
SpeedShop User’s Guide

007–3311–007

COPYRIGHT
© 1998–2000 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics and IRIX are registered trademarks and ProDev, SGI, and the SGI logo are trademarks of Silicon Graphics, Inc.

Purify is a trademark of Rational Software Corporation. R4000 and R5000 are trademarks of MIPS Technologies, Inc. R10000 and
R12000 are trademarks or registered trademarks of MIPS Technologies, Inc. UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company Limited. X Window System is a trademark of The Open Group.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in This Guide

This revision of the manual includes bug fixes and updates for the SpeedShop 1.4.1
release.

007–3311–007 iii

Record of Revision

Version Description

005 August 1998
Brings the manual into conformance with the 1.3.2 version of the
SpeedShop software.

006 April 1999
Supports the 1.4 version of the SpeedShop software.

007 October 2000
Supports the 1.4.1 version of the SpeedShop software.

007–3311–007 v

Contents

About This Guide . xix

Related Publications . xx

Obtaining Publications . xx

Conventions . xxi

Reader Comments . xxi

1. Introduction to Performance Analysis 1

Sources of Performance Problems 1

CPU-Bound Processes . 2

I/O-Bound Processes . 2

Memory-Bound Processes . 2

Bugs . 3

Fixing Performance Problems . 3

SpeedShop Tools . 3

Main Commands . 4

Additional Commands . 4

Experiment Types . 5

SpeedShop Libraries . 6

API . 7

Supported Programming Models and Languages 7

Using SpeedShop Tools for Performance Analysis 8

Using ssusage to Evaluate Machine Resource Use 9

Using ssrun and prof to Gather and Analyze Performance Data 9

Collecting Data for Part of a Program 11

007–3311–007 vii

Contents

2. Tutorial for C Users 13

Tutorial Overview . 13

Contents of the generic Program 14

Output from the generic Program 14

Tutorial Setup . 15

Analyzing Performance Data . 15

A usertime Experiment . 16

Performing a usertime Experiment 16

Generating a Report . 17

Analyzing the Report . 19

A pcsamp Experiment . 20

Generating a Report . 21

Analyzing the Report . 22

A Hardware Counter Experiment 23

Performing a Hardware Counter Experiment 23

Generating a Report . 23

Analyzing the Report . 24

An ideal Experiment . 26

Performing an ideal Experiment 26

Generating a Report . 27

Analyzing the Report . 30

An fpe Trace . 30

Performing an fpe Trace 30

Generating a Report . 31

Analyzing the Report . 32

3. Tutorial for Fortran Users 33

viii 007–3311–007

SpeedShop User’s Guide

Tutorial Overview . 33

Tutorial Setup . 34

Analyzing Performance Data . 35

A usertime Experiment . 36

Performing a usertime Experiment 36

Generating a Report . 37

Analyzing the Report . 38

A pcsamp Experiment . 39

Performing a pcsamp Experiment 39

Generating a Report . 40

Analyzing the Report . 41

A Hardware Counter Experiment 42

Performing a Hardware Counter Experiment 42

Generating a Report . 42

Analyzing the Report . 43

An ideal Experiment . 44

Performing an ideal Experiment 45

Generating a Report . 45

Analyzing the Report . 48

MPI Tracing Tutorial . 49

4. Experiment Types . 51

Selecting an Experiment . 51

usertime Experiment . 53

pcsamp Experiment . 53

ideal Experiment . 54

How SpeedShop Prepares Files 54

007–3311–007 ix

Contents

How SpeedShop Calculates Ideal CPU Time 55

Inclusive Basic Block Counting 55

Using pcsamp and ideal Together 56

I/O Trace Experiment . 57

SpeedShop Hardware Counter Experiments 58

Two Tools for Hardware Counter Experiments 58

_hwc Hardware Counter Experiments 58

The [f]gi_hwc Experiment 59

The [f]cy_hwc Experiment 59

The [f]ic_hwc Experiment 59

The [f]isc_hwc Experiment 59

The [f]dc_hwc Experiment 60

The [f]dsc_hwc Experiment 60

The [f]tlb_hwc Experiment 60

The [f]gfp_hwc Experiment 60

The prof_hwc Experiment 60

_hwctime Hardware Counter Experiments 61

The gi_hwctimeExperiment 61

The cy_hwctime Experiment 61

The ic_hwctime Experiment 62

The isc_hwctime Experiment 62

The dc_hwctime Experiment 62

The dsc_hwctime Experiment 62

The tlb_hwctime Experiment 62

The gfp_hwctime Experiment 62

The fsc_hwctime Experiment 62

x 007–3311–007

SpeedShop User’s Guide

The prof_hwctime Experiment 63

Hardware Counter Numbers 63

Floating-Point Exception Trace 66

Heap Trace Experiments . 67

Combining Multiple Experiment Files into One 67

5. Collecting Data on Machine Resource Usage 69

ssusage Syntax . 69

ssusage Results . 69

6. Setting Up and Running Experiments: ssrun 71

Building Your Executable . 71

Special Information for MP Fortran Programs 72

Setting Up Output Directories and Files 73

Using Run-Time Environment Variables 73

User Environment Variables 74

Process Tracking Environment Variables 77

Expert-Mode Environment Variables 78

Using Marching Orders . 80

Defining the Base Experiment 81

Running Experiments . 83

ssrun Syntax . 83

ssrun Examples . 85

Example Using the pcsampx Experiment 85

Example Displaying Data in WorkShop 87

Example Using the -v Option 87

Using ssrun with a Debugger 88

Running Experiments on MPI Programs 88

007–3311–007 xi

Contents

Generating MPI Tracing Experiments 89

Generating Other Experiments for Programs Using MPI 92

Running Experiments on Programs Using Pthreads 93

Running Experiments on Programs That Use OpenMP Directives 94

Using Calipers . 94

Setting Calipers with the ssrt_caliper_point Function 95

Setting Time-Oriented Calipers 96

Setting Calipers with Signals 97

Setting Calipers with a Debugger 98

Effects of ssrun . 98

Effects of ssrun -ideal . 99

7. Analyzing Experiment Results: prof 101

Using prof to Generate Performance Reports 101

prof Arguments . 101

prof Options . 102

prof Output . 107

Using prof with ssrun . 107

usertime Experiment Reports 108

pcsamp Experiment Reports 109

Hardware Counter Experiment Reports 110

ideal Experiment Reports 112

fpe Trace Reports . 114

Using prof Options . 115

Using the -dis Option . 115

Using the -S Option . 121

Using the -calipers Option 124

xii 007–3311–007

SpeedShop User’s Guide

Using the -butterfly Option 125

Generating Reports for Different Machine Types 129

Generating Reports for Multiprocessed Executables 130

Determining Program Overhead 130

Generating Compiler Feedback Files 134

8. Using SpeedShop in Expert Mode: pixie 135

Using pixie . 135

pixie Syntax . 135

pixie Options . 136

pixie Output . 138

Obtaining Basic Block Counts 138

Examples of Basic Block Counting 141

Example Using prof with No Options 141

Example Using prof -heavy 142

Example Using prof -quit 144

Obtaining Inclusive Basic Block Counts 145

Example of prof -butterfly 145

9. Miscellaneous Commands 151

Using the thrash Command 151

thrash Syntax . 151

Effects of thrash . 152

Using the squeeze Command 152

squeeze Syntax . 152

Effects of squeeze . 153

Calculating the Working Set of a Program 153

Dumping Performance Data Files 155

007–3311–007 xiii

Contents

ssdump Syntax . 156

Experiment File Format . 157

Dumping Compiler Feedback Files 162

fbdump Syntax . 162

Converting an MPI Experiment File to Vampir Format 163

10. Glossary . 165

Index . 169

xiv 007–3311–007

Figures

Figure 3-1 An MPI Experiment in cvperf 50

Figure 6-1 MPI Numerical Format 91

Figure 8-1 How Basic Block Counting Works 140

007–3311–007 xv

Tables

Table 1-1 SpeedShop Main Commands 4

Table 1-2 SpeedShop Additional Commands 4

Table 1-3 SpeedShop Libraries 7

Table 1-4 Letter Codes in Process Experiment ID Numbers 11

Table 4-1 Summary of Experiments 52

Table 4-2 Basic Block Counts and PC Profile Counts Compared 56

Table 4-3 R10000 Hardware Counter Numbers 63

Table 4-4 R12000 Hardware Counter Numbers 65

Table 6-1 General Environment Variables 74

Table 6-2 Process Tracking Environment Variables 77

Table 6-3 Expert-Mode Environment Variables 78

Table 6-4 Options for the ssrun Command 84

Table 6-5 Setting Caliper Points 95

Table 7-1 Options for prof 102

Table 8-1 Options for pixie 136

Table 9-1 Options for fbdump 162

007–3311–007 xvii

About This Guide

The SpeedShop User’s Guide describes and illustrates methods for measuring program
performance using SpeedShop commands such as ssrun(1) and prof(1). It contains
tutorials that generate performance statistics for C and Fortran programs.

This manual is a user’s guide for the SpeedShop performance tools, release 1.4.1.

It contains the following chapters:

• Chapter 1, "Introduction to Performance Analysis", page 1, provides a general
introduction to performance analysis concepts and techniques, plus an overview of
the SpeedShop tools.

• Chapter 2, "Tutorial for C Users", page 13, provides a tutorial on how to collect
performance data and generate reports for a C program.

• Chapter 3, "Tutorial for Fortran Users", page 33, provides a tutorial on how to
collect performance data and generate reports for Fortran programs running on
single-processor machines.

• Chapter 4, "Experiment Types", page 51, describes the types of experiments that
can be performed using SpeedShop tools.

• Chapter 5, "Collecting Data on Machine Resource Usage", page 69, describes how
to use the ssusage(1) command to collect information about a program’s
machine resource usage.

• Chapter 6, "Setting Up and Running Experiments: ssrun", page 71, explains in
detail how to set up and run experiments using ssrun(1), and explains how to
use caliper points to generate reports for part of a program.

• Chapter 7, "Analyzing Experiment Results: prof", page 101, explains how to
generate reports from performance data using prof(1).

• Chapter 8, "Using SpeedShop in Expert Mode: pixie", page 135, explains how to
use pixie(1) and prof(1) directly, without invoking ssrun(1).

• Chapter 9, "Miscellaneous Commands", page 151, explains how to use the
thrash(1) and squeeze(1) commands to determine the memory usage, or
working set, of your application. It also includes commands to print performance
data files.

007–3311–007 xix

About This Guide

Related Publications
The following documents contain additional information that may be helpful:

• C Language Reference Manual

• C++ Language System Library

• C++ Language System Overview

• C++ Language System Product Reference Manual

• C++ Programmer’s Guide

• ProDev Debugger User’s Guide

• Developer Magic Performance Analyzer User’s Guide

• Developer Magic: ProDev WorkShop Overview

• Developer Magic: Static Analyzer User’s Guide

• Fortran 77 Language Reference Manual

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSPro 7 Fortran 90 Commands and Directives Reference Manual

• MIPSpro Compiling and Performance Tuning Guide

• Origin2000 and Onyx2 Performance Tuning and Optimization Guide

• ProDev ProMP User’s Guide

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com.

xx 007–3311–007

SpeedShop User’s Guide

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

007–3311–007 xxi

About This Guide

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xxii 007–3311–007

Chapter 1

Introduction to Performance Analysis

This chapter provides a brief introduction to performance analysis techniques for SGI
systems and describes how to use them with SpeedShop to solve performance
problems. It includes the following sections:

• "Sources of Performance Problems", page 1, provides a general overview of
potential performance problems.

• "Fixing Performance Problems", page 3, shows you how to use SpeedShop to
isolate and fix performance problems.

• "SpeedShop Tools", page 3, describes SpeedShop commands, experiment types,
and libraries.

• "Using SpeedShop Tools for Performance Analysis", page 8, shows you how to
analyze your system performance.

Sources of Performance Problems
To tune a program’s performance, you need to determine its consumption of machine
resources. At any point in a process, there is one limiting resource controlling the
speed of execution. Processes can be slowed down by any of the following:

• CPU speed and availability

• I/O processing

• Memory size and availability

• Bugs

Performance problems may span the entire run of a process, or they may occur in just
a small portion of the program. For example, a function that performs a lot of I/O
processing might be called regularly as the program runs, or a particularly
CPU-intensive calculation might occur in just one portion of the program. When there
are performance problems in a small portion of the program, collect data for just that
part of the program.

Because programs exhibit different behavior during different phases of operation, you
need to identify the limiting resource for each phase. A program can be I/O-bound

007–3311–007 1

1: Introduction to Performance Analysis

while it reads in data, CPU-bound while it performs computation, and I/O-bound
again in its final stage while it writes out data. Once you have identified the limiting
resource in a phase, you can perform an in-depth analysis to find the problem. After
you have solved that problem, you can check for other problems within the same or
other phases since performance analysis is an iterative process.

CPU-Bound Processes

A CPU-bound process spends its time in the CPU and is limited by CPU speed and
availability. To improve performance on CPU-bound processes, streamline your code
using one or more of the following techniques:

• Modifying algorithms

• Reordering code to avoid interlocks

• Removing nonessential steps

• Blocking to keep data in cache and registers

• Using alternative algorithms

I/O-Bound Processes

An I/O-bound process has to wait for I/O to complete and may be limited by disk
access speeds or memory caching. To improve the performance of I/O-bound
processes, try one of the following techniques:

• Improving overlap of I/O with computation

• Optimizing data usage to minimize disk access

• Using data compression

Memory-Bound Processes

A memory-bound program continuously swaps out pages of memory. Page thrashing is
often due to accessing virtual memory on a haphazard rather than strategic basis. To
fix a memory-bound process, try to improve the memory reference patterns by
increasing local references, or, if possible, decrease the memory used by the program.
For more information on paging activity, see the osview(1) man page or the -w
option on the sar(1) man page.

2 007–3311–007

SpeedShop User’s Guide

Bugs

Certain bugs can cause performance problems. Examples include:

• The program is unnecessarily reading the same information from the same file
more than once.

• Floating point exceptions are slowing down the program.

• Old code has not been completely removed.

• The program is leaking memory (making malloc() calls without the
corresponding calls to free()).

Fixing Performance Problems
The SpeedShop performance tools described in this manual can help you to identify
specific performance problems described later in this chapter. However, the
techniques described in this manual are only a part of performance tuning. Other
areas that you can tune, but that are outside the scope of this document, include
graphics, I/O, the kernel, system parameters, memory, and real-time system calls.

Although it may be possible to obtain short-term speed increases by relying on
unsupported or undocumented quirks of the compiler, it is a bad idea to do so. Any
such “features” may break in future compiler releases. The best way to produce
efficient code that will remain efficient is to follow good programming practices. In
particular, choose good algorithms and leave the details to the compiler.

SpeedShop Tools
The SpeedShop tools allow you to run experiments and generate reports that track
down the sources of performance problems. SpeedShop consists of a set of commands
that can be run in a shell, an application programming interface (API) to provide
some control over data collection, and a number of libraries to support the commands.

This section provides an overview of the tools by first discussing the main
commands, then providing more detail on additional commands, experiment types,
libraries, the SpeedShop API, and supported programs and languages.

007–3311–007 3

1: Introduction to Performance Analysis

Main Commands

SpeedShop provides the commands listed in Table 1-1.

Table 1-1 SpeedShop Main Commands

Command Description

ssusage Collects information about your program’s use of machine
resources. Output from ssusage can be used to determine where
most resources are being spent.

ssrun Allows you to run experiments on a program to collect
performance data. It establishes the environment to capture
performance data for an executable, creates a process from the
executable (or from an instrumented version of the executable) and
runs it. Input to ssrun consists of an experiment type, control
flags, the name of the target, and the arguments to be used in
executing the target.

prof Analyzes the performance data you have recorded using ssrun
and provides formatted reports. prof detects the type of
experiment you have run and generates a report specific to the
experiment type. You can also use the cvperf command to
display the data through the WorkShop graphic user interface.

Additional Commands

SpeedShop provides the additional commands shown in Table 1-2.

Table 1-2 SpeedShop Additional Commands

Command Description

pixie Makes basic block counting experiments possible. If you use
ssrun, you will not usually need to call pixie directly.

fbdump Prints out the formatted contents of compiler feedback files
generated by prof -feedback. (These files are named with a
.cfb suffix.)

4 007–3311–007

SpeedShop User’s Guide

Command Description

squeeze Allocates a region of virtual memory and locks the virtual memory
down into real memory, making it unavailable to other processes.

thrash Allows you to allocate a block of memory, then access the
allocated memory to explore system paging behavior.

ssdump Prints out formatted performance data that was collected while
running ssrun. This program is included for SpeedShop
debugging purposes. You do not normally need to use it.

Experiment Types

The following are the most popular experiments using the ssrun command. (For the
complete list of experiments, see the ssrun(1) man page.)

• pcsamp experiments provide information on a program’s CPU usage using
statistical program counter sampling.

Data is measured by periodically sampling the program counter of the target
executable when it is executing in the CPU. The program counter shows the
address of the currently executing instruction in the program. The data that is
obtained from the samples is translated to a time that can be displayed at the
function, source line, and machine instruction levels. The actual CPU time is
calculated by multiplying the number of times a specific address is found in the
PC by the amount of time between samples. (For a definition of CPU time,
wall-clock time, and process virtual time, see the glossary.)

• hwc experiments display information from a variety of hardware counters using
statistical sampling.

Hardware counter experiments are available on R10000 and R12000 systems that
have built-in hardware counters. Data is measured by counting each time the
specified hardware counter exceeds its maximum value, or overflows. You can
specify the hardware counter and the overflow interval you want to use. (For
more information on the hardware counter experiments, see "SpeedShop
Hardware Counter Experiments", page 58.)

• usertime experiments display a program’s CPU time (see the glossary) by
statistical call-stack profiling.

007–3311–007 5

1: Introduction to Performance Analysis

Data is measured by periodically sampling the call stack. The program’s call stack
data is used to attribute exclusive user time to the function at the bottom of each
call stack (that is, the function being executed at the time of the sample), and to
attribute inclusive user time to all the functions above the one currently being
executed. Exclusive time is the execution time of a given function but not any
functions that function calls, while inclusive time is the execution time both of a
given function and of any functions called by that function.

• ideal experiments display a program’s best possible time by counting basic
blocks.

Data is measured by counting the number of executions of each basic block and
calculating an ideal CPU time for each function. This involves instrumenting the
program to divide the code into basic blocks, which are consecutive sequences of
instructions with a single entry point, a single exit point, and no branches into or
out of the sequence. Instrumentation also records a count of all dynamic
(function-pointer) calls. You can compare this ideal time with the times returned
by other experiments to measure the performance of your code against its
potential (see "Using pcsamp and ideal Together", page 56). Because an exact
count of every instruction in your program is recorded, you can also use the
ideal experiment to determine the efficiency of your algorithm and identify any
code that is not executed.

• fpe experiments trace floating-point exceptions.

A floating-point exception trace collects each floating-point exception, including
the exception type and the call stack, at the time of the exception. prof(1)
generates a report showing inclusive and exclusive floating-point exception counts.

SpeedShop Libraries

Versions of the SpeedShop libraries libss.so and libssrt.so are available to
support applications built using shared libraries (called dynamic shared objects, or
DSOs) only and the old 32-bit, new 32-bit, or 64-bit application binary interfaces
(ABIs).

Table 1-3 provides information about the different SpeedShop libraries.

