the
beginning of the next available free space.

In the second frame of Figure 2-2, the next call to clQueryFree() returns the
free space that exists from head to tail. More data is written and the head is
updated once again.

In the third frame of Figure 2-2, a process begins consuming—taking data
from the buffer. A call is made to clQueryValid() to determine the amount of
valid data in existence. The size of the data that was written by the producers
so far is returned. Data is read from the beginning of the buffer to the desired
location, and tail is updated to point to the next location containing valid
data.

The final frame of Figure 2-2 shows what happens when the free space is not
contiguous. When the next producer queries for the available free space, two
pieces of free space exist—one on each side of the buffer discontinuity. The
first piece of free space, which is from head to the end of the buffer, is
returned as usual. The second piece of free space, which is from the
beginning of the buffer to tail, is returned in the wrap argument. You can’t
write data across the buffer boundary, so it must be written to the buffer in
two steps. First write the data until the end of the buffer is reached, then
write the data from the beginning of the buffer until all of the data has been
used. Head can then be updated to point to the next available free space.

The process for reading data across the frame discontinuity is analogous.

Using the Buffering Interface

31

Figure 2-2 Snapshots of Buffer State During Producing and Consuming
Processes

HeadTail HeadTail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail Tail

Head

Tail

Head

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Initial State Write data
clUpdateHead()

clQueryFree()

Write data clUpdateHead()

clQueryValid()

Read data

clUpdateTail()

clQueryFree()
Write data fromWrite data until clUpdateHead()

returns entire buffer

Producing

clQueryFree()

Producing

Consuming

Producing

beginning of bufferend of buffer is
reachedreturns free space

plus a wrap
value that is
greater than
zero

32

Chapter 2: Programming With the Compression Library

Figure 2-3 shows the architecture of the buffer management. Rectangles
represent code modules that can be placed in separate synchronized
processes. The buffer management routines are shown within the boxes.
Arrows show the flow of data from the modules to and from the buffers.

.

Figure 2-3 Flow of Data in a Buffered Compression and Decompression Scheme

clQueryFree(dataHdl)

clUpdateHead(dataHdl)

clQueryValid(frameHdl)

clUpdateTail(frameHdl)

Size

Space

Size

Space Head

Tail

Tail
Head

Playback

Play

Record

Source

Compressor
Decompressor

clDecompress()

Storage

Size

Space

Size

Space Head

Tail

Tail

Head

Storage

clQueryFree(frameHdl)

clUpdateHead(frameHdl)

clCompress()

clQueryValid(dataHdl)

clUpdateTail(dataHdl)

data

data

frames

frames

frames

frames

data

data

Using the Buffering Interface

33

Hardware Buffer Flushing and Latency

When an image is compressed or decompressed in memory-to-memory
modes, it can be partially contained in the hardware for some time. The
device driver does not notify the application that data is available until all
data for a particular field has made its way to memory and a complete
processor cache line has been completed.

This situation is of concern only for applications that use the asynchronous
ring-buffer mode of operation, and do not wish to close the compressor or
decompressor (codec). When the codec is closed, any buffered data is
processed and flushed to the application.

A portion of the image is usually trapped in hardware buffering until either
the compressor is closed or a subsequent image flushes this image portion
out. If the application is decompressing to a CL_EXTERNAL_DEVICE, the
application should ensure that the last compressed image sent to the board
is completely decompressed. When the application wants to explicitly flush
an image out to the video portion of the board, it should send 16 bytes of the
value 255 (0 × FF), as shown in Example 2-9.

Example 2-9 Flush Compressed Data to CL_EXTERNAL_DEVICE
...
/* get an image from somewhere and put into ring buffer */
/* send an image of data to the decompressor */
clUpdateHead(bufferHandle, size_of_image);
/* flush data though JPEG decompressor */
avail = clQueryFree(bufferHandle, 16, &free, &wrap);
if (prewrap > 16) {
 memset(free, 0xFF, 16);
 clUpdateHead(bufferHandle, 16);
}
else {
 /* handle wrapped CL buffers */
}

Note: This flush operation is necessary only when the application expects
some time between the images that are decompressed. If the application is
immediately sending another compressed image, that image flushes the
previous image through the decompressor.

34

Chapter 2: Programming With the Compression Library

Creating a Buffered Record and Play Application

This section provides several examples of how to use buffering. Blocking
and nonblocking playback and record examples are provided.

Creating a Basic Buffered Playback Application

The code fragment in Example 2-10 demonstrates how to use buffers for a
playback application. The amount of space is queried, the data is read
directly into the data buffer, and the decompressor is notified of the change.
The data can then be decompressed and retrieved by querying the number
of frames, displaying them directly from the framebuffer, then releasing the
consumed frames.

Example 2-10 Using Buffers for Playback

#include <cl.h>
 ...
actualLen = clQueryFree(decompressorHdl, len, &buf, &wrap);
read(fd, buf, actualLen);
len = clUpdateHead(dataHdl, actualLen);

clDecompress(decompressorHdl, 1, 0, NULL, NULL);

actualNumberOfFrames = clQueryValid(frameHdl, numberOfFrames,
 &frameBuffer, &wrap);
ConsumeFrames(actualNumberOfFrames, frameBuffer);
numberOfFrames = clUpdateTail(bufferHdl,
actualNumberOfFrames);

clUpdateHead() indicates to the library that the data has been placed in the
data buffer, but does not copy the data.

clDecompress() reads compressed data from the data buffer and writes
uncompressed frames to the framebuffer. If space for a frame exists in the
framebuffer, then the routine begins decompressing directly to the
framebuffer. It consumes data from the data buffer until there is no more
data, then it sleeps for a while and periodically continues to check for data
until there is enough. When it finishes decompressing a frame, it updates the
framebuffer pointers and returns. clDecompress() does not return until
decompression is complete or until an error occurs.

Using the Buffering Interface

35

If no more data is added to the buffer, the application can call
clDoneUpdatingHead() so that the library does not stall.

clQueryValid() returns the pointer into the frame ring buffer. clUpdateTail()
is required to free the internal framebuffer space, which you don’t want to
happen until after you consume it. The pointer to the next valid frame is kept
internally, and only the actual number of framebuffers that have been
decompressed are returned.

The size (or numberOfFrames) returned by the routines are for the contiguous
data (or frames, depending on the buffer type). The wrap argument of the
clQuery() routines returns the actualLen (or numberOfFrames) that have
wrapped to the beginning of the buffer.

The frame accesses does not cross the buffer boundary, and the wrap
argument does not need to be used if both

• the allocated size of the frame ring buffer is a multiple of the size of a
frame times the numberOfFrames that will be requested, and

• the same number of frames will always be requested

If the len (or numberOfFrames) passed to the clQuery() routines is greater
than zero, the routine blocks until that much data (or that many frames) is
available. If it is less than or equal to zero, then the routine returns
immediately with whatever data is available. In either case, the buffer
pointers are not adjusted until the clUpdate() routines are called.

Creating a Nonblocking Buffered Playback Application

The code fragment in Example 2-11 demonstrates how to implement
nonblocking playback.

Example 2-11 Using Buffers for Nonblocking Playback

actualLen = clQueryFree(decompressorHdl, 0, &buf, &wrap);
if((actualLen > MIN_READ_SIZE) || (wrap > 0)) {
 read(fd, buf, actualLen);
 len = clUpdateHead(decompressorHdl, actualLen);
}
/* Go do something else */
 ...

36

Chapter 2: Programming With the Compression Library

Each call to clQueryFree() returns the same buf pointer but increasing values
of actualLen until MIN_READ_SIZE is reached, whereupon
clUpdateHead(dataHdl) updates the pointers, and the next call to
clQueryFree() returns a different buf pointer and a reset actualLen. If wrap
becomes greater than zero, the end of the buffer has been reached and
actualLen does not get any larger, so the amount remaining in the buffer must
be consumed.

Creating a Buffered Record Application

The code fragment in Example 2-12 demonstrates how to use buffers for
recording.

Example 2-12 Using Buffers for Recording

actualNumberOfFrames = clQueryFree(bufferHdl, numberOfFrames,
 &frameBuffer, &wrap);
ProduceFrames(actualNumberOfFrames, frameBuffer);
numberOfFrames = clUpdateHead(bufferHdl,
actualNumberOfFrames);

clCompress(compressorHdl, 1, NULL, 0, NULL);

actualBufSize = clQueryValid(compressorHdl, bufSize, &buf,
 &wrap);
write(fd, buf, actualBufSize);
bufSize = clUpdateTail(compressorHdl, actualBufSize);

The amount of free space is queried, the frames are read directly into the
framebuffer, and the compressor is notified of the change. The frames can
then be compressed and the data can be retrieved by querying the amount
of the data, consuming directly from the data buffer, then releasing the
consumed data.

clUpdateHead() indicates that the frames have been placed in the
framebuffer, but does not copy the data.

clCompress() reads from the framebuffer and writes to the data buffer. If a
frame exists in the framebuffer, then the routine begins compressing directly
from the framebuffer. It places compressed data in the data buffer until there
is no more room, then it blocks until there is enough room. When it
completes compression of a frame, it updates the framebuffer pointers and

Using the Buffering Interface

37

returns. clCompress() does not return until compression is complete (or an
error occurs).

clQueryValid() returns the pointer into the data ring buffer. clUpdateTail()
is required to free the internal data buffer space, which you don’t want to
happen until after you consume it—in this case, by writing it. The pointer to
valid data is kept internally, and clUpdateTail() returns only the actual
number of bytes released.

The amount/numberOfFrames returned by the routines are for contiguous
data or frames. The wrap parameter of the clQuery() routines returns the
amount/numberOfFrames that have wrapped to the beginning of the buffer.

If the allocated size of the frame ring buffer is a multiple of the size of a frame
times the numberOfFrames that will be requested, assuming that the same
number of frames is always requested, then the frame accesses will not cross
the buffer boundary, and the wrap parameter does not need to be used.

If the amount passed to the clQuery() routines is greater than zero, then the
routine blocks until that much data is available. If it is less than or equal to
zero, then the routine returns immediately with whatever data is available.
In either case, the buffer pointers are not adjusted until the clUpdate()
routine is called.

Creating a Nonblocking Buffered Record Application

The code fragment in Example 2-13 demonstrates how to use buffers for
nonblocking recording.

Example 2-13 Using Buffers for Nonblocking Recording

actualLen = clQueryValid(dataHdl, 0, &buf, &wrap);
if((actualLen > MIN_READ_SIZE) || (wrap > 0)){

write(fd, buf, actualLen);
len = clUpdateTail(dataHdl, actualLen);

}

Each call to clQueryValid() returns the same buf pointer but increasing
values of actualLen until MIN_READ_SIZE is reached, whereupon
clUpdateTail() updates the pointers, and the next call to clQueryValid()
returns a different buf pointer and a reset actualLen. If wrap becomes greater

38

Chapter 2: Programming With the Compression Library

than zero, then the end of the buffer has been reached, and actualLen does not
get any larger, so the amount remaining in the buffer must be consumed.

Note that the consuming, compressing or decompressing, and producing
have been separated into different sets of calls. The most powerful use of the
interface is to separate these functional groupings into shared processes
using sproc(), or to allocate them to separate (shared data) processors. See
sproc(2) for more information about using sproc().

The buffers are set up by clCreateBuf(). To use data input buffering,
clDecompress() receives NULL for compressedData. To use frame output
buffering, clDecompress() receives NULL for frameBuffer.

clCompress() reads from the framebuffer and writes to the data buffer. If a
frame exists in the framebuffer, then the routine begins compressing directly
from the framebuffer. It places compressed data in the data buffer until there
is no more room, then it sleeps for a while and checks again until there is
enough room. When it finishes compressing a frame, it updates the
framebuffer pointers and returns. clCompress() does not return until
compression is complete or until an error occurs.

Creating Buffered Multiprocess Record and Play
Applications

Consuming, compressing or decompressing, and producing can be
separated into different sets of calls. The most powerful use of the buffering
interface, however, is to separate these functional groups into shared
processes using sproc() or to allocate them to separate (shared data)
processors.

The code fragment in Example 2-14 demonstrates how to implement
multiprocess playback. The functions in boldface can be implemented as
separate processes.

Example 2-14 Using Buffers for Multiprocess Playback

ProduceDataProcess()
 actualLen = clQueryFree(dataHdl, len, &buf, &wrap);
 read(fd, buf, actualLen);
 len = clUpdateHead(dataHdl, actualLen);

Using the Buffering Interface

39

DecompressProcess()
 clDecompress(decompressorHdl, 1, 0, NULL, NULL);

ConsumeFrameProcess()
 actualNumberOfFrames = clQueryValid(frameHdl,
 numberOfFrames, &frameBuffer, &wrap);
 lrectwrite(0, 0, width - 1, height - 1, frameBuffer);
 numberOfFrames =
clUpdateTail(frameHdl,actualNumberOfFrames);

The code fragment in Example 2-15 demonstrates how to use buffers for
multiprocess recording. The functions in boldface can be implemented as
separate processes.

Example 2-15 Using Buffers for Multiprocess Recording

ProduceFrameProcess()
 actualNumberOfFrames = clQueryFree(frameHdl,
 numberOfFrames, &frameBuffer, &wrap);
 lrectread(0, 0, width - 1, height - 1, frameBuffer);
 numberOfFrames = clUpdateHead(frameHdl,
 actualNumberOfFrames);

CompressProcess()
 clCompress(compressorHdl, 1, NULL, &compressedDataSize,
 NULL);

ConsumeDataProcess()
 actualBufSize = clQueryValid(dataHdl, bufSize,&buf, &wrap);
 write(fd, buf, actualBufSize);
 bufSize = clUpdateTail(dataHdl, actualBufSize);

Implementing functions as separate processes allows the application
nonblocking access to compression and decompression. The application will
almost always use ProduceDataProcess() for playback and the
ProduceFrameProcess() for record, since the single process blocks forever
within clDecompress()/clCompress() if insufficient data or frames,
depending on the buffer type, are supplied. The other processes can be made
parts of the main() process. These processes could also be spread across
multiple processors.

41

Chapter 3

3. Programming With the Video Library

Video Library (VL) calls let you perform video teleconferencing, blend
computer-generated graphics with frames from videotape or any video
source, and output the input video source to the graphics monitor, to a video
device such as a VCR, or both.

This chapter explains the basics of creating video programs for Indigo2

IMPACT Compression:

• Video Library capabilities

• the VL programming model

• performing preliminary steps

• opening a connection to the video daemon

• specifying nodes

• creating and setting up a data path

• setting parameters for data transfer to or from memory

• displaying video data onscreen

• transferring video data to and from devices

• ending data transfer

• descriptions of some example programs

42

Chapter 3: Programming With the Video Library

Video Library Capabilities

The Video Library provides a software interface to the Indigo2 IMPACT
Compression board, enabling applications to

• capture live video in system memory

• encode graphics to video in real time

• produce full-rate video output

The Video Library (VL) is a collection of device-independent and
device-dependent C language calls for Silicon Graphics workstations
equipped with video options. The VL provides generic video tools,
including simple tools for importing and exporting digital data to and from
Silicon Graphics systems, as well as to and from third-party video devices
that adhere to the Silicon Graphics architectural model for video devices.
Video tools are described in the Media Control Panels User’s Guide, which you
can view using the IRIS InSight™ viewer; similar applications are supplied
in source-code form as examples in the 4Dgifts directory
(/usr/people/4Dgifts/impact/examples/dmedia/video/vl and
/usr/people/4Dgifts/OpenGL).

The VL works with other Silicon Graphics libraries, such as the OpenGL®

and IRIS Graphics Library™ (GL™). The VL does not depend on the X
Window System™, but you can use X Window System libraries or toolkits to
create a windowing interface.

The VL allows programs to get events 60 times per second on a quiescent
system; it also enables programs to share resources or to gain exclusive use
of resources. It supports input and output of video data to or from
locked-down memory at the nominal frame rate. The VL provides an API
that enables applications to capture or play back video from system memory.

The Indigo2 IMPACT Compression board software includes a graphical user
interface, /usr/sbin/vcp, that makes it convenient to access VL capabilities.

This section explains

• VL system software architecture

• VL architectural model of video devices

• Indigo2 IMPACT Video formats

Video Library Capabilities

43

VL System Software Architecture

This section describes features of these VL system components and tools:

• video daemon

• generic video tools

• library and header files

Figure 3-1 diagrams the interaction between the VL, the video daemon, the
kernel, the hardware, and the X Window System server.

Figure 3-1 VL System Components

The VL communicates with the IRIX kernel for device initialization, vertical
retrace, setup, and maintenance of any device-supported direct memory
access (DMA).

Besides these components, the VL includes a collection of applications that
support device configuration and control setting and retrieval, generic tools
that display video on a workstation, and video control panels.

Video
application

Video
Library

Video
daemon

IRIX kernel

interface
X GL OpenGL

44

Chapter 3: Programming With the Video Library

Video Daemon

The video daemon /usr/etc/videod, which has device-dependent and
device-independent portions, handles video device management and status
information.

Management that the video daemon performs includes

• multiple client access to multiple devices

The library supports connections from multiple client applications and
manages their access to a limited number of video devices.

• dispatching events

As events are handled and noted by devices, the daemon notifies
applications that have expressed interest in those events.

• handling events

As events are generated by the various devices, the daemon initiates
any action required by an event before it hands the event off to
interested applications.

• maintaining exclusive use

Types of data or control usage for video clients in a Video Library
application are Done Using, Read-only, Lock, and Shared. These usage
levels apply only to write access on controls, not read access. Any
application can open and read the control’s values at any time.

• client cleanup on exit

When a client exits or is terminated abnormally, its connection to the
daemon is broken; the daemon performs any cleanup required of the
system. Any exclusive-use modes that have been set are cleared;
interested clients are notified that the device is no longer in exclusive
use. Controls set by the client might persist, but are not guaranteed to
remain after the client closes the connection.

Status information for which the video daemon is responsible includes

• system status of video devices

The video devices installed in a system can be queried as to availability
and control status.

Video Library Capabilities

45

• video positioning (offset) information

• control setting and retrieval

Device-independent and device-dependent controls are set and
retrieved through the video daemon.

Generic Video Tools

The generic video tools include

videopanel (vcp) Use this graphical user interface to set controls, such as hue
or contrast, on devices. The panel resizes itself dynamically
to reflect available video devices.

vlcmd Use the Video Library command-line interface to enter
Video Library shell-level and other commands.

videoin Use the video input window tool to view input video in a
window.

videoout Use the video output tool to output video from a
rectangular area of the screen on hardware that supports the
screen-to-video path.

vlinfo Use the video info tool to display information about video
devices available through the VL, such as the name of the X
server, number of devices on the server, and the types and
ID numbers of nodes, sources, and drains on each device.

vintovout Use this tool to display video input on the device attached
to video output.

memtovid Use this tool to output frames (images) to video out on
hardware that supports the memory-to-video path.

vidtomem Use this tool to capture a single frame (the current video
input) or a specified number of frames, depending on the
hardware limits for burst capture, and write the data to
disk. Capture size can also be specified. The data, which can
be translated or left as raw data, can be used by the
memtovid tool.

The vlinfo, vidtomem, and memtovid tools are command-line tools. In addition
to their reference pages, these tools have explanations in the Media Control
Panels User’s Guide, which you can view using the IRIS InSight viewer.

46

Chapter 3: Programming With the Video Library

Similar applications are supplied in source-code form as examples in the
4Dgifts directory (/usr/people/4Dgifts/impact/examples/dmedia/video/vl and
/usr/people/4Dgifts/examples/OpenGL).