6 007–3311–007

SpeedShop User’s Guide

Table 1-3 SpeedShop Libraries

Library Description

libss.so A shared library (DSO) that supports libssrt.so. The
libss.so data normally appears in experiment results
generated with prof.

libssrt.so A shared library (DSO) that is linked in to the program you
specify when you run an experiment. All the performance
data collection with the SpeedShop system is done within
the target processes by exercising various pieces of
functionality using libssrt. Data from libssrt.so does
not normally appear in performance data reports generated
with prof.

libfpe_ss.so Supplements the standard libfpe.so for the purposes of
collecting floating-point exception data. See the fpe_ss(3)
man page for more information.

libmalloc_ss.so Inserts versions of malloc routines from libc.so.1 that
allow tracing all calls to malloc, free, realloc,
memalign, and valloc. See the malloc_ss(3) man page
for more information.

libpixrt.so A shared library (DSO) used by programs that have been
processed by the pixie(1) command.

API

The SpeedShop application programming interface (API) allows you to use function
ssrt_caliper_point to set caliper points in your source code. See "Using
Calipers", page 94, for information on using caliper points. For information on other
API functions, see the ssapi(3) man page. See Chapter 10, "Glossary", page 165, for
term definitions.

Supported Programming Models and Languages

The SpeedShop tools support programs with the following characteristics:

• Shared libraries (DSOs).

007–3311–007 7

1: Introduction to Performance Analysis

• Unstripped executables.

• Executables that call fork(2), sproc(2), system(3F), or exec(2).

• Executables using supported techniques for opening, closing, and delay-loading
DSOs.

• C, C++, Fortran (Fortran 77 and Fortran 90), or Ada 95 source code.

• Power Fortran and Power C source code. prof understands the syntax and
semantics of the multiprocessing run time and displays the data accordingly.

• pthreads, supported with data on a per-program basis.

• Message Passing Interface (MPI) or other message-passing paradigms. Currently
supported by providing data on the behavior of each process. The behavior of the
MPI library itself is monitored just like any other user-level code.

• The OpenMP collection of compiler directives, library routines, and environment
variables that can be used to specify shared memory parallelism.

Using SpeedShop Tools for Performance Analysis
Performance tuning typically consists of:

1. Examining machine resource usage

2. Breaking down the process into phases

3. Identifying the resource bottleneck within each phase

4. Correcting the cause of the bottleneck

Generally, you run the first experiment to break your program down into phases and
run subsequent experiments to examine each phase individually. After you have
solved a problem in a phase, you should re-examine machine resource usage to see if
there is further opportunity for performance improvement.

The general steps for a performance analysis cycle are as follows:

1. Build the application.

2. Run experiments on the application to collect performance data.

3. Examine the performance data.

8 007–3311–007

SpeedShop User’s Guide

4. Generate an improved version of the program.

5. Repeat steps 1 through 4 as needed.

To accomplish this using SpeedShop tools, do the following:

• Use ssusage to capture information on your program’s use of machine resources.

• Use ssrun to capture different types of performance data over either your entire
program or parts of the program. ssrun can be used in conjunction with dbx(1)
or cvd(1), the WorkShop debugger.

• Use prof to analyze the data and generate reports.

Using ssusage to Evaluate Machine Resource Use

To determine overall resource usage by your program, run the program with
ssusage. The results of this command allow you to identify high-user CPU time,
high-system CPU time, high I/O time, and a high degree of paging. The ssusage(1)
command has the following format:

ssusage executable_name executable_args

From the ssusage output, you can decide which experiments to run to collect data
for further study. For more information on ssusage, see Chapter 5, "Collecting Data
on Machine Resource Usage", page 69, or see the ssusage(1) man page.

Using ssrun and prof to Gather and Analyze Performance Data

This section describes the steps involved in a performance analysis cycle when using
the line-based interface to the SpeedShop tools: the ssrun and prof commands.

You can also call the commands individually. For example, if you are planning to
perform basic block counting experiments that involve instrumenting the executable,
you can do this by calling ssrun with the appropriate experiment type.

To perform a performance analysis, follow these general steps:

1. Build the executable.

You can usually build the executable as you would normally. See "Building Your
Executable", page 71, for information on how to build the executable.

007–3311–007 9

1: Introduction to Performance Analysis

2. Specify caliper points if you want to analyze data for only a portion of your
program. See "Collecting Data for Part of a Program", page 11, for more
information.

3. To collect performance data, issue the ssrun command with the following
parameters:

ssrun ssrun_options -exp_type executable_name executable_args

The following options are available with the ssrun command:

ssrun_options Zero or more valid options. For a complete list of
options, see the ssrun(1) man page, or Table 6-4,
page 84.

-exp_type Experiment name.

executable_name Executable name.

executable_args Arguments to the executable.

Use the information in the following list to determine which experiments to run.
Each performance problem is followed by one or more experiment types:

Problem Experiments

High-user CPU time usertime, pcsamp (four variants), _hwc/
_hwctime (hardware counter experiments), or
ideal.

High-system CPU time If floating-point exceptions are suspected, run
anfpe trace.

High I/O time ideal, then examine counts of I/O routines.

High paging rates ideal, then prof -cordfb and cord to
rearrange procedures. For more information on
rearranging code regions, see the MIPSpro Compiling
and Performance Tuning Guide.

For each process of the executable, the experiment data is stored in a file with a
name in the following form:

executable_name.exp_type.id

10 007–3311–007

SpeedShop User’s Guide

The experiment ID consists of one or two letters designating the process type,
followed by the process ID number. An example of a name is:

generic.ideal.m10966

See the following table for letter codes and descriptions.

Table 1-4 Letter Codes in Process Experiment ID Numbers

Letter Codes Description

m Master process created by ssrun

p Process created by a call to sproc()

f Process created by a call to fork()

s Process created by a call to system()

e Process created by a call to exec()

fe Process created by a call to fork() and exec()

For more information on the ssrun command, see Chapter 6, "Setting Up and
Running Experiments: ssrun", page 71, or view the ssrun(1) man page.

4. To generate a report from the experiment, issue prof with the following
parameters:

prof options data_file

options One or more valid options. For a complete list of options, see the
prof(1) man page, or Table 7-1, page 102.

data_file The name of the file in which the experiment data was recorded.

Collecting Data for Part of a Program

If you have a performance problem in only one part of your program, consider
collecting performance data for just that part. You can do this by setting caliper
points around the problem area when running an experiment, then using the prof
-calipers option to generate a report for the problem area or using the calipers
time line in the cvperf(1) window of WorkShop to view the area through a graphic
user interface.

007–3311–007 11

1: Introduction to Performance Analysis

You can record caliper points using one of the following methods:

• Direct calls to the SpeedShop API.

• The caliper signal environment.

• A debugger such as the ProDev WorkShop debugger.

• Periodic caliper points with pollpoint caliper points.

For more information on using calipers, see "Using Calipers", page 94.

12 007–3311–007

Chapter 2

Tutorial for C Users

This chapter provides a tutorial that shows you how to gather and analyze
performance data in a C program, using SpeedShop tools. The tutorial covers these
topics:

• "Tutorial Overview", page 13, introduces the sample program and explains the
different scenarios in which it will be used.

• "Tutorial Setup", page 15, steps you through the necessary setup for running the
experiment.

• "Analyzing Performance Data", page 15, steps you through five different
experiments, discussing first how to do the experiments, then how to interpret the
results.

Note: Because of inherent differences between systems and because of concurrent
processes that may be running on your system, your experiment will produce
different results from the one in this tutorial. However, the basic structure of the
results should be the same.

Tutorial Overview
This tutorial uses a sample program called generic. There are three versions of the
program:

generic directory Contains files for the n32-bit ABI

generico32 directory Contains files for the (old) 32-bit ABI

generic64 directory Contains files for the 64-bit ABI

When you work with the tutorial, choose the version of generic most appropriate
for your system. A good guideline is to choose the version that corresponds to the
way you expect to develop your programs.

This tutorial was written and tested using the version of generic in the generic
directory.

007–3311–007 13

2: Tutorial for C Users

Contents of the generic Program

The generic program was designed as a test and demonstration application. It
contains code to run scenarios that each test a different area of SpeedShop. The
version of generic used in this tutorial performs scenarios that:

• Build a linked list of structures

• Use a lot of user time

• Scan a directory and run the stat command on each file

• Perform file I/O

• Generate a number of floating-point exceptions

• Load and call a routine in a DSO

Output from the generic Program

Output from the program looks like the following:

0:00:00.000 ======== (27173) Begin script Fri 06 Feb 1998
15:03:31.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.002 ======== (27173) start of linklist Fri 06 Feb 1998

15:03:31.

linklist completed.
0:00:00.003 ======== (27173) start of usrtime Fri 06 Feb 1998

15:03:31.

usertime completed.

0:00:25.572 ======== (27173) start of cvttrap Fri 06 Feb 1998

15:03:57.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.
0:00:25.806 ======== (27173) start of dirstat Fri 06 Feb 1998

15:03:57.

dirstat of /usr/include completed, 304 files.

0:00:26.618 ======== (27173) start of iofile -- stdio Fri 06 Feb 1998

15:03:58.
stdio iofile on /unix completed, 7307988 chars.

0:00:26.864 ======== (27173) start of fpetraps Fri 06 Feb 1998

15:03:58.

fpetraps completed.

14 007–3311–007

SpeedShop User’s Guide

0:00:26.865 ======== (27173) start of libdso Fri 06 Feb 1998
15:03:58.

dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13
end of script ‘ll.u.cvt.d.i.f.dso’

0:00:27.972 ======== (27173) End script Fri 06 Feb 1998

15:03:59.

Tutorial Setup
Copy the program to a directory where you have write permission and compile it so
that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

2. Copy the appropriate generic directory and its contents to a directory where
you have write permission:

cp -r generic your_dir

3. Change to the directory you just created:

cd your_dir/generic

4. Compile the program, by entering:

make all

This provides an executable for the experiment.

Analyzing Performance Data
This section explains how to run the following experiments on the generic program,
generate the experiment’s results, and interpret the results:

• usertime. As a first cut at optimization, this may be the most useful experiment.
It breaks down a program into its functions and returns the CPU time used in
each. See "A usertime Experiment", page 16.

007–3311–007 15

2: Tutorial for C Users

• pcsamp. This experiment uses a different method to return the CPU time. See "A
pcsamp Experiment", page 20.

• dsc_hwc. This experiment counts the number of times a required data item was
not in secondary data cache. If the data item is not in secondary data cache, it
must be fetched from memory, which requires more time. See "A Hardware
Counter Experiment", page 23.

• ideal. This experiment calculates the best time achievable. See "An ideal
Experiment", page 26.

• fpe. This experiment counts the number of floating-point exceptions in each
function. See "An fpe Trace", page 30.

You can follow the tutorial from start to finish, or you can choose the experiment you
want to perform.

A usertime Experiment

This section explains how to perform a usertime experiment. The usertime
experiment allows you to gather data on the amount of CPU time spent in each
function in your program.

Note: Due to statistical sampling of the call stack, not all functions may appear in the
experiment output.

For more information on usertime, see "usertime Experiment", page 53. For
definitions of CPU time, wall-clock time, and process-virtual time, see the glossary.

Performing a usertime Experiment

From the command line, enter the following:

ssrun -usertime generic

This command starts the experiment. Output from generic and from ssrun is
printed to stdout, as shown in the following example. A data file is also generated.
The name consists of the process name (generic), the experiment type (usertime),
and the experiment ID. In this example, the file name is
generic.usertime.m10981.

16 007–3311–007

SpeedShop User’s Guide

0:00:00.000 ======== (10981) Begin script Mon 02 Feb 1998
11:05:02.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.002 ======== (10981) start of linklist Mon 02 Feb 1998

11:05:02.

linklist completed.
0:00:00.003 ======== (10981) start of usrtime Mon 02 Feb 1998

11:05:02.

usertime completed.

0:00:22.948 ======== (10981) start of cvttrap Mon 02 Feb 1998

11:05:25.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.
0:00:23.156 ======== (10981) start of dirstat Mon 02 Feb 1998

11:05:25.

dirstat of /usr/include completed, 304 files.

0:00:23.937 ======== (10981) start of iofile -- stdio Mon 02 Feb 1998

11:05:26.
stdio iofile on /unix completed, 7307988 chars.

0:00:24.777 ======== (10981) start of fpetraps Mon 02 Feb 1998

11:05:27.

fpetraps completed.

0:00:24.777 ======== (10981) start of libdso Mon 02 Feb 1998

11:05:27.
dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’
0:00:25.866 ======== (10981) End script Mon 02 Feb 1998

11:05:28.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > usertime.results

The prof command prints results to stdout.

007–3311–007 17

2: Tutorial for C Users

Note: Because of line width restrictions, the DSO, file name, and line number
information at the end of each line is wrapped to the next line in the following
sample output.

SpeedShop profile listing generated Mon Feb 2 11:07:15 1998

prof generic.usertime.m10981

generic (n32): Target program

usertime: Experiment name

ut:cu: Marching orders
R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.usertime.m10981:
Caliper point 0 at target begin, PID 10981

/usr/demos/SpeedShop/progs.etc/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

809: Total Samples
0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples function (dso:file,line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal

(generic: generic.c, 1573)

[6] 1.020 4.2% 98.0% 1.020 4.2% 34 slaveusrtime
(dlslave.so: dlslave.c, 22)

[9] 0.210 0.9% 98.9% 0.210 0.9% 7 cvttrap

(generic: generic.c, 317)

[12] 0.120 0.5% 99.4% 0.120 0.5% 4 __read

(libc.so.1: read.s, 20)
[14] 0.090 0.4% 99.8% 0.090 0.4% 3 _xstat

(libc.so.1: xstat.s, 12)

18 007–3311–007

SpeedShop User’s Guide

[10] 0.030 0.1% 99.9% 0.180 0.7% 6 iofile
(generic: generic.c, 464)

[11] 0.030 0.1% 100.0% 0.150 0.6% 5 fread

(libc.so.1: fread.c, 34)

[1] 0.000 0.0% 100.0% 24.270 100.0% 809 __start

(generic: crt1text.s, 101)
[2] 0.000 0.0% 100.0% 24.270 100.0% 809 main

(generic: generic.c, 101)

[3] 0.000 0.0% 100.0% 24.270 100.0% 809 Scriptstring

(generic: generic.c, 184)

[5] 0.000 0.0% 100.0% 22.770 93.8% 759 usrtime

(generic: generic.c, 1377)
[15] 0.000 0.0% 100.0% 0.090 0.4% 3 dirstat

(generic: generic.c, 348)

[16] 0.000 0.0% 100.0% 0.090 0.4% 3 _stat

(libc.so.1: stat.c, 31)

[13] 0.000 0.0% 100.0% 0.120 0.5% 4 _read
(libc.so.1: readSCI.c, 27)

[7] 0.000 0.0% 100.0% 1.020 4.2% 34 libdso

(generic: generic.c, 619)

[8] 0.000 0.0% 100.0% 1.020 4.2% 34 dlslave_routine

(dlslave.so: dlslave.c, 7)

Analyzing the Report

The report shows information for each function. The meanings of the column
headings are described below:

• The index column assigns a reference number to each function.

• The excl.secs column shows how much time, in seconds, was spent in the
function itself (exclusive time). For example, less than one hundredth of a second
was spent in __start, but 0.03 of a second was spent in fread. (Routines that
begin with an underscore, such as __start, are internal routines that you cannot
change.)

• The excl.% column shows the percentage of a program’s total time that was spent
in the function. The anneal function consumed 93.8% of the program’s time.

• The cum.% column shows the percentage of the complete program time that has
executed in the routines listed so far.

007–3311–007 19

2: Tutorial for C Users

• The incl.secs column shows how much time, in seconds, was spent in the
function and descendents of the function. For example, 0.21 seconds were spent in
cvttrap and the functions that were called by it.

• The incl.% column shows the cumulative percentage of inclusive time spent in
each function and its descendents. For example, 93.8% of the time was spent in
anneal and all the functions that were called through it.

• The samples column shows how many samples were taken when the process
was executing in the function and in all of the function’s descendants.

• The procedure (dso:file,line) columns list the function name, its DSO
name, its file name, and its line number. For example, the top line reports statistics
for the function anneal, the DSO generic, in the file generic.c, at line 1573.

A pcsamp Experiment

This section explains how to perform a pcsamp experiment. The pcsamp experiment
allows you to gather information on actual CPU time for each function in your
program. For more information on pcsamp, see "pcsamp Experiment", page 53. For
definitions of CPU time, wall-clock time, and process-virtual time, see the glossary.

From the command line, enter the following:

ssrun -fpcsamp generic

This starts the experiment. The f prefix is added to pcsamp for this program because
the program runs quickly and does not gather much data using the default pcsamp
experiment name; adding the f prefix results in more data samples. Output from
generic and from ssrun is printed to stdout, as shown in the following example.

A data file is also generated. The name consists of the process name (generic), the
experiment type (fpcsamp), and the experiment ID. In this example, the file name is
generic.fpcsamp.m11140.

0:00:00.000 ======== (11140) Begin script Mon 02 Feb 1998

10:58:41.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.003 ======== (11140) start of linklist Mon 02 Feb 1998
10:58:41.

linklist completed.

0:00:00.004 ======== (11140) start of usrtime Mon 02 Feb 1998

10:58:41.

20 007–3311–007

SpeedShop User’s Guide

usertime completed.
0:00:22.437 ======== (11140) start of cvttrap Mon 02 Feb 1998

10:59:03.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:22.638 ======== (11140) start of dirstat Mon 02 Feb 1998

10:59:03.
dirstat of /usr/include completed, 304 files.

0:00:23.407 ======== (11140) start of iofile -- stdio Mon 02 Feb 1998

10:59:04.

stdio iofile on /unix completed, 7307988 chars.

0:00:23.750 ======== (11140) start of fpetraps Mon 02 Feb 1998

10:59:04.
fpetraps completed.

0:00:23.751 ======== (11140) start of libdso Mon 02 Feb 1998

10:59:04.

dlslave_init executed

dlslave_routine executed
slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’

0:00:24.778 ======== (11140) End script Mon 02 Feb 1998

10:59:05.

Generating a Report

To generate a report on the data collected, and to redirect the output to a file, enter
the following:

prof your_output_file_name > pcsamp.results

Output similar to the following is generated:

--

SpeedShop profile listing generated Mon Feb 2 11:01:36 1998

prof generic.fpcsamp.m11140

generic (n32): Target program

fpcsamp: Experiment name

pc,2,1000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

007–3311–007 21

2: Tutorial for C Users

From file generic.fpcsamp.m11140:

Caliper point 0 at target begin, PID 11140

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (fpcsamp)--

23828: Total samples

23.828: Accumulated time (secs.)

1.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 22.279 93.5% 93.5% 22279 anneal (generic: generic.c, 1573)

[2] 0.975 4.1% 97.6% 975 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.201 0.8% 98.4% 201 __read (libc.so.1: read.s, 20)

[4] 0.198 0.8% 99.3% 198 cvttrap (generic: generic.c, 317)

[5] 0.121 0.5% 99.8% 121 _xstat (libc.so.1: xstat.s, 12)

[6] 0.010 0.0% 99.8% 10 __open (libc.so.1: open.s, 23)

[7] 0.010 0.0% 99.9% 10 __write (libc.so.1: write.s, 20)

[8] 0.010 0.0% 99.9% 10 __sigfillset (libc.so.1: sigfillset.c, 11)

[9] 0.010 0.0% 99.9% 10 _ecvt_r (libc.so.1: ecvt.c, 70)

[10] 0.003 0.0% 100.0% 3 fread (libc.so.1: fread.c, 34)

[11] 0.003 0.0% 100.0% 3 dirstat (generic: generic.c, 348)

[12] 0.002 0.0% 100.0% 2 _doprnt (libc.so.1: doprnt.c, 285)

[13] 0.001 0.0% 100.0% 1 memcpy (libc.so.1: bcopy.s, 329)

[14] 0.001 0.0% 100.0% 1 _readdir (libc.so.1: readdir.c, 135)

[15] 0.001 0.0% 100.0% 1 _read (libc.so.1: readSCI.c, 27)

[16] 0.001 0.0% 100.0% 1 __sinf (libm.so: fsin.c, 93)

0.002 0.0% 100.0% 2 **OTHER** (includes excluded DSOs, rld, etc.)