Library and Header Files

The client library is /usr/lib/libvl.so. The header files for the VL are in
/usr/include/dmedia. The header file for the VL, vl.h, contains the main
definition of the VL API and controls. The header files for Indigo2 IMPACT
Video are

• /usr/include/dmedia/dev_mgv.h (linked to /usr/include/vl/vl_mgv.h)

• /usr/include/dmedia/dev_impact.h (linked to /usr/include/vl/vl_impact.h)

• /usr/include/dmedia/dev_mgc.h (linked to /usr/include/vl/vl_mgc.h), which
is the header file for Indigo2 IMPACT Compression

• /usr/include/dmedia/vl_impact.h (linked to /usr/include/vl/dev_impact.h),
which contains definitions common to the Indigo2 IMPACT Video and
Indigo2 IMPACT Compression devices

VL Architectural Model of Video Devices

The VL recognizes these classes of objects:

• devices, each including sets of nodes

• nodes: sources, drains, and internal nodes

• paths, connecting sources and drains

• ports, the entities on nodes that produce or consume video data

• controls, or parameters, that modify how data flows through nodes; for
example:

– video device parameters, such as blanking width, gamma value,
horizontal phase, sync source

– video data capture parameters

– blending parameters

Video Library Capabilities

47

• buffers, for sending frame data to and receiving frame data from host
memory; the VL buffers contain a number of blocks; each with a
pointer, a size, and pointers to the head (oldest) and tail (newest) valid
data

Central concepts for VL are path, node, and port.

Path

The path is an abstraction for a way of moving data around. A path is a set
of nodes with video routes (connections) between the ports on the nodes.

Node

The node is an endpoint or internal processing element of the path, such as
a video source like a VTR, video drain (such as to the Indigo2 IMPACT
screen), a device (video), or the blender in which video sources are combined
for output to a drain.

A path defines the useful connections between video sources and video
drains. Figure 3-2 shows a simple path in which a frame from a videotape is
displayed in a workstation window.

Figure 3-2 Simple VL Path

Figure 3-3 shows a more complex path with two video sources: a frame from
a videotape and a computer-generated image are blended and output to a
workstation window. This path is set up in stages.

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

Source Drain

VTR

48

Chapter 3: Programming With the Video Library

Figure 3-3 Simple VL Blending

Port

The port is an entity on a node that produces or consumes video data.

Most nodes have only one port, such as the video in or video out nodes. Each
internal node has at least two ports, input (drain) and output (source). The
blend node has several ports (A alpha in, A pixel in, B alpha in, B pixel in,
pixel out, alpha out).

Ports have several attributes:

• link type: single-link or dual-link

• data type: alpha, pixel, or pixel-alpha (dual-link)

Source1

Source2

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

VTR

Drain

Source1 Drain

/*Create the screen to video path */
vlPath = vlCreatePath(vlScr, devicenum, src_scr, drn_vid);

/* Add the video source node */
vlAddNode(vlSvr, vlPath, src_vid);

Video Library Capabilities

49

A device can use this attribute internally to handle data conversions or
routing. For example, the Indigo2 IMPACT Video board includes an
alpha LUT to convert CCIR-range pixel data to full-range alpha values.

• direction: source or drain

• enumerator: A, B, C, and so on, used if a path has several ports with the
same link type, data type, and direction

Ports produce or consume various types of data: pixel, alpha, or dual-link
data. The identification of the port as pixel or alpha may cause the video
stream to be treated differently. For example, alpha data, which can be
supplied to Indigo2 IMPACT video in the CCIR range only, is internally
expanded to full range before it is used. No range expansion is performed
for pixel data. Dual-link channels carry both alpha and pixel data, although
one data type may be ignored depending on the format.

Ports have generic names; for example:

• VL_IMPACT_PORT_PIXEL_SRC_A: source of a pixel stream (first, or
only, port instance)

• VL_IMPACT_PORT_ALPHA_DRN_B: drain of an alpha stream
(second port instance)

For the symbolic names for ports, see /usr/include/dmedia/dev_impact.h.
Appendix A, “VL Controls and CL Parameters for the Indigo2 IMPACT
Compression Option,” gives the ports associated with each node.

Connections

The connections between ports on nodes determine the topology of a path.

Single-link ports can be connected to single-link ports only; dual-link ports
can be connected to double-link ports only.

Data flows from a source port to a drain port. It is not permissible to connect
a source port to another source port, or a drain port to another drain port.

Connections obey stream-usage levels set with vlSetupPaths(). Usage is
drain-centric: the usage levels of the path(s) using the drain node serve as the
usage level of the connection.

50

Chapter 3: Programming With the Video Library

The functions vlSetConnection() and vlGetConnection() manipulate
connections:

• vlSetConnection() sets a connection between a source pair (node, port)
pair and a drain pair (node, port).

• vlGetConnection() returns the set of connections entering or leaving a
node or port.

Indigo2 IMPACT Compression Formats

The Indigo2 IMPACT Compression board translates video signals into a
form usable by the Indigo2 workstation. It also does the reverse, translating
memory buffers into video signals.

Table 3-1 summarizes the formats that the Indigo2 IMPACT Video board
supports.

The VL Programming Model

Syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example,
VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

Data transfers fall into two categories:

• transfers involving memory (video to memory, memory to video),
which require setting up a VL buffer

• transfers that do not involve memory (video in to video out), which do
not require setting up a VL buffer.

Table 3-1 Video Formats for Indigo2 IMPACT Compression

Format Signal Nodes

SMPTE YUV (VL_FORMAT_SMPTE_YUV) Contains YUV components in the range 1-254;
superblack and superwhite values can be present.

All memory nodes

RGB (VL_FORMAT_RGB) Full-range 8-bit per component RGBA. Component
range is 0 to 255 (8-bit).

All memory nodes

The VL Programming Model

51

For the two categories of data transfer, based on the VL programming
model, the process of creating a VL application consists of these steps:

1. Open a connection to the video daemon (vlOpenVideo()); if necessary,
determine which device the application will use (vlGetDevice(),
vlGetDeviceList()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. (Optional step) Add more connections to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()).

8. For transfers involving memory, create a VL buffer to hold data for
memory transfers (vlGetTransferSize(), vlCreateBuffer()).

9. For transfers involving memory, register the buffer
(vlRegisterBuffer()).

10. Set the path topology (vlSetConnection()).

11. Start the data transfer (vlBeginTransfer()).

12. For transfers involving memory, get the data (vlGetNextValid() or
vlGetLatestValid(), vlGetActiveRegion(), vlPutFree()) to manipulate
frame data.

13. Clean up (vlEndTransfer(), vlDeregisterBuffer(), vlDestroyPath(),
vlDestroyBuffer(), vlCloseVideo()).

52

Chapter 3: Programming With the Video Library

Table 3-2 lists calls explained in this chapter.

Performing Preliminary Steps

To run VL, you must

• install the dmedia_dev option

• link with libvl.so

• include vl.h, dev_mgv.h, and dev_mgc.h

The client library is /usr/lib/libvl.so. The header files for the VL are in
/usr/include/dmedia; see “Library and Header Files” on page 46 for a list.

Note: When building a VL-based program, you must add -lvl to the linking
command.

Table 3-2 Video Library Calls for Data Transfer

All Transfers Transfers Involving Memory Setting Controls

vlOpenVideo()
vlGetDevice()
vlGetDeviceList()
vlGetNode()
vlCreatePath()
vlSetConnection()
vlGetConnection()
vlAddNode()
vlRemoveNode()
vlSetupPaths()
vlSelectEvents()
vlBeginTransfer()
vlEndTransfer()
vlDestroyPath()
vlCloseVideo()

vlGetTransferSize()
vlCreateBuffer()
vlRegisterBuffer()
vlGetNextValid()
vlGetLatestValid()
vlPutValid()
vlGetNextFree()
vlGetActiveRegion()
vlPutFree()
vlGetDMediaInfo()
vlGetImageInfo()
vlDeregisterBuffer()
vlDestroyBuffer()

vlSetControl()
vlGetControl()
vlControlList()
vlGetControlInfo()

Opening a Connection to the Video Daemon

53

Opening a Connection to the Video Daemon

The first thing a VL application must do is open the device with
vlOpenVideo(). Its function prototype is

VLServer vlOpenVideo(const char *sName)

where sName is the name of the server to which to connect; set it to a NULL
string for the local server. For example:

vlSvr = vlOpenVideo("")

Specifying Nodes on the Data Path

Use vlGetNode() to specify nodes; this call returns the node’s handle. Its
function prototype is

VLNode vlGetNode(VLServer vlSvr, int type, int kind, int number)

where

VLNode is a handle for the node, used when setting controls or
setting up paths

vlSvr names the server (as returned by vlOpenVideo())

type specifies the type of node:

• VL_SRC: source

• VL_DRN: drain

• VL_DEVICE: device for device-global controls

Note: If you are using VL_DEVICE, the kind should be
set to 0.

kind specifies the kind of node:

• VL_CODEC: compressor/decompressor (codec node)

• VL_MEM: region of workstation memory

• VL_VIDEO: connection to a video device; for example,
a video tape deck or camera

54

Chapter 3: Programming With the Video Library

Note: Appendix A, “VL Controls and CL Parameters for
the Indigo2 IMPACT Compression Option,” gives full
details of all Indigo2 IMPACT Video nodes.

number is the number of the node in cases of two or more identical
nodes, such as two video source nodes

To discover which node the default is, use the control
VL_DEFAULT_SOURCE after getting the node handle the normal way. The
default video source is maintained by the VL. For example:

vlGetControl(vlSvr, path, VL_ANY, VL_DEFAULT_SOURCE, &ctrlval);
nodehandle = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, ctrlval.intVal);

In the first line above, the last argument is a struct that retrieves the value.
Corresponding to VL_DEFAULT_SOURCE, the control
VL_DEFAULT_DRAIN gets the default VL_SRC node.

Creating and Setting Up the Data Path

Once nodes are specified, use VL calls to

• create the path

• get the device ID

• add nodes (optional step)

• set up the data path

• specify the path-related events to be captured

Creating the Path

Use vlCreatePath() to create the data path. Its function prototype is

VLPath vlCreatePath(VLServer vlSvr, VLDev vlDev,
 VLNode src, VLNode drn)

This code fragment creates a path if the device is unknown:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0) {
 vlPerror(_progName);

Creating and Setting Up the Data Path

55

 exit(1);
}

This code fragment creates a path that uses a device specified by parsing a
devlist:

if ((path = vlCreatePath(vlSvr, devlist[devicenum].dev, src,
 drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Note: If the path contains one or more invalid nodes, vlCreatePath() returns
VLBadNode.

Getting the Device ID

If you specify VL_ANY as the device when you create the path, use
vlGetDevice() to discover the device ID selected. Its function prototype is

VLDev vlGetDevice(VLServer vlSvr, VLPath path)

For example:

devicenum = vlGetDevice(vlSvr, path);
deviceName = devlist.devices[devicenum].name;
printf("Device is: %s/n", deviceName);

Adding a Node

For this optional step, use vlAddNode(). Its function prototype is

int vlAddNode(VLServer vlSvr, VLPath vlPath, VLNodeId node)

where

vlSvr names the server to which the path is connected

vlPath is the path as defined with vlCreatePath()

node is the node ID

56

Chapter 3: Programming With the Video Library

This example fragment adds a source node and a blend node:

vlAddNode(vlSvr, vlPath, src_vid);
vlAddNode(vlSvr, vlPath, blend_node);

Setting Up the Data Path

Use vlSetupPaths() to set up the data path. Its function prototype is

int vlSetupPaths(VLServer vlSvr, VLPathList paths,
 u_int count, VLUsageType ctrlusage, VLUsageType streamusage)

where

vlSvr names the server to which the path is connected

paths specifies a list of paths you are setting up

count specifies the number of paths in the path list

ctrlusage specifies usage for path controls:

• VL_SHARE: other paths can set controls on this node;
this control is the desired setting for other paths,
including vcp, to work

Note: When using VL_SHARE, pay attention to events.
If another user has changed a control, a
VLControlChanged event occurs.

• VL_READ_ONLY: controls cannot be set, only read; for
example, this control can be used to monitor controls

• VL_LOCK: prevents other paths from setting controls
on this path; controls cannot be used by another path

• VL_DONE_USING: the resources are no longer
required; the application releases this set of paths for
other applications to acquire

streamusage specifies usage for the data:

• VL_SHARE: transfers can be preempted by other
users; paths contend for ownership

Creating and Setting Up the Data Path

57

Note: When using VL_SHARE, pay attention to events.
If another user has taken over the node, a
VLStreamPreempted event occurs.

• VL_READ_ONLY: the path cannot perform transfers,
but other resources are not locked; set this value to use
the path for controls

• VL_LOCK: prevents other paths that share data
transfer resources with this path from transferring;
existing paths that share resources with this path will
be preempted

• VL_DONE_USING: the resources are no longer
required; the application releases this set of paths for
other applications to acquire

This example fragment sets up a path with shared controls and a locked
stream:

if (vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_LOCK) < 0)
{
 vlPerror(_progName);
 exit(1);
}

Note: The Video Library infers the connections on a path if
vlBeginTransfer() is called and no drain nodes have been connected using
vlSetConnection() (implicit routing). To specify a path that does not use the
default connections, use vlSetConnection() (explicit routing).

• For each internal node on the path, all unconnected input ports are
connected to the first source node added to the path. Pixel ports are
connected to pixel ports and alpha ports are connected to alpha ports.

• For each drain node on the path, all unconnected input ports are
connected to the first internal node placed on the path, if there is an
internal node, or to the first source node placed on the path. Pixel ports
are connected to pixel ports and alpha ports are connected to alpha
ports.

Note: Do not combine implicit and explicit routing.

58

Chapter 3: Programming With the Video Library

Specifying the Path-Related Events to Be Captured

Use vlSelectEvents() to specify the events you want to receive. Its function
prototype is

int vlSelectEvents(VLServer vlSvr, VLPath path,
 VLEventMask eventmask)

where

vlSvr names the server to which the path is connected

path specifies the data path.

eventmask specifies the event mask; Table 3-3 lists the possibilities

Table 3-3 lists and describes the VL event masks.

Table 3-3 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another path

vlStreamChangedMask Video routing on this path has been changed by
another path

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically
by another user setting VL_LOCK on a path that
was previously set with VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

59

For example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask);

Event masks can be Or’ed; for example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

Transferring data to or from memory requires creating a VL buffer; its size is
determined by the size of the frame data you are transferring.

To set frame data size and to convert from one video format to another, apply
controls to the nodes. The use of source node controls and drain node
controls is explained separately in this section.

Setting Node Controls for Data Transfer

Important data transfer controls for source and drain nodes are summarized
in Table 3-4. They should be set in the order in which they appear in the
table.

VLTransferFailedMask Error; transfer terminated; perform cleanup at
this point, including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a trigger

VLDefaultSourceMask Default source changed

Table 3-3 (continued) VL Event Masks

Symbol Meaning

60

Chapter 3: Programming With the Video Library

These controls are highly interdependent, so the order in which they are set
is important. In most cases, the value being set takes precedence over other
values that were previously set.

Note: For drain nodes, VL_PACKING must be set first. Note that changes in
one parameter may change the values of other parameters set earlier; for
example, clipped size may change if VL_PACKING is set after VL_SIZE.

To determine default values, use vlGetControl() to query the values on the
video source or drain node before setting controls. The initial offset of the
video node is the first active line of video.

Similarly, the initial size value on the video source or drain node is the full
size of active video being captured by the hardware, beginning at the default

Table 3-4 Data Transfer Controls

Control Basic Use Video Nodes Memory and Codec Nodes

VL_FORMAT Video format on the physical
connector

See “Using VL_FORMAT” in
this chapter

N/A

VL_TIMING Video timing See Table 3-5 for values N/A

VL_CAP_TYPE Setting type of field(s) or frame(s)
to capture

N/A VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_EVEN_FIELDS
VL_CAPTURE_ODD_FIELDS
VL-CAPTURE_FIELDS

VL_PACKING Pixel packing (conversion) format N/A Changes pixel format of captured data;
see Table 3-7 for values

VL_ZOOM Decimation size N/A Memory nodes only: any n/m where n
is less than or equal to m
Codec nodes: N/A

VL_SIZE Clipping size Full size of video; read only Clipped size

VL_OFFSET Position within larger area Position of active region; read
only

Offset relative to video offset

VL_RATE Field or frame transfer speed N/A If type is INTERLEAVED, rate is in
frames; otherwise, it is in fields

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

61

offset. Because some hardware can capture more than the size given by the
video node, this value should be treated as a default size.

For all these controls, it pays to track return codes. If the value returned is
VLValueOutOfRange, the value set is not what you requested.

To specify the controls, use vlSetControl(), for which the function prototype
is

int vlSetControl(VLServer vlSvr, VLPath vlPath, VLNode node,
 VLControlType type, VLControlValue * value)

The use of VL_TIMING, VL_FORMAT, VL_PACKING, VL_ZOOM,
VL_SIZE, VL_OFFSET, VL_CAP_TYPE, and VL_RATE is explained in more
detail in the following sections.

Using VL_TIMING

Timing type expresses the timing of video presented to a source or drain.
Table 3-5 summarizes dimensions for VL_TIMING.

Table 3-5 Dimensions for Timing Choices

Timing
Maximum
Width

Maximum
Height

VL_TIMING_525_SQ_PIX (12.27 MHz) 640 486

VL_TIMING_625_SQ_PIX (14.75 MHz) 768 576

VL_TIMING_525_CCIR601 (13.50 MHz) 720 486

VL_TIMING_625_CCIR601 (13.50 MHz) 720 576

62

Chapter 3: Programming With the Video Library

Using VL_FORMAT

To specify video input and output formats of the video signal on the physical
connector, use VL_FORMAT. Table 3-6 summarizes the options.

Using VL_PACKING

A video packing describes how a video signal is stored in memory, in contrast
to a video format, which describes the characteristics of the video signal.

Packings are specified through the VL_PACKING control on the memory
nodes. This control also converts one video output format to another in
memory, within the limits of the nodes.

Packing types for eight bits per component are summarized in Table 3-7.

Table 3-6 VL_FORMAT

Format Explanation

VL_FORMAT_SMPTE_YUV 8-bit YCrCb

VL_FORMAT_RGB Full-range 8-bit (0-255) RGBA

Table 3-7 Packing Types for Eight Bits per Component

Type 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

VL_PACKING_YVYU_422_8
YUV 4:2:2, single-link

U0 Y0 V0 Y1 U2 Y2 V2 Y3

VL_PACKING_RGB_8
RGB, single-link
24-bit word, values beginning with
X are ignored

X0 B0 G0 R0 X1 B1 G1 R1

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

63

Using VL_ZOOM

In the VL, VL_ZOOM controls the expansion or decimation of the video
image. For Indigo2 IMPACT Compression, VL_ZOOM is used in this way:

• Indigo2 IMPACT Compression memory drain nodes support any ratio
where the numerator is less than or equal to the denominator—that is,
decimation, but not zoom.

• Other Indigo2 IMPACT Compression nodes support zoom and
decimation ratios of 1:1 only, that is, neither zoom nor decimation.

Figure 3-4 illustrates decimation.

Figure 3-4 Decimation

VL_ZOOM takes a nonzero fraction as its argument; do not use negative
values. For example, this fragment captures half-size decimation video to
the screen:

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server, screen_path, screen_drain_node,
VL_ZOOM, &val)){
 vlPerror("Unable to set zoom");
 exit(1);
}

Note: For a source, decimation takes place before blending; for a drain,
blending takes place before decimation.

This fragment captures half-size decimation video to the screen, with
clipping to 320 × 243 (NTSC size minus overscan):

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;

Decimation

Original image

factor: 1/2

64

Chapter 3: Programming With the Video Library

if (vlSetControl(server,screen_path, screen_drain_node,
VL_ZOOM, &val))

{
 vlPerror("Unable to set zoom");
 exit(1);
}
val.xyVal.x = 320;
val.xyVal.y = 243;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

This fragment captures xsize × ysize video with as much decimation as
possible, assuming the size is smaller than the video stream:

if (vlGetControl(server, screen_path, screen_source,
VL_SIZE, &val))
{
 vlPerror("Unable to get size");
 exit(1);
}
if (val.xyVal.x/xsize < val.xyVal.y/ysize)
 zoom_denom = (val.xyVal.x + xsize - 1)/xsize;
else
 zoom_denom = (val.xyVal.y + ysize - 1)/ysize;
val.fractVal.numerator = 1;
val.fractVal.denominator = zoom_denom;

if (vlSetControl(server, screen_path, screen_drain_node,
VL_ZOOM, &val))

{
 /* allow this error to fall through */
 vlPerror("Unable to set zoom");
}
val.xyVal.x = xsize;
val.xyVal.y = ysize;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

65

Using VL_SIZE

VL_SIZE controls how much of the image sent to the drain is used, that is,
how much clipping takes place. This control operates on the zoomed image;
for example, when the image is zoomed to half size, the limits on the size
control change by a factor of 2. Figure 3-5 illustrates clipping.