23.828 100.0% 100.0% 23828 TOTAL

Analyzing the Report

The report has the following columns:

• The [index] column assigns a reference number to each function.

22 007–3311–007

SpeedShop User’s Guide

• The secs column shows the amount of CPU time, in seconds, that was spent in
the function.

• The % column shows the percentage of the total program time that was spent in
the function.

• The cum.% column shows the percentage of the complete program time in
functions that have been listed so far.

• The samples column shows how many samples were taken when the process
was executing in the function.

• The function (dso: file, line) columns list the function, its DSO name,
its file name, and its line number.

A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (machines with the R10000 or R12000 class of CPU).

This section takes you through the steps to perform a hardware counter experiment.
There are a number of hardware counter experiments, but this tutorial describes the
steps involved in performing the dsc_hwc experiment. This experiment captures
information about secondary data cache misses. For more information on hardware
counter experiments, see "SpeedShop Hardware Counter Experiments", page 58.

Performing a Hardware Counter Experiment

From the command line, enter:

ssrun -dsc_hwc generic

This starts the experiment. Output from generic and from ssrun is printed to
stdout. A data file is also generated. The name consists of the process name
(generic), the experiment type (dsc_hwc), and the experiment ID. In this example,
the file name is generic.dsc_hwc.m294398.

Generating a Report

To generate a report on the data collected and redirect the output to a file, enter the
following:

007–3311–007 23

2: Tutorial for C Users

prof your_output_file_name > dsc_hwc.results

The report should look similar to the following listing:

SpeedShop profile listing generated Mon Feb 2 11:11:44 1998

prof generic.dsc_hwc.m294398

generic (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file generic.dsc_hwc.m294398:

Caliper point 0 at target begin, PID 294398

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

6: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

786: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 131 16.7% 16.7% 1 init2da (generic: generic.c, 1430)

[2] 131 16.7% 33.3% 1 genLog (generic: generic.c, 1686)

[3] 131 16.7% 50.0% 1 _write (libc.so.1: writeSCI.c, 27)

393 50.0% 100.0% 3 **OTHER** (includes excluded DSOs, rld, etc.)

786 100.0% 100.0% 6 TOTAL

Analyzing the Report

The information immediately preceding the function list displays the following:

24 007–3311–007

SpeedShop User’s Guide

• The Total samples is the number of times the program counter was sampled. It
is sampled once for each overflow, or once each time the hardware counter exceeds
the specified value.

• The Counter name (number) indicates the hardware counter used in the
experiment. In this case, hardware counter 26 counts the number of times a value
required in a calculation was not available in secondary cache. For a complete list
of the hardware counters and their numbers, see Table 4-3, page 63.

• The Counter overflow value is the number at which the hardware counter
overflows or exceeds its preset value. In this case, the value is 131, which is the
default. The fdsc_hwc experiment runs the same hardware counter experiment
with the preset value of 29. You can change the overflow value by setting the
_SPEEDSHOP_HWC_COUNTER_OVERFLOW environment variable to a value larger
than 0, the _SPEEDSHOP_HWC_COUNTER_NUMBER environment variable to 26, and
running the prof_hwc experiment instead of dsc_hwc. (See "_hwc Hardware
Counter Experiments" to learn how to choose a counter overflow value.)

• The Total counts is the total number of times a value was not in secondary
cache when needed. This value is determined by multiplying the total number of
samples by the overflow value; extra counts that do not cause an overflow are not
recorded.

The function list has the following columns:

• The index column assigns a reference number to each function.

• The counts column shows the number of times a data item was not in secondary
cache when needed for a calculation during the execution of the function. As with
Total counts (described earlier), a function’s counts value is determined by
multiplying its samples value by the overflow value.

• The % column shows the percentage of the program’s overflows that occurred in
the function.

• The cum.% column shows the percentage of the program’s overflows that
occurred in the functions listed so far. A function might have a low number in its
% column but a high value in its cum.% column if it executed late in the program.

• The samples column shows the number of times the program counter was
sampled during execution of the function. A sample is taken for each overflow of
the hardware counter.

007–3311–007 25

2: Tutorial for C Users

• The function (dso: file, line) columns list the function name, the DSO,
the file name, and line number of the function.

An ideal Experiment

This section takes you through the steps to perform an ideal experiment. The times
returned represent an idealized computation. This experiment ignores potential
floating-point interlocks and memory latency time (cache misses and memory bus
contention). The CPU times returned will always be lower than the times for an
actual run. For more information on the ideal experiment, see "ideal Experiment",
page 54.

Performing an ideal Experiment

From the command line, enter

ssrun -ideal generic

This starts the experiment. First the executable, rld, and the DSOs are instrumented
using pixie(1). This entails making copies of the libraries and executables, giving
the copies an extension that depends on the ABI, and inserting information into the
copies. The extension is .pixie for the executable, .pix32 for all old 32-bit
libraries, .pixn32 for all n32 libraries, and .pix64 for all 64-bit libraries.

Output from generic and from ssrun is printed to stdout. A data file is also
generated. The name consists of the process name (generic), the experiment type
(ideal), and the experiment ID. In this example, the file name is
generic.ideal.m10966, and the following is written to stdout:

Beginning libraries
/usr/lib32/libssrt.so

/usr/lib32/libss.so

/usr/lib32/libm.so

/usr/lib32/libc.so.1

Ending libraries, beginning "generic"
0:00:00.001 ======== (10966) Begin script Mon 02 Feb 1998

11:28:03.

begin script ‘ll.u.cvt.d.i.f.dso’

0:00:00.048 ======== (10966) start of linklist Mon 02 Feb 1998

11:28:03.
linklist completed.

0:00:00.072 ======== (10966) start of usrtime Mon 02 Feb 1998

26 007–3311–007

SpeedShop User’s Guide

11:28:03.
usertime completed.

0:00:25.057 ======== (10966) start of cvttrap Mon 02 Feb 1998

11:28:28.

cvttrap completed, y = 2.60188e+14, z = 2.60188e+14.

0:00:25.377 ======== (10966) start of dirstat Mon 02 Feb 1998
11:28:28.

dirstat of /usr/include completed, 304 files.

0:00:26.232 ======== (10966) start of iofile -- stdio Mon 02 Feb 1998

11:28:29.

stdio iofile on /unix completed, 7307988 chars.

0:00:27.716 ======== (10966) start of fpetraps Mon 02 Feb 1998
11:28:31.

fpetraps completed.

0:00:27.717 ======== (10966) start of libdso Mon 02 Feb 1998

11:28:31.

Beginning libraries
Ending libraries, beginning "./dlslave.so"

dlslave_init executed

dlslave_routine executed

slaveusertime completed, x = 5000000.000000.

libdso: dynamic routine returned 13

end of script ‘ll.u.cvt.d.i.f.dso’
0:00:30.021 ======== (10966) End script Mon 02 Feb 1998

11:28:33.

In the output section that starts with Beginning libraries and ends with Ending
libraries, beginning "generic" tells you that ssrun is instrumenting first the
libraries listed in the executable and then the generic executable itself. The text
beginning "./dlslave.so" is added when the DSO dlslave.so is opened by
dlopen(3C).

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > ideal.results

This command redirects output to a file called ideal.results. The file contains
results that look similar to the following partial listing. The number of functions and
their names may also vary.

007–3311–007 27

2: Tutorial for C Users

Note: Because of line width restrictions, the DSO, file name, and line number
information at the end of each line is wrapped to the next line in the following
sample output.

SpeedShop profile listing generated Mon Feb 2 13:23:25 1998

prof generic.ideal.m10966

generic (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.ideal.m10966:

Caliper point 0 at target begin, PID 10966

/usr/demos/SpeedShop/linpack.demos/c/generic.pixie

Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

2062563179: Total number of instructions executed

3929944273: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls function

(dso: file, line)

[1] 21.453 95.5% 95.5% 3754320037 1971220024 1 anneal

(generic: generic.c, 1573)

[2] 0.829 3.7% 99.2% 145001152 75000732 1 slaveusrtime

(dlslave.so: dlslave.c, 22)

[3] 0.171 0.8% 100.0% 30000081 16000054 1 cvttrap

(generic: generic.c, 317)

[4] 0.001 0.0% 100.0% 101504 58124 1 init2da

(generic: generic.c, 1430)

[5] 0.001 0.0% 100.0% 91200 384001600 _drand48

28 007–3311–007

SpeedShop User’s Guide

(libc.so.1: drand48.c, 116)

[6] 0.001 0.0% 100.0% 89072 55011 447 fread

(libc.so.1: fread.c, 34)

[7] 0.000 0.0% 100.0% 74854 47366 53 _doprnt

(libc.so.1: doprnt.c, 285)

[8] 0.000 0.0% 100.0% 64035 29479 628 __sinf

(libm.so: fsin.c, 93)

[9] 0.000 0.0% 100.0% 32355 7182 9 offtime

(libc.so.1: time_comm.c, 180)

[10] 0.000 0.0% 100.0% 17112 11916 305 _readdir

(libc.so.1: readdir.c, 135)

[11] 0.000 0.0% 100.0% 16168 10334 1 iofile

(generic: generic.c, 464)

[12] 0.000 0.0% 100.0% 15232 12544 448 _read

(libc.so.1: readSCI.c, 27)

[13] 0.000 0.0% 100.0% 14530 8498 326 memcpy

(libc.so.1: bcopy.s, 329)

[14] 0.000 0.0% 100.0% 10735 6446 1 dirstat

(generic: generic.c, 348)

[15] 0.000 0.0% 100.0% 6535 2831 106 strlen

(libc.so.1: strlen.s, 58)

[16] 0.000 0.0% 100.0% 6364 4242 304 _xstat

(libc.so.1: xstat.s, 12)

[17] 0.000 0.0% 100.0% 6363 3636 303 _cerror

(libc.so.1: cerror.s, 30)

.

.

.

[129] 0.000 0.0% 100.0% 5 3 1 get_exit_status

(libss.so: sswrap_assembly.s, 6)

[130] 0.000 0.0% 100.0% 4 2 1 __readenv_sigfpe

(libc.so.1: stubfpestart.c, 3)

[131] 0.000 0.0% 100.0% 4 2 1 crtninit.s

(generic: crtninit.s, 3)

[132] 0.000 0.0% 100.0% 1 1 1 __istart

.

.

.

(generic: crt1tinit.s, 14)

007–3311–007 29

2: Tutorial for C Users

Analyzing the Report

The columns in the report provide the following information:

• The index column assigns a reference number to each function.

• The excl.secs column shows the minimum number of seconds that might be
spent in the function under ideal conditions. For example, 21.453 seconds is
optimal for the anneal function, the way it is currently written. The pcsamp
experiment actually timed this function at 22.279 seconds.

• The excl.% column shows how much of the program’s total time was spent in
the function.

• The cum.% column shows the cumulative percentage of time spent in the
functions listed so far.

• The cycles column shows the total number of machine cycles used by the
function. For example, 3,754,320,037 CPU clock cycles were spent in the anneal
function.

• The instructions column shows the total number of instructions executed by a
function. For example, the anneal function executed 1,971,220,024 instructions.

• The calls column shows the total number of calls made to the function. For
example, there was just one call to the anneal function.

• The function (dso: file, line) columns list the function, its DSO name,
its file name, and the line number. For example, indexed line one in the preceding
report presents statistics for the function anneal in the generic executable. The
function’s source is found in the file generic.c at IDE number 1573.

An fpe Trace

This section takes you through the steps to perform a floating-point exception (fpe)
trace, which identifies functions in which floating-point exceptions have occurred. For
more information on the fpe trace, see "Floating-Point Exception Trace", page 66.

Performing an fpe Trace

From the command line, enter:

ssrun -fpe generic

30 007–3311–007

SpeedShop User’s Guide

Output from generic and from ssrun is printed to stdout. A data file is created
with a name generated by concatenating the process name (generic), the experiment
type (fpe), and the experiment ID. In this example, the file name is
generic.fpe.m12213.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > fpe.results

The report should look similar to the following partial listing:

SpeedShop profile listing generated Mon Feb 2 13:26:33 1998

prof generic.fpe.m12213

generic (n32): Target program
fpe: Experiment name

fpe:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--
From file generic.fpe.m12213:

Caliper point 0 at target begin, PID 12213

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of FPE callstack tracing data (fpe)--

4: Total FPEs

0: Samples with incomplete traceback

Function list, in descending order by exclusive FPEs

[index] excl.FPEs excl.& cum.% incl.FPEs incl.% function (dso: file, line)

[1] 4 100.0% 100.0% 4 100.0% fpetraps (generic: generic.c, 405)

[2] 0 0.0% 100.0% 4 100.0% __start (generic: crt1text.s, 101)

[3] 0 0.0% 100.0% 4 100.0% main (generic: generic.c, 101)
[4] 0 0.0% 100.0% 4 100.0% Scriptstring (generic: generic.c, 184)

007–3311–007 31

2: Tutorial for C Users

Analyzing the Report

The report shows information for each function:

• The index column assigns a reference number to each function.

• The excl.FPEs column shows how many floating-point exceptions were found
in the function. Four floating-point exceptions were found in fpetraps.

• The excl.% column shows the percentage of the total number of floating-point
exceptions that were found in the function.

• The cum.% column shows the percentage of exclusive floating-point exceptions in
the functions that have been listed so far. The list is sorted by the number of
floating-point exceptions, with the most in the top line and the least in the bottom
line. Because all of the exceptions are in the first function listed in this example,
all entries in this column are 100%.

• The incl.FPEs column shows how many floating-point exceptions were
generated by the function and the functions it called.

• The incl.% column shows the percentage of the program’s total number of
floating-point exceptions in this function and the functions it called. Because
fpetraps is called through all of the other functions, they are all listed as 100%.

• The function (dso:file, line) columns list the routine name, its DSO
name, its file name, and its line number.

32 007–3311–007

Chapter 3

Tutorial for Fortran Users

This chapter provides two tutorials for using the SpeedShop tools to gather and
analyze performance data in a Fortran program. There are three versions of the first
program:

• The linpack directory contains files for the n32-bit ABI.

• The linpack64 directory contains files for the 64-bit ABI.

• The linpacko32 directory contains files for the o32-bit ABI.

The first tutorial covers the following topics:

• "Tutorial Overview", page 33, introduces the sample program and explains the
different scenarios in which it will be used.

• "Tutorial Setup", page 34, leads you through the necessary setup for running the
experiment.

• "Analyzing Performance Data", page 35, steps you through different experiments,
discussing first how to do the experiments, then how to interpret the results.

The second tutorial creates a Message Passing Interface (MPI) experiment. The
experiment file is generated by SpeedShop and displayed by the WorkShop
performance analyzer. See "MPI Tracing Tutorial", page 49.

Note: Because of inherent differences between systems and also due to concurrent
processes that may be running on your system, your experiment will produce
different results from the one in this tutorial. However, the basic structure of the
results should be the same.

Tutorial Overview
This tutorial is based on a standard benchmark program called linpackup. There
are two versions of the program: the linpack directory contains files for the n32-bit
ABI, and the linpacko32 directory contains files for the o32-bit ABI. Each linpack
directory contains versions of the program for a single processor (linpackup) and
for multiple processors (linpackd). When you work with the tutorial, choose the
version of the program that is most appropriate for your system. A good guideline is

007–3311–007 33

3: Tutorial for Fortran Users

to choose whichever version corresponds to the way you expect to develop your
programs.

This tutorial was written and tested using the single-processor version of the program
(linpackup) in the linpack directory.

The linpack program is a standard benchmark designed to measure CPU
performance in solving dense linear equations. The program focuses primarily on
floating-point performance.

Output from the linpackup program looks like the following:

.

.

.
norm. resid resid machep x(1) x(n)

5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

times are reported for matrices of order 300
dgefa dgesl total mflops unit ratio

times for array with leading dimension of 301

3.720E+00 4.000E-02 3.760E+00 4.835E+00 4.136E-01 6.714E+01

3.780E+00 3.000E-02 3.810E+00 4.772E+00 4.191E-01 6.804E+01

3.730E+00 4.000E-02 3.770E+00 4.822E+00 4.147E-01 6.732E+01

3.730E+00 4.000E-02 3.770E+00 4.822E+00 4.147E-01 6.732E+01

times for array with leading dimension of 300

3.800E+00 4.000E-02 3.840E+00 4.734E+00 4.224E-01 6.857E+01

3.810E+00 4.000E-02 3.850E+00 4.722E+00 4.235E-01 6.875E+01

3.770E+00 4.000E-02 3.810E+00 4.772E+00 4.191E-01 6.804E+01
3.782E+00 4.000E-02 3.822E+00 4.757E+00 4.205E-01 6.825E+01

Tutorial Setup
Copy the program to a directory where you have write permission and compile it so
that you can use it in the tutorial.

1. Change to the /usr/demos/SpeedShop directory.

34 007–3311–007

SpeedShop User’s Guide

2. Copy the appropriate linpack directory and its contents to a directory in which
you have write permission:

cp -r linpack your_dir

3. Change to the directory you just created:

cd your_dir/linpack

4. Compile the program by entering:

make all

This provides an executable for the experiment.

Analyzing Performance Data
This section lists the steps you need to perform the following experiments on the
linpackup program, generate the experiment’s results, and interpret the results:

• The usertime experiment. It returns the CPU time (see the glossary for a
definition) used by each routine in your program. See "A usertime Experiment",
page 36.

• The pcsamp experiment. It returns CPU time for each routine in your program.
See "A pcsamp Experiment", page 39.

• The dsc_hwc (secondary data cache hardware counter) experiment. In a hardware
counter experiment, the program counter is sampled every time a hardware
counter exceeds a specified limit. In the experiment performed in this section, the
hardware counter keeps track of the number of times a data item required in a
calculation was not present in secondary data cache. When a data item is not in
cache, it must be retrieved from memory, which is a more time-consuming
process. See "A Hardware Counter Experiment", page 42.

• The ideal experiment. This experiment calculates the best time achievable. See
"An ideal Experiment", page 44.

007–3311–007 35

3: Tutorial for Fortran Users

A usertime Experiment

This section lists the steps you need to perform a usertime experiment. The
usertime experiment allows you to gather data on the amount of CPU time spent in
each routine in your program. For more information, see "usertime Experiment",
page 53. For definitions of CPU time, wall-clock time, and process-virtual time, see the
glossary.

Performing a usertime Experiment

From the command line, enter the following:

ssrun -v -usertime linpackup

This starts the experiment. The -v flag tells ssrun to print a log to stderr.

Output from linpackup and from ssrun is printed to stdout, as shown in the
following example. A data file is also generated. The name consists of the process
name (linpackup), the experiment type (usertime), and the experiment ID. In this
example, the filename is linpackup.usertime.m12205.

ssrun: target PID 12205
ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu

ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE usertime

ssrun: setenv _SPEEDSHOP_TARGET_FILE linpackup

ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT

Please send the results of this run to:

Jack J. Dongarra

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, Illinois 60439

Telephone: 312-972-7246

ARPAnet: DONGARRA@ANL-MCS

norm. resid resid machep x(1) x(n)
5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

times are reported for matrices of order 300

dgefa dgesl total mflops unit ratio

36 007–3311–007

SpeedShop User’s Guide

times for array with leading dimension of 301
3.960E+00 4.000E-02 4.000E+00 4.545E+00 4.400E-01 7.143E+01

3.960E+00 4.000E-02 4.000E+00 4.545E+00 4.400E-01 7.143E+01

3.970E+00 4.000E-02 4.010E+00 4.534E+00 4.411E-01 7.161E+01

3.960E+00 4.000E-02 4.000E+00 4.545E+00 4.400E-01 7.143E+01

times for array with leading dimension of 300

3.910E+00 4.000E-02 3.950E+00 4.603E+00 4.345E-01 7.054E+01

3.880E+00 8.000E-02 3.960E+00 4.591E+00 4.356E-01 7.071E+01

3.930E+00 4.000E-02 3.970E+00 4.579E+00 4.367E-01 7.089E+01

3.922E+00 3.800E-02 3.960E+00 4.591E+00 4.356E-01 7.071E+01

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > usertime.results

The prof command interprets the type of experiment you have performed and prints
results to stdout. The following report shows partial prof output.