Figure 3-5 Clipping an Image

For example, to display PAL video in a 320 × 243 space, clip the image to that
size, as shown in the following fragment:

VLControlValue value;
value.xyval.x=320;
value.xyval.y=243;
vlSetControl(vlSvr, path, drn, VL_SIZE, &value);

Note: Because this control is device-dependent and interacts with other
controls, always check the error returns. For example, if offset is set before
size and an error is returned, set size before offset.

Using VL_OFFSET

VL_OFFSET puts the upper left corner of the video data at a specific
position; it sets the beginning position for the clipping performed by
VL_SIZE. The values you enter are relative to the origin.

Clipping a decimated image

Clipping an undecimated image

Image to fit into this space

Placement of clipping area
depends on the value of VL_OFFSET

Original image

66

Chapter 3: Programming With the Video Library

This example places the data ten pixels down and ten pixels in from the left:

VLControlValue value;
value.xyval.x=10;
value.xyval.y=10;
vlSetControl(vlSvr, path, drn, VL_OFFSET, &value);

To capture the blanking region, set offset to a negative value.

Figure 3-6 shows the relationships between the source and drain size, and
offset.

Note: For memory nodes, VL_OFFSET and VL_SIZE in combination define
the active region of video that is transferred to or from memory.

Figure 3-6 Zoom (Decimation), Size, and Offset

Using VL_CAP_TYPE and VL_RATE

An application can request that Indigo2 IMPACT Compression capture or
play back a video stream in a number of ways. For example, the application
can request that each field be placed in its own buffer, that each buffer
contain an interleaved frame, or that only odd or even fields be captured.

VL_SIZE

VL_ZOOM

VL_OFFSET

Subset of video source:
decimated portion (decimation factor)

VL_SIZE

VL_OFFSET

Drain

Source

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

67

This section enumerates the capture types that Indigo2 IMPACT
Compression supports.

A field mask is useful for identifying which fields will be captured and played
back and which fields will be dropped. A field mask is a bit mask of 60 bits
for NTSC or 50 bits for PAL (two fields per frame). A numeral 1 in the mask
indicates that a field is captured or played back, while a zero indicates that
no action occurs.

For example, the following field mask indicates that every other field will be
captured or played back:

10101010101010101010...

Capture types are as follows:

• VL_CAPTURE_NONINTERLEAVED

• VL_CAPTURE_INTERLEAVED

• VL_CAPTURE_EVEN_FIELDS

• VL_CAPTURE_ODD_FIELDS

• VL_CAPTURE_FIELDS

VL_RATE determines the data transfer rate by field or frame, depending on
the capture type as specified by VL_CAP_TYPE, as shown in Table 3-8.

Table 3-8 VL_RATE Values (Items per Second)

VL_CAP_TYPE Value VL_RATE Value

VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED

NTSC: 1-30 frames/second
PAL: 1-25 frames/second

VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS

NTSC: 1-30 fields/second
PAL: 1-25 fields/second

VL_CAPTURE_FIELDS NTSC: 1-60 fields/second
PAL: 1-50 fields/second

68

Chapter 3: Programming With the Video Library

Note: Not all rates are supported on all memory nodes; see Appendix A,
“VL Controls and CL Parameters for the Indigo2 IMPACT Compression
Option,” for details. The buffer size must be set in accordance with the
capture type, as listed in Table 3-10 in this chapter.

VL_CAPTURE_NONINTERLEAVED

The VL_CAPTURE_NONINTERLEAVED capture type specifies that
frame-size units are captured noninterleaved. Each field is placed in its own
buffer, with the dominant field in the first buffer. If one of the fields of a
frame is dropped, all fields are dropped. Consequently, an application is
guaranteed that the field order is maintained; no special synchronization is
necessary to ensure that fields from different frames are mixed.

The rate (VL_RATE) for noninterleaved capture is in terms of fields and
must be even. For NTSC, the capture rate may be from 2 to 60 fields per
second, and for PAL, from 2 to 50 fields per second. Because a frame is
always captured as a whole, a rate of 30 fields per second results in the
following field mask:

1100110011001100...

The first bit in the field mask corresponds to the dominant field of a frame.
Indigo2 IMPACT Video waits for a dominant field before it starts the transfer.

If VL_CAPTURE_NONINTERLEAVED is specified for playback, similar
guarantees apply as for capture. If one field is lost during playback, it is not
possible to “take back” the field. Indigo2 IMPACT Video resynchronizes on
the next frame boundary, although black or “garbage” video might be
present between the erring field and the frame boundary.

The rate during playback also follows the rules for capture. For each 1 in the
mask above, a field from the VL buffer is output. During the 0 fields, the
previous frame is repeated. Note that the previous frame is output, not just
the last field. If there are a pair of buffers, the dominant field is placed in the
first buffer.

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

69

VL_CAPTURE_INTERLEAVED

Interleaved capture interleaves the two fields of a frame and places them in
a single buffer; the order of the frames depends on the value set for
VL_MGV_DOMINANCE_FIELD (see Table A-3 or Table A-4 in Appendix A
for details). Indigo2 IMPACT Video guarantees that the interleaved fields are
from the same frame: if one field of a frame is dropped, then both are
dropped.

The rate for interleaved frames is in frames per second: 1-30 frames per
second for NTSC and 1-25 frames per second for PAL. A rate of 15 frames per
second results in every other frame being captured. Expressed as a field
mask, the following sequence is captured:

1100110011001100....

As with VL_CAPTURE_NONINTERLEAVED, Indigo2 IMPACT Video
begins processing the field mask when a dominant field is encountered.

During playback, a frame is deinterleaved and output as two consecutive
fields, with the dominant field output first. If one of the fields is lost, Indigo2

IMPACT Video resynchronizes to a frame boundary before playing the next
frame. During the resynchronization period, black or “garbage” data may be
displayed.

Rate control follows similar rules as for capture. For each 1 in the mask
above, a field from the interleaved frame is output. During 0 periods, the
previous frame is repeated.

VL_CAPTURE_EVEN_FIELDS

In the VL_CAPTURE_EVEN_FIELDS capture type, only even (F2) fields are
captured, with each field placed in its own buffer. Expressed as a field mask,
the captured fields are

1010101010101010...

Indigo2 IMPACT Video begins processing this field mask when an even field
is encountered.

The rate for this capture type is expressed in even fields. For NTSC, the range
is 1-30 fields per second, and for PAL 1-25 fields per second. A rate of 15

70

Chapter 3: Programming With the Video Library

fields per second (NTSC) indicates that every other even field is captured,
yielding a field mask of

1000100010001000...

During playback, the even field is repeated as both the F1 and F2 fields, until
it is time to output the next buffer. If a field is lost during playback, black or
“garbage” data might be displayed until the next buffer is scheduled to be
displayed.

VL_CAPTURE_ODD_FIELDS

The VL_CAPTURE_ODD_FIELDS capture type works the same way as
VL_CAPTURE_EVEN_FIELDS, except that only odd (F1) fields are
captured, with each field placed in its own buffer. The rate for this capture
type is expressed in odd fields. A rate of 15 fields per second (NTSC)
indicates that every other odd field is captured. Field masks are the same as
for VL_CAPTURE_EVEN_FIELDS.

VL_CAPTURE_FIELDS

The VL_CAPTURE_FIELDS capture type captures both even and odd fields
and places each in its own buffer. Unlike
VL_CAPTURE_NONINTERLEAVED, there is no guarantee that fields are
dropped in frame units. Field synchronization can be performed by
examining the UST, the MSC, or the dmedia info sequence number
associated with each field.

The rate for this capture type is expressed in fields. For NTSC, the range is
1-60 fields per second, and for PAL 1-50 fields per second. A rate of 30 fields
per second (NTSC) indicates that every other field is captured, resulting in
the following field mask:

101010101010101010...

Contrast this with the rate of 30 for VL_CAPTURE_NONINTERLEAVED,
which captures every other frame.

Field mask processing begins on the first field after the transfer is started;
field dominance, evenness, oddness play no role in this capture type.

Setting Parameters for Data Transfer to or From Memory or Codec Nodes

71

Setting Field Dominance

Use the control VL_MGC_DOMINANCE_FIELD to set the field dominance
mode, which determines the order in which the fields are read from memory.
This control applies only to the frame-oriented capture types
VL_CAPTURE_INTERLEAVED and VL_CAPTURE_NONINTERLEAVED.

The values for the control VL_MGC_DOMINANCE_FIELD are
VL_MGC_DOMINANCE_F1 (the default) and
VL_MGC_DOMINANCE_F2. Figure 3-7 diagrams the field dominance
values.

Figure 3-7 Field Dominance

You can set field dominance independently for each DMA channel.

• VL_CAPTURE_INTERLEAVED

– VL_MGC_DOMINANCE_F1: For video timings
VL_TIMING_525_CCIR601 and VL_TIMING_525_SQ_PIX, F1
(odd) dominance dictates that data for the F1 field resides in
memory after that for F2. For VL_TIMING_625_CCIR601 and
VL_TIMING_625_SQ_PIX, the data for F1 resides in memory
before that of F2.

– VL_MGC_DOMINANCE_F2: For VL_TIMING_525_CCIR601 and
VL_TIMING_525_SQ_PIX, F2 (even timings) dominance dictates
that data for the F1 field resides in memory before that for F2. For
VL_TIMING_625_CCIR601 and VL_TIMING_625_SQ_PIX, the
data for F1 resides in memory after that of F2.

F1 F2 F1 F2

F2 dominance

F1 dominance

72

Chapter 3: Programming With the Video Library

The meaning of before and after depends on the capture type. For
interleaved frames, before indicates that the data comprising the first
line of the designated field begins at the first byte of the buffer. In this
format, the lines of F1 and F2 are interleaved within the one ring buffer,
thus the second line of the buffer belongs to the other field, and so forth.

For noninterleaved frames, before indicates that the dominant field is in
a buffer preceding the buffer(s) containing nondominant fields.

• Values for VL_CAPTURE_NONINTERLEAVED:

– VL_MGC_DOMINANCE_F1: The F1 field is in the first buffer of
the pair, and the F2 field in the second.

– VL_MGC_DOMINANCE_F2: The F2 field is in the first buffer of
the pair, the F1 field in the second.

Padding and Scaling

Indigo2 IMPACT Compression has hardware acceleration for shrinking
images that have an original size of up to 1000 × 1000 pixels. Original sizes
with height or width larger than 1000 pixels are sized (and optionally
converted to the RGB color space) by software on the host CPU.

Table 3-9 lists controls you can use to pad and scale images on capture.

Table 3-9 Padding and Scaling Controls

Control Values or Range Type Use

VL_MGC_HASPECT
VL_MGC_VASPECT

0 < value ≤ 1/VL_ZOOM fractVal Fraction less than or equal to 1 that shrinks the
horizontal or vertical aspect, respectively

VL_MGC_PAD_TOP
VL_MGC_PAD_BOTTOM

 0 intVal Number of lines to pad at the top or bottom
(respectively of the image on capture

VL_MGC_PAD_LEFT
VL_MGC_PAD_RIGHT

 0 intVal Number of pixels to pad at the left or right
(respectively) of the image on capture

VL_MGC_PAD_ENABLE 0, 1 boolVal Boolean value that activates or deactivates padding

Transferring Video Data to and From Devices

73

For examples, see
/usr/people/4Dgifts/examples/dmedia/video/vl/OpenGL/contcapt.c.

Transferring Video Data to and From Devices

The processes for data transfer are as follows:

• creating a buffer for video data (for transfers involving memory)

• registering the VL buffer with the path (for transfers involving
memory)

• starting data transfer

• reading data from the buffer (for transfers involving memory)

Each process is explained separately.

Creating a Buffer for Video Data

Once you have specified frame parameters in a transfer involving memory
(or have determined to use the defaults), create a buffer for the video data.
In this case, video data is frames or fields, depending on the capture type:

• frames if the capture type is VL_CAPTURE_NONINTERLEAVED

• fields if the capture type is anything else

Like other libraries in the IRIX digital media development environment, the
VL uses VL buffers. VL buffers provide a way to read and write varying sizes
of video data. A frame of data consists of the actual frame data and an

VL_MGC_PAD_Y
VL_MGC_PAD_U
VL_MGC_PAD_V

1 ≤ value ≤ 254 intVal Value between 16 and 235 that specifies the padding
color of the Y, U, or V value, respectively; default is
black

VL_MGC_VIDEO_TOP_CLIP 0 intVal Number of lines to clip from the top on playback to
video output

Table 3-9 (continued) Padding and Scaling Controls

Control Values or Range Type Use

74

Chapter 3: Programming With the Video Library

information structure describing the underlying data, including
device-specific information.

When a VL buffer is created, constraints are specified that control the total
size of the data segment and the number of frame or field buffers (sectors) to
allocate.

A head and a tail flag are automatically set in a VL buffer so that the latest
frame can be accessed. A sector is locked down if it is not called; that is, it
remains locked until it is read. When the VL buffer is written to and all
sectors are occupied, data transfer stops. The sector last written to remains
locked down until it is released.

All sectors in a VL buffer must be of the same size, which is the value
returned by vlGetTransferSize(). Its function prototype is

long vlGetTransferSize(VLServer vlSvr, VLPath path)

For example:

transfersize = vlGetTransferSize(vlSvr, path);

where transfersize is the size of the data in bytes.

To create a VL buffer for the frame data, use vlCreateBuffer(). Its function
prototype is

VLBuffer vlCreateBuffer(VLServer vlSvr, VLPath path,
 VLNode node, int numFrames)

where

VLBuffer is the handle of the buffer to be created

vlSvr names the server to which the path is connected

path specifies the data path

node specifies the memory node containing data to transfer to or
from the VL buffer

numFrames specifies the number of sectors in the buffer (fields or
frames, depending on the capture type)

Transferring Video Data to and From Devices

75

For example:

buf = vlCreateBuffer(vlSvr, path, src, 1);

Table 3-10 shows the relationship between capture type and minimum VL
buffer size.

Note: For memory nodes, real-time memory or video transfer can be
performed only as long as buffer sectors are available to the Indigo2 IMPACT
Video device.

Registering the VL Buffer

Use vlRegisterBuffer() to register the VL buffer with the data path. Its
function prototype is

int vlRegisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer buffer)

where

vlSvr names the server to which the path is connected

path specifies the data path

memnodeid specifies the memory node ID

buffer specifies the VL buffer handle

Table 3-10 Buffer Size Requirements

Capture Type Minimum Sectors
for Capture

Minimum Sectors
for Playback

VL_CAPTURE_NONINTERLEAVED 2 4

VL_CAPTURE_INTERLEAVED 1 2

VL_CAPTURE_EVEN_FIELDS 1 2

VL_CAPTURE_ODD_FIELDS 1 2

VL_CAPTURE_FIELDS 1 2

76

Chapter 3: Programming With the Video Library

For example:

vlRegisterBuffer(vlSvr, path, drn, Buffer);

Starting Data Transfer

To begin data transfer, use vlBeginTransfer(). Its function prototype is

int vlBeginTransfer(VLServer vlSvr, VLPath path, int count,
 VLTransferDescriptor* xferDesc)

where

vlSvr names the server to which the path is connected

path specifies the data path

count specifies the number of transfer descriptors

xferDesc specifies an array of transfer descriptors

Tailor the data transfer by means of transfer descriptors. Multiple transfer
descriptors are supplied; they are executed in order. The transfer descriptors
are

xferDesc.mode Transfer method:

• VL_TRANSFER_MODE_DISCRETE: a specified
number of frames are transferred (burst mode)

• VL_TRANSFER_MODE_CONTINUOUS (default):
frames are transferred continuously, beginning
immediately or after a trigger event occurs (such as a
frame coincidence pulse), and continues until transfer
is terminated with vlEndTransfer()

• VL_TRANSFER_MODE_AUTOTRIGGER: frame
transfer takes place each time a trigger event occurs;
this mode is a repeating version of
VL_TRANSFER_MODE_DISCRETE

xferDesc.count Number of frames to transfer; if mode is
VL_TRANSFER_MODE_CONTINUOUS, this value is
ignored.

Transferring Video Data to and From Devices

77

xferDesc.delay Number of frames from the trigger at which data transfer
begins.

xferDesc.trigger Set of events to trigger on; an event mask. This transfer
descriptor is always required. VLTriggerImmediate
specifies that transfer begins immediately, with no pause for
a trigger event. VLDeviceEvent specifies an external trigger.

If xferDesc is NULL, then VL_TRIGGER_IMMEDIATE and
VL_TRANSFER_CONTINOUS_MODE are assumed and
one transfer is performed.

This example fragment transfers the entire contents of the buffer
immediately.

xferDesc.mode = VL_TRANSFER_MODE_DISCRETE;
xferDesc.count = imageCount;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

This fragment shows the default descriptor, which is the same as passing in
a null for the descriptor pointer. Transfer begins immediately; count is
ignored.

xferDesc.mode = VL_TRANSFER_MODE_CONTINUOUS;
xferDesc.count = 0;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

Reading Data From the Buffer

If your application uses a buffer, use various VL calls for reading frames,
getting pointers to active buffers, freeing buffers, and other operations.
Table 3-11 lists the buffer-related calls.

Table 3-11 Buffer-Related Calls

Call Purpose

vlGetNextValid() Returns a handle on the next valid frame or field of data

vlGetLatestValid() Reads only the most current frame or field in the buffer,
discarding the rest

78

Chapter 3: Programming With the Video Library

Figure 3-8 illustrates the difference between vlGetNextValid() and
vlGetLatestValid(), and their interaction with vlPutFree().

Figure 3-8 vlGetNextValid(), vlGetLatestValid(), and vlPutFree()

vlPutValid() Puts a frame or field into the valid list (memory to video)

vlPutFree() Puts a valid frame or field back into the free list (video to
memory)

vlGetNextFree() Gets a free buffer into which to write data (memory to
video)

vlBufferDone() Informs you if the buffer has been vacated

vlBufferReset() Resets the buffer so that it can be used again

Table 3-11 (continued) Buffer-Related Calls

Call Purpose

vlGetNextValid() vlGetLatestValid()

Starting buffer and
pointer status

Call

Get data from here

Result

Get data from here

Clear sector

Transferring Video Data to and From Devices

79

Table 3-12 lists the calls that extract information from a buffer.

Caution: None of these calls has count or block arguments; appropriate
calls in the application must deal with a NULL return in cases of no data
being returned.

In summary, for video-to-memory transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
info = vlGetNextValid(vlSvr, buffer);
/* OR vlGetLatestValid(vlSvr, buffer); */
dataptr = vlGetActiveRegion(vlSvr, buffer, info);

/* use data for application */
…
vlPutFree(vlSvr, buffer);

For memory-to-video transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
buffer = vlGetNextFree(vlSvr, buffer, bufsize);
/* fill buffer with data */
…
vlPutValid(vlSvr, buffer);

Table 3-12 Calls for Extracting Data From a Buffer

Call Purpose

vlGetActiveRegion() Gets a pointer to the data region of the buffer (video to
memory); called after vlGetNextValid() and
vlGetLatestValid()

vlGetDMediaInfo() Gets a pointer to the DMediaInfo structure associated with
a frame; this structure contains timestamp and field count
information

vlGetImageInfo() Gets a pointer to the DMImageInfo structure associated
with a frame; this structure contains image size
information

80

Chapter 3: Programming With the Video Library

These calls are explained in separate sections.

Reading the Frames to Memory From the Buffer

Use vlGetNextValid() to read all the frames in the buffer or get a valid frame
of data. Its function prototype is

VLInfoPtr vlGetNextValid(VLServer vlSvr, VLBuffer vlBuffer)

Use vlGetLatestValid() to read only the most current frame in the buffer,
discarding the rest. Its function prototype is

VLInfoPtr vlGetLatestValid(VLServer vlSvr, VLBuffer vlBuffer)

After removing interesting data, return the buffer for use with vlPutFree()
(video to memory). Its function prototype is

int vlPutFree(VLServer vlSvr, VLBuffer vlBuffer)

Sending Frames From Memory to Video

Use vlGetNextFree() to get a free buffer to which to write data. Its function
prototype is

VLInfoPtr vlGetNextFree(VLServer vlSvr, VLBuffer vlBuffer,
 int size)

After filling the buffer with the data you want to send to video output, use
vlPutValid() to put a frame into the valid list for output to video (memory to
video). Its function prototype is

int vlPutValid(VLServer vlSvr, VLBuffer vlBuffer)

Caution: These calls do not have count or block arguments; appropriate
calls in the application must deal with a NULL return in cases of no data
being returned.