Note: Lines have been wrapped because of line width restrictions.

SpeedShop profile listing generated Mon Feb 2 13:37:38 1998

prof linpackup.usertime.m12205
linpackup (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs
175: Clock frequency (MHz.)

Experiment notes--

From file linpackup.usertime.m12205:

Caliper point 0 at target begin, PID 12205

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup
Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

2777: Total Samples

0: Samples with incomplete traceback

007–3311–007 37

3: Tutorial for Fortran Users

83.310: Accumulated Time (secs.)
30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples function
(dso: file, line)

[5] 78.090 93.7% 93.7% 78.090 93.7% 2603 daxpy

(linpackup: linpackup.f, 495)

[6] 2.730 3.3% 97.0% 2.730 3.3% 91 matgen

(linpackup: linpackup.f, 199)
[4] 1.920 2.3% 99.3% 79.680 95.6% 2656 dgefa

(linpackup: linpackup.f, 221)

[8] 0.270 0.3% 99.6% 0.270 0.3% 9 dscal

(linpackup: linpackup.f, 670)

[9] 0.180 0.2% 99.9% 0.180 0.2% 6 idamax
(linpackup: linpackup.f, 700)

[10] 0.090 0.1% 100.0% 0.090 0.1% 3 dmxpy

(linpackup: linpackup.f, 826)

[7] 0.030 0.0% 100.0% 0.810 1.0% 27 dgesl

(linpackup: linpackup.f, 324)

[1] 0.000 0.0% 100.0% 83.310 100.0% 2777 __start
(linpackup: crt1text.s, 101)

[2] 0.000 0.0% 100.0% 83.310 100.0% 2777 main

(libftn.so: main.c, 76)

[3] 0.000 0.0% 100.0% 83.310 100.0% 2777 linp

(linpackup: linpackup.f, 3)

Analyzing the Report

The report shows information for each function.

• The index column, which enumerates the routines in the program, provides an
index number for reference.

• The excl.secs column shows how much time, in seconds, was spent in the
routine itself (exclusive time). For example, less than one hundredth of a second
was spent in linp, but 1.92 seconds were spent in dgefa.

38 007–3311–007

SpeedShop User’s Guide

• The excl.% column shows the percentage of a program’s total time that was
spent in the function.
For example, the daxpy routine consumed 93.7% of the program’s time.

• The cum.% column shows the percentage of the complete program time that has
been spent in the routines that have been listed so far. For instance, when the
dgefa routine completes, 99.3% of the program has completed by the routines
listed so far.

• The incl.secs column shows how much time, in seconds, was spent in the
function and descendents of the function. For example, 0.81 seconds were spent in
dgesl and the routines that were called from it.

• The incl.% column shows the cumulative percentage of inclusive time spent in
each routine and its descendents. For example, 1% of the time was spent in dgesl
and all the routines that were called from it.

• The samples column provides the number of samples taken from the function
and all of its descendants.

• The function (dso: file, line) column lists the routine name, its DSO
name, its file name, and its line number. For example, the top line reports statistics
for the routine daxpy, the DSO name linpackup, in the file linpackup.f, at
line 495.

Note: Many functions shown here have only one or two hits. The data for those
functions is not statistically significant. (Routines that begin with an underscore, such
as __start, are internal routines that you cannot change.)

A pcsamp Experiment

This section lists the steps you need to perform a pcsamp experiment. The pcsamp
experiment allows you to gather information on actual CPU time for each source code
line, machine line, and function in your program. For more information on pcsamp,
see "pcsamp Experiment", page 53. For definitions of CPU time, wall-clock time, and
process-virtual time, see the glossary.

Performing a pcsamp Experiment

From the command line, enter the following:

007–3311–007 39

3: Tutorial for Fortran Users

ssrun -pcsamp linpackup

This starts the experiment.

Output from linpackup and from ssrun is printed to stdout, as shown in the
following example. A data file is also generated. The name consists of the process
name (linpackup), the experiment type (pcsamp), and the experiment ID. In this
example, the file name is linpackup.pcsamp.m12333.

.

.

.

norm. resid resid machep x(1) x(n)
5.35882395E+00 7.13873405E-13 2.22044605E-16 1.00000000E+00 1.00000000E+00

.

.

.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > pcsamp.results

The prof command interprets the type of experiment you have performed and prints
results to stdout. The following report shows partial prof output.

SpeedShop profile listing generated Mon Feb 2 13:52:27 1998

prof linpackup.pcsamp.m12333

linpackup (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file linpackup.pcsamp.m12333:

Caliper point 0 at target begin, PID 12333

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

40 007–3311–007

SpeedShop User’s Guide

8272: Total samples

82.720: Accumulated time (secs.)

10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 77.440 93.6% 93.6% 7744 daxpy (linpackup: linpackup.f, 495)

[2] 2.690 3.3% 96.9% 269 matgen (linpackup: linpackup.f, 199)

[3] 1.940 2.3% 99.2% 194 dgefa (linpackup: linpackup.f, 221)

[4] 0.370 0.4% 99.7% 37 idamax (linpackup: linpackup.f, 700)

[5] 0.210 0.3% 99.9% 21 dscal (linpackup: linpackup.f, 670)

[6] 0.060 0.1% 100.0% 6 dmxpy (linpackup: linpackup.f, 826)

0.010 0.0% 100.0% 1 **OTHER** (includes excluded DSOs, rld, etc.)

82.720 100.0% 100.0% 8272 TOTAL

Analyzing the Report

The report has the following columns:

• The index column assigns a reference number to each function.

• The secs column shows the amount of CPU time spent in the routine.

• The (%) column shows the percentage of the total program time that was spent in
the function.

• The cum.% column shows the percentage of the complete program time that has
been spent by the routines listed so far.

• The samples column shows how many samples were taken when the process
was executing in the function.

• The function (dso:file, line) columns list the routine name, its DSO
name, its file name, and its line number. For example, the first line reports
statistics for the routine daxpy, in the DSO linpackup, in the file linpackup.f,
at line number 495.

007–3311–007 41

3: Tutorial for Fortran Users

A Hardware Counter Experiment

Note: This experiment can be performed only on systems that have built-in hardware
counters (the R10000 and R12000 classes of machines).

Hardware counters keep track of a variety of hardware information. For a complete
list of hardware counter experiments, see the ssrun(1) man page.

This section lists the steps you need to perform a hardware counter experiment. The
tutorial describes the steps involved in performing the dsc_hwc experiment. This
experiment allows you to capture information about secondary data cache misses. For
more information on hardware counter experiments, see "SpeedShop Hardware
Counter Experiments", page 58.

Performing a Hardware Counter Experiment

From the command line, enter the following:

ssrun -dsc_hwc linpackup

This starts the experiment. Output from linpackup and from ssrun will be printed
to stdout. A data file is also generated. The name consists of the process name
(linpackup), the experiment type (dsc_hwc), and the experiment ID. In this
example, the filename is linpackup.dsc_hwc.m438011.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > dsc_hwc.results

Output similar to the following is generated:

SpeedShop profile listing generated Mon Feb 2 13:56:59 1998

prof linpackup.dsc_hwc.m438011

linpackup (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

42 007–3311–007

SpeedShop User’s Guide

Experiment notes--

From file linpackup.dsc_hwc.m438011:

Caliper point 0 at target begin, PID 438011

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

2929: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

383699: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 309029 80.5% 80.5% 2359 daxpy (linpackup: linpackup.f, 495)

[2] 46636 12.2% 92.7% 356 dgefa (linpackup: linpackup.f, 221)

[3] 25938 6.8% 99.5% 198 matgen (linpackup: linpackup.f, 199)

[4] 1310 0.3% 99.8% 10 idamax (linpackup: linpackup.f, 700)

[5] 131 0.0% 99.8% 1 _FWF (libfortran.so: wf90.c, 47)

[6] 131 0.0% 99.9% 1 memset (libc.so.1: bzero.s, 98)

524 0.1% 100.0% 4 **OTHER** (includes excluded DSOs, rld, etc.)

383699 100.0% 100.0% 2929 TOTAL

Analyzing the Report

The information immediately above the function list displays the following:

• The Total samples is the number of times the program counter was sampled. It
is sampled once for each overflow, or each time the hardware counter exceeds the
specified value.

• The Counter name (number) indicates the hardware counter used in the
experiment. In this case, hardware counter 26 counts the number of times a value
required in a calculation was not available in secondary cache. For a complete list
of the hardware counters and their numbers, see Table 4-3, page 63.

• The Counter overflow value is the number at which the hardware counter
overflows, or exceeds its preset value. In this case, the value is 131, which is the
default. You can change the overflow value by setting the

007–3311–007 43

3: Tutorial for Fortran Users

_SPEEDSHOP_HWC_COUNTER_OVERFLOW environment variable to a value larger
than 0, the _SPEEDSHOP_HWC_COUNTER_NUMBER environment variable to 26, and
running the prof_hwc experiment rather than dsc_hwc.

See "_hwctime Hardware Counter Experiments", page 61 to learn how to choose
a counter overflow value.

• The Total counts is the total number of times a value was not in secondary
cache when needed. This value is determined by multiplying the total number of
samples by the overflow value; extra counts that do not cause an overflow are not
recorded.

The function list has the following columns:

• The index column assigns a reference number to each function.

• The counts column shows the number of times a data item was not in secondary
cache when needed for a calculation during the execution of the routine. As with
Total counts (described earlier), a routine’s counts value is determined by
multiplying its samples value (described later) by the overflow value.

• The % column shows the percentage of the program’s overflows that occurred in
the routine.

• The cum.% column shows the percentage of the program’s overflows that
occurred in the routines listed so far. For example, although the matgen routine
had only 6.8% of the program’s overflows, by the time it is encountered in the
routine list, 99.5% of the program’s total overflows have been recorded.

• The samples column shows the number of times the program counter was
sampled during execution of the routine. A sample is taken for each overflow of
the hardware counter.

• The function (dso: file, line) columns show the name, the DSO, the
file name, and line number of the routine.

An ideal Experiment

This section provides the steps you need to perform an ideal experiment. The times
returned represent an idealized, best-case computation. This experiment ignores
interlocks and memory latency time (cache misses and memory bus contention). The
CPU times returned will always be lower than for an actual run. For more

44 007–3311–007

SpeedShop User’s Guide

information on collecting ideal-time data and basic block counting, see "ideal
Experiment", page 54.

Performing an ideal Experiment

From the command line, enter the following:

ssrun -ideal linpackup

This starts the experiment. First the executable and libraries are instrumented using
pixie. This entails making copies of the libraries and executables, giving them an
extension that depends on the ABI, and inserting information into the copies. The
extension is .pixie for the executable, .pix32 for all o32 libraries, .pixn32 for all
n32 libraries, and .pix64 for all 64 libraries.

Output from linpackup and from ssrun is printed to stdout, as shown in the
following example. A data file is also generated. The name consists of the process
name (linpackup), the experiment type (ideal), and the experiment ID. In this
example, the file name is linpackup.ideal.m11596.

Beginning libraries

./libssrt.so.pixn32 is up to date.

./libss.so.pixn32 is up to date.

./libfortran.so.pixn32 is up to date.

./libffio.so.pixn32 is up to date.

./libftn.so.pixn32 is up to date.

./libm.so.pixn32 is up to date.

./libc.so.1.pixn32 is up to date.

Ending libraries, beginning "linpackup"

.

.

.

Generating a Report

To generate a report on the data collected, enter the following at the command line:

prof your_output_file_name > ideal.results

The prof command redirects output to a file called ideal.results. The file should
contain results that look something like the following.

007–3311–007 45

3: Tutorial for Fortran Users

Note: Most lines have been wrapped because of line length restrictions.

SpeedShop profile listing generated Mon Feb 2 14:04:20 1998

prof linpackup.ideal.m11596
linpackup (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs
175: Clock frequency (MHz.)

Experiment notes--

From file linpackup.ideal.m11596:

Caliper point 0 at target begin, PID 11596

/usr/demos/SpeedShop/linpack.demos/fortran/linpackup.pixie
Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

4911547956: Total number of instructions executed

9700441338: Total computed cycles

55.431: Total computed execution time (secs.)
1.975: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls
function (dso: file, line)

[1] 52.073 93.9% 93.9% 9112833799 4637546756 772633

daxpy (linpackup: linpackup.f, 495)

[2] 1.937 3.5% 97.4% 339051600 163885662 18

matgen (linpackup: linpackup.f, 199)
[3] 1.020 1.8% 99.3% 178526333 72336088 17

dgefa (linpackup: linpackup.f, 221)

[4] 0.180 0.3% 99.6% 31463770 17658342 5083

dscal (linpackup: linpackup.f, 670)

[5] 0.166 0.3% 99.9% 28990712 15670260 5083
idamax (linpackup: linpackup.f, 700)

[6] 0.045 0.1% 100.0% 7839357 3605134 1

46 007–3311–007

SpeedShop User’s Guide

dmxpy (linpackup: linpackup.f, 826)
[7] 0.009 0.0% 100.0% 1499774 695929 17

dgesl (linpackup: linpackup.f, 324)

[8] 0.000 0.0% 100.0% 54065 30649 53

_sd2udee (libffio.so: sd2udee.c, 104)

[9] 0.000 0.0% 100.0% 44650 28904 1
linp (linpackup: linpackup.f, 3)

[10] 0.000 0.0% 100.0% 37376 26716 31

_wrfmt (libfortran.so: wrfmt.c, 56)

[11] 0.000 0.0% 100.0% 11448 8427 159

_IEEE_BINARY_SCALE_I4 (libfortran.so: ieee_binary_scale_r_n.c, 41)

[12] 0.000 0.0% 100.0% 8784 5116 492
nvmatch (libc.so.1: getenv.c, 46)

[13] 0.000 0.0% 100.0% 8586 4596 6

getenv (libc.so.1: getenv.c, 25)

[14] 0.000 0.0% 100.0% 7850 4718 4

_get_next_unit (libfortran.so: fortunit.c, 171)
[15] 0.000 0.0% 100.0% 7370 5003 15

_FWF (libfortran.so: wf90.c, 47)

[16] 0.000 0.0% 100.0% 6012 3586 21

_pack (libffio.so: _pack.c, 51)

[17] 0.000 0.0% 100.0% 5293 2273 16

strlen (libc.so.1: strlen.s, 58)
[18] 0.000 0.0% 100.0% 3992 2888 8

_map_to_dv (libfortran.so: dopexfer.c, 964)

[19] 0.000 0.0% 100.0% 3757 2289 9

fflush (libc.so.1: flush.c, 377)

[20] 0.000 0.0% 100.0% 3394 2352 28
_fwch (libfortran.so: fwch.c, 61)

[21] 0.000 0.0% 100.0% 3248 1680 8

_stride_dv (libfortran.so: dopexfer.c, 495)

[22] 0.000 0.0% 100.0% 2809 1908 53

_IEEE_EXPONENT_I4_R (libfortran.so: ieee_exponent_n.c, 73)
[23] 0.000 0.0% 100.0% 2649 1607 18

_unpack (libffio.so: _unpack.c, 54)

[24] 0.000 0.0% 100.0% 2544 1908 159

__is_nan64 (libfortran.so: inline.h, 343; compiled in ieee_binary_scale_r_n.c)

[25] 0.000 0.0% 100.0% 2404 1696 15

setup_format (libfortran.so: f90io.h, 451; compiled in wf90.c)
[26] 0.000 0.0% 100.0% 2052 1296 54

second_ (linpackup: second.c, 8)

007–3311–007 47

3: Tutorial for Fortran Users

[27] 0.000 0.0% 100.0% 1988 1764 28
_sw_endrec (libfortran.so: wf.c, 906)

[28] 0.000 0.0% 100.0% 1712 1252 15

_xfer_iolist (libfortran.so: dopexfer.c, 150)

[29] 0.000 0.0% 100.0% 848 636 53

__is_nan64 (libfortran.so: inline.h, 343; compiled in ieee_exponent_n.c)
[30] 0.000 0.0% 100.0% 795 530 53

isdigit (libc.so.1: ctypefcns.c, 62)

[31] 0.000 0.0% 100.0% 736 72 8

_tripcnt (libfortran.so: dopexfer.c, 1172)

[32] 0.000 0.0% 100.0% 694 425 3

_s2ui (libffio.so: s2uboiz.c, 394)
.

.

.

[130] 0.000 0.0% 100.0% 1 1 1

__istart (linpackup: crt1tinit.s, 14)

Analyzing the Report

The report has the following columns:

• The index column assigns a reference number to each function.

• The excl.secs column shows the minimum number of seconds that might be
spent in the routine under ideal conditions. For example, 52.073 seconds is
optimal for the daxpy routine. The pcsamp experiment (see "A pcsamp
Experiment", page 39) times this routine at 77.44 seconds.

• The excl.% column represents how much of the program’s total time was spent
in the routine.

• The cum.% column shows the cumulative percentage of time spent in the routines
listed so far.

• The cycles column shows the total number of machine cycles used by the routine.
For example, 91,12,833,799 CPU clock cycles were spent in the daxpy routine.

• The instructions column shows the total number of instructions executed by a
routine. For example, the dgefa routine executed 72,336,088 instructions.

• The calls column shows the total number of calls to the routine. For example,
there was just one call to the dmxpy routine.

48 007–3311–007

SpeedShop User’s Guide

• The function (dso:file, line) column lists the name, the DSO name, the
file name, and the line number for the routine.

MPI Tracing Tutorial
The following steps generate tracing data for an MPI program:

1. First, set the MPI_RLD_HACK_OFF environment variable to prevent SpeedShop
confusion over the organization of the DSOs.

% setenv MPI_RLD_HACK_OFF 1

2. Compile the matmul.f source file and include the MPI library:

% f90 -o matmul matmul.f -lmpi

3. Now run the ssrun command as part of the mpirun(1) command on the
executable file to generate experiment files:

% mpirun -np 4 ssrun -mpi matmul

The result will be a series of experiment files, one for each process (the identifier
begins with an f) and one for the master process (the identifier begins with an m):

matmul.mpi.f9587021
matmul.mpi.f9905720
matmul.mpi.f9930637
matmul.mpi.f9930718
matmul.mpi.m9951566

4. Finally, display an experiment file with the WorkShop cvperf(1) command.
Remember, you cannot use prof to display an MPI trace experiment.

% cvperf matmul.mpi.f9587021

To display the output, select either MPI Stats View (Graphs) or MPI Stats View
(Numerical) from the Views menu. See Figure 3-1, page 50, for an illustration of
the MPI Stats View (Graphs).

007–3311–007 49

3: Tutorial for Fortran Users

Figure 3-1 An MPI Experiment in cvperf

50 007–3311–007

Chapter 4

Experiment Types

This chapter provides detailed information on each experiment type available within
SpeedShop. It contains the following sections:

• "Selecting an Experiment", page 51.

• "usertime Experiment", page 53.

• "pcsamp Experiment", page 53.

• "ideal Experiment", page 54.

• "I/O Trace Experiment", page 57.

• "SpeedShop Hardware Counter Experiments", page 58.

• "Floating-Point Exception Trace", page 66.

• "Heap Trace Experiments", page 67.

• "Combining Multiple Experiment Files into One", page 67.

For information on how to run the experiments described in this chapter, see Chapter
6, "Setting Up and Running Experiments: ssrun", page 71.

Selecting an Experiment
Table 4-1 shows the possible experiments you can perform using the SpeedShop tools
and the reasons why you might want to choose a specific experiment. The Clues
column shows when you might use an experiment. The Data Collected column
indicates performance data collected by the experiment. For detailed information on
the experiments, see the relevant section in the remainder of this chapter.

007–3311–007 51

4: Experiment Types

Table 4-1 Summary of Experiments

Experiment Clues Data Collected

fpe High system time.
Presence of floating-point
operations.

All floating-point exceptions, with the exception type and
the call stack at the time of the exception.

heap Memory utilization. Heap trace data from each processor in a multiprocessor
system.

_hwc High user CPU time. On R10000 and R12000 class machines, counts at the source
line, machine instruction, and function levels of various
hardware events, including: clock cycles, graduated
instructions, primary instruction cache misses, secondary
instruction cache misses, primary data cache misses,
secondary data cache misses, translation lookaside buffer
(TLB) misses, and graduated floating-point instructions. PC
sampling is used.

_hwctime High user CPU time. Similar to _hwc experiment, except that callstack sampling
is used.

ideal CPU-bound. Ideal CPU time at the function, source line, and machine
instruction levels using basic block counting.

io I/O-bound Traces the following I/O system calls: read, readv, write,
writev, open, close, dup, pipe, creat.

mpi mpi performance poor Traces calls to various MPI routines and generates a file
viewable in the cvperf(1) performance analyzer window.

pcsamp High user CPU time. Actual CPU time at the source line, machine instruction, and
function levels by sampling the program counter at 10 or
1-millisecond intervals using basic block counting.

totaltime Slow program, nothing else
known. Not CPU-bound.

Inclusive and exclusive real time for each function by
sampling the callstack at 30-millisecond intervals.

usertime Slow program, nothing else
known. Not CPU-bound.

Inclusive and exclusive CPU time for each function by
sampling the callstack at 30-millisecond intervals.

52 007–3311–007

SpeedShop User’s Guide

usertime Experiment
The usertime experiment is a good experiment with which to begin performance
analysis of your program. It returns CPU time (see the glossary) for each function
while your program runs.

It uses statistical call stack profiling to measure inclusive and exclusive user time. This
experiment takes a sample every 30 milliseconds. Data is measured by periodically
sampling the callstack. The program’s callstack data is used to do the following:

• Attribute exclusive user time to the function at the bottom of each callstack (that
is, the function being executed at the time of the sample).

• Attribute inclusive user time to all the functions above the one currently being
executed (those involved in the chain of calls that led to the function at the bottom
of the callstack executing).

The time spent in a procedure is determined by multiplying the number of times an
instruction for that procedure appears in the stack by the sampling time interval
between call stack samples. Call stacks are gathered when the program is running;
hence, the time computed represents user time, not time spent when the program is
waiting for a CPU. User time shows both the time the program itself is executing and
the time the operating system is performing services for the program, such as I/O.

The usertime experiment should incur a program execution slowdown of no more
than 15%. Data from a usertime experiment is statistical in nature and shows some
variance from run to run.

Note: For this experiment, o32 executables must explicitly link with -lexc.

pcsamp Experiment
The pcsamp experiment estimates the actual CPU time (see the glossary) for each
source code line, machine code line, and function in your program. The prof listing
of this experiment shows exclusive PC sampling time. This experiment is a
lightweight, high-speed operation that makes use of the operating system.

CPU time is calculated by multiplying the number of times an instruction or function
appears in the PC by the interval specified for the experiment (either 1 or 10
milliseconds).

007–3311–007 53

4: Experiment Types

To collect the data, the operating system regularly stops the process, increments a
counter corresponding to the current value of the PC, and resumes the process. The
default sample interval is 10 milliseconds. If you specify the optional f prefix to the
experiment, a sample interval of 1 millisecond is used. (See "A pcsamp Experiment",
page 20, for an example.)

By default, the experiment uses 16-bit counters. If the optional x suffix is used, a
32-bit counter size will be used. Using a 32-bit bin provides more accurate
information, but requires additional memory and disk space. (See "Example Using the
pcsampx Experiment", page 85, for an example.)

• 16-bit bins allow a maximum of 65,536 counts.

• 32-bit bins allow over 4 billion counts.

PC sampling runs should slow the execution time of the program down no more than
5 percent. The measurements are statistical in nature, meaning they exhibit variance
inversely proportional to the running time.

ideal Experiment
The ideal experiment returns information on the fastest possible execution time for
your program. Although your program will never match ideal time, it is a good tool
for finding the bottlenecks in your program. Compare the results returned by the
ideal experiment with those returned by the usertime or pcsamp experiment (for
more information, see "Using pcsamp and ideal Together", page 56).

The ideal experiment gathers information by instrumenting the executables and any
DSOs to count basic blocks and dynamic (function-pointer) calls.

You can also use an ideal experiment file to optimize the way your program is
organized. For more information on reordering code regions, see the MIPSpro
Compiling and Performance Tuning Guide.

How SpeedShop Prepares Files

To permit block counting, SpeedShop does the following:

• Divides the code into basic blocks, which are sets of instructions with a single
entry point, a single exit point, and no branches into or out of the set.

54 007–3311–007

SpeedShop User’s Guide

• Inserts counter code at the beginning of each basic block to increment a counter
each time that basic block is executed.

The target executable, rld(1), and all the DSOs are instrumented. Instrumented files
with an extension .pix*, where * depends on the ABI, are written to the current
working directory or to the directory specified by the
_SPEEDSHOP_OUTPUT_DIRECTORY environment variable, if set.

After instrumentation, ssrun executes the instrumented program. Data is generated
as long as the process exits normally or receives a fatal signal that the program does
not handle.

How SpeedShop Calculates Ideal CPU Time

The prof command uses a machine model to convert the block execution counts into
an idealized, exclusive CPU time at the function, source line, or machine instruction
levels. By default, the machine model corresponds to the machine on which the target
was run; the user can specify a different machine model (CPU processor model and
clock speed) for the analysis.

Note that the execution time of an instrumented program is three to six times longer
than an uninstrumented one. This timing change may alter the behavior of a program
that deals with a graphical user interface (GUI) or depends on events such as
SIGALRM that are based on an external clock. Also, during analysis the instrumented
executable might appear to be CPU-bound, whereas the original executable was
I/O-bound.

Basic block counts are translated to ideal CPU time displayed at the function, source
line, and assembly instruction levels.

Inclusive Basic Block Counting

The basic block counting explained in the previous section allows you to measure
ideal time spent in each procedure, but it does not propagate the time up to the caller
of that procedure. For example, basic block counting may tell you that procedure
sin(x) took the most time, but significant performance improvement can only be
obtained by optimizing the callers of sin(x). Inclusive basic block counting solves
this problem.

Inclusive basic block counting calculates cycles just like regular basic block counting
and then propagates it in proportion to its callers. The cycles of procedures obtained

007–3311–007 55

4: Experiment Types

using regular basic block counting (called exclusive cycles) are divided up among its
callers in proportion to the number of times they called this procedure. For example,
if sin(x) takes 1000 cycles, and its callers, procedures foo() and bar(), call
sin(x) 25 and 75 times respectively, 250 cycles are attributed to foo() and 750 to
bar(). By propagating cycles this way, __start() usually ends up with all the
cycles counted in the program. (It is possible to write code that makes determining
the complete call graph impossible, in which case you may end up with parts of the
call graph disconnected.)

The assumption can be very misleading. If foo calls matmult 99 times for 2-by-2
matrices, while bar calls it once for 100-by-100 matrices, the inclusive time report will
attribute 99% of matmult()’s time to foo(), but actually almost all the time could
derive from the one call from bar().

To generate a report that shows inclusive time (see the glossary), specify the -gprof
option to the prof command.

Using pcsamp and ideal Together

The ideal experiment can be used together with the pcsamp experiment to compare
actual and ideal times spent in the CPU. A major discrepancy between pcsamp CPU
time and ideal CPU time indicates one or more of the following situations:

• Cache misses and floating-point interlocks in a single process application

• Secondary cache invalidations in an application with multiple processes that is run
on a multiprocessor

A comparison between basic block counts (ideal experiment) and PC profile counts
(pcsamp experiment) is shown in Table 4-2.

Table 4-2 Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute ideal CPU time. Used to estimate actual CPU time.

Data collection by instrumentation. Data collection by the kernel.

56 007–3311–007

SpeedShop User’s Guide

Basic Block Counts PC Profile Counts

Slows program down by factor of
three or more.

Has minimal impact on program speed.

Generates an exact count of every
instruction.

Generates statistical, inexact counts.

I/O Trace Experiment
The I/O trace experiment shows you the level of I/O activity in your program by
tracing various I/O system calls, for example read(2) and write(2).

The prof output of an I/O trace experiment yields the following information:

• The number of I/O system calls executed.

• The number of calls with an incomplete traceback.

• The [index] column assigns a reference number to each function.

• The number of I/O-related system calls from each function in the program.

• The percentage of I/O-related system calls from each function in the program.

• The percentage of I/O-related system calls encountered so far in the list of
functions.

• The number of I/O-related system calls made by a given function and by all the
functions ultimately called by that given function. For example, the main function
will probably include all of the program’s I/O calls with complete tracebacks.

• The percentage of I/O-related system calls made by a given function and by all
the functions ultimately called by that given function.

• The DSO, file name, and line number for each function.

The following ssrun command creates an I/O trace experiment file from the
executable file generic:

% ssrun -io generic

007–3311–007 57

4: Experiment Types

SpeedShop Hardware Counter Experiments
In the SpeedShop hardware counter experiments, overflows of a particular hardware
counter are recorded. (Each hardware counter is configured to count from zero to a
number designated as the overflow value. When the counter reaches the overflow
value, the system resets it to zero and increments the number of overflows at the
present program instruction address.) Each experiment provides two possible
overflow values; the values are prime numbers, so any profiles that seem the same for
both overflow values should be statistically valid.

The experiments described in this section are available for systems that have
hardware counters (R10000 and R12000 class machines). Hardware counters allow
you to count various types of events, such as cache misses and counts of issued and
graduated instructions.

A hardware counter works as follows: for each event, the appropriate hardware
counter is incremented on the processor clock cycle. For example, when a
floating-point instruction is graduated in a cycle, the graduated floating-point
instruction counter is incremented by 1.

These experiments are detailed by nature. They return information gathered at the
hardware level. You probably want to run a higher level experiment first. Once you
have narrowed the scope, you can use hardware counter experiments to pinpoint the
area to be tuned.

Two Tools for Hardware Counter Experiments

There are two tools that allow you to access hardware counter data:

• perfex(1) is a command-line interface that provides program-level event
information. For more information on perfex, see the perfex(1) man page. For
more information on hardware counters, see the r10k_counters(1) man page.

• SpeedShop allows you to perform the hardware counter experiments described in
the next sections ("_hwc Hardware Counter Experiments" and "_hwctime
Hardware Counter Experiments", page 61).

_hwc Hardware Counter Experiments

The _hwc hardware counter experiments show where the overflows are being
triggered in the program: at the function, source-line, or individual instruction level.
When you run prof on the data collected during the experiment, the overflow counts

58 007–3311–007

SpeedShop User’s Guide

are multiplied by the overflow value to compute the total number of events. These
numbers are statistical, meaning they are not precise. The generated reports show
exclusive hardware counts: that is, information about where the program counter
was. They do not show the callstack to get there.

Hardware counter overflow profiling experiments should incur a slowdown of
execution of the program of no more than 5%. Count data is kept as 32-bit integers
only.

The available _hwc hardware experiments are described in the following sections.

The [f]gi_hwc Experiment

The [f]gi_hwc experiment counts overflows of the graduated instruction counter.
The graduated instruction counter is incremented by the number of instructions that
were graduated on the previous cycle. The experiment uses statistical PC sampling
based on an overflow interval of 32,771. If the optional f prefix is used, the overflow
interval is 6,553.

The [f]cy_hwc Experiment

The [f]cy_hwc experiment counts overflows of the cycle counter. The cycle counter
is incremented on each clock cycle. The experiment uses statistical PC sampling based
on an overflow interval of 16,411. If the optional f prefix is used, the overflow
interval is 3,779.

The [f]ic_hwc Experiment

The [f]ic_hwc experiment counts overflows of the primary instruction cache miss
counter. The counter is incremented one cycle after an instruction fetch request is
entered into the miss handling table. The experiment uses statistical PC sampling
based on an overflow interval of 2,053. If the optional f prefix is used, the overflow
interval is 419.

The [f]isc_hwc Experiment

The [f]isc_hwc experiment counts overflows of the secondary instruction cache
miss counter. The secondary instruction cache miss counter is incremented after the
last 16-byte block of a 64-byte primary instruction cache line is written into the
instruction cache. The experiment uses statistical PC sampling based on an overflow
interval of 131. If the optional f prefix is used, the overflow interval is 29.

007–3311–007 59

4: Experiment Types

The [f]dc_hwc Experiment

The [f]dc_hwc experiment counts overflows of the primary data cache miss counter.
The primary data cache miss counter is incremented on the cycle after a primary
cache data refill is begun. The experiment uses statistical PC sampling based on an
overflow interval of 2,053. If the optional f prefix is used, the overflow interval is 419.

The [f]dsc_hwc Experiment

The [f]dsc_hwc experiment counts overflows of the secondary data cache miss
counter. The secondary data cache miss counter is incremented on the cycle after the
second 16-byte block of a primary data cache line is written into the data cache. The
experiment uses statistical PC sampling, based on an overflow interval of 131. If the
optional f prefix is used, the overflow interval is 29.

The [f]tlb_hwc Experiment

The [f]tlb_hwc experiment counts overflows of the translation lookaside buffer
(TLB) counter. The TLB counter is incremented on the cycle after the TLB miss
handler is invoked. The experiment uses statistical PC sampling based on an
overflow interval of 257. If the optional f prefix is used, the overflow interval is 53.

The [f]gfp_hwc Experiment

The [f]gfp_hwc experiment counts overflows of the graduated floating-point
instruction counter. The graduated floating-point instruction counter is incremented
by the number of floating-point instructions that graduated on the previous cycle.
The experiment uses statistical PC sampling based on an overflow interval of 32,771.
If the optional f prefix is used, the overflow interval is 6,553.

The prof_hwc Experiment

For any hardware counter not otherwise covered in "_hwc Hardware Counter
Experiments", or to choose different overflow intervals for those hardware counters,
the prof_hwc experiment allows you to set a hardware counter to use in the
experiment and to set a counter overflow interval using the following environment
variables:

_SPEEDSHOP_HWC_COUNTER_NUMBER

The value of this variable can be between 0 and 31. Hardware
counters are described in the MIPS R10000 Microprocessor User’s

60 007–3311–007

SpeedShop User’s Guide

Manual, Chapter 14, and on the r10k_counters(1) man page. The
hardware counter numbers are provided in the tables in "Hardware
Counter Numbers", page 63.

_SPEEDSHOP_HWC_COUNTER_OVERFLOW

The value of this variable can be any number greater than 0. Some
numbers may produce data that is not statistically random, but rather
reflects a correlation between the overflow interval and a cyclic
behavior in the application. You may want to do two or more runs
with different overflow values.

The default counter is the primary instruction-cache miss counter; the default
overflow interval is 2,053.

The experiment uses statistical PC sampling based on the overflow of the specified
counter, at the specified interval. Note that these environment variables cannot be
used for other hardware counter experiments. They are examined only when the
prof_hwc or prof_hwctime experiment is specified.

_hwctime Hardware Counter Experiments

The following sections describe _hwctime hardware counter experiments, which run
on R10000 and R12000 machines only. The _hwctime hardware counter experiments
also show where the overflows are being triggered in the program. These
experiments are similar to the _hwc experiments, but record the callstack information
rather than showing where the program counter was when the overflow occurred.

(See the perfex(1) and r10k_counters(5) man pages for other methods of
returning hardware-level information.)

The gi_hwctimeExperiment

hwct,17,1000003,0,SIGPROF:cu. Profiles the cycle counter using the statistical
call stack sampling, based on overflows of the graduated-instruction counter, at an
overflow interval of 1000003.

The cy_hwctime Experiment

hwct,0,10000019,0,SIGPROF:cu. Profiles the cycle counter using statistical
call-stack sampling based on overflows of the cycle counter, at an overflow interval of
10000019.

007–3311–007 61

4: Experiment Types

The ic_hwctime Experiment

hwct,9,8009,0,SIGPROF:cu. Profiles the cycle counter using statistical call-stack
sampling, based on overflows of the primary instruction-cache-miss counter, at an
overflow interval of 8009.

The isc_hwctime Experiment

hwct,10,2003,0,SIGPROF:cu. Profiles the cycle counter using statistical call-stack
sampling, based on overflows of the secondary instruction-cache-miss counter, at an
overflow interval of 2003.

The dc_hwctime Experiment

hwct,25,8009,0,SIGPROF:cu. Profiles the cycle counter using statistical call-stack
sampling, based on overflows of the primary data-cache-miss counter, at an overflow
interval of 8009.

The dsc_hwctime Experiment

hwct,26,2003,0,SIGPROF:cu. Profiles the cycle counter using statistical call-stack
sampling, based on overflows of the secondary data-cache-miss counter, at an
overflow interval of 2003.

The tlb_hwctime Experiment

hwct,23,2521,0,SIGPROF:cu. Profiles the cycle counter using statistical call-stack
sampling, based on overflows of the TLB miss counter, at an overflow interval of 2521.

The gfp_hwctime Experiment

hwct,21,10007,0,SIGPROF:cu. Profiles the cycle counter using statistical
call-stack sampling, based on overflows of the graduated floating-point instruction
counter, at an overflow interval of 10007.

The fsc_hwctime Experiment

hwct,5,5003,0,SIGPROF:cu. Profiles the cycle counter using statistical call-stack
sampling, based on overflows of the failed store conditionals counter, at an overflow
interval of 5003.

62 007–3311–007

SpeedShop User’s Guide

The prof_hwctime Experiment

For any hardware counter not otherwise covered in "_hwc Hardware Counter
Experiments", or to choose different sampling counter/overflow interval for any
hardware counter time experiment, the prof_hwctime experiment is available. Here,
profiling is done for the counter specified by the environment variable
_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER using statistical call-stack sampling,
based on overflows of the counter specified by the environment variable
_SPEEDSHOP_HWC_COUNTER_NUMBER, at an interval given by the environment
variable _SPEEDSHOP_HWC_COUNTER_OVERFLOW.

Note: These environment variables cannot be used to override the counter numbers
or interval for other defined experiments. They are examined only when the
prof_hwctime or prof_hwc experiment is specified.

The default overflow and profiling counter is the cycle counter; the default overflow
interval is 10000019.

Hardware Counter Numbers

The possible numeric values for the _SPEEDSHOP_HWC_COUNTER_NUMBER and
_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER variables are shown in the following
tables. Table 4-3, page 63, gives the hardware counter numbers for systems with
R10000 processors, and Table 4-4, page 65, gives them for systems with R12000
processors. For the R10000 processors, if two counter numbers need to specified, one
counter number must be chosen from a group including numbers 0–15 and the other
counter number must be chosen from a group including numbers 16–31 due to
hardware restrictions. See the r10k_counters(5) man page for further details.