Getting DMediaInfo and Image Data From the Buffer

Use vlGetActiveRegion() to get a pointer to the active buffer. Its function
prototype is

void * vlGetActiveRegion(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

Ending Data Transfer

81

Use vlGetDMediaInfo() to get a pointer to the DMediaInfo structure
associated with a frame. This structure contains timestamp and field count
information. The function prototype for this call is

DMediaInfo * vlGetDMediaInfo(VLServer vlSvr,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Use vlGetImageInfo() to get a pointer to the DMImageInfo structure
associated with a frame. This structure contains image size information. The
function prototype for this call is

DMImageInfo * vlGetImageInfo(VLServer vlSvr,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Ending Data Transfer

To end data transfer, use vlEndTransfer(). Its function prototype is

int vlEndTransfer(VLServer vlSvr, VLPath path)

A discrete transfer is finished when the last frame of the sequence is output.
The two types of memory nodes behave differently at the last frame:

• The CC1 memory source stops transferring data from main memory to
the Indigo2 IMPACT Video device, but continues to output to video the
last frame transferred, which is held in a frame buffer associated with
the CC1 memory node.

• The VGI1 memory nodes have no associated frame buffer and
consequently emit black video output after a transfer (discrete or
continuous) has been completed.

To accomplish the necessary cleanup to exit gracefully, use the following
functions:

• for transfers involving memory: vlDeregisterBuffer(), vlDestroyPath(),
vlDestroyBuffer()

• for all transfers: vlCloseVideo()

The function prototype for vlDeregisterBuffer() is

int vlDeregisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer ringbufhandle)

82

Chapter 3: Programming With the Video Library

where

vlSvr is the server handle

path is the path handle

memnodeid is the memory node ID

ringbufhandle is the VL buffer handle

The function prototypes for vlDestroyPath(), vlDestroyBuffer() and
vlCloseVideo() are, respectively,

int vlDestroyPath(VLServer vlSvr, VLPath path)

int vlDestroyBuffer(VLServer vlSvr, VLBuffer vlBuffer)

int vlCloseVideo(VLServer vlSvr)

This example ends a data transfer that used a buffer:

vlEndTransfer(vlSvr, path);
vlDeregisterBuffer(vlSvr, path, memnodeid, buffer);
vlDestroyPath(vlSvr, path);
vlDestroyBuffer(vlSvr, buffer);
vlCloseVideo(vlSvr);

Example Programs

The directory /usr/people/4Dgifts/impact/examples/dmedia/video/vl includes a
number of example programs. These programs illustrate how to create
simple video applications; for example:

• a simple screen application: simplev2s.c

This program shows how to send live video to the screen.

• a video-to-memory frame grab: simplegrab.c

This program demonstrates video frame grabbing.

• memory-to-video frame output simplem2v.c

This program sends a frame to the video output.

• continuous frame capture: simpleccapt.c

This program demonstrates continuous frame capture.

Example Programs

83

Note: To simplify the code, these examples do not check returns. However,
you should always check returns.

The directory /usr/people/4Dgifts/examples/dmedia/video/vl/OpenGL contains
three example OpenGL programs:

• contcapt.c: performs continuous capture using buffering and sproc

• mtov.c: uses the Silicon Graphics Movie Library to play a movie on the
selected video port

• vidtomem.c: captures an incoming video stream to memory

Note that these programs differ from the programs with the same names in
/usr/people/4Dgifts/impact/examples/dmedia/video/vl.

85

Chapter 4

4. Using the CL With Indigo2 IMPACT
Compression

This chapter gives specific information for using the CL with Indigo2

IMPACT Compression. Besides the interfaces presented in Chapter 2, the CL
includes JPEG-specific and board-specific CL parameters.

In this chapter:

• “Adding Indigo2 IMPACT Compression Support to an Application” on
page 86 explains how to add Indigo2 IMPACT Compression support to
your application.

• “Using Indigo2 IMPACT Compression Image Formats” on page 88
describes the CL image parameters that Indigo2 IMPACT Compression
supports.

• “Getting Compressed Image Information” on page 90 explains how to
get such information as the size, timestamp, and a relative image index
value for images as they are compressed or decompressed.

• “Specifying Memory-to-Memory Compression and Decompression” on
page 91 explains how to use memory-to-memory compression and
decompression to compress images from a movie file to a buffer or scale
down the images as you decompress them.

• “Compressing and Decompressing Video Through External
Connections” on page 95 explains how to use Indigo2 IMPACT
Compression to compress images from an external video connection
into memory and decompress JPEG images from memory to a video
device.

Note: For information on tuning the JPEG algorithm, trading quality for
compression ratio, and vice versa, see Chapter 7, “Using Compression
Library Algorithms.”

86

Chapter 4: Using the CL With Indigo2 IMPACT Compression

Adding Indigo2 IMPACT Compression Support to an Application

To add Indigo2 IMPACT Compression support to your application, follow
these steps:

1. Include the dmedia/cl_impactcomp.h header in order to get definitions for
Indigo2 IMPACT Compression:

#include <dmedia/cl_impactcomp.h>

2. Set Indigo2 IMPACT Compression-specific compression parameters:

■ Set image formats as described in “Using Indigo2 IMPACT
Compression Image Formats” on page 88.

■ Enable CL_ENABLE_IMAGEINFO as described in “Getting
Compressed Image Information” on page 90.

3. Query the CL to determine the appropriate scheme argument for
clOpenCompressor() when opening a compressor or
clOpenDecompressor() when opening a decompressor, as described in
 “Opening an IMPACT Compression Session” in Chapter 2.

Only two IMPACT Compression codecs are available concurrently. An
error is returned if no IMPACT Compression codec is available.

4. Compress or decompress frames.

Determining the JPEG Codec

Indigo2 IMPACT Compression has two independent JPEG codecs. When an
application opens a compressor or decompressor, one of these codecs is
allocated to the application.

The control CL_IMPACT_VIDEO_INPUT_CONTROL is used by the
application to determine which codec was allocated; when
CL_EXTERNAL_DEVICE is used, it specifies the CL_CODEC node to be
used by the VL.

Values for this control are CL_IMPACT_VIDEO_CHANNEL0 and
CL_IMPACT_VIDEO_CHANNEL1; they depend upon which codec was
allocated. There is no default value for this parameter.

Adding Indigo2 IMPACT Compression Support to an Application

87

An application can query this parameter at any time, but can set it only
before a call to a data-processing routine, such as clCompress() or
clDecompress(). Since the codec channels are identical, it is not usually
necessary to select a specific channel.

Although you can try to set the value of this parameter to the other possible
value, success is not guaranteed; another application might have the other
codec allocated. Example 4-1 shows use of this control.

Example 4-1 Capture Using CL_IMPACT_VIDEO_INPUT_CONTROL

channel = clGetParam(clHandle,CL_IMPACT_VIDEO_INPUT_CONTROL);
...
vlGetNode(videoServer,VL_DRN,VL_CODEC,channel);

Controlling Compression and Decompression Operation

An application can control compression or decompression with the CL
parameter CL_IMPACT_CODEC_CONTROL. The default value of this
parameter is CL_IMPACT_START.

If this value of CL_IMPACT_CODEC_CONTROL is CL_IMPACT_START,
the operation begins immediately when clCompress() or clDecompress() is
called. If the value is CL_IMPACT_STOP, the CL configures and initializes
the hardware necessary for the operation, but does not begin the operation
until the value is set to CL_IMPACT_START. This feature allows more
precise control over the time that the operation begins.

After a codec has begun operation, setting the parameter
CL_IMPACT_CODEC_CONTROL to the value CL_IMPACT_STOP halts
the compression or decompression operation. If clCompress() or
clDecompress() was called with CL_CONTINUOUS_BLOCK, the function
returns. If clCompress() or clDecompress() was called with
CL_CONTINUOUS_NONBLOCK, the associated thread terminates.

Setting the value to CL_IMPACT_START on a codec that is already
processing data has no effect, nor does setting the value to
CL_IMPACT_STOP on a codec that is not processing data.

88

Chapter 4: Using the CL With Indigo2 IMPACT Compression

Using Indigo2 IMPACT Compression Image Formats

The Compression Library works with data that is contained in frames. A
frame is defined as a sample in time so that:

width * height * components * bitsPerComponent/8 = n bytes

For video compression or decompression, images must be supplied as fields.
Because the JPEG compression algorithm processes images in blocks of 16 ×
8 pixels, Indigo2 IMPACT Compression requires that input images have a
height that is a multiple of 8 pixels and a width that is a multiple of 16 pixels.
The CL associates two sets of image dimensions with an instance of a video
compressor or decompressor:

• CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT

• CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT

For compression operations, CL_IMAGE_WIDTH and
CL_IMAGE_HEIGHT equal the original, uncompressed image size, and
CL_INTERNAL_IMAGE_WIDTH and CL_INTERNAL_IMAGE_HEIGHT
equal the final compressed image size.

For decompression operations, CL_IMAGE_WIDTH and
CL_IMAGE_HEIGHT equal the final, uncompressed image size, and
CL_INTERNAL_IMAGE_WIDTH and CL_INTERNAL_IMAGE_HEIGHT
equal the original, compressed image size.

Using Indigo2 IMPACT Compression Image Formats

89

Table 4-1 summarizes the image format parameters.

Table 4-1 Indigo2 IMPACT Compression Image Format Parameters

Image
Attribute

Description Parameter Values

Pixel
format

The option supports 32-bit RGB or
YCrCb 4:2:2 for
memory-to-memory transfers and
YCrCb 4:2:2 only for
video-to-memory transfers.

CL_ORIGINAL_FORMAT CL_RGBX

CL_YUV

Interlacing The option operates on interlaced
NTSC or PAL video data for
video-to-memory compression and
memory-to-video decompression.
Even and odd fields are compressed
as separate images.

DM_IMAGE_INTERLACING NTSC or CCIR(525):
DM_IMAGE_INTERLACED_EVEN

PAL or CCIR(625):
DM_IMAGE_INTERLACED_ODD

Orientation The option
compresses/decompresses images
that have top-to-bottom or
bottom-to-top orientation.

CL_ORIENTATION CL_TOP_DOWN

CL_BOTTOM_UP

DM_TOP_TO_BOTTOM (for Silicon
Graphics movies)

Dimensions
 in pixels

Compression operations: original,
uncompressed image height.

Decompression operations: final,
uncompressed image height

CL_IMAGE_HEIGHT Range: 16–4088, in multiples of 8
(NTSC must use either 240 or 248)
Memory-to-memory decompression
can be any size less than or equal to
CL_INTERNAL_IMAGE_HEIGHT
Default: 248

Compression operations: original,
uncompressed image height.

Decompression operations: final,
uncompressed image width

CL_IMAGE_WIDTH Range: 16-4080 in multiples of 16
Memory-to-memory decompression
can be any size less than or equal to
CL_INTERNAL_IMAGE_WIDTH
Default: 640

90

Chapter 4: Using the CL With Indigo2 IMPACT Compression

Getting Compressed Image Information

The CL provides a function used exclusively by hardware-assisted JPEG
operations that lets you get information such as the size, timestamp, and a
relative image index value for images (fields or frames) as they are
compressed or decompressed through Indigo2 IMPACT Compression. For
compressing from external video, the timestamp returned represents the
time at which the first line of the uncompressed field arrived at the Indigo2

IMPACT Compression board.

Note: If an application attempts to decompress data that is not valid JPEG
data, the decompressor can hang.

To get compressed image information, follow these steps:

1. Call clSetParam() to set the CL_ENABLE_IMAGEINFO parameter to
TRUE before compressing or decompressing any frames.

2. Call clGetNextImageInfo() to get a structure containing information
about the compressed image:

int clGetNextImageInfo(CL_Handle handle, CLimageInfo *info,
 int sizeofimageinfo)

handle specifies an open handle that is actively compressing or
decompressing

Dimensions
 in pixels

Compression operations: final,
compressed image height).

Decompression operations:
original, compressed image height.

CL_INTERNAL_IMAGE_HEIGHT Range: 16–4088, in multiples of 8
Default:

Compression operations: final,
compressed image width.

Decompression operations:
original, compressed image width.

CL_INTERNAL_IMAGE_WIDTH Range: 16-4080, in multiples of 16
Default: 320

Table 4-1 (continued) Indigo2 IMPACT Compression Image Format

Image
Attribute

Description Parameter Values

Specifying Memory-to-Memory Compression and Decompression

91

info is a pointer where a CLimageInfo structure is to be
placed

sizeofimageinfo specifies the size of the CLimageInfo structure in bytes

The CLimageInfo structure is defined in dmedia/cl.h and has the
following fields:

typedef struct {
 unsigned size; /* size of compressed image in bytes */
 long long ustime; /* time in nanoseconds */
 unsigned imagecount; /* media stream counter */
 unsigned status; /* additional status information */
} CLimageInfo;

The ustime field returns a meaningful value only when compressing
from or decompressing to an external device. The status field is
reserved for future use.

Note: To get valid JPEG data, an application using the compressor must
enable clGetNextImageInfo() by setting CL_ENABLE_IMAGEINFO, and
then read a CLimageInfo structure corresponding to each compressed
image, before calling clQueryValid to read the compressed image data.

For the decompressor, you do not need to read CLimageInfo structures.
When clGetNextImageInfo() is called, the CL queries the hardware for
information pertaining to the field that was most recently displayed on the
video hardware. clGetNextImageInfo() blocks only when it is waiting for
the first valid decompressed field to exit the decompressor.

Specifying Memory-to-Memory Compression and Decompression

You can use Indigo2 IMPACT Compression to compress images from a
memory archive to a buffer. For example, you can use Indigo2 IMPACT
Compression to compress images from a movie file to a buffer, and then
insert the JPEG-compressed images into a movie file to create a compressed
movie. Taking this idea a step further, you can then use Indigo2 IMPACT
Compression to scale down the images as it decompresses them, in order to
display thumbnail images similar to the ones in Movie Player.

92

Chapter 4: Using the CL With Indigo2 IMPACT Compression

Memory-to-Memory Compression

To compress frames into memory using Indigo2 IMPACT Compression:

1. Open an Indigo2 IMPACT Compression compressor.

2. Set the CL image parameters to characterize the input image data.

3. Compress images into memory.

When compressing images from memory into a buffer, Indigo2 IMPACT
Compression supports image widths of 16–4080 (in multiples of 16 pixels)
and image heights of 16–4088 (in multiples of 8 pixels). Images may be scaled
down to one half horizontally and/or one half vertically. Images may also
have black padding regions added to the image prior to the scaling
operation.

The CL parameters CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT specify
the original uncompressed image size, and the parameters
CL_INTERNAL_IMAGE_WIDTH and CL_INTERNAL_IMAGE_HEIGHT
specify the final compressed image size.

The uncompressed data format must be 32-bit RGB (CL_RGBX) or YUV 4:2:2
(CL_YUV), and the uncompressed image size cannot be larger than 4080 ×
4088 pixels.

NTSC video frames have a height of 243 lines, but Indigo2 IMPACT
Compression supports only input image heights that are multiples of 8. For
NTSC, you must specify an image height of either 240 (causing the image to
be cropped 3 lines from the bottom) or 248 (causing the image to be padded
with 5 extra lines of black).

Example 4-2 demonstrates memory-to-memory compression of NTSC
video.

Example 4-2 Memory-to-Memory Compression

#include <dmedia/cl.h>
...
 int pbuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_COMPRESSED_BUFFER_SIZE, 0
 };

Specifying Memory-to-Memory Compression and Decompression

93

 ...
 scheme = clQuerySchemeFromName (CL_ALG_VIDEO, "impact");
 if (scheme < 0) {
 fprintf(stderr, "compression scheme ;’impact’ is"
 " not configured\n");
 return;
 }
 clOpenCompressor (scheme, &handle);

 /* set parameters */
 pbuf[0][1] = 640;
 pbuf[1][1] = 240;
 clSetParams(handle, (int *)pbuf, 3);

 /* allocate the required size buffer */
 clGetParams(handle, (int *)pbuf, 6);
 compressedBuffer = malloc(pbuf[2][1]);

 for(i = 0; i < numberOfFrames; i++)
 {
 /* Get a frame from somewhere */
 ...
 clCompress(handle, 1, frameBuffer,
 &compressedBufferSize, compressedBuffer);
 /* Write the compressed data to somewhere else. */
 ...
 }
 clCloseCompressor(handle);

After compressing the images, you can use mvInsertCompressedImage() to
insert the compressed images into a movie file, as described in “Reading and
Inserting Compressed Images” in Chapter 29 of the Digital Media
Programming Guide.

Memory-to-Memory Decompression

To decompress JPEG images from memory using Indigo2 IMPACT
Compression, follow these steps:

1. Open an Indigo2 IMPACT Compression decompressor.

2. Set the CL image parameters to characterize the output image data.

3. Decompress images into a buffer.

94

Chapter 4: Using the CL With Indigo2 IMPACT Compression

You can shrink the images as they are decompressed, which is useful for
displaying thumbnail images. When decompressing images from memory
into a buffer, Indigo2 IMPACT Compression supports image widths of 16 to
768 and image heights of 16 to 336.

Scaling can be arbitrary, that is, you can scale the image dimensions down
by any amount, and the output image dimensions do not have to be
multiples of 8. To shrink images as they are decompressed, make the
uncompressed image dimensions (CL_IMAGE_WIDTH and
CL_IMAGE_HEIGHT) less than the corresponding compressed image
dimensions (CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT).

For information on padding and scaling images on capture, see “Padding
and Scaling” in Chapter 3.

Interleaving

Indigo2 IMPACT Compression supports interleaving fields as they are being
decompressed to memory, and deinterleaving as the fields are compressed
from memory. This functionality is useful, for example, for taking
field-captured media such as that captured from a video source and
converting it to a frame medium, such as for display on the graphics
monitor.

The interleaving and deinterleaving capability is available only in the
memory-to-memory modes of operation. In other modes, use VL controls to
select interleaving; see “Using VL_CAP_TYPE and VL_RATE” on page 66.

The CL parameters that control interleaving are
CL_IMPACT_FRAME_INTERLEAVE and
CL_IMPACT_INTERLEAVE_MODE:

• The CL_IMPACT_FRAME_INTERLEAVE parameter’s two possible
values, TRUE and FALSE (the default), turn interleaving on and off.

• The way that the fields are actually interleaved into memory is
controlled by the CL_IMPACT_INTERLEAVE_MODE parameter.

Compressing and Decompressing Video Through External Connections

95

When CL_IMPACT_FRAME_INTERLEAVE is TRUE, the
CL_IMPACT_INTERLEAVE_MODE parameter specifies which of the two
fields occupies the top line of the uncompressed region of memory:

• CL_IMPACT_INTERLEAVE_EVEN specifies that the first field
decompressed or compressed occupies the first (top) line of the
uncompressed memory buffer. This value is appropriate for PAL and
CCIR(625) captured media.

• CL_IMPACT_INTERLEAVE_ODD (the default) specifies that the first
field decompressed or compressed occupies the second line of the
uncompressed memory buffer. This value is appropriate for NTSC and
CCIR(525) captured media.

Note: The width and height of each field to be interleaved must be the same.
During compression, the width has the same value as CL_IMAGE_WIDTH;
during decompression, the width has the same value as
CL_INTERNAL_IMAGE_WIDTH.

Compressing and Decompressing Video Through External Connections

You can use Indigo2 IMPACT Compression as a real-time JPEG codec
between your application and the analog video ports on Indigo2 IMPACT
Compression or the Indigo2 IMPACT Video option.

Video-to-Memory Compression

To capture video from an external video device using Indigo2 IMPACT
Compression, follow these steps:

1. Connect the video device to the appropriate port. For example, use
either analog port 1 or digital port 1. Video port connections are
managed from the videopanel control panel.

2. Open a compressor as described in Example 4-1.

3. Query the CL to retrieve the appropriate VL_CODEC drain node
identifier.

4. Open a connection to the video server by calling vlOpenVideo("").

96

Chapter 4: Using the CL With Indigo2 IMPACT Compression

5. Create the video transfer paths.

■ Get the source (VL_SRC) node for the video signal connection by
calling vlGetNode().