Table 4-3 R10000 Hardware Counter Numbers

Number Indication

0 Cycles

1 Issued instructions

2 Issued loads

3 Issued stores

007–3311–007 63

4: Experiment Types

Number Indication

4 Issued store conditionals

5 Failed store conditionals

6 Decoded branches (rev 2.x processors) or resolved
branches (rev 3.x processors)

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way
prediction table

12 External interventions

13 External invalidations

14 Virtual coherency conditions (or functional unit
completions, depending on hardware version)

15 Graduated instructions

16 Cycles

17 Graduated instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating-point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data cache misses

26 Secondary data cache misses

64 007–3311–007

SpeedShop User’s Guide

Number Indication

27 Data misprediction from secondary cache way prediction
table

28 External intervention hits in secondary cache

29 External invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary
cache

Table 4-4 R12000 Hardware Counter Numbers

Number Indication

0 Cycles

1 Decoded instructions

2 Decoded loads

3 Decoded stores

4 Miss Handling Table occupancy

5 Failed store conditionals

6 Resolved conditional branches

7 Quadwords written back from secondary cache

8 Correctable secondary cache data array ECC errors

9 Primary instruction-cache misses

10 Secondary instruction-cache misses

11 Instruction misprediction from secondary cache way
prediction table

12 External interventions

13 External invalidations

14 Not implemented

007–3311–007 65

4: Experiment Types

Number Indication

15 Graduated instructions

16 Executed prefetch instructions

17 Prefetch primary data cache misses

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating-point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data cache misses

26 Secondary data cache misses

27 Data misprediction from secondary cache way prediction
table

28 State of intervention hits in secondary cache

29 State of invalidation hits in secondary cache

30 Miss Handling Table (MHT) entries accessing memory

31 Store/prefetch exclusive to shared block in secondary
cache

Floating-Point Exception Trace
A floating-point exception trace collects each floating-point exception with the
exception type and the call stack at the time of the exception. Floating-point
exception tracing experiments should incur a slowdown in execution of the program
of no more than 15%. These measurements are exact, not statistical.

The prof command generates a report that shows inclusive and exclusive
floating-point exception counts.

66 007–3311–007

SpeedShop User’s Guide

Heap Trace Experiments
If you are running a heap trace experiment (heap) on a multiprocessor application,
you will get an experiment file for each process and an additional experiment file for
the master process. Each process experiment file can either contain a sample of the
data from the whole application or its own data only, as follows:

• By default, the experiment file for each process will contain data from all processes.

• If you set the _SSMALLOC_NO_BUFFERING environment variable before executing
ssrun, the experiment file for each process will contain only its own heap trace
data.

Combining Multiple Experiment Files into One
The ssaggregate(1) command lets you combine the data from two or more
experiment files of the same experiment type (such as ideal) into a single file. You
can then view the new file with either prof(1) or the WorkShop performance
analyzer, cvperf(1).

The ssaggregate command takes the following form:

ssaggregate -e files -noverbose -o output_file

The following example combines two pcsamp experiments into a single file and
displays the file with prof:

% ssaggregate -e generic.pcsamp.f14636 generic.pcsamp.f14635 -o combo
% prof combo

The output from prof is as follows:

SpeedShop profile listing generated Tue Nov 24 11:30:03 1998

prof combo

generic (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R5000 / R5000: CPU / FPU

1: Number of CPUs

180: Clock frequency (MHz.)

Experiment notes--

From file combo:

007–3311–007 67

4: Experiment Types

Caliper point 0 at target begin, PID 14635

/home/saffron02/speedshop/c/generic ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso

Caliper point 0 at target begin, PID 14636

/home/saffron02/speedshop/c/generic ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso ll.u.cvt.d.i.f.dso

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

4012: Total samples

40.120: Accumulated time (secs.)

10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 37.480 93.4% 93.4% 3748 anneal (generic: generic.c, 1573)

[2] 1.450 3.6% 97.0% 145 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.490 1.2% 98.3% 49 _read (libc.so.1: read.s, 15)

[4] 0.330 0.8% 99.1% 33 _xstat (libc.so.1: xstat.s, 12)

[5] 0.300 0.7% 99.8% 30 cvttrap (generic: generic.c, 317)

[6] 0.030 0.1% 99.9% 3 _write (libc.so.1: write.s, 15)

[7] 0.010 0.0% 99.9% 1 fread (libc.so.1: fread.c, 27)

[8] 0.010 0.0% 100.0% 1 _syscall (libc.so.1: syscall.s, 15)

0.020 0.0% 100.0% 2 **OTHER** (includes excluded DSOs, rld, etc.)

40.120 100.0% 100.0% 4012 TOTAL

By default, ssaggregate issues periodic status messages while it is processing. The
-noverbose option turns the status messages off. See the ssaggregate(1) man
page.

68 007–3311–007

Chapter 5

Collecting Data on Machine Resource Usage

This chapter describes how to collect machine resource usage data using the
SpeedShop ssusage(1) command. Finding out the machine resources that your
program uses can help you identify performance bottlenecks and determine which
performance experiments you need to run. You can use the list in "Using ssrun and
prof to Gather and Analyze Performance Data", page 9, to identify which
experiments to run, based on the results of running ssusage on your program.

ssusage Syntax
The ssusage command has no options of its own. It takes the following form:

ssusage executable_name [executable_args]

executable_name Name of the executable for which you want to collect
machine resource usage data

executable_args Arguments to your executable, if any

ssusage Results
The ssusage command prints output to stderr. For example, the ssusage
generic command provides output similar to the following:

...

22.03 real, 18.18 user, 0.21 sys, 7 majf, 120 minf, 0 sw, 241 rb, 0

wb, 135 vcx, 648 icx, 976 mxrss

The last two lines of the output constitute the machine resource usage information
that ssusage provides. Following is a description of each field from the report:

real The real, or wall-clock, time in which the executable ran, in seconds.

user User CPU time, excluding the time the operating system was
performing services for the executable, in seconds.

sys System CPU time, during which the system was performing services for
the executable, in seconds.

majf Major page faults that cause physical I/O.

007–3311–007 69

5: Collecting Data on Machine Resource Usage

minf Minor page faults that require mapping only.

sw Process swaps.

rb/wb Physical blocks read or written. These are attributed to the process that
first requests a block, but they do not necessarily directly correlate with
the process’s own I/O operations.

vcx Voluntary context switches; those caused by the process’s own actions.

icx Involuntary context switches; those caused by the scheduler.

mxrss Maximum resident set size of the program, including any shared pages,
in kilobytes.

If the program terminates abnormally, a message is printed before the usage line.

70 007–3311–007

Chapter 6

Setting Up and Running Experiments: ssrun

This chapter provides information on how to set up and run performance analysis
experiments using the ssrun command. It consists of the following sections:

• "Building Your Executable", page 71

• "Setting Up Output Directories and Files", page 73

• "Using Run-Time Environment Variables", page 73

• "Using Marching Orders", page 80

• "Running Experiments", page 83

• "Running Experiments on MPI Programs", page 88

• "Running Experiments on Programs Using Pthreads", page 93

• "Using Calipers", page 94

• "Effects of ssrun", page 98

Building Your Executable
The ssrun command is designed to be used with normally built executables and
default environment settings. However, there are some cases where you need to
change the way you build your executable or set certain environment variables.

This section explains when to change the way you build your executable program.
For information on setting environment variables, see "Using Run-Time Environment
Variables", page 73.

• If you have used the ssrt_caliper_point(3) function provided in the
SpeedShop libraries, you have to explicitly link in the SpeedShop libraries file,
libss.so. For more information on setting caliper points, see "Using Calipers",
page 94.

• If you are planning to build your executable using the -o32 option to the cc
command, and you want to run the usertime experiment, you must add -lexc
to the link line. For more information on cc -o32, see the cc(1) man page.

007–3311–007 71

6: Setting Up and Running Experiments: ssrun

• If you have built a stripped executable, you need to rebuild a non-stripped version
to use with SpeedShop. For example, if you are using ld to link your C program,
do not use the -s option. Using the -s option strips debugging information from
the program object and makes the program unusable for performance analysis.

• If you have used compiler optimization level 3 (-O3) and you are performing
experiments that report function-level information, inlining can result in extremely
misleading profiles. The time spent in the inlined procedure will show up in the
profile as time spent in the procedure into which it was inlined. It is generally
better to use compiler optimization level 2 (-O2) or less when gathering an
execution profile.

Special Information for MP Fortran Programs

If you are compiling MP Fortran programs, you may encounter anomalies in the
displayed data:

• For all f90(1), f77(1), and fort77(1) MP compilations, parallel loops within the
program are represented as subroutines with names relating to the source routine
in which they are embedded. The naming conventions for these subroutines are
different for 32-bit and 64-bit compilations.

For example, in the linpack example program, most of the time is spent in the
routine DAXPY, which can be parallelized. The name differences are as follows:

– In an n32 or 64-bit MP version, the routine has the name DAXPY, but most of
that work is done in the MP routine named DAXPY.PREGION1.

– In an o32-bit version, the DAXPY routine is named daxpy_, and the MP routine
is _daxpy_519_aaab_.

• If you perform an ideal experiment, the source annotations for 32-bit and 64-bit
compilations with the -g option differ and are not correct in most cases.

– In 64-bit source annotations, the exclusive time is correctly shown for each line,
but the inclusive time for the first line of the loop (do statement) includes the
time spent in the loop body. This same time appears on the lines comprising
the loop’s body, in effect representing a double-counting.

– In 32-bit source annotations, the exclusive time is incorrectly shown for the line
comprising the loop’s body. The line-level data for the loop-body routine
(_daxpy_519_aaab_) does not refer to proper lines. If the program was
compiled with the -mp_keep flag, the line-level data should refer to the

72 007–3311–007

SpeedShop User’s Guide

temporary files that are saved from the compilation. But the temporary files do
not contain that information, so no source or disassembly data can be shown.
The disassembly data for the main routine does not show the times for the
loop body.

– If the 32-bit program was compiled without the -mp_keep flag, the line-level
data for the loop-body routine is incorrect. Most lines refer to line 0 of the file
and the rest to other lines at seemingly random places in the file.
Consequently, false annotations will appear on some lines. Disassembly
correctly shows the instructions and their data, but the line numbers are
wrong. This reflects essentially the same double-counting problem as seen in
64-bit compilations, but the extra counts go to other places in the file, rather
than to the first line of the loop.

Setting Up Output Directories and Files
When you run an experiment, performance data files are written to the current
working directory by default. They are named using the following convention:

executable_name.exp_type.id

The id consists of one or two letters (designating the process type) and the process ID
number. See Table 1-4, page 11, for letter codes and descriptions.

The following are examples of data file names:

stat.ideal.m10966
engines.pcsamp.m14493

In a single-process application, ssrun generates a single performance data file. In a
multiprocess application, ssrun generates a performance data file for each process.

You can change the default file name or directory for performance data files using
environment variables. See _SPEEDSHOP_OUTPUT_DIRECTORY and
_SPEEDSHOP_OUTPUT_FILENAME in Table 6-1, page 74, for more information.

Using Run-Time Environment Variables
Several environment variables have been defined for use specifically with SpeedShop
to provide additional information to SpeedShop commands or SpeedShop library

007–3311–007 73

6: Setting Up and Running Experiments: ssrun

routines at run time. This section provides information about available environment
variables, grouped by functionality:

• "User Environment Variables", page 74

• "Process Tracking Environment Variables", page 77

• "Expert-Mode Environment Variables", page 78

User Environment Variables

A number of environment variables are normally used to control the operation of
SpeedShop, as shown in the following table.

To set an environment variable that requires no arguments (for example,
_SPEEDSHOP_SILENT), use the following:

% setenv _SPEEDSHOP_SILENT

To set an environment variable that requires a number between 0 and 31 (for
example, _SPEEDSHOP_HWC_COUNTER_NUMBER), use the following:

% setenv _SPEEDSHOP_HWC_COUNTER_NUMBER 15

Table 6-1 General Environment Variables

Variable Description

MPI_RLD_HACK_OFF 1 Set this environment variable to 1 before you
execute the ssrun command on an MPI
executable.

_SPEEDSHOP_CALIPER_POINT_SIG sig_num Causes the specified signal number to be used for
recording a caliper point in the experiment.

74 007–3311–007

SpeedShop User’s Guide

Variable Description

_SPEEDSHOP_HWC_COUNTER_NUMBER num Specifies the counter to be used for prof_hwc
experiments. Counters are numbered between 0
and 31, and are described in the MIPS R10000
Microprocessor’s User’s Manual, Chapter 14.
Counter 0 counters are numbered 0–15, and
counter 1 counters are numbered 16–31, or see
"R10000 Hardware Counter Numbers", and
"R12000 Hardware Counter Numbers" in Chapter
4.

_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER num Specifies the counter that will be profiled for
prof_hwctime experiments. See "R10000
Hardware Counter Numbers", and "R12000
Hardware Counter Numbers" in Chapter 4.

_SPEEDSHOP_HWC_COUNTER_OVERFLOW num Specifies the overflow value for the counter to be
used in prof_hwc experiments. The value for
num must be 0 < num <= 2147483647. Some
choices may produce data that is not statistically
random but reflects a correlation between the
overflow interval and a cyclic behavior in the
application. Users may want to do two or more
runs with different overflow values.

_SPEEDSHOP_INSTR_ARGS Defines additional instrumentation arguments.

_SPEEDSHOP_OUTPUT_DIRECTORY dir Causes the output data files to be placed in the
specified directory rather than the current
working directory.

_SPEEDSHOP_OUTPUT_FILENAME filename Causes the output file to be saved under the
specified name. If
_SPEEDSHOP_OUTPUT_FILENAME is set to
myfile, the experiment file is named
myfile.suffix (for example, myfile.m12345).

If _SPEEDSHOP_OUTPUT_DIRECTORY is also
specified, the directory is prepended to the file
name you specify.

_SPEEDSHOP_OUTPUT_NOCOMPRESS Disables the compression of performance data.

007–3311–007 75

6: Setting Up and Running Experiments: ssrun

Variable Description

_SPEEDSHOP_POLLPOINT_CALIPER_POINT timer_type,
timer_interval

Used to add caliper points at regular time
intervals into your experiment file (during
program execution). Caliper points set with this
variable are recorded in the performance data file
generated by ssrun.

_SPEEDSHOP_REUSE_FILE_DESCRIPTORS Opens and closes the file descriptors for the
output files every time performance data is to be
written.

_SPEEDSHOP_RLD Defines the full path name to rld, and enables
rld profiling (for pcsamp and _hwc experiments
only). If the path name does not lead to rld,
SpeedShop determines the correct path name
automatically. For example, if you set
_SPEEDSHOP_RLD to 1, SpeedShop will locate
rld.

_SPEEDSHOP_SBRK_BUFFER_ADDR address Defines the preferred starting address to be used
for the internal malloc arena. This option has to
be used with extreme care since it might result in
memory region overlap.

_SPEEDSHOP_SBRK_BUFFER_LENGTH Defines the segment grow size for the internal
malloc arena used. This arena is completely
separate from the user’s arena, and it usually
grows in default segments of the size 0x100000.

_SPEEDSHOP_VERBOSE
-or-
_SPEEDSHOP_VERBOSE non_empty_string

Causes a log of each program’s operation to be
written to stderr. If this variable is set to an
empty string, only major events are logged; if it is
set to a non-empty string, more detailed events
are logged.

_SPEEDSHOP_SILENT Suppresses all SpeedShop output other than fatal
error messages.

76 007–3311–007

SpeedShop User’s Guide

Variable Description

If both _SPEEDSHOP_VERBOSE and
_SPEEDSHOP_SILENT are set,
_SPEEDSHOP_VERBOSE is ignored.

_SSMALLOC_NO_BUFFERING If this environment variable is set, the experiment
file for each process will contain only its own
heap trace data. Otherwise, the experiment file for
each process will contain data from all processes.

Process Tracking Environment Variables

A number of environment variables may be used for controlling the treatment of
processes spawned from the original target, as shown in the following table.

Table 6-2 Process Tracking Environment Variables

Variable Description

_SPEEDSHOP_TRACE_FORK [True|False] If True, specifies that processes spawned by calls
to fork() will be monitored if they do not call
exec(). If they do call exec() and
_SPEEDSHOP_TRACE_FORK_TO_EXEC is not set
to True, the data covering the time between the
fork() and exec() will be discarded. It is True
by default.

_SPEEDSHOP_TRACE_FORK_TO_EXEC [True|False] If True, specifies that a process spawned by calls
to fork() will be monitored, even if they also
call exec(). It is False by default.

_SPEEDSHOP_TRACE_EXEC [True|False] If True, specifies that a process spawned by calls
to any of the various flavors of exec() will be
monitored. It is True by default.

007–3311–007 77

6: Setting Up and Running Experiments: ssrun

Variable Description

_SPEEDSHOP_TRACE_SPROC [True|False] If True, specifies that a process spawned by calls
to sproc() will be monitored. It is True by
default.

_SPEEDSHOP_TRACE_SYSTEM [True|False] If True, specifies that system() calls will be
monitored. It is False by default.

Expert-Mode Environment Variables

A number of variables may be used for debugging and finer control of the operation
of SpeedShop, as shown in the following table.

Table 6-3 Expert-Mode Environment Variables

Variable Description

_SPEEDSHOP_SAMPLING_MODE
-or-
_SPEEDSHOP_SAMPLING_MODE num

Used for PC sampling and hardware counter
profiling. If set to 1, generates data for the base
executable only. If not set or set to a value
other than 1, data is generated for the
executable and all the DSOs it uses.

_SPEEDSHOP_INIT_DEFERRED_SIG sig_num If specified, initialization of the experiment is
not performed when the target process starts.
Initialization is delayed until the specified
signal is sent to the process. A handler for the
given signal is installed when the process
starts. It is the user’s responsibility to ensure
that it is not overridden by the target code.

_SPEEDSHOP_SHUTDOWN_SIG sig_num If specified, termination of the experiment is
not performed when the target process exits.
Termination happens when the specified signal
is sent to the process. A handler for the given
signal is installed when the process starts, and
it is the user’s responsibility to ensure that it is
not overridden by the target code.

78 007–3311–007

SpeedShop User’s Guide

Variable Description

_SPEEDSHOP_EXPERIMENT_TYPE exp_type Passes the experiment type to the run–time
DSO. The ssrun command’s -exp_type option,
which usually specifies the experiment type,
overrides this variable. Values for exp_type
can be found in the "Summary of Experiments"
table in Chapter 4.

_SPEEDSHOP_EXTRA_MARCHING_ORDERS mo_syntax This environment variable may be used to add
marching orders to a predefined experiment.
See the "Using Marching Orders" section in this
Chapter for more information.

_SPEEDSHOP_MARCHING_ORDERS mo_syntax Passes the marching orders of the experiment
to the run–time DSO. The ssrun command’s
-mo, marching orders, option overrides this
environment variable. If this variable is
specified, it overrides
_SPEEDSHOP_EXPERIMENT_TYPE, as well as
the ssrun command’s -exp_type option. The
mo_syntax is discussed in the "Using Marching
Orders" section in this Chapter.

_SPEEDSHOP_SBRK_BUFFER_LENGTH size Defines the maximum size of the internal
malloc (memory allocation) area used. This
area is completely separate from the user’s area
and has a default size of 0x100000.

_SPEEDSHOP_FILE_BUFFER_LENGTH size Defines the size of the buffer used for writing
the experiment files. The default length is 8
KB. The buffer is used only for writing small
records to the file; large records are written
directly to avoid the buffering overhead.

007–3311–007 79

6: Setting Up and Running Experiments: ssrun

Variable Description

_SPEEDSHOP_DEBUG_NO_SIG_TRAPS Disables the normal setting of signal handlers
for all fatal and exit signals.