■ Specify the drain node using the drain node identifier from step 3.

■ Create the path from source to drain by calling vlCreatePath().

■ Set up the path to share (VL_SHARE) data by calling
vlSetupPaths().

6. Set the CL parameters for image dimensions, quality factor, and
compressed image information (CL_ENABLE_IMAGEINFO).

7. Start the video transfer.

8. Use the CL buffered interface to compress frames by calling
clCompress() with CL_CONTINUOUS_NONBLOCK as the framecount
parameter and CL_EXTERNAL_DEVICE as the frameBuffer parameter.

9. Call clGetNextImageInfo() to get a structure containing information
about the compressed image.

Note: Instead of using CL_CONTINUOUS_NONBLOCK, you can call
clCompress() from a separate thread with the value
CL_CONTINUOUS_NONBLOCK. In this case, clCompress() does not
return until the transfer is complete.

See capture.c in /usr/people/4Dgifts/examples/dmedia/dmrecord for an example of
capturing external video through Indigo2 IMPACT Compression.

Video fields entering Indigo2 IMPACT Compression from the direct video
connection are captured into an array of field buffers. The field buffers
support field widths from 640 to 768 and field heights from 16 to 336. Field
dimensions depend on the video timing, as shown in Table 4-2.

Compressing and Decompressing Video Through External Connections

97

Table 4-2 shows video field dimensions for the video formats supported by
Indigo2 IMPACT Compression.

When the compressed image’s height is less than the height of the incoming
video fields, the video fields are clipped from the bottom before they are sent
to the compressor. When the compressed image’s height is greater than the
height of the incoming video fields, additional lines of black data are
appended to the valid video data before the data is sent to the compressor.

Note: NTSC fields have a height (243 pixels) that is not a multiple of 8. For
NTSC capture, you can choose to have your application either throw away 3
lines from the bottom of each field (giving a 240 pixel height) or append 5
extra blank lines to the bottom of each field (giving a 248 pixel height) before
compression.

You can scale the captured image to half-size before compressing it. This
allows for an additional increase in data compression by factor of 4.

Specify vertical decimation by setting the compressed image height
(CL_INTERNAL_IMAGE_HEIGHT) to half the size of the uncompressed
image height (CL_IMAGE_HEIGHT). Compressed image heights can range
from 16 to 168, and uncompressed image heights can range from 32 to 336.

Specify horizontal decimation by setting the compressed image width
(CL_INTERNAL_IMAGE_WIDTH) to half the size of the uncompressed
image width (CL_IMAGE_WIDTH) as indicated in Table 4-3.

Table 4-2 Indigo2 IMPACT Compression
Video Field Dimensions

Video Format WIdth (Pixels) Height (Pixels)

NTSC 640 243

PAL 768 288

CCIR(525) 720 243

CCIR(625) 720 288

98

Chapter 4: Using the CL With Indigo2 IMPACT Compression

Note: When CCIR(525) or CCIR(625) images are decimated to one half, they
are 360 pixels wide, which is not a multiple of 16 pixels. It is for this reason
that one-half horizontal decimation is not available for these image sizes.

During video compression from an external device, CLimageInfo.imagecount
is initialized to 1 when the first field is received by the compressor after
calling clCompress(). The count advances when a new field arrives. If the
compression data buffer fills up, then a field will be dropped, but the
imagecount continues to increase. An application can thus detect a dropped
field by noticing a jump in the imagecount field of more than one. The ustime
indicates the time the uncompressed field entered the compressor.

To select the fields to capture, the application can modify the video
parameters associated with the VL_CODEC node. It is here that the
application specifies the capture type (any fields, paired fields, odd or even
fields only) and the rate at which they should be captured (30/60 fields per
second, 10/30 frames per second). See “Setting Parameters for Data Transfer
to or From Memory or Codec Nodes” on page 59.

Memory-to-Video Decompression

The connections for decompressing from memory to an external video are
set up similarly to those for capturing video, except that a decompressor is
opened. See clInit.c in /usr/people/4Dgifts/examples/dmedia/dmplay for example
code that initializes the CL for JPEG decompression (optionally through
Indigo2 IMPACT Compression) from memory to external video.

Table 4-3 Indigo2 IMPACT Compression Field Widths for Compression With
Decimation

Video Format CL_IMAGE_WIDTH (Pixels) CL_INTERNAL_IMAGE_WIDTH (Pixels)

NTSC 640 320

PAL 768 384

CCIR(525) 720 360

CCIR(625) 720 360

Compressing and Decompressing Video Through External Connections

99

Video and audio playback of the decompressed frames require media
synchronization. See dmplay.c and streamDecompress.c in
/usr/people/4Dgifts/examples/dmedia/dmplay for more information.

Uncompressed fields leaving the JPEG decompressor can optionally be
scaled up by a factor of 2 in the horizontal and/or vertical dimensions.
NTSC, PAL or CCIR(525)/CCIR(625) fields are then scanned out of the array
of field buffers. Horizontal scaling is performed by pixel replication; vertical
scaling is performed by line doubling.

If the uncompressed fields leaving the decompressor have fewer lines than
the field height required by the NTSC/PAL or CCIR(525)/CCIR(625)
connection (after optional pistoling), additional lines of black data are added
at the bottom of the uncompressed images. If the uncompressed fields
leaving the decompressor have more lines than the
NTSC/PAL/CCIR(525)/CCIR(625) field height (after optional pistoling),
lines are clipped from the bottom of the uncompressed images.

If the uncompressed image is too narrow (less than 640 pixels wide for
square-pixel NTSC), the Indigo2 IMPACT Compression board adds extra
(black) pixels to make the image the correct width. For example, if the image
is 400 pixels wide, the Indigo2 IMPACT Compression board adds 240 black
pixels.

Specify horizontal scaling by setting the uncompressed image width
(CL_IMAGE_WIDTH) that is twice the compressed image width
(CL_INTERNAL_IMAGE_WIDTH) as indicated in Table 4-4.

Specify vertical scaling by setting the uncompressed image height
(CL_IMAGE_HEIGHT) to twice the size of the compressed image height

Table 4-4 Indigo2 IMPACT Compression Field Widths for Decompression

Video Format CL_IMAGE_WIDTH (Pixels) CL_INTERNAL_IMAGE_WIDTH (Pixels)

NTSC 640 320

PAL 768 384

CCIR(525) 720 Not available

CCIR(625) 720 Not Available

100

Chapter 4: Using the CL With Indigo2 IMPACT Compression

(CL_INTERNAL_IMAGE_HEIGHT). Compressed image heights can range
from 16 to 168, and uncompressed image heights can range from 32 to 336.

During video decompression to an external device, CLimageInfo.imagecount
reflects the count of fields sent by the application to the decompressor. The
ustime indicates the time that field left the decompressor. In certain
situations, fields are repeated on output, in which case the imagecount
remains the same, but the ustime increases.

Use the CL parameter CL_IMPACT_CODEC_CONTROL to control
compression or decompression. When a codec is opened, this parameter is
initialized with the value CL_IMPACT_START. If this value is
CL_IMPACT_START when clCompress() or clDecompress() is called, the
operation begins immediately. If the value is CL_IMPACT_STOP, the
operation configures and initializes the hardware necessary for the
operation, but does not begin the operation until the value is set to
CL_IMPACT_START.

After a codec has begun operation, setting the parameter
CL_IMPACT_CODEC_CONTROL to the value CL_IMPACT_STOP halts
the compression or decompression operation. If clCompress() or
clDecompress() was called with CL_CONTINUOUS_BLOCK, the function
returns. If clCompress() or clDecompress() was called with
CL_CONTINUOUS_NONBLOCK, the associated thread terminates.

Setting Interlacing for NTSC and PAL

For video-to-memory compression and memory-to-video decompression,
use the control DM_IMAGE_INTERLACING to set interlacing for NTSC or
PAL video data:

• for NTSC or CCIR(525), use DM_IMAGE_INTERLACED_EVEN

• for PAL or CCIR(625), use DM_IMAGE_INTERLACED_ODD

Even and odd fields are compressed as separate images.

101

Chapter 5

5. Using VL Controls

Video Library (VL) controls enable you to

• specify data transfer parameters, such as the frame rate or count

• specify the capture region and decimation, or output window

• specify video format and timing

• adjust signal parameters, such as hue, brightness, vertical sync, and
horizontal sync

• specify sync source

This chapter explains

• VL control type and values

• VL control fraction ranges

• VL control classes

• VL control groupings

Device-independent controls are documented in /usr/include/dmedia/vl.h.
Device-dependent controls for the Indigo2 IMPACT video option are
documented in the header files

• /usr/include/dmedia/dev_mgv.h (linked to /usr/include/vl/vl_mgv.h)

• /usr/include/dmedia/dev_impact.h (linked to /usr/include/vl/vl_impact.h)

• /usr/include/dmedia/dev_mgc.h (linked to /usr/include/vl/vl_mgc.h)

Note: For information on the controls used for specific nodes, see
Appendix A, “VL Controls and CL Parameters for the Indigo2 IMPACT
Compression Option.”

102

Chapter 5: Using VL Controls

Table 5-1 is an alphabetical list of device-independent VL controls that apply
to the Indigo2 IMPACT Compression option, along with their values or
ranges. For a complete listing of VL controls for Indigo2 IMPACT
Compression, see Appendix A, “VL Controls and CL Parameters for the
Indigo2 IMPACT Compression Option.”

Table 5-1 Device-Independent VL Controls for Indigo2 IMPACT Video

Control Purpose Comments

VL_CAP_TYPE Type of frame(s) or field(s) to capture

VL_DEFAULT_SOURCE Default source for the video path

VL_DEFAULT_DRAIN Default drain for the video path

VL_FORMAT Video format

VL_FREEZE Data transfer freeze; suspends transfer at the
drain node, used only for analog video out

0 = off
1 = on

VL_OFFSET On VL_VIDEO nodes, the offset to the active
region of the video; on all other nodes, the
offset within the video

Because the default is 0,0, use negative values
to get blanking data

VL_PACKING Packing of video data at source or drain

VL_RATE Transfer rate in fields or frames

VL_SIZE On VL_VIDEO nodes, the size of the video; on
all other nodes, the clipped size of the video

VL_SYNC Sync mode VL_SYNC_INTERNAL
VL_SYNC_GENLOCK
VL_MGC_SYNC_SLAVE

VL_SYNC_SOURCE Sets sync source for analog breakout box 0 = composite
1 = S-Video
2 = genlock

VL_TIMING Video timing

VL_ZOOM Decimation Memory nodes only: n/m where n ≤ m

VL Control Type and Values

103

Note: For detailed information on using VL_CAP_TYPE, VL_FORMAT,
VL_OFFSET, VL_PACKING, VL_RATE, VL_SIZE, and VL_TIMING, see
“Setting Parameters for Data Transfer to or From Memory or Codec Nodes”
in Chapter 3.

VL Control Type and Values

The type of VL controls is

typedef long VLControlType;

Common types used by the VL to express the values returned by the controls
are

typedef struct __vlControlInfo {
 char name[VL_NAME_SIZE]; /* name of control */
 VLControlType type; /* e.g. WINDOW, HUE, BRIGHTNESS */
 VLControlClass ctlClass; /* SLIDER, DETENT, KNOB, BUTTON */
 VLControlGroup group; /* BLEND, VISUAL QUALITY, SIGNAL, SYNC */
 VLNode node; /* associated node */
 VLControlValueType valueType; /* what kind of data do we have */
 int valueCount; /* how many data items do we have */
 int numFractRanges; /* number of ranges to describe control */
 VLFractionRange *ranges; /* range of values of control */

 int numItems; /* number of enumerated items */
 VLControlItem *itemList; /* the actual enumerations */
} VLControlInfo;

To store the value of different controls, libvl.a uses this struct:

typedef union {
 VLFraction fractVal;
 VLBoolean boolVal;
 int intVal;
 VLXY xyVal;
 char stringVal[96]; /* beware of trailing NULLs! */
 float matrixVal[3][3];
 uint pad[24]; /* reserved */
} VLControlValue;

typedef struct {
 int numControls;

104

Chapter 5: Using VL Controls

 VLControlInfo *controls;
} VLControlList;

The control info structure is returned by a vlGetControlInfo() call, and it
contains many of the items discussed above.

VLControlInfo.number is the number of the VLControlInfo.node that the
information pertains to. There may be several controls of the same type on a
particular node, but usually there is just one.

VLControlInfo.numFractRanges is the number of fraction ranges for a
particular control. The names correspond 1-to-1 with the rangeNames, up to
the number of range names, numRangeNames. That is, there may be fewer
names than ranges, but never more.

VL Control Fraction Ranges

The VL uses fraction ranges to represent the values possible for a control. A
VLFractionRange generated by the VL is guaranteed never to generate a
fraction with a zero denominator, or a fractional numerator or denominator.

For a range type of VL_LINEAR, numerator.increment and
denominator.increment are guaranteed to be greater than zero, and the limit is
always guaranteed to be {numerator,denominator}.base, plus some integral
multiple of {numerator,denominator}.increment.

The type definition for fraction types in the header file is

typedef struct {
 VLRange numerator;
 VLRange denominator;
} VLFractionRange;

VL Control Classes

105

VL Control Classes

The VL defines control classes for user-interface developers. The classes are
hints only; they are the VL developer’s idea of how the control is commonly
represented in the real world.

#define VL_CLASS_NO_UI 0
#define VL_CLASS_SLIDER 1
#define VL_CLASS_KNOB 2
#define VL_CLASS_BUTTON 3
#define VL_CLASS_TOGGLE 4
#define VL_CLASS_DETENT_KNOB 5
#define VL_CLASS_LIST 6

In the list above, VL_CLASS_NO_UI is often used for controls that have no
user-interface metaphor and are not displayed in the video control panel or
saved in the defaults file.

The VL controls can be read-only, write-only, or both. The VL includes these
macros:

#define VL_CLASS_RDONLY 0x8000 /* control is read-only */
#define VL_CLASS_WRONLY 0x4000 /* control is write-only */
#define VL_CLASS_NO_DEFAULT 0x2000 /* don’t save in default files */

#define VL_IS_CTL_RDONLY(x) ((x)->ctlClass & VL_CLASS_RDONLY)
#define VL_IS_CTL_WRONLY(x) ((x)->ctlClass & VL_CLASS_WRONLY)
#define VL_IS_CTL_RW(x) (!(VL_IS_CTL_RDONLY(x) || VL_IS_CTL_WRONLY(x)))

The macros test these conditions:

#define VL_CLASS_MASK 0xfff

typedef unsigned long VLControlClass; /* from list above */

106

Chapter 5: Using VL Controls

VL Control Groupings

Like control class, control grouping is an aid for the user-interface developer.
The groupings are the VL developer’s idea of how the controls would be
grouped in the real world. These groupings are implemented in the video
control panel vcp.

The type definition for groupings is

typedef char NameString[80];
#define VL_CTL_GROUP_PATH 9 /* Path Controls */

The maximum length of a control or range name is VL_NAME_SIZE.

Table 5-2 summarizes the VL control groupings.

Table 5-2 VL Control Groupings

Grouping Includes controls for...

VL_CTL_GROUP_BLENDING Blending; for example, VL_BLEND_B_FCN

VL_CTL_GROUP_VISUALQUALITY Visual quality of sources or drains; for example, VL_H_PHASE or
VL_V_PHASE

VL_CTL_GROUP_SIGNAL Signal of sources or drains; for example, VL_HUE

VL_CTL_GROUP_CODING Encoding or decoding sources or drains; for example, VL_TIMING or
VL_FORMAT

VL_CTL_GROUP_SYNC Synchronizing video sources or drains; for example, VL_SYNC

VL_CTL_GROUP_ORIENTATION Orientation or placement of video signals; for example, VL_ORIGIN

VL_CTL_GROUP_SIZING Setting the size of the video signal; for example, VL_SIZE

VL_CTL_GROUP_RATES Setting the rate of the video signal; for example, VL_RATE

VL_CTL_GROUP_WS Specifying the windowing system of the workstation; for example,
VL_WINDOW

VL_CTL_GROUP_PATH Specifying the data path through the system; these controls, often marked
with the VL_CLASS_NO_UI, are often internal to the VL, with no direct
access for the user

VL_CTL_GROUP_SIGNAL_ALL Specifying properties of all signals

VL Control Groupings

107

VL_CTL_GROUP_SIGNAL_COMPOSITE Specifying properties of composite signals

VL_CTL_GROUP_SIGNAL_CLUT_COMPOSITE Specifying properties of composite color lookup table (CLUT) controls

VL_CTL_GROUP_KEYING Specifying properties of chroma or luma keying controls, such as
VL_KEYER_FG_OPACITY

VL_CTL_GROUP_PRO Specifying values not commonly found on the front panel of a real-world
video device; for example, a wipe control

VL_CTL_GROUP_MASK Masking optional bits to extract only the control group

Table 5-2 (continued) VL Control Groupings

Grouping Includes controls for...

109

Chapter 6

6. Using Compression Library Parameters

The CL has a group of routines for working with a set of state variables
called “parameters” that are unique for each instantiation. These routines—
clQueryParams(), clGetParams(), clSetParams(), clGetDefault(),
clSetDefault()—are similar to a set of routines in the Audio Library. You can
get and set parameters, either individually or as a group; however, all of the
parameters have reasonable defaults that are algorithm-dependent and need
not be set.

This chapter describes how to use the Compression Library parameters:

• “Compression Library Parameter Definitions” on page 109 describes
parameters by category.

• “Setting and Querying Compression Library Parameters” on page 113
explains how to use the parameters in programs.

Compression Library Parameter Definitions

Parameters provide state information about or set frame characteristics, data
formats, and algorithms for each compressor/decompressor. This section
discusses parameters by category.

Image Frame Dimension Parameters

The CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT parameters provide
information about image frame dimensions. For more information on these
parameters, see “Using Indigo2 IMPACT Compression Image Formats” in
Chapter 4.

110

Chapter 6: Using Compression Library Parameters

Data Format Parameters

These parameters describe data formats:

CL_ORIGINAL_FORMAT
On compression, this is the format of the original video. On
decompression, this is the format that you want after
decompression. The value, a symbolic constant, is CL_RGB,
CL_RGBX (default), CL_RGBA, CL_RGB332,
CL_GRAYSCALE, CL_YUV, CL_YUV422, or
CL_YUV422DC.

CL_INTERNAL_FORMAT
Some video algorithms have several “natural” formats that
can be compressed without color-space conversion. This
parameter allows the selection of one of these formats. The
video default is algorithm-specific.

CL_COMPONENTS
A read-only value, as determined by
CL_ORIGINAL_FORMAT, that indicates the number of
components in the data. For example, video is generally 1
for gray-scale, and 3 or 4 for color. The default is 4.

CL_BITS_PER_COMPONENT
The number of bits per component. For Indigo2 IMPACT
Video, this value is always 8.

CL_ORIENTATION
Specifies the orientation of compressed data, which can be
one of the following:

• CL_TOP_DOWN: for pixels arranged top-to-bottom
(default)

• CL_BOTTOM_UP: for pixels arranged bottom-to-top

• DM_TOP_TO_BOTTOM for Silicon Graphics movies

The orientation of compressed data is always top down.
When compression or decompression is specified, the
original format (or final format) of the data can be bottom
up. Specify this inversion by setting the
CL_ORIENTATION parameter to CL_BOTTOM_UP
instead of the default.

Compression Library Parameter Definitions

111

Buffer Parameters

These parameters describe buffer sizes and characteristics:

CL_FRAME_BUFFER_SIZE
The maximum size, in bytes, of the frame buffer. If
clDecompress() is called with numberOfFrames larger than
1, this value should be the frame size × numberOfFrames.

CL_COMPRESSED_BUFFER_SIZE
The maximum size of the compressed data buffer. The
default is calculated as the maximum possible size, taking
into account all the factors such as algorithm, encoding
method, data type, and so on. If you want to use a smaller
buffer, you can set this value explicitly. If clCompress() is
called with numberOfFrames larger than 1, this value should
be the maximum compressed size of one frame ×
numberOfFrames.