_SPEEDSHOP_DEBUG_NO_STACK_UNWIND Suppresses the stack unwind, as in usertime
experiments and at caliper samples, for all
experiments. The option is used as a
workaround for various unwind bugs in
libexc.

Using Marching Orders
Using marching orders is another method of specifying what experiment type you
want to run. One of the benefits of using marching orders is that it lets you customize
experiments. Any specification of explicit marching orders overrides the environment
variable _SPEEDSHOP_EXPERIMENT_TYPE or the -exp_type option on the ssrun
command, since these experiment type specifications are translated into possible
orders by the command.

Each experiment type corresponds to a marching orders specification. You can use
marching orders in either of the following ways:

• The _SPEEDSHOP_MARCHING_ORDERS environment variable. The following
example selects the usertime experiment:

setenv _SPEEDSHOP_MARCHING_ORDERS ut:cu

• The -mo option on the ssrun command line. The following example selects the
pcsamp experiment:

ssrun -mo pc,2,10000,0:cu a.out

• Adding marching orders to a predefined experiment by using the
_SPEEDSHOP_EXTRA_MARCHING_ORDERS environment variable. The following
example generates a useful resource usage graph when viewed with the
cvperf(1) command:

setenv _SPEEDSHOP_EXTRA_MARCHING_ORDERS hb

ssrun -pcsamp a.out

If the marching orders on the command line differ from those specified with the
environment variable, the command-line version takes precedence.

80 007–3311–007

SpeedShop User’s Guide

The number and meaning of the arguments for each marching order depend on the
specific marching order. The following specifies PC sampling, using 16-bit bins,
sampling every 10 microseconds, and sampling both the executable and all of its
DSOs:

pc,2,10000,0

The following specifies call stack sampling every 10 microseconds, based on process
virtual time plus system time spent on behalf of the process:

ut,10000,2

Defining the Base Experiment

The experiment specifier, with which a marching order begins, takes one of the
following values:

ut A time experiment that returns real time, virtual time, or user time. The
default arguments are 30000,2. The argument should be specified in
multiples of 10,000. The first argument is the interval between call stack
samples in microseconds. The second argument is the timer type used
to measure the intervals; the supported values are 0, 1, and 2, with the
same meanings as for the second argument of hb (described later). The
argument value -1 is not valid for ut.

pc A 16-bit or 32-bit PC sampling (pcsamp) experiment. The default
arguments are 2,10000,0. The first argument is the size of the sample
count bins in bytes. The supported values are 2 (16 bits) and 4 (32 bits).
The second argument is the sampling rate in microseconds. Supported
values are 10,000 (10-millisecond sample interval) and 1000
(1-millisecond sample interval). The third argument is the sampling
mode:

0 Selects the user executable and all its dynamic shared
objects

1 Selects only the user executable (without any dynamic
shared objects)

it A 32-bit ideal experiment. Only 4-byte (32-bit) counters are
supported. No additional arguments are needed.

mf A memory allocation and deallocation experiment that traces calls to
malloc, realloc, free, memalign, and valloc routines. There are

007–3311–007 81

6: Setting Up and Running Experiments: ssrun

no arguments to this marching order. The arguments to these routines
and bad calls are recorded. Bad calls include malloc calls of 0 bytes,
freeing invalid memory blocks, reallocating invalid memory pointers,
and calling memalign with invalid arguments. (For descriptions of
these routines, see the malloc(3) man page.)

fpe A floating-point exceptions (fpe) experiment. There are no arguments.
The call stack is sampled whenever a floating-point exception occurs.

io An I/O trace experiment. There are no arguments. The start time and
end time for each of the following I/O system calls are recorded:
creat(2), open(2), read(2), pread(2), write(2), pwrite(2), close(2),
pipe(2), dup(2), lseek(2), readv(2), and writev(2).

mpi MPI experiment. There are no arguments. The beginning time, ending
time, return value, and arguments are recorded.

Note: The output from this experiment can only be displayed by using
the cvperf(1) user interface; it cannot be displayed through prof.

For a list of the routines traced, see "Generating MPI Tracing
Experiments", page 89.

hwct A hardware counter call stack profiling experiment (_hwctime). The
default arguments are xx,xxx,0,SIGPROF. The first argument is the
hardware counter number of the counter to be profiled. The second
argument is the overflow interval for the counter (a prime number
should be specified). The third argument is the hardware counter
number of the counter whose overflow will trigger the sampling.

hwc A hardware counter PC profiling experiment (-hwc). The default
arguments are xx, xxx. The first argument is the hardware counter
number. The second argument is the overflow interval for the counter.

hb Heart beat data collection. System-wide, per-process, and MPI resource
usage data is collected at regular time intervals. If the program creates
multiple processes, data is collected for each process. If the process is
using the MPI library, MPI library statistics are also recorded.

The default arguments are 1000000,2. The first argument is the
interval in microseconds between samples. The second argument is the
time type to use, as follows:

82 007–3311–007

SpeedShop User’s Guide

-1 Use alarm(2) instead of setitimer(2) to deliver the
periodic signal. In this case, the interval is rounded to the
nearest second (periods of less than 1 second are rounded
up to 1 second). The interval is in real (wall-clock) time.

0 Real (wall-clock) time.

1 Virtual time. The timer runs while the user program is
executing.

2 User time. The timer runs while the user program is
executing or the system is processing system calls made
by the program.

cu Caliper point usage data collection. It usually appears at the end of a
marching order, and there are no arguments. Usage data is recorded at
caliper points. As with the hb marching order, system-wide,
per-process, and MPI resource usage data is or can be collected at these
points. But, the hb marching order collects data based on time, and the
cu marching order is based on caliper points that you can set anywhere
in your source code. For more information on setting caliper points, see
"Using Calipers", page 94.

Running Experiments
This section describes how to use ssrun to perform experiments. For information on
using pixie directly, see Chapter 8, "Using SpeedShop in Expert Mode: pixie",
page 135.

ssrun Syntax

The ssrun command takes the following form:

ssrun ssrun_options -exp_type executable_name executable_args

The arguments are as follows:

ssrun_options Zero or more of the options described in Table 6-4, page
84. These options control the data collection and the
treatment of descendent processes or programs, and
they specify how the data is to be externalized.

007–3311–007 83

6: Setting Up and Running Experiments: ssrun

-exp_type | -exp exp_type The experiment type. Experiments are described in
detail in Chapter 4, "Experiment Types", page 51.

executable_name The name of the program on which you want to run an
experiment.

executable_args Arguments to your program, if any.

The ssrun command generates a performance data file that is named as described in
"Setting Up Output Directories and Files", page 73.

Table 6-4 Options for the ssrun Command

Name Result

-hang Specifies that the process should be left waiting just before executing its
first instruction. This allows you to attach the process to a debugger.

-mo marching_orders Allows you to specify marching orders. If this option is used, the
environment variable _SPEEDSHOP_MARCHING_ORDERS is not examined.
If both -exp_type and -mo are specified, the -mo option will override the
value given by -exp_type.

-name argv0-value Specifies that the executable, or its appropriately instrumented version,
should be run with argv[0] set to argv0-value. Normally, both
instrumented and uninstrumented executables are run with argv[0] set to
the original executable_name name. argv0-value is also used in the
executable_name portion of the name of the performance data file.

-port hostname portno Specifies that the process is to be left waiting, and notifications of status are
to be sent to the socket on the host named by hostname and the port
specified by portno. When the process is ready, a message of the form
"running pid host" will be sent to inform the requester of the PID of the
executing process and the host, which may be remote. A debugger can then
attach to it and take control of its execution.

-purify Can be used only when the Purify product is installed. Specifies that
purify should be run on the executable_name file, and then runs the
resulting “purified” executable. Note that -purify and SpeedShop
performance experiments cannot be combined.

84 007–3311–007

SpeedShop User’s Guide

Name Result

-quiet Suppresses all output other than error messages. If -quiet is specified, the
_SPEEDSHOP_SILENT environment variable is also set for the duration of
the ssrun command.

-v Prints a log of the operation of ssrun to stderr. The same behavior occurs
if the environment variable _SPEEDSHOP_VERBOSE is set to a null string.

-V Prints a detailed log of the operation of ssrun to stderr. The same
behavior occurs if the environment variable _SPEEDSHOP_VERBOSE is set
to a nonzero-length string. This option can be used to see how to set the
various environment variables, and how to invoke instrumentation when
necessary.

-workshop Specifies special instrumentation so that the experiment files can be read by
WorkShop’s cvperf analyzer.

-x display-id window-id Specifies that the process is to be left waiting and that the window of the
WorkShop debugger requesting the creation (as specified by the display-id
and window-id arguments on the command line) be informed of the PID of
the target process. A debugger can then attach to it and take control of its
execution.

ssrun Examples

This section provides examples of using ssrun with options and experiment types.
For additional examples, see Chapter 2, "Tutorial for C Users", page 13, or Chapter 3,
"Tutorial for Fortran Users", page 33.

Example Using the pcsampx Experiment

The pcsampx experiment collects data to estimate the actual CPU time for each
source code line, machine instruction, and function in your program. The optional x
suffix causes a 32-bit bin size to be used, allowing a larger number of counts to be
recorded. For a more detailed description of the pcsamp experiment, see "pcsamp
Experiment", page 53.

The following example performs a pcsampx experiment on the generic executable:

ssrun -pcsampx generic

007–3311–007 85

6: Setting Up and Running Experiments: ssrun

To see the performance data that has been generated, run prof on the performance
data file, generic.pcsampx.m12185, as shown in the following example:

prof generic.pcsampx.m12185

The report is printed to stdout. (This layout of this report has been altered slightly
to accommodate presentation needs.) For more information on prof and the reports
generated by prof, see Chapter 7, "Analyzing Experiment Results: prof", page 101.

SpeedShop profile listing generated Mon Feb 2 15:08:14 1998

prof generic.pcsampx.m12185

generic (n32): Target program
pcsampx: Experiment name

pc,4,10000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)
Experiment notes--

From file generic.pcsampx.m12185:

Caliper point 0 at target begin, PID 12185

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsampx)--

2729: Total samples

27.290: Accumulated time (secs.)

10.0: Time per sample (msecs.)

4: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 25.470 93.3% 93.3% 2547 anneal (generic: generic.c,

1573)

[2] 1.100 4.0% 97.4% 110 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.310 1.1% 98.5% 31 __read (libc.so.1: read.s, 20)

[4] 0.240 0.9% 99.4% 24 cvttrap (generic: generic.c, 317)

[5] 0.150 0.5% 99.9% 15 _xstat (libc.so.1: xstat.s,
12)

[6] 0.010 0.0% 100.0% 1 __write (libc.so.1: write.s, 20)

86 007–3311–007

SpeedShop User’s Guide

[7] 0.010 0.0% 100.0% 1 _morecore (libc.so.1: malloc.c, 632)

27.290 100.0% 100.0% 2729 TOTAL

Example Displaying Data in WorkShop

To use the WorkShop graphic user interface to display the information gathered by
ssrun, include the -workshop option on the ssrun command line, as shown in the
following example:

ssrun -workshop -pcsampx generic

The result is a file viewable through the cvperf WorkShop command:

cvperf generic.pcsampx.m44800

Example Using the -v Option

To get information about how a SpeedShop experiment is set up and performed, you
can supply the -v option to ssrun.

The following example performs another pcsampx experiment on the generic
executable:

ssrun -v -pcsampx generic

The ssrun command writes the following output to stderr. It displays information
as the command line is parsed and shows the environment variables that ssrun sets.

fraser 75% ssrun -v -pcsampx generic

ssrun: target PID 12345
ssrun: setenv _SPEEDSHOP_MARCHING_ORDERS pc,4,10000,0:cu
ssrun: setenv _SPEEDSHOP_EXPERIMENT_TYPE pcsampx

ssrun: setenv _SPEEDSHOP_TARGET_FILE generic

ssrun: setenv _RLD_LIST libss.so:libssrt.so:DEFAULT

...

The _RLD32_LIST environment variable is used with programs compiled with the
-n32 compiler option. The _RLD64_LIST environment variable is used with
programs compiled with the -64 compiler option. If neither is set, the value of
_RLD_LIST is the default. (See the rld(1) man page for more information.)

007–3311–007 87

6: Setting Up and Running Experiments: ssrun

Using ssrun with a Debugger

To use the ssrun command in conjunction with a debugger such as dbx or the
WorkShop debugger, you need to call ssrun with the -hang option and the name of
your program.

Follow these steps to run the floating-point exceptions trace experiment on generic,
and then run generic in a debugger.

1. Call ssrun as follows:

ssrun -hang -fpe generic

The ssrun command parses the command line, sets up the environment for the
experiment, calls the target process using exec, and halts the target process on
exiting from the call to exec.

2. Note the process ID returned by ssrun.

3. In another window, start your debugging session as follows:

cvd -pid process_id_number

4. Attach the process to the debugger.

5. Run the process from the debugger.

You can also invoke ssrun from within a debugger. In this case, ssrun leaves the
target halted on exiting the call to exec and informs the debugger of that fact.

You can also use a debugger to set calipers for the purpose of recording performance
data for a part of your program. See "Using Calipers", page 94, for more information
on setting calipers.

Running Experiments on MPI Programs
The Message Passing Interface (MPI) is a library specification for message passing,
proposed as a standard by a committee of vendors, implementors, and users. It
allows processes to communicate by passing data messages to other processes, even
those running on distant computers.

SpeedShop offers two types of experiments for MPI programs, the first of which can
only be displayed in cvperf(1):

88 007–3311–007

SpeedShop User’s Guide

MPI tracing
experiments

Traces the use of MPI send, receive, and
synchronization routines and a few other routines. See
the following section for more information.

Other SpeedShop
experiments

Generates other SpeedShop experiments, such as
usertime and pcsamp. For more information, see the
following section.

Note: Before executing the ssrun command on an MPI executable, you must set the
MPI_RLD_HACK_OFF environment variable as follows:

% setenv MPI_RLD_HACK_OFF 1

Generating MPI Tracing Experiments

MPI tracing experiments tell you how many times, and at what locations within the
application, various routines from the MPI library are called.

You can use either of the following versions of the ssrun command on an executable
named a.out:

% mpirun -np 4 ssrun -mpi a.out

% mpirun -np 4 ssrun -mo mpi:cu a.out

If you are running the application on four processors, you will see five output files:
one for each processor and one for the master process. The identifier portions of the
file names will start either with m for the master process or f (forked) for a process
running on one of the processors. If the first version of the ssrun command,
illustrated above, is used with an executable named verge, file names similar to the
following will be assigned to the output:

verge.mpi.m12345
verge.mpi.f12346

verge.mpi.f12347

verge.mpi.f12348

verge.mpi.f12349

The identifiers do not correspond to a processor number.

MPI output from the ssrun command can only be viewed in the WorkShop
Performance Analyzer window. You can bring that window up with the cvperf(1)
command. You can view the information in either graphical or numerical format.

007–3311–007 89

6: Setting Up and Running Experiments: ssrun

Graphs that do not contain data are not displayed. For an example of a portion of a
numerical display, see Figure 6-1, page 91.

Note: The MPI tracing experiment does not track down communicators, and it does
not trace all collective operations. These limitations may also affect the translation of
some events by ssfilter(1).

90 007–3311–007

SpeedShop User’s Guide

Figure 6-1 MPI Numerical Format

007–3311–007 91

6: Setting Up and Running Experiments: ssrun

The following routines are traced:

MPI_Barrier MPI_Send

MPI_Bsend MPI_Ssend

MPI_Rsend MPI_Isend

MPI_Ibsend MPI_Issend

MPI_Irsend MPI_Sendrecv

MPI_Sendrecv_replace MPI_Bcast

MPI_Recv MPI_Irecv

MPI_Wait MPI_Waitall

MPI_Waitany MPI_Waitsome

MPI_Test MPI_Testall

MPI_Testany MPI_Testsome

MPI_Request_free MPI_Cancel

MPI_Pcontrol

Generating Other Experiments for Programs Using MPI

If your program uses MPI, you must set up SpeedShop experiments that will be
displayed in prof a little differently. There are two ways to accomplish this. The first
method takes two steps:

1. Set up a shell script that contains the call to ssrun and the experiment you want
to run.

For example, if you have an executable called testit and you want to run the
pcsampx experiment with a script named exp_script, the process might look
like the following:

#!/bin/sh

ssrun -pcsampx testit

2. Call mpirun with the script name using one of the following commands:

92 007–3311–007

SpeedShop User’s Guide

% mpirun -np 6 exp_script
% mpirun host1 2, host2 2 exp_script

The second method is to use one of the following:

% mpirun -np 6 ssrun -pcsampx testit

% mpirun host1 2, host2 2 ssrun -pcsampx testit

The master experiment file created on each MPI host might not contain performance
data from the application (depending on the MPI version) but from a master program
that spawns the members of an application group. You can choose to exclude that file
from performance analysis.

When using ssrun -ideal or ssrun -purify, you should take care that the code
for each separate host executes out of a different physical directory, not out of the
same directory mounted by the network file system (NFS). During process creation,
instrumentation is performed, and since different hosts may have different versions of
the same named library (libc.so.1, for example), conflicts may occur. You may also
need to use the -d option with mpirun to specify the directory on each host.

Running Experiments on Programs Using Pthreads
Pthreads is the multithreading model defined by the POSIX operating system
standard (IEEE1003.1c-1995). This standard contains a set of interfaces and semantics
for creating and managing threads within the POSIX operating system definition. The
basic SGI threads implementation consists of a library and a header file.

Applications using pthreads are specifically identified by SpeedShop. Performance
data collection is done on a per-program basis, rather than on a per-pthread basis.
Under IRIX 6.2, 6.3, and 6.4, SpeedShop creates as many experiment files as the
number of sproc(2) system calls used by the pthreads library to create and manage
the pthreads. In addition, cm_usage data is not supported, and SIGTERM is reserved
to be used to terminate the application normally. You should analyze all the
experiment files together via prof to get a valid profile for the code. Under IRIX 6.5,
SpeedShop creates only one experiment file. For usertime and fpe experiments,
however, you can specify the -pthreads option with prof to get the specified
pthread’s performance reports.

007–3311–007 93

6: Setting Up and Running Experiments: ssrun

Running Experiments on Programs That Use OpenMP Directives
The OpenMP Fortran API and the OpenMP C/C++ API specify a collection of
compiler directives, library functions, and environment variables that can be used to
specify shared memory parallelism in Fortran, C, or C++ programs. The -mp
compiler option causes OpenMP directives to be used in creating an executable that
may be run using one or more processors.

Performance data collection is done on a per-processor basis. If an executable named
test1 is run under the ssrun command using n processors for a usertime
experiment, then files similar to the following are created for the performance data:

test1.usertime.m109327

test1.usertime.p109331

test1.usertime.p109345

test1.usertime.p109353

The number of processors may be specified internally in the program using a call to
an OpenMP subroutine variable or function omp_set_num_threads, or externally
via the environment variable OMP_NUM_THREADS. The experiment output may be
examined via prof using the file for each process, or saggregate may be used to
create an aggregated file from all of the experiment files. Then the results for the
entire experiment could be analyzed at once.

Using Calipers
In some cases, you may want to generate performance data reports for only a part of
your program. You can do this by selecting caliper points to identify the area of your
program or the time interval during execution for which you want to see performance
data. When you run prof, you can specify a region for which to generate a report by
supplying the -calipers option and the appropriate caliper numbers. For more
information on prof -calipers, see "Using the -calipers Option", page 124.

Table 6-5, page 95, shows the different ways you can set caliper points.

94 007–3311–007

SpeedShop User’s Guide

Table 6-5 Setting Caliper Points

Use This Approach... For These Benefits...