CL_BLOCK_SIZE
The natural block size of the algorithm in samples. It is most
efficient to specify numberOfFrames to be a multiple of the
block size when calling clCompress() or clDecompress().

CL_PREROLL
The number of blocks of frames that must be supplied to
clDecompress() before decompressed frames are returned.

CL_FRAME_RATE
The requested number of frames per second.

CL_FRAME_TYPE
The decompressor fills in the frame type when it
decompresses a frame. Frame type is one of:

CL_KEYFRAME frame is a keyframe

CL_INTRA equivalent to CL_KEYFRAME

CL_PREDICTED frame contains information about
its succeeding frames

CL_BIDIRECTIONAL frame contains information about
frames that precede and succeed
it

112

Chapter 6: Using Compression Library Parameters

Compression Ratio and Quality Parameters

These parameters control the compression ratio and quality:

CL_ALGORITHM_ID
A parameter that can be queried to find out the scheme
identifier of the algorithm of an open compressor or
decompressor.

CL_EXACT_COMPRESSION_RATIO
A flag determines whether the compression ratio is a target
or must be exact. Some algorithm implementations, such as
for JPEG, can be only approximated and can never be exact.
For algorithms that do support it, it is generally kept within
a small range that over time is guaranteed to average out to
the specified compression ratio.

JPEG and MPEG Parameters

JPEG has the following additional parameters:

CL_JPEG_COMPONENT_TABLES
Specifies the IDs of the AC Huffman table, DC Huffman
table, and quantization table to be used for each component.
This parameter cannot be changed directly; rather, it is set
up automatically for processing the selected
CL_INTERNAL_FORMAT.

YUV formats use AC Huffman table 0, DC Huffman table
0, and quantization table 0 for component 0; AC Huffman
table 1, DC Huffman table 1, and quantization table 1 for
components 1 and 2. RGB formats use tables AC table 0,
DC table 0, and quantization table 0 for all components.

CL_JPEG_QUANTIZATION_TABLES
Sets or gets the quantization tables to be used. For more
information, see “Defining and Using Custom JPEG
Quantization Tables” in Chapter 7.

Setting and Querying Compression Library Parameters

113

CL_JPEG_QUALITY_FACTOR
A JPEG quantization table scale factor that represents a
rough percentage of the image detail preservation. For more
information, see “Defining and Using Custom JPEG
Quantization Tables” in Chapter 7.

MPEG_VIDEO has the following additional parameter:

CL_END_OF_SEQUENCE
An end-of-sequence flag. When the decompressor arrives at
the end of the sequence, it sets this flag. The default is
FALSE (0).

For a summary of parameters and their types, ranges, and defaults, see
Table A-2 in Appendix A, “VL Controls and CL Parameters for the Indigo2
IMPACT Compression Option.”

Setting and Querying Compression Library Parameters

After a compressor or decompressor is opened, thus specifying the
compression scheme to use, various parameters can be modified using
clSetParams(). All of these parameters have reasonable defaults that are
algorithm-dependent and need not be set. Some parameters, such as
CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT for video compression,
should be set, but setting them is not required.

Getting a List of Parameters and Parameter Types

Use clQueryParams() to get a list of valid parameters and their types for a
specified a compressor or decompressor. The compressor being queried is
identified by its handle. Its function prototype is:

int clQueryParams(CLhandle handle,int *paramValuebuffer, int
maxLength)

where

handle is the handle to a compressor or decompressor.

114

Chapter 6: Using Compression Library Parameters

paramValuebuffer
is a pointer to an array of ints into which clQueryParams()
can write parameter identifier/parameter type pairs for
each parameter associated with the compressor or
decompressor. The even (0,2,4,...) entries receive a string
that is the parameter identifier. The odd entries (1,3,5,...)
receive the parameter type. Parameter type is one of four
values:

• CL_RANGE_VALUE, meaning that a parameter can
assume a range of values in which the relative
magnitude of the value is meaningful—that is,
increasing values indicate increasing quantities of
whatever this parameter controls, and vice versa.

• CL_ENUM_VALUE, meaning that a parameter
assumes values from an enumerated type. The values
have a limited range, but there is no inherent
relationship between the range values.

• CL_FLOATING_RANGE_VALUE, meaning that a
parameter can assume a range of floating point values,
in which the relative magnitude of the value is
meaningful—that is, increasing values indicate
increasing quantities of whatever this parameter
controls, and vice versa.

• CL_FLOATING_ENUM_VALUE, meaning that a
parameter assumes values from an enumerated type.
The values have a limited floating point range, but
there is no inherent relationship between the range
values.

maxLength is the length of the buffer, in ints, pointed to by
paramValuebuffer. If maxLength is zero, then paramValuebuffer
is ignored and only the return value is valid.

clQueryParams() returns the size of the buffer, in ints, needed to hold all the
parameter identifier/parameter type pairs for the compressor or
decompressor identified by handle. The parameters are returned in the even
locations of paramValuebuffer, and their types are returned in the odd
locations.

Setting and Querying Compression Library Parameters

115

If the size of the paramValuebuffer is smaller than the returned value, a partial
list of the parameter identifier/parameter type pairs is returned, making it
necessary to enlarge the paramValuebuffer in order to receive a complete list.
To avoid this situation, you can obtain the correct size of the buffer by calling
clQueryParams() with a NULL buffer pointer and a maxLength of 0 to return
the actual buffer length without writing any data.

clQueryParams() also reports whether the parameter is one of a set of
enumerated types, any integer number within a specific range, or any
floating point number within a specific range. In each case, the values are
numbers within the range returned by clGetMinMax() and have the
defaults returned by clGetDefault().

Example 6-1 demonstrates how to get a list of parameters for a specified
compressor/decompressor.

Example 6-1 Getting a List of Parameters for a Compressor/Decompressor

#include <dmedia/cl.h>
#include <malloc.h>

/*
* Get a buffer containing all the parameters for a specified
* compressor or decompressor.
*/

int *buf, bufferLength;
bufferLength = clQueryParams(handle, 0, 0);
buf = (int *)malloc(bufferLength * sizeof(int));
clQueryParams(handle, buf, bufferLength);

Getting the Parameter ID that Corresponds to a Parameter Name

If you know the name of a parameter, but not its identifier, you can use
clGetParamID() to get the identifier of a parameter from its name.

Its function prototype is:

int clGetParamID(CLhandle handle, char *name)

116

Chapter 6: Using Compression Library Parameters

Getting and Setting Parameter Values

You can get or set parameter values as a group or individually.

Use clGetParams() to return the current values for the parameters
referenced in the paramValuebuffer array. The values are written into the odd
locations of paramValuebuffer immediately after the corresponding
parameters.

Use clSetParams() to set the current state of the parameters referenced in the
paramValuebuffer array.

To change a state parameter:

1. Call clQueryParams() to find out which parameters are available.

2. Call clGetParams() to find out the current state.

3. Fill in the even entries of the paramValuebuffer array corresponding to
the parameters to be changed and then call clSetParams().

The function prototypes are:

void clGetParams (CLhandle handle, int *paramValuebuffer,
 int bufferLength)

void clSetParams (CLhandle handle, int *paramValuebuffer,
 int bufferLength)

where

handle is a handle that identifies a compressor or decompressor.

paramValuebuffer
is a pointer to an array of pairs of ints. The even elements of
this array select the parameters to be read or changed. The
subsequent odd elements are the current or new values of
these parameters.

bufferLength is the number of ints in the buffer pointed to by
paramValuebuffer.

Alternatively, parameters can be changed individually with clSetParam()
and clGetParam(). clGetParam() returns the current value of the parameter.
clSetParam() returns the previous value of the parameter.

Setting and Querying Compression Library Parameters

117

The function prototypes are:

int clGetParam(CLhandle handle, int paramID)

int clSetParam(CLhandle handle, int paramID, int value)

where

handle is a handle that identifies a compressor or decompressor.

paramID is the identifier of the parameter to get or set.

value is the new value of the parameter.

Example 6-2 demonstrates how to extract the current value of specific
parameters from a list of parameters returned as a group. In this case, the
current block size and preroll values are obtained from the list of parameters
that are returned in paramValuebuffer from clGetParams().

Example 6-2 Getting the Current Values of Selected Parameters

#include <dmedia/cl.h>
...
/* Get the block size and preroll */
int paramValueBuffer[][2] = {
CL_BLOCK_SIZE, 0,
CL_PREROLL, 0
};
clGetParams(handle, (int *)paramValueBuffer,
sizeof(paramValueBuffer) / sizeof(int));
/* paramValueBuffer[0][1] is the block size */
/* paramValueBuffer[1][1] is the preroll */

Getting or Setting the Value of a Floating Point Parameter

Some parameters, such as CL_FRAME_RATE, are floating point values. You
don’t have to cast expressions involving floating point values, because
macros are provided within libcl that handle the conversions for you; even
though a value is a float you can cast to an int. To set a floating point value,
use the macro CL_TypeIsInt(); to retrieve a floating point value, use the
macro CL_TypeIsFloat().

118

Chapter 6: Using Compression Library Parameters

The argument must be a variable, because the type definitions in
/usr/include/dmedia/cl.h are

float *(float *) &value

int *(int *) &value

Example 6-3 demonstrates how to use the libcl macros to get/set a floating
point parameter value.

Example 6-3 Using Macros to Get or Set the Value of a Floating Point Parameter

float number;
number = 3.0;
...
clSetParam(handle, CL_COMPRESSION_RATIO,
CL_TypeIsInt(number));
number =
CL_TypeIsFloat(clGetParam(handle,CL_COMPRESSION_RATIO));

Getting or Setting Individual Parameter Attributes

You can query parameters individually to get the name, defaults, and range
of valid values, given the parameter identifier and a handle.

Use clGetName() to return a pointer to a null-terminated string that supplies
the English name of a parameter. Its function prototype is

char* clGetName(CLhandle handle, int param)

where

handle is a handle that identifies a compressor or decompressor.

param is a parameter identifier.

Use clGetDefault() to return the default value of the parameter specified by
param. Use clSetDefault() to set the default value. Setting the default value
is particularly useful when an algorithm has been added and new defaults
need to be set.

The function prototypes are

int clGetDefault(CLhandle handle, int param)

int clSetDefault(int scheme, int paramID, int value)

Setting and Querying Compression Library Parameters

119

where

handle is a handle that identifies a compressor or decompressor.

paramID is a parameter identifier.

scheme is the identifier of the scheme for which to set the defaults.

value is the new default value associated with param.

Example 6-4 demonstrates how to get and set defaults for a parameter. In
this case, the default for the CL_ORIGINAL_FORMAT parameter is set to
CL_RGBX for the specified decompressor.

Example 6-4 Getting and Setting Parameter Defaults

#include <dmedia/cl.h>
int default;
...
clOpenDecompressor(scheme, &handle);
...
default = clGetDefault(handle, CL_ORIGINAL_FORMAT);
clSetDefault(scheme, CL_ORIGINAL_FORMAT, CL_RGBX);
...

Use clGetMinMax() to get the maximum and minimum values for a
parameter. Use clSetMin() and clSetMax() to set new minimum and
maximum parameter values, or to establish the minimum and maximum
values when adding a new algorithm.

The function prototypes are

int clGetMinMax (CLhandle handle, int param, int *minParam,
 int *maxParam)

int clSetMin(int scheme, int paramID, int min)

int clSetMax(int scheme, int paramID, int max)

where

handle is a handle that identifies a compressor or decompressor.

paramID is a parameter identifier.

minParam is a pointer to the parameter into which clGetMinMax() can
write the minimum value associated with paramID.

120

Chapter 6: Using Compression Library Parameters

maxParam is a pointer to the parameter into which clGetMinMax() can
write the maximum value associated with paramID.

scheme is the identifier of the scheme that is to have its minimum or
maximum value changed.

min is the new minimum value associated with paramID.

max is the new maximum value associated with paramID.

Example 6-5 demonstrates how to get and set the minimum and maximum
values of a particular parameter for the specified compressor or
decompressor.

Example 6-5 Getting and Setting Minimum and Maximum Parameter Values

#include <dmedia/cl.h>
int oldMin, oldMax;
...
clOpenDecompressor(scheme, &handle);
6
...
clGetMinMax(handle, CL_ORIGINAL_FORMAT, &oldMin, &oldMax);
clSetMin(scheme, CL_ORIGINAL_FORMAT, CL_RGB);
clSetMax(scheme, CL_ORIGINAL_FORMAT, CL_RGB332);
...

Using Frame Type Parameters

Some compression algorithms do not allow direct compression or
decompression of an arbitrary frame. These algorithms—MPEG, CCITT
H.261, and so on—have blocks of frames, where each frame can be
decompressed only if all previous frames in the block have been
decompressed. The frame at the beginning of the block is called a keyframe.

A frame can be queried for its status as a keyframe by using the
CL_FRAME_TYPE state parameter. Legal values are CL_KEYFRAME (or
CL_INTRA), CL_PREDICTED, and CL_BIDIRECTIONAL. Predicted
frames use information from a previous keyframe, bidirectional frames use
information from both previous and future reference frames, where a
reference frame is either of the other two types—CL_KEYFRAME or
CL_PREDICTED. The Compression Library interface allows keyframe
control from the application.

Setting and Querying Compression Library Parameters

121

Some algorithms contain only keyframes, such as JPEG, MVC1, RTR, RLE,
G.711, and so on. MPEG Video is the only algorithm currently supported
that has all three types of frames.

123

Chapter 7

7. Using Compression Library Algorithms

This chapter describes how to use the algorithms that are supplied with libcl.
To use one of these algorithms, you need to select an appropriate algorithm
for your application and specify it in the compress or decompress routines.

In this chapter:

• “Choosing a Compression Library Algorithm” on page 123 gives
factors for selecting an algorithm for specific types of applications.

• “Querying Compression Library Algorithms” on page 126 tells how to
get a list of available algorithms, the name and type of the algorithm,
and licensing information for it.

• “Controlling JPEG Compressed Image Quality” on page 129 explains
controls for optimizing the JPEG compression algorithm.

Choosing a Compression Library Algorithm

Perhaps the most important aspect of developing an application that uses
libcl is selecting the appropriate algorithm to use for the application. The
algorithm affects the data size and quality and the rate of compression and
decompression, so it is important to consider how an algorithm might affect
the end result and whether a particular algorithm achieves the desired effect.
A certain amount of experimentation may be necessary.

If you are interested in a particular quality level, you need to set the
compression ratio to achieve that quality; if you are primarily interested in a
particular data size or data rate, you need to set the compression ratio to
achieve the desired data size or rate.

124

Chapter 7: Using Compression Library Algorithms

Here are some suggestions for typical application categories:

Note: The performance is quoted for Indigo® workstations with 33 MHz
MIPS® R3000® processors only.

• multimedia information delivery applications

The key factors to consider when choosing a video compression
algorithm for multimedia applications are playback speed, data size or
rate, and quality.

MPEG gives the best video quality for a given data size or rate, but
playback speed is limited by the CPU. MVC1 is usually the best choice
if MPEG is not fast enough. If an expensive frame-by-frame VCR is not
available, recording in real time to disk is important, which can be done
with RTR1.

• telecommunications applications

The key factors to consider when choosing a video compression
algorithm for video/voice mail, video teleconferencing, and other
telecommunications applications are the combined
compression-decompression speed, data size/rate, and to a lesser
extent, quality.

MVC1 gives the best result for video of about 10 frames per second for
a 160 by 120 frame size at the cost of a very high data rate. More
performance can be achieved by using gray-scale.

• previewing animations

The key factors when choosing a video compression algorithm for
previewing 2D and 3D animations are playback speed, quality, and, to a
lesser extent, data size/rate. MVC1 gives the appropriate speed and
quality.

• editing movies

The key factors to consider when choosing a video compression
algorithm for movie editing applications are decompression speed,
image quality, data size/rate, and compression speed.

For motion video applications, MVC1 is the best choice, especially
when the playback is provided by the MoviePlayer tool. MVC1
provides rapid decompression. Playback speed can be traded off with

Choosing a Compression Library Algorithm

125

image quality. When recording from video hardware to disk, recording
in real time to disk is important if a frame-by-frame VCR is not
available—leading to the use of RTR1.

Table 7-1 summarizes the compression and performance relationships of the
image and motion video algorithms. Compression, decompression, and
codec performance measurements are in frames per second (FPS), as
measured for 320 by 240 frames on Indigo workstations with 33 Mhz MIPS
R3000 processors only.

a. Decompressed frame per second is the measured performance, including reading the data from disk, decompressing it, and writing it to the
screen.

b. NYM: not yet measured.

Table 7-1 Capabilities of Image and Video Algorithms

Algorithm

Typical
Compression
Ratio From
24-bit RGB

Average
Bits
per
Pixel

Megabits per
Second at
15 Frames
per Second

Kilobytes
per
Frame
compression

Compress
(Frames per
Second)

Decompressa

(Frames per
Second)

Codec
(Frames per
Second)

Uncompressed 1:1 24 27.65 230.4

RLE 8-bit 4.8:1 5 5.76 48 6 11.5 3.9

MVC1 5.33:1 4.5 5.2 43.2 3 25 2.8

MVC1
Gray-scale

8:1 3 3.456 28.8 7 28 5.6

RTR1 6:1 4 4.608 38.4 NYMb 2.5 2.0

RTR1
Gray-scale

9:1 2.67 3.072 25.6 NYM 8 NYM

JPEG 16:1 1.5 1.728 14.4 1.1 1.8 0.7

MPEG 48:1 0.5 0.576 4.8 << 1 4.75 <<1

126

Chapter 7: Using Compression Library Algorithms

Querying Compression Library Algorithms

This section explains how you can get a list of available algorithms for a
video compressor or decompressor, along with the name and type of
algorithm, or find the identifier for an algorithm given its name. Other
features of the algorithms can also be queried by the application at run time.
Querying algorithms, rather than having hard-coded setups, makes it
possible to have an algorithm-independent interface, which lets you take
advantage of future algorithms as they are implemented without
redesigning your code.

Getting a List of Algorithms

Use clQueryAlgorithms() to get a list of algorithms for the compressor or
decompressor identified by handle. clQueryAlgorithms() returns the size of
the buffer needed to contain the list of algorithms and their types.

If the size of the algorithmTypeBuffer is smaller than the returned value, a
partial list of the algorithms and their types is returned, and you must
enlarge the algorithmTypeBuffer in order to receive a complete list.

The function prototype for clQueryAlgorithms() is:

int clQueryAlgorithms (int algorithmMediaType,
 int *algorithmTypebuffer, int bufferLength)

where

algorithmMediaType
is the media type of the algorithm. For Indigo2 IMPACT
Video, always set this to CL_ALG_VIDEO.

algorithmTypeBuffer
is a pointer to an array of ints into which
clQueryAlgorithms() can write algorithm name/type pairs
for each parameter associated with handle. The even
(0,2,4,...) entries receive the algorithm name. The odd
entries (1,3,5,...) receive the types.

Querying Compression Library Algorithms

127

The returned types take on one of three values:

bufferLength is the length of the buffer, in ints, pointed to by
paramValueBuffer. If bufferLength is zero, then
paramValueBuffer is ignored and only the return value is
valid.

Getting an Algorithm Scheme or Name

Use clQuerySchemeFromHandle() or clQuerySchemeFromName() to
return the algorithm scheme identifier used by the other compression
functions. Use clGetAlgorithmName() to return the algorithm name. Their
function prototypes are:

int clQuerySchemeFromHandle(CLhandle handle)

int clQuerySchemeFromName(int algorithmMediaType, char *name)

char *clGetAlgorithmName(int scheme)

where

handle is a handle to a compressor or a decompressor

algorithmMediaType
is the media type of the algorithm. For Indigo2 IMPACT
Video, always set this to CL_ALG_VIDEO.

name is the algorithm name

scheme is the algorithm scheme

Example 7-1 demonstrates how to query the CL for a list of algorithms—in
this case, video algorithms. The necessary buffer size is returned in the first
call to clQueryAlgorithms(), and then malloc() is used to allocate enough
buffer space to store the returned list of video algorithms.

CL_COMPRESSOR for compression

CL_DECOMPRESSOR for decompression

CL_CODEC for both compression and
decompression

128

Chapter 7: Using Compression Library Algorithms

Example 7-1 Getting a List of Compression Library Algorithms

#include <dmedia/cl.h>
#include <malloc.h>

int *buffer, bufferLength;
char *name;
/*
* Get a buffer containing all the video algorithms and types
*/
bufferLength = clQueryAlgorithms(CL_VIDEO, NULL, 0);
buffer = (int *)malloc(bufferLength * sizeof(int));
clQueryAlgorithms(CL_VIDEO, buffer, bufferLength);

scheme = clQuerySchemeFromName(handle);
name = clGetAlgorithmName(scheme);

Getting License Information

Use clQueryLicense() to obtain license information about an algorithm. The
returned message is text intended for inclusion in a message box that is
displayed for a user, explaining how to license an algorithm. Failure returns
the license error code.

The function prototype is:

int clQueryLicense (int scheme, int functionality,
 char **message)

where

scheme is the algorithm scheme.

functionality is the type of algorithm, which can be one of:

• CL_COMPRESSOR for compression

• CL_DECOMPRESSOR for decompression

• CL_CODEC for both compression and decompression

message is a pointer to a returned pointer to a character string
containing a message.

Controlling JPEG Compressed Image Quality

129

Controlling JPEG Compressed Image Quality

JPEG is a tunable algorithm—you can trade quality for compression ratio
and vice versa. You can specify a hint (CL_COMPRESSION_RATIO) for an
approximate compression ratio, or you can set more explicit quality factors
or target bit rates, as described in this section.

The source image is compressed in three basic steps.

1. Data is transformed from spatial to frequency form in eight-by-eight
blocks using a discrete cosine transform (DCT).

2. The frequency coefficients are filtered down by a linear quantization.

3. The coefficients are Huffman-encoded into a bit stream.

The process is reversed for decompression.

The quantization step controls the trade-off between image quality and size.
The JPEG quantization table is used to scale each of the 64 DCT coefficients.
The luminance (Y) and the chrominance (Cr and Cb) components each use a
separate table.

The CL provides three methods for controlling image quality from these
quantization tables. You can

• specify an overall JPEG quality factor (CL_JPEG_QUALITY_FACTOR)
for scaling the default JPEG quantization tables

• manually set the quantization tables using
CL_JPEG_QUANTIZATION_TABLES

• specify a target bit rate that you would like the compressed data to
approximate

The JPEG algorithm does not allow you to specify exact compression ratios,
but the hardware implementation of JPEG used in Indigo2 IMPACT
Compression supports the concept of a target bit rate. Specifying
CL_BITRATE causes the hardware to create a new quantization table as each
field is compressed. If the current field were compressed again, this
quantization table would yield the exact target bit rate. Since this bit rate
would reduce the maximum capture rate, the CL applies the new
quantization table to the next field, since adjacent fields usually have similar
compressibility.

130

Chapter 7: Using Compression Library Algorithms

Specifying a JPEG Quality Factor

You can use the CL_JPEG_QUALITY_FACTOR parameter to specify a JPEG
quantization table scale factor that represents a rough percentage of the
image detail preservation. This is one method to control the image loss and
therefore the compression ratio for the Indigo2 IMPACT Compression JPEG
algorithm.

Each time the quality factor is set, the reference quantization tables are
scaled and downloaded into the codec. The formula used to obtain the scale
factor is:

scalefactor = 50/quality (quality < 50)
scalefactor = 2 - 2*quality/100; (otherwise)

The default quality is CL_JPEG_QUALITY_DEFAULT, which represents a
good-quality compressed image. A quality factor of 1 results in coarse
quantization, a high compression ratio, and very poor image quality.
A quality factor of 100 results in the finest possible quantization, a low
compression ratio (perhaps even image expansion), and near-perfect image
quality. The most useful quality factor is typically in the range of 25–95.

To bypass scaling, specify CL_JPEG_QUALITY_NO_SCALE.

When CL_QUALITY_FACTOR is set, the approximate value of
CL_COMPRESSION_RATIO is calculated; when
CL_COMPRESSION_RATIO is set, the approximate value of
CL_QUALITY_FACTOR is calculated. When decompressing JPEG,
clDecompress() fills in this value. The actual compression ratio is
determined by the quality factor and the image content and therefore may
not be exactly what you expect.

Defining and Using Custom JPEG Quantization Tables

You can customize the JPEG quantization tables by using the
CL_JPEG_QUANTIZATION_TABLES parameter. To set the tables, specify
an unsigned short *qtables[4] argument. For each j, qtables[j] must either be
NULL or point to a unsigned short[64] area of memory that represents a
JPEG-baseline quantization table in natural scanning order. These custom
tables are stored as reference tables; then scaled versions of them based on

Controlling JPEG Compressed Image Quality

131

the current CL_JPEG_QUALITY_FACTOR are downloaded into the codec,
becoming the tables associated with the ID j.

When getting the value of CL_JPEG_QUANTIZATION_TABLES, the CL
allocates the required memory and returns the currently used tables, as
indicated by CL_JPEG_COMPONENT_TABLES, scaled by the value of
CL_JPEG_QUALITY_FACTOR. Your application is responsible for freeing
the memory allocated to return these tables.

You can specify the quantization tables on a per-component basis, by using
the CL_JPEG_COMPONENT_TABLES parameter. It specifies the IDs of the
AC Huffman table, DC Huffman table, and quantization table to be used for
each component. You cannot change this parameter for Indigo2 IMPACT
Compression; it is set up for YUV422 processing. This setting uses AC
Huffman table 0, DC Huffman table 0, and quantization table 0 for
component 0; AC Huffman table 1, DC Huffman table 1, and quantization
table 1 for components 1 and 2.

Specifying a Bit Rate Target

You can specify a target bit rate for the compressed data stream. The bit rate
is the number of bits per second.

bitrate = (image_height * image_width * components_per_pixel
 * fields_per_second * 8) / compression_ratio;

Useful values for bit rate for NTSC video range from 15,000,000 (2:1
compression) to 3,000,000 (100:1).

133

Chapter 8

8. Porting Cosmo Compress Applications to
Indigo2 IMPACT Compression

Before software that utilizes the Cosmo Compress option board can run on
the Indigo2 IMPACT Compression option, it must be ported. This chapter is
designed for those porting software from Cosmo Compression to Indigo2

IMPACT Compression. This chapter explains

• hardware differences between the two options

• software differences

Hardware Differences

Indigo2 IMPACT Compression is mostly a superset of the functionality
provided by the Cosmo Compress option board. This section describes
changes between the two options, including additional functionality and
restricted functionality.

One of the major design goals of Indigo2 IMPACT Compression was to build
an enhanced Cosmo Compress. Other goals were maintaining compatibility
with Cosmo Compress-created data and making it simple to enable Cosmo
Compress applications to work on Indigo2 IMPACT Compression.

Data created with Indigo2 IMPACT Compression is compatible with Cosmo
Compress, with these caveats:

• Movies created with low compression ratios (greater than
approximately 7:1) do not play in real time on Cosmo Compress
hardware.

• Images larger than 768 x 300 pixels cannot be decompressed with
Cosmo Compress.

134

Chapter 8: Porting Cosmo Compress Applications to Indigo2 IMPACT Compression

The following points summarize hardware differences between the two
compression options:

• Two independent JPEG codecs

Indigo2 IMPACT Compression adds a second identical and
independent JPEG codec circuit. This circuit allows two applications to
process JPEG compressed data independently, or allows one
application to achieve both JPEG compression and decompression
concurrently.Bbuilt-in video hardware

Instead of depending upon a separate video option board for video
input and output, Indigo2 IMPACT Compression adds built-in analog
video support. The option can also be installed with Indigo2 IMPACT
Video for I/O of digital component video formats; the two boards can
operate together.

Indigo2 IMPACT Compression includes one analog input, which is
accessible by both codecs simultaneously, and one analog output,
which is accessible by only one codec at a time. Analog genlock
capability is included.

Analog formats supported are standard NTSC and PAL, and
non-square pixel format NTSC (CCIR 525) and PAL (CCIR 625).

• Maximum image size

The Cosmo Compress option required all images to transit the field
buffer memories, even in memory-to-memory modes. Indigo2 IMPACT
Compression removes this limitation, and supports image sizes up to
4080 pixels wide by 4088 lines high in memory-to-memory modes.

Indigo2 IMPACT Compression does not process images larger than
video size (768 x 576 at 50 fields/second) in real time.

Indigo2 IMPACT Compression has the following capabilities not found in
Cosmo Compress:

• Compression ratios as low as one output byte for each two input bytes
(2:1) in real time (for video-sized images)

• Hardware-implemented approximate target bit-rate control

Software Differences

135

• Enhanced management of access and transactions on the GIO bus (the
Silicon Graphics proprietary option bus used in the Indigo2 and Indy®

workstations):

– real-time memory-to-memory transfers (of images up to 768 x 576
at 50 fields/second)

– uncompressed data transfers in top-down, bottom-up, or
interleaved (both odd or even) patterns

• Scaler and color-space conversion on each codec subsystem for
video-sized images with a maximum size of 1000 x 1000 pixels during
memory-to-memory decompression operations; larger images scaled
and converted on the host CPU by a thread that the CL creates

– shrinking of video-sized images

– YCrCb 4:2:2-to-RGBX color-space conversion

Software Differences

Indigo2 IMPACT Compression CL software uses the same programming
paradigms as Cosmo Compress, with differences necessary to enable the
added capabilities of the hardware. The most pervasive change is in the way
that the Compression Library and the Video Library interact. Indigo2

IMPACT Compression is treated as a combination VL and CL device, with
synchronization between the two libraries being handled at the device
driver level.

Indigo2 IMPACT Compression does not have a predefined value for its
compression scheme. Instead, applications use the
clQuerySchemeFromName() routine to query the CL for the current scheme
value for the name impact. See the example “Memory-to-Memory
Compression” on page 92.

Since Indigo2 IMPACT Compression has two JPEG codecs, an application
that processes data to a CL_EXTERNAL_DEVICE needs some way of telling
the VL which VL_CODEC node to open. (There is a one-to-one
correspondence between the two VL_CODEC nodes and the two JPEG
codecs.)

136

Chapter 8: Porting Cosmo Compress Applications to Indigo2 IMPACT Compression

See “Compressing and Decompressing Video Through External
Connections” on page 95 for a discussion and example.

For Cosmo Compress, the application sets CL parameters to control the
video capture rate. Indigo2 IMPACT Compression controls the rate with the
control VL_RATE on the VL_CODEC node that is the source or drain of the
VL path.

137

Appendix A

A. VL Controls and CL Parameters for the Indigo2

IMPACT Compression Option

This appendix summarizes Video Library controls and Compression Library
parameters for the Indigo2 IMPACT Compression option:

• device node

• codec node

• memory node

• memory node DMA

• analog input and output device

Device Node Controls

Table A-1 summarizes device node controls

Table A-1 Indigo2 IMPACT Compression Device Node Controls

Control Default Type Use

VL_MGC_DEFAULT_ANALOG
_PLAY_SYNC_SOURCE

VL_MGC_SYNC_SOURCE
_ANALOG_GENLOCK

intVal Sets default value of sync source for playback to
analog destination. Values are

VL_MGC_SYNC_SOURCE_DEFAULT,
VL_MGC_SYNC_SOURCE_ANALOG_IN, or
VL_MGC_SYNC_SOURCE_ANALOG
_GENLOCK

VL_MGC_DEFAULT_DIGITAL
_PLAY_SYNC_SOURCE

VL_MGC_SYNC_SOURCE
_DIGITAL_GENLOCK

intVal Sets default value of sync source for playback to
digital destination. Values are

VL_MGC_SYNC_SOURCE_DEFAULT or
VL_MGC_SYNC_SOURCE_DIGITAL
_GENLOCK

138

Appendix A: VL Controls and CL Parameters for the Indigo2 IMPACT Compression Option

Codec Node Parameters

Codec parameters fall into several categories:

• image frame dimensions

• data formats

• buffer characteristics

• compression ratio and quality control

• compression algorithms

For more information on these categories, see “Compression Library
Parameter Definitions” in Chapter 6.

Table A-2 summarizes codec parameters.

Table A-2 Indigo2 IMPACT Compression Image Format Parameters

Parameter Values or Range Use

CL_ALGORITHM_ID Current ID Returns ID of current algorithm.

CL_ALGORITHM_VERSION Current version Returns version of current algorithm.

CL_BITRATE 10,000 to 100,000,000 bits per second of
compressed data (default 0: no bitrate control)

Specifies a target bit rate to which to
approximate the compressed data.

CL_BITS_PER_COMPONENT Always 8 for Indigo2 IMPACT Compression Number of bits per component.

CL_BLOCK_SIZE 0–2 billion
Default: 1; depends on algorithm

Natural block size of algorithm in samples.
It is most efficient to specify numberOfFrames
to be a multiple of the block size when
calling clCompress() or clDecompress().

CL_COMPONENTS Always 3 for Indigo2 IMPACT Compression Read-only value indicating number of
components in the data.

CL_COMPRESSED_BUFFER
_SIZE

0–2 billion

Default: maximum possible size, taking into
account all the factors such as algorithm,
encoding method, data type, and so on.

Maximum number of bytes in compressed
data buffer. For a smaller buffer than the
default, set this value explicitly. If
clCompress() is called with numberOfFrames
larger than 1, set this value to the maximum
compressed size of one frame ×
numberOfFrames.

Codec Node Parameters

139

CL_COMPRESSION_RATIO JPEG: 15.0:1

Default depends on original format and
algorithm

Determines whether compression ratio is a
target or is exact. Some algorithms (MVC1,
JPEG, and MPEG) are tunable, that is, they
allow quality to be traded for compression
ratio.

CL_ENABLE_IMAGEINFO 0 (FALSE (default)), 1 (TRUE) Set to TRUE before getting compressed
image information (hardware-assisted JPEG
operations).

CL_END_OF_SEQUENCE
(MPEG_VIDEO only)

0 (FALSE (default)), 1 (TRUE) Set by decompressor when it arrives at end
of sequence.

CL_EXACT_COMPRESSION
_RATIO

Always 0 for Indigo2 IMPACT Compression Determines whether compression ratio is a
target or must be exact.

CL_FRAME_BUFFER_SIZE 0–2 billion

Default: size of one frame

Maximum amount of compressed data
needed for one frame. If clDecompress() is
called with numberOfFrames larger than 1,
this value should be the frame size ×
numberOfFrames.

CL_FRAME_RATE 0–1 million; default: 30.0 Requested number of frames per second.

CL_FRAME_TYPE 0–2
CL_KEYFRAME, CL_INTRA: frame is a
keyframe
CL_PREDICTED: frame contains information
about its succeeding frames
CL_BIDIRECTIONAL: frame contains
information about frames that precede and
succeed it

Supplied by decompressor.

CL_IMAGE_HEIGHT

CL_IMAGE_WIDTH

Range: 16–4088, in multiples of 8 (NTSC must
use either 240 or 248; default is 248)
Memory-to-memory decompression can be any
size less than or equal to
CL_INTERNAL_IMAGE_HEIGHT

Range: 16-4080 in multiples of 16 (default: 640)
Memory-to-memory decompression can be any
size less than or equal to
CL_INTERNAL_IMAGE_WIDTH

Compression: height in pixels of original
uncompressed image.
Decompression: height in pixels of final
uncompressed image.

Compression: width in pixels of original
uncompressed image.
Decompression: width in pixels of final
uncompressed image.

Table A-2 (continued) Indigo2 IMPACT Compression Image Format

Parameter Values or Range Use

140

Appendix A: VL Controls and CL Parameters for the Indigo2 IMPACT Compression Option

DM_IMAGE_INTERLACING NTSC or CCIR(525):
DM_IMAGE_INTERLACED_EVEN

PAL or CCIR(625):
DM_IMAGE_INTERLACED_ODD

Interlacing: the option operates on
interlaced NTSC or PAL video data for
video-to-memory compression and
memory-to-video decompression. Even and
odd fields are compressed as separate
images.

CL_IMPACT_CODEC
_CONTROL

CL_IMPACT_START (default)

CL_IMPACT_STOP

Initializes and configures hardware for
compression or decompression.

For more information, see “Determining the
JPEG Codec” on page 86 in Chapter 4.

CL_IMPACT_FRAME
_INTERLEAVE

0 (FALSE (default)), 1 (TRUE) Determines whether to interleave fields as
they are being decompressed to memory.

CL_IMPACT_INTERLEAVE
_MODE

CL_IMPACT_INTERLEAVE_EVEN (use for PAL
and CCIR(625)

CL_IMPACT_INTERLEAVE_ODD (default; use
for NTSC and CCIR(525))

Sets type of frame interleaving (whether
odd or even field occupies top line of
uncompressed region of memory), when
CL_IMPACT_FRAME_INTERLEAVE is
TRUE.

CL_IMPACT_VIDEO_INPUT
_CONTROL

CL_IMPACT_VIDEO_CHANNEL0

CL_IMPACT_VIDEO_CHANNEL1

Determines which codec was allocated.
When CL_EXTERNAL_DEVICE is used, it
specifies the CL_CODEC node to be used by
the VL.

CL_INTERNAL_FORMAT Always CL_FORMAT_YCbCr422 for Indigo2

IMPACT Compression
Selects “natural” format for the video
algorithm in use, which can be compressed
without color-space conversion.

CL_INTERNAL_IMAGE
_HEIGHT

CL_INTERNAL_IMAGE
_WIDTH

Range: 16–4088
Default: 248

Range: 16-4080
Default: 640

Compression: height in pixels of final
uncompressed image height.
Decompression: height in pixels of original
compressed image.

Compression: width in pixels of final
uncompressed image.
Decompression: width in pixels of original
compressed image.

CL_JPEG_COMPONENT
_TABLES (JPEG only)

0, 1; set by CL_INTERNAL_FORMAT Specifies IDs of AC or C Huffman table for
each component.

Table A-2 (continued) Indigo2 IMPACT Compression Image Format

Parameter Values or Range Use

Codec Node Parameters

141

CL_JPEG_QUALITY_FACTOR
(JPEG only)

0-100 (default 75) Specifies an overall JPEG quality factor for
scaling the default JPEG quantization tables:

CL_JPEG_QUALITY_DEFAULT to set
default compression quality; range 1-100,
with 25-95 being the most useful quality
factor range.

CL_JPEG_QUALITY_NO_SCALE to bypass
quantization table scaling.

CL_JPEG_QUANTIZATION
_TABLES
(JPEG only)

0-100

See “Compression Library Parameter
Definitions” on page 109

Sets the quantization tables manually to
custom-designed tables stored as reference
tables, which this control downloads to
codec.

CL_ORIENTATION CL_TOP_DOWN (default)
CL_BOTTOM_UP
DM_TOP_TO_BOTTOM (for Silicon Graphics
movies)

Image orientation: compress or decompress
images that have top-to-bottom or
bottom-to-top orientation. Compressed data
is always top down unless specified
otherwise.

CL_ORIGINAL_FORMAT CL_RGB,
CL_RGBX (default),
CL_FORMAT_YCbCr422,
CL_FORMAT_XBGR

Symbolic constant from the following,
depending on its data type.

Compression: sets format of original video.

Decompression: sets format desired after
decompression for video.

CL_PREROLL 0–2 billion

Default: 0, depends on algorithm

Number of blocks of frames to supply to
clDecompress() before decompressed
frames are returned.

Table A-2 (continued) Indigo2 IMPACT Compression Image Format

Parameter Values or Range Use

142

Appendix A: VL Controls and CL Parameters for the Indigo2 IMPACT Compression Option

Memory Node Controls

Table A-3 summarizes memory node controls.

Note: For more detail on VL controls, see Chapter 3.

Table A-3 Indigo2 IMPACT Compression Memory Node Controls

Control Values or Range Type Use

VL_CAP_TYPE VL_CAPTURE_NONINTERLEAVED

VL_CAPTURE_INTERLEAVED

VL_CAPTURE_EVEN_FIELDS

VL_CAPTURE_ODD_FIELDS

VL-CAPTURE_FIELDS

intVal Type of field(s) or frame(s) to capture

VL_FORMAT VL_FORMAT_SMPTE_YUV: 8-bit
YCrCb

VL_FORMAT_RGB: full-range 8-bit
(0-255) RGBA

intVal Video format on the physical connector

VL_FREEZE 0,1 boolVal Data transfer freeze; suspends transfer
at the drain node, used only for analog
video out

VL_MGC_HASPECT
VL_MGC_VASPECT

0 < value ≤ 1/VL_ZOOM fractVal Fraction less than or equal to 1 that
shrinks the horizontal or vertical
aspect, respectively

VL_MGC_PAD_TOP
VL_MGC_PAD_BOTTOM

 0 intVal Number of lines to pad at the top or
bottom (respectively) of the image on
capture

VL_MGC_PAD_LEFT
VL_MGC_PAD_RIGHT

 0 intVal Number of pixels to pad at the left or
right (respectively) of the image on
capture

VL_MGC_ENABLE 0, 1 boolVal Boolean value that activates or
deactivates padding

VL_MGC_PAD_Y
VL_MGC_PAD_U
VL_MGC_PAD_V

1 ≤ value ≤ 254 intVal Value between 16 and 235 that specifies
the padding color of the Y, U, or V
value, respectively; default is black

Memory Node Controls

143

VL_MGC_VIDEO_TOP_CLIP 0 intVal Number of lines to clip from the top on
playback to video output

VL_MGC_F1_EXTRA_OFFSET
VL_MGC_F2_EXTRA_OFFSET

Range depends on other controls intVal Number of lines to offset on capture
and playback of frame 1 or 2,
respectively

VL_MGC_VOUT
_STARVATION

VL_MGV_DMA_VO_STARV_RPT
(default)

VL_MGV_DMA_VO_STARV_FLD

intVal See Table A-4

VL_OFFSET (0,0) xyVal Position within larger area

VL_PACKING See Table 3-7 for values intVal Pixel packing (conversion) format

VL_RATE Depends on capture type as specified
by VL_CAP_TYPE

fractVal Field or frame transfer speed

VL_SIZE Depends on timing and capture type xyVal Clipping size

VL_TIMING See Table 3-5 for values intVal Video timing

VL_ZOOM Memory nodes only: n/m where n ≤ m fractVal Decimation ratio

Table A-3 (continued) Indigo2 IMPACT Compression Memory Node Controls

Control Values or Range Type Use

144

Appendix A: VL Controls and CL Parameters for the Indigo2 IMPACT Compression Option

Memory Node DMA Controls

Table A-4 summarizes memory node DMA controls.

Table A-4 Indigo2 IMPACT Compression Memory Node DMA Controls

Control Values Type Use

VL_MGC_DMA
_VIN_ROUND

VL_MGC_DMA_RND_OFF
(default)

VL_MGC_DMA_RND_ON

intVal For capture and compression only, when the source is
10-bit digital video from the Indigo2 IMPACT Video
board, this control sets GIO DMA memory drain or
codec drain to round from 10-bit to 8-bit as follows:

VL_MGC_DMA_RND_OFF: disables rounding,
truncates instead.

VL_MGC_DMA_RND_ON: enables rounding.

Only active area data is rounded.

VL_MGC_DMA
_ROUND_TYPE

VL_MGC_DMA_RND_SMPLE
(default)

VL_MGC_DMA_RND_RAND

intVal For GIO DMA memory drain and codec drain nodes
only, sets the rounding type:

VL_MGC_DMA_RND_SMPLE (simple rounding):
rounds up if bit 1 is one, or rounds down if bit 1 is
zero.

VL_MGC_DMA_RND_RAND: (randomized
rounding): makes the decision whether or not to
round up based on comparing the two least
significant bits to a random sequence.

VL_MGC_DMA
_RAND_ROUND
_MODE

VL_MGC_DMA_RND_RAND
_RPT (default)

VL_MGC_DMA_RND_RAND
_FREE

intVal For GIO DMA memory drain or codec drain,
determines whether or not the random sequence
used for randomized rounding is repeated.

VL_MGC_DMA_RND_RAND_RPT: repeats the
random sequence; in this case a shift register is
seeded to a fixed value at the start of each odd field.

VL_MGC_DMA_RND_RAND_FREE: causes the
random sequence to free-wheel.

VL_MGC
_DOMINANCE_FIELD

VL_MGC_DOMINANCE_F1
(default)

VL_MGC_DOMINANCE_F2

intVal Sets the field dominance mode, which determines the
order in which the fields are read from memory. This
control applies only to the frame-oriented capture
types (VL_CAPTURE_INTERLEAVED and
VL_CAPTURE_NONINTERLEAVED). For more
information, see “Setting Field Dominance” in
Chapter 3.

Memory Node DMA Controls

145

VL_MGC_BUFFER
_QUANTUM

Default: 1 intVal The granularity, or quantum, of data transfer
required by the application. The video data is padded
at the end so that the size of a field/frame is a
multiple of VL_MGC_BUFFER_QUANTUM. This
control is intended for applications that do I/O
directly from the ring buffer, and may consequently
require the frame or field size to be a multiple of the
device block size. Direct I/O, for example, usually
requires that 512 bytes of data be transferred at a time.

VL_MGC_VOUT
_STARVATION

VL_MGV_DMA_VO_STARV_RPT
(default)

VL_MGV_DMA_VO_STARV_FLD

The default value for this control is
VL_MGV_DMA_VO_STARV_RPT.
Therefore, the ring buffer used in the
transfer must contain a minimum of
two buffer entries (four for
VL_CAPTURE
_NONINTERLEAVED), so that one
buffer can be repeated by the system
while the application is filling the
second. If only one buffer is used,
then the first buffer output is
repeated indefinitely and
vlGetNextFree() never returns a free
buffer.

intVal For memory and codec source nodes only, sets the
video output policy to use in data transfer using a
GIO DMA channel when the memory node
underflows the ring buffer (that is, the application
has not filled the ring buffer at the rate that the
memory node consumes it, or is repeating data
because of rate control). An application can choose
between two starvation policies:

VL_MGV_DMA_VO_STARV_RPT: Repeats the last
unit transferred (field or frame), until the next
transfer unit becomes available. For this repetition,
the unit is DMAed continuously.

VL_MGV_DMA_VO_STARV_FLD: For frames,
repeat only the last field until the next transfer unit is
available. Once starvation is detected, the
nondominant field is output as both the F1 and F2
fields. This policy halves the vertical resolution but
eliminates interfield motion blur. In order to repeat,
the field is DMAed continuously.

If the capture type is a field, this control value causes
identical behavior identical to
VL_MGV_DMA_VO_STARV_RPT.

In each case, video output from system memory
resumes when the application places the next
field/frame in the ring buffer via vlPutValid().

Table A-4 (continued) Indigo2 IMPACT Compression Memory Node DMA

Control Values Type Use

146

Appendix A: VL Controls and CL Parameters for the Indigo2 IMPACT Compression Option

Analog Input and Output Device Controls

Table A-5 summarizes analog input device (that is, video) controls.

Table A-5 Indigo2 IMPACT Compression Analog Input Device Controls

Control Default Type Use

VL_MGC_APERTURE 2 = 0.5 intVal Sets aperture factors for luminance for composite and Y/C
inputs

VL_MGC_AUFD 0 = off
1 = on (default)

boolVal Sets automatic field detect

VL_MGC_BANDPASS 1 = one intVal Selects bandpass filters for luminance for composite and
Y/C inputs

VL_MGC_CHROMA_AGC 0 = slow intVal Sets automatic gain control speed for chrominance for
composite or Y/C

VL_MGC_CHROMA_GAIN 44/255 fractVal Adjusts burst and chrominance output level of composite
and Y/C simultaneously

VL_MGC_COLOR_KILL_THRES -938/42 fractVal Controls level at which burst amplitude decides if composite
or Y/C input is color or monochrome when color mode is
automatically set

VL_MGC_CORING 1 intVal Selects coring levels for luminance for composite and Y/C
inputs

VL_MGC_FORCE_COLOR 1 = FALSE boolVal Forces color input

VL_MGC_LUMA_DELAY Depends on
format

intVal Changes composite or Y/C luminance delay without
affecting chrominance delay

VL_MGC_PAL_SENS Fraction range:
0,255,1
Default 144

intVal In PAL timing, the chroma modulation phase inverts every
line. Dropouts off the tape can disrupt this pattern. Use this
control to set the recovery time constant (maximum for poor
quality tape).

VL_MGC_PREFILTER 0 - off boolVal Boosts luminance frequency response for composite and
Y/C formats

VL_MGC_VNOISE_REDUCER normal intVal Selects mode of vertical noise reduction

VL_MGC_VTR_LOCK 1 = on boolVal Locks videotape recorder

Analog Input and Output Device Controls

147

Table A-6 summarizes analog output device controls. =

Table A-6 Indigo2 IMPACT Compression Analog Output Device Controls

Control Default Type Use

VL_MGC_ANTI_DITHER Off boolVal Removes interference between frequency components
generated by dithered graphics images (Y/C and composite
out only) and chrominance frequency present in video
signals by using a notch filter in luminance

VL_MGC_CHROMA_BAND 0 = standard boolVal Selects standard chrominance bandwidth of about 1.3 MHz
or enhanced bandwidth (nonstandard) of about 2.5 MHz for
composite and Y/C outputs

VL_MGC_COLOR_OUT_KILL Off boolVal Makes composite or Y/C output into monochrome by
turning off color burst and chrominance

VL_MGC_DELAY_SYNC 0 fractVal Like VL_MGC_H_OFFSET or VL_MGC_V_OFFSET, delays
timing of entire video signal (sync and picture) relative to
timing reference such as genlock; no effect in slave mode for
output timing, but with a narrow range: resolution in pixel
clock steps

VL_MGC_C_GAIN
VL_MGC_YC_GAIN

1 fractVal Adjusts burst and chrominance output level of composite
and C or Y/C (respectively) simultaneously

VL_MGC_H_OFFSET
VL_MGC_V_OFFSET

0 fractVal Delays timing of entire video signal (sync and picture)
relative to timing reference such as genlock; no effect in slave
mode for output timing

VL_MGC_SCH_PHASE 0 fractVal Adjusts SC-H phase +/- 180 degrees

VL_MGC_SUB_FREQ 0 fractVal Provides fine adjustment of composite and Y/C output color
subcarrier frequency

149

Index

A

API, Compression Library, 7
application

creating, 41-82
sample, location, 42, 46

B

blending, before or after zooming, 63
buffer, 23-39, 47

creating, 26-28
creating for video data, 73-75
flushing, 33
getting DMediaInfo and image data from, 80
internal versus external, 26
managing, 28-29

architecture, 32
non-blocking playback, 35
non-blocking recording application, 37
playback application, 34
reading data from, 77-81
reading frames to memory from, 80
record application, 36
registering, 75
ring, 24-25

buffered interface of the Compression Library, 24

C

capture type, specifying in application, 98
CL_ALGORITHM_ID, 112
CL_BITS_PER_COMPONENT, 110
CL_BLOCK_SIZE, 111
CL_CODEC, 86
CL_COMPONENTS, 110
CL_COMPRESSED_BUFFER_SIZE, 111
CL_COMPRESSION_RATIO, 129
CL_CONTINUOUS_BLOCK, 15, 87
CL_CONTINUOUS_NONBLOCK, 15, 87, 96
CL_ENABLE_IMAGEINFO, 86, 90, 91, 96
CL_END_OF_SEQUENCE, 113
CL_EXACT_COMPRESSION_RATIO, 112
CL_EXTERNAL_DEVICE, 16
CL_FRAME_BUFFER_SIZE, 111
CL_FRAME_RATE, 111
CL_FRAME_TYPE, 111, 120
CL_IMAGE_HEIGHT, 20, 88, 89, 92, 94, 97, 99, 109
CL_IMAGE_WIDTH, 20, 88, 89, 92, 94, 97, 98, 99, 109
CL_IMPACT_CODEC_CONTROL, 87, 100
CL_IMPACT_FRAME_INTERLEAVE, 94
CL_IMPACT_INTERLEAVE_MODE, 94
CL_IMPACT_VIDEO_INPUT_CONTROL, 86-87
CL_INTERNAL_FORMAT, 110
CL_INTERNAL_IMAGE_HEIGHT, 88, 90, 92,

94, 97, 100

150

Index

CL_INTERNAL_IMAGE_WIDTH, 88, 90, 92, 94, 97,
98, 99

CL_JPEG_COMPONENT_TABLES, 112, 131
CL_JPEG_QUALITY_FACTOR, 113, 130
CL_JPEG_QUANTIZATION_TABLES, 112, 130
CL_MVC1, 17, 22
CL_ORIENTATION, 89, 110
CL_ORIGINAL_FORMAT, 89, 110
CL_PREROLL, 111
clCloseCompressor(), 17
clCloseDecompressor(), 22
clCompress(), 15, 16, 36, 38
clCompressImage(), 11
clCreateBuf(), 18, 26
clDecompress(), 21, 34
clDecompressImage(), 12
clDestroyBuf(), 26
clDoneUpdatingHead(), 28, 35
clGetAlgorithmName(), 127
client, 44
clipping

compression, 97
decompression, 99
VL control, 72-73

clOpenCompressor(), 14
clOpenDecompressor(), 21
clQuery(), 35, 37
clQueryAlgorithms(), 126
clQueryBufferHdl(), 27
clQueryFree(), 28, 30
clQueryHandle(), 27
clQueryLicense(), 128
clQueryMaxHeaderSize(), 18
clQueryScheme(), 18
clQuerySchemeFromHandle(), 127
clQuerySchemeFromName(), 127

clQueryValid(), 28, 30, 35, 37
clReadHeader(), 18
clUpdateHead(), 28, 34, 36
clUpdateTail(), 28, 35, 37
codec

available, 86
JPEG, determining, 86-87
node, 53

COMPRESSED_BUFFER_SIZE, 16
compression

format, 50
hardware acceleration, 24
image, 10
multiprocessing example, 38
multithreading, 24
performance, 125

Compression Library
algorithms, 123-128

choosing, 123-125
independence, 126
performance statistics, 125
querying, 126-128

API, 7
buffered interface, 24
error handling, 8
file I/O, 8
parameters, 109-121, 137-147

definitions, 109-113
frame type, 120
setting, querying, 113-120

sequential interface, 14
still-frame interface, 10

compressor, 14
connection, 49-50
consuming, 25, 30-31
contcapt.c (OpenGL), 83
control, 46, 59-70, 101-107, 137-147

classes, 105
fraction ranges, 104

151

Index

groupings, 106-107
in header file, 101
type and values, 103-104

conventions, xiii
ctrlusage, 56

D

daemon, video, 44-45
opening connection to, 53

data transfer
ending, 81-82
starting, 76-77
to and from memory, 59-66

decimation, 63-64, 66
compression, 97-98

decompressor, 18
dev_mgv.h, 46
device, 46

ID, getting, 55
management, 44-45
video, transferring data, 73-81

DM_IMAGE_INTERLACING, 89, 100
DMediaInfo, getting from buffer, 80
drain, 47

blending and zooming, 63
contrrol for default, 54
node controls, setting, 59-70
See also memory node, screen node, video node

E

error handling, Compression Library, 8
event

masks, 58-59
specifying path-related, 58-59
trigger, 77

explicit routing, 57
external buffer, 26

F

field dominance, memory source node control, 71,
144

field mask, 67
file I/O in the Compression Library, 8
format, compression, 50

G

gray-scale, 124

H

hardware acceleration, 72
compression, 24

header
reading, 18
structure, 19

header file
Indigo2 IMPACT Video, 46
VL, 46

Huffman encoding, 112, 129, 131

I

image compression, 10
image data, getting from buffer, 80
implicit and explicit routing, 57

See also connection
interlacing, 100

152

Index

interleaving, 94-95
internal buffer, 26

J

JPEG, 12
data

getting, 91
invalid, 13, 90

L

latency, 33
license, algorithms, 128
linking, 52
-lvl, 52

M

malloc(), 127
memory

and data transfer, 59-66
node, 53
node controls, 142-143
node DMA controls, 144-145
reading from buffer to, 80
sending frames to video from, 80

memtovid, 45
MPEG, 124
mtov.c (OpenGL), 83
multimedia applications, choosing a compression

method, 124
multiple clients, 44
multiprocessing compression, 24

example, 38
MVC1, 124

N

node, 46
adding, 55
defined, 47-48
setting controls, 59-70
specifying, 53-54

NTSC interlacing, 100

O

OpenGL programs, 83

P

padding
compression, 97
decompression, 99
VL controls, 72-73

PAL interlacing, 100
parameters, Compression Library, 109-121

definitions, 109-113
frame type, 120
setting, querying, 113-120

path, 46
blending, 48
creating, 54
creating and setting up, 54-59
defined, 47-48
setting up, 56-57
specifying events, 58-59
specifying nodes on, 53-54

playback, non-blocking, 35
port, defined, 48-49
producing, 25, 30-31

153

Index

R

recording
using buffers for non-blocking compression, 37
using buffers to compress for, 36

ring buffer
head and tail, 24-25
See also buffer

RTR1, 124, 125

S

sample programs, location, 42, 46
scaling, 97

compression, 97
decompression, 99
VL controls, 72-73

sequential interface of the Compression Library, 14
simpleccapt.c, 82
simplegrab.c, 82
simplem2v.c, 82
simplev2s.c, 82
source, 47

blending and zooming, 63
control for default, 54
node controls, setting, 59-70
See also memory node, screen node, video node

sproc(), 38
starvation policy, 145
streamusage, 56
syntax, 50

T

telecommunications, choosing a compression
method, 124

tools, VL, 45-46
trigger, 77

V

vcp, 45
video

daemon, 44-45
opening connection to, 53

data transfer, 73-81
ending, 81-82
starting, 76-77
to and from memory, 59-66

drain, 47
format, converting, 62
node, 53
sending frames from memory to, 80
source, 47

videod, 44-45
videoin, 45
Video Library. See VL
videoout, 45
videopanel, 45
vidtomem, 45
vidtomem.c (OpenGL), 83
vintovout, 45
VL

capabilities, 42
control, 59-70, 101-107

See also control
controls, 137-147
device management, 44-45
header files, 46
programming model, 50-51

154

Index

requirements for running, 52
syntax, 50
system software architecture, 43
tools, 45-46

VL_CAP_TYPE, 66-70
and buffer size, 75

VL_CODEC, 53
VL_FORMAT, 62
VL_MEM, 53
VL_MGC_HASPECT, 72
VL_MGC_PAD_BOTTOM, 72
VL_MGC_PAD_ENABLE, 72
VL_MGC_PAD_LEFT, 72
VL_MGC_PAD_RIGHT, 72
VL_MGC_PAD_TOP, 72
VL_MGC_PAD_Y/U/V, 73
VL_MGC_VASPECT, 72
VL_MGC_VIDEO_TOP_CLIP, 73
VL_MGV_DOMINANCE_FIELD, 69
vl_mgv.h, 46
VL_OFFSET, 65-66
VL_PACKING, 60, 62
VL_RATE, 66-70
VL_SIZE, 65, 66
VL_TIMING, 61
VL_VIDEO, 53
VL_ZOOM, 63-64, 66
vlAddNode(), 55
vlBeginTransfer(), 76
VL buffer, 73-76
vlCloseVideo(), 81-82
vlcmd, 45
vlCreateBuffer(), 74
vlCreatePath(), 54
vlDeregisterBuffer(), 81
vlDestroyBuffer(), 81-82

vlDestroyPath(), 81-82
vlEndTransfer(), 76, 81
vlGetActiveRegion(), 80
vlGetControl(), 60
vlGetDevice(), 55
vlGetDMediaInfo(), 81
vlGetImageInfo(), 81
vlGetLatestValid(), 78, 80
vlGetNextFree(), 80
vlGetNextValid(), 78, 80
vlGetNode(), 53
vlGetTransferSize(), 74
vl.h, 46
vlinfo, 45
vlOpenVideo(), 53
vlPutFree(), 78, 80
vlPutValid(), 80
vlRegisterBuffer(), 75
vlSelectEvents(), 58
vlSetConnection(), 57
vlSetControl(), 61
vlSetupPaths(), 56

W

wrap, 29, 30

Z

zoom, 63-64, 66
before or after blending, 63

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important to us. They
help us to better understand your needs and to improve the quality of our
documentation.

Any information that you provide will be useful. Here is a list of suggested topics to
comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Important Note

Please include the title and part number of the document you are commenting on. The
part number for this document is
007-3278-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your comments on
the postage-paid card for your country, then detach and mail it. If your country is not
listed, either use the international card and apply the necessary postage or use electronic
mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail message and mail
it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of pages from the manual) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