Explicitly link with the SpeedShop run-time and call
ssrt_caliper_point to set a caliper sample.

Lets you set a caliper point at a specific
location in the source program.

Set pollpoint caliper points at specified time intervals during
program execution using the
_SPEEDSHOP_POLLPOINT_CALIPER_POINT environment
variable.

Lets you set caliper points at time
intervals rather than at places in the code.

Define a signal to be used to set a caliper sample by specifying a
signal as a value to the environment variable
_SPEEDSHOP_CALIPER_POINT_SIG and then sending the target
the given signal.

Useful if you want to be able to set a
caliper point as your program is running.

Set a caliper sample trap in dbx or the WorkShop debugger.
Setting a trap involves setting a breakpoint and evaluating the
expression libss_caliper_point(1) when the process stops.

Useful if you are working with a
debugger in conjunction with SpeedShop.

An implicit caliper point is always present at the start of execution of the process. A
final caliper point is set when the process calls _exit. The implicit caliper point at
the beginning of the program is numbered 0, the first caliper point recorded is
numbered 1, and any additional caliper points are numbered sequentially.

In addition, caliper points are automatically set under the following circumstances to
ensure that at least one valid set of data is recorded:

• When a fatal signal is received, such as SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, or SIGXFSZ. Note that
this list does not and cannot include SIGKILL.

• When the program calls an exec function, such as execve() or execvp().

• When an exit signal is received, such as SIGHUP, SIGINT, SIGPIPE, SIGALRM,
SIGTERM, SIGUSR1, SIGUSR2, SIGPOLL, SIGIO, SIGRTMIN, or SIGRTMAX.

Setting Calipers with the ssrt_caliper_point Function

To set caliper points using the ssrt_caliper_point(3) function, follow these steps:

007–3311–007 95

6: Setting Up and Running Experiments: ssrun

1. Insert calls to ssrt_caliper_point in your source code. Call the function with
the argument 1 (meaning, True) and a string to help identify the caliper point in
the experiment file later on.

Example for C:

...

ssrt_caliper_point(1,"bgn_calc");

...

Example for Fortran:

. . .

INTEGER SSRT_CALIPER_POINT

. . .
i = SSRT_CALIPER_POINT (1, ’bgn_calc’)

. . .

You can insert one or more calls at any point in your code.

2. Link the SpeedShop library libss.so into your application. Place the -lss
option at the end of your compile or link command so that the library is the last
to be referenced.

3. Run your program with ssrun and the desired experiment type. For example, if
you want to run the ideal experiment on generic:

ssrun -ideal generic

The caliper points you have set in the source file are recorded in the performance
data file that is generated by ssrun.

Setting Time-Oriented Calipers

To add caliper points at a regular time interval into your experiment file, set the
_SPEEDSHOP_POLLPOINT_CALIPER_POINT environment variable before you
generate an experiment. It takes the following form:

_SPEEDSHOP_POLLPOINT_CALIPER_POINT timer_type,timer_interval

The arguments are as follows:

timer_type One of the following:

96 007–3311–007

SpeedShop User’s Guide

0 Real time. This is the total time a
program spent while executing. It
includes both time spent when a program
is swapped out waiting for a CPU and the
time the operating system is in control,
performing some task for the program
such as I/O or executing a system call.

1 Process virtual time. This is the time
spent when the program is actually
running. This does not include either the
time spent when a program is swapped
out waiting for a CPU or the time the
operating system is in control, performing
some task for the program such as I/O or
executing another system call.

2 CPU time. This is process virtual time
plus the time the system is running on
behalf of the process. The system time
could include performing I/O or
executing other system calls.

timer_interval The integer interval, in seconds, at which a new caliper will be set.

The caliper points you have set with the _SPEEDSHOP_POLLPOINT_CALIPER_POINT
environment variable are recorded in the performance data file that is generated by
ssrun. For the usertime experiment, timer_type must be 2.

Setting Calipers with Signals

To set calipers with signals, follow these steps:

1. Set the _SPEEDSHOP_CALIPER_POINT_SIG variable to the signal number you
want to use.

Choose a signal that does not terminate the program. The signal should also not
be caught by the target program; doing so would interfere with its triggering a
caliper point.

The following signals are good choices because they do not have system-defined
semantics already associated with them:

007–3311–007 97

6: Setting Up and Running Experiments: ssrun

SIGUSR1 16 /* user defined signal 1 */
SIGUSR2 17 /* user defined signal 2 */

2. Execute your program with ssrun.

3. In another window, enter a command such as ps or top to determine the process
ID of ssrun. This is also the process ID of the program you are working on.

4. In this window, send the signal you used in step 1 to the process using the kill
command:

kill -sig_num pid

Caliper point data is recorded at the point in the program where the signal sent
by the kill command interrupts the executing ssrun process.

Setting Calipers with a Debugger

From either dbx or the WorkShop debugger, you can set a caliper point anywhere it
is possible to set a breakpoint: at a function entry or exit, a line number, an execution
address, a watchpoint, or a pollpoint (timer-based). You can also attach conditions
and or cycle counts.

Use the following procedure:

1. Set a breakpoint in your program where you want a caliper point.

2. When the process stops, evaluate the expression ssrt_caliper_point(3). The
evaluation of the expression always returns zero, but a side effect of the
evaluation is the recording of the appropriate data.

3. Resume execution of the process.

Effects of ssrun
When you call ssrun, the system performs the following operations for all
experiments:

• Sets various environment variables like _SPEEDSHOP_MARCHING_ORDERS and
_SPEEDSHOP_EXPERIMENT_TYPE.

98 007–3311–007

SpeedShop User’s Guide

For more information on these environment variables, see "Using Run-Time
Environment Variables", page 73.

• Inserts the SpeedShop libraries libss.so and libssrt.so as part of your
executable using the environment variable _RLD_LIST.

• Invokes the file executable_name by calling exec().

• The SpeedShop run-time library writes the appropriate experiment data to the
output file.

Effects of ssrun -ideal

When you run an ideal experiment, the following additional operations occur:

• libpixrt.so is inserted first in the executable’s library list.

• libssrt.so and libss.so are inserted in the executable’s library list.

• ssrun runs pixie(1) on all the libraries that the program uses, as well as on the
executable.

The generated pixified versions have an extension that depends on the ABI:

– .pixie for the executable

– .pix32 for all o32 libraries

– .pixn32 for all n32 libraries

– .pix64 for all 64-bit libraries

The generated files are written either to the current working directory or, if set, to
the directory specified by the _SPEEDSHOP_OUTPUT_DIRECTORY environment
variable. They include code that allows performance data to be collected for each
function and basic block.

For more information on the ideal experiment, see "ideal Experiment", page 54.

007–3311–007 99

Chapter 7

Analyzing Experiment Results: prof

This chapter provides information on how to view and analyze experiment results by
using the prof(1) report generator. It consists of the following sections:

• "Using prof to Generate Performance Reports", page 101

• "Using prof with ssrun", page 107

• "Using prof Options", page 115

• "Generating Reports for Different Machine Types", page 129

• "Generating Reports for Multiprocessed Executables", page 130

• "Determining Program Overhead", page 130

• "Generating Compiler Feedback Files", page 134

Using prof to Generate Performance Reports
Performance data is examined using prof, a text-based report generator that prints to
stdout.

Use either of the following syntaxes to generate a report from performance data
gathered during experiments recorded by ssrun(1) or pixie(1):

prof [options][speedshop_data_file/pixie_counts_file]...

or

prof [options] executable_name [speedshop_data_file/pixie_counts_file]...

prof Arguments

The arguments for prof when used with data files from ssrun or pixie are as
follows:

options Zero or more of the options described in Table 7-1, page
102.

007–3311–007 101

7: Analyzing Experiment Results: prof

executable_name The name of the executable file (including its path)
created by the compiler. This argument is needed if
prof is unable to locate the executable relative to the
location of the data files being analyzed because the
data or the executable were moved after the files were
created.

speedshop_data_file One or more names of performance data files generated
by ssrun. The file names may differ only in the ID
portion of their names. The exp_type portion of the
names must be identical.

pixie_counts_file One or more names of data files generated by pixie
with .Counts suffixes.

prof Options

The following table lists prof options. For more information, see the prof(1) man
page.

Table 7-1 Options for prof

Name Result

-archinfo Reports the number of times each register was used as a destination, base
(integer registers only), or source; how many times each instruction opcode
was used; and some detailed statistics concerning branches jumps, and how
many delay slots were filled with no-op instructions. Works only with ideal
experiments.

-basicblocks Prints a list of all the basic blocks executed, ordered by the number of cycles
spent in each basic block. Works only with ideal experiments.

-b[utterfly] Causes prof to print a report showing the callers and callees of each
function, with inclusive time attributed to each. For ideal experiments, the
attribution is based on a heuristic. For the various callstack sampling and
tracing experiments, the attribution is precise. The usertime, totaltime,
and some _hwctime experiments are statistical in nature and so are not exact.
This option is ignored for experiments in which the data does not support
inclusive calculations. It delivers the same display as -gprof.

102 007–3311–007

SpeedShop User’s Guide

Name Result

-calipers [n1,]n2 Restricts analysis to a segment of program execution. This option works only
for SpeedShop experiments.

Causes prof to compute the data between caliper points n1 and n2, rather
than for the entire experiment.
If n1 >= n2, an error is reported.

If n2 is greater than the maximum number of caliper points recorded, it is set
to the maximum.

If n1 is omitted, zero (the beginning of the program) is assumed.

-calls Sorts the function list by the number of procedure calls rather than by time.
This option can only be used when generating reports for ideal experiments
or for basic block counting data obtained with pixie.

-clock n Sets the CPU clock speed to (n), expressed in megahertz. This option is useful
when generating reports for ideal experiments or for basic block counting
data obtained with pixie. The default is the clock speed of the machine on
which the performance data was collected.

-[no]cordfb Enables or disables (-nocordfb) cord feedback file generation for the
executable only. Cord feedback is used to arrange procedures in the binary in
an optimal ordering. This improves both paging and instruction cache
performance. Users can use cord(1) or ld(1) to actually do the procedure
ordering. For more information on how to reorder code regions, see the
MIPSpro Compiling and Performance Tuning Guide.

-cordfball Enables cord feedback for the executable and all DSOs.

-cycle n Sets the cycle time to n nanoseconds. This parameter may be used as another
way of setting the clock speed. See also the description for -clock n.

007–3311–007 103

7: Analyzing Experiment Results: prof

Name Result

-debug:dbg_flags Sets dbg_flags. dbg_flag should be specified as a hexidecimal value made by
adding up combinations of the hexidecimal values listed below (Example:
-debug:0x00000102):

GPROF_FLAG 0x00000001

COUNTS_FLAG 0x00000002

SAMPLE_FLAG 0x00000004

MISS_FLAG 0x00000008

FEEDBACK_FLAG 0x00000010

CORD_FLAG 0x00000020
USERPC_FLAG 0x00000040

MDEBUG_FLAG 0x00000080

BEAD_FLAG 0x00000100

LIBSSRT_FLAG 0x00000200

-dis[assemble] Disassembles and annotates the analyzed object code with cycle times if you
have run an ideal experiment, collected data using pixie, or have run
apcsamp or _hwc/_hwctime experiment.

-dislimit n Disassembles only those basic blocks with a frequency >= n%. This option
applies to the same experiments as the -disassemble option.

-dso dsoname Generates a report only for the named DSO. Only the base name, not the full
path name, of the DSO needs to be specified; the .so suffix is required.
Multiple instances of the -dso flag can be given.

-dsolist List all the DSOs in the program and their start and end text addresses.

-e[xclude] procedure_name If you use one or more -e[xclude] options, the profiler omits the specified
procedure from the listing. If any option uses an upper-case E for
-E[xclude], prof also omits that procedure from the base upon which it
calculates percentages.

-feedback Produces files with information that can be used to (a) arrange procedures in
the binary in an optimal ordering using cord, and (b) tell the compiler how
to optimize compilation of the program using cc -fb filename.cfb, or
f90 -fb filename.cfb. The *.cfb files contain binary information that
may be dumped using the fbdump command.

The cord feedback files are named program.fb or libso.fb. Compiler feedback
files are named program.cfb or libso.cfb. These are binary files and may be
dumped using the fbdump command.

104 007–3311–007

SpeedShop User’s Guide

Name Result

Procedures are normally ordered by their measured invocation counts; if
-gprof is also specified, procedures are ordered using call graph counts,
rather than invocation counts.

-gprof (See -b[utterfly].)

-h[eavy] Lists the most heavily used lines of source code in descending order of use,
sorting lines by their execution time. This option can be used when
generating reports for ideal, pcsamp, or _hwc experiments or for basic
block counting data obtained with pixie.

-inclusive Sorts function list by inclusive data rather than by exclusive data. This option
can only be used when generating reports for those experiments that have
inclusive data; it is ignored for others.

-l[ines] Lists the most heavily used lines of source code in descending order of use,
but lists lines grouped by procedure, sorted by cycles executed per procedure.
This option can be used when generating reports for ideal, pcsamp, or
_hwc experiments, or for basic block counting data obtained with pixie.

-nh Suppresses various header blocks from the output.

-o[nly] procedure_name If you use one or more -o[nly] options, the profile listing includes only the
named procedures, rather than the entire program. If any option uses an
uppercase -O[nly], prof uses only the named procedures, rather than the
entire program, as the base upon which it calculates percentages.

-overhead Generates overhead data for a parallel program. Overhead data includes how
much time was spent when the program had no parallel work to do, how
much time was lost when work was not spread evenly among the processors,
and so on.

-pthreads pthread_id Analyzes data only for the specified pthread identifier (for usertime,
totaltime, _hwctime, io, and fpe experiments on applications that use
pthreads on IRIX 6.5 or later systems). pthread_id may be a list of pthread
identifiers separated by commas.

-q[uit] n Condenses output listings by truncating -h[eavy], -l[ines], and -gprof
listings. You can specify n in three ways:

n, an integer, truncates everything after n functions are listed;

n%, an integer followed by a percent sign, truncates the listing after the first
entry that represents less than n percent of the total;

007–3311–007 105

7: Analyzing Experiment Results: prof

Name Result

ncum%, an integer followed by cum%, truncates the listing after enough entries
have been printed to account for n percent of the cumulative total. If
-b[utterfly] is also specified, it behaves the same as -q n%.

For example, -q 15 truncates each part of the report after 15 lines of text, -q
15% truncates each part after the first entry that represents less than 15
percent of the whole, and -q 15cum% truncates each part after the entry that
brought the cumulative percentage above 15%.

-rel[ative] Shows percentage attribution in a butterfly report relative to the central
function. The default is to show percentages as absolute percentages over the
whole run.

-r12000|-r10000|
|-r8000|-r5000|
-r4000

Overrides the default processor scheduling model that prof uses to generate
a report. If this option is not specified, prof uses the scheduling model for the
processor on which the experiment is being run. These options are only
meaningful for an ideal time experiment or pixie count data.

-showss Enables the display of functions from the SpeedShop run-time DSO. Usually
those functions are suppressed from the reports and computations. In
addition, some statistics for the prof command’s own memory usage will be
printed.

-S (-source) Disassembles and annotates the analyzed object code with cycle times, or PC
samples, and interleaves and lists the source code, if you have run an ideal,
pcsamp, or _hwc experiment, or collected data using pixie.

-u[sage] Prints a report on system statistics and timers.

-ws Generates, for the executable only, a working-set file for the current caliper
setting. This option is only meaningful for an ideal time experiment or
pixie count data. The file suffix is .ws.

-wsall Generates, for the executable and all the non-ignored DSOs, a working-set file
for the current caliper setting. This option is only meaningful for an ideal
time experiment or pixie count data. The file suffix is .ws.

-xdso dso_name Excludes the named DSO from any reports. Only the base name, not the full
path name, of the DSO need be specified; the .so suffix is required. Multiple
instances of the -xdso flag can be specified.

106 007–3311–007

SpeedShop User’s Guide

prof Output

The prof command generates a performance report that is printed to stdout.
Warning and fatal errors are printed to stderr.

Note: Fortran alternate entry point times are attributed to the main function or
subroutine, since there is no general way for prof to separate the times for the
alternate entries.

Using prof with ssrun

When you call prof with one or more SpeedShop performance data files, it collects
the data from all the output files and produces a listing. The prof command is able
to detect which experiment was run and generate an appropriate report. The
command can identify all of the experiment types used with the ssrun command.

In cases where prof accepts more than one data file as input, it sums up the results.
The multiple input data files must be generated from the same executable, using the
same experiment type.

The prof command may report times for procedures named with a prefix of *DF*, for
example *DF*_hello.init_2. DF stands for Dummy Function and indicates cycles
spent in parts of text which are not in any function: init, fini, and MIPS.stubs
sections, for example.

The most frequently used reports that prof generates are described in the following
sections:

• "usertime Experiment Reports", page 108

• "pcsamp Experiment Reports", page 109

• "Hardware Counter Experiment Reports", page 110

• "ideal Experiment Reports", page 112

• "fpe Trace Reports", page 114

007–3311–007 107

7: Analyzing Experiment Results: prof

usertime Experiment Reports

For usertime experiments, prof generates CPU times for individual routines and
shows how those times compare with the rest of the program. The column heading
are as follows:

• The index column provides an index number for reference.

• The excl.secs column shows how much time, in seconds, was spent in the
function itself (exclusive time). For example, less than one hundredth of a second
was spent in __start(), but 0.03 of a second was spent in fread.

• The excl.% column shows the percentage of a program’s total time that was
spent in the function.

• The cum.% column shows the percentage of the complete program time that has
been spent in the functions that have been listed so far.

• The incl.secs column shows how much time, in seconds, was spent in the
function and descendents of the function.

• The incl.% column shows the cumulative percentage of inclusive time spent in
each function and its descendents.

• The samples column provides the number of samples of the function and all of
its descendants.

• The function (dso:file,line) column lists the function name, its DSO
name, its file name, and its line number.

The following example is an abbreviated version of the full report. For a complete
report, see "Generating a Report", page 17.

SpeedShop profile listing generated Mon Feb 2 11:07:15 1998

prof generic.usertime.m10981

generic (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.usertime.m10981:

Caliper point 0 at target begin, PID 10981

108 007–3311–007

SpeedShop User’s Guide

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

809: Total Samples

0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples function (dso: file, line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal (generic: generic.c, 1573)

pcsamp Experiment Reports

For [f]pcsamp[x] experiments, prof generates a function list annotated with the
number of samples taken for the function and the estimated time spent in the
function. The column headings are as follows:

• The [index] column assigns a reference number to each function.

• The secs column shows the amount of CPU time that was spent in the function.

• The % column shows the percentage of the total program time that was spent in
the function.

• The cum.% column shows the percentage of the complete program time that has
been spent in the functions that have been listed so far.

• The samples column shows how many samples were taken when the process
was executing in the function.

• The function (dso:file, line) column lists the function, its DSO name, its
file name, and its line number.

The following is output from an fpcsamp experiment:

SpeedShop profile listing generated Mon Feb 2 11:01:36 1998

prof generic.fpcsamp.m11140

generic (n32): Target program

007–3311–007 109

7: Analyzing Experiment Results: prof

fpcsamp: Experiment name
pc,2,1000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--
From file generic.fpcsamp.m11140:

Caliper point 0 at target begin, PID 11140

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (fpcsamp)--
23828: Total samples

23.828: Accumulated time (secs.)

1.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 22.279 93.5% 93.5% 22279 anneal (generic: generic.c,1573)

Hardware Counter Experiment Reports

For the various hwc experiments, prof generates a function list annotated with the
number of overflows of hardware counters generated by the function. The column
headings are as follows:

• The [index] column assigns a reference number to each function.

• The counts column shows the extrapolated event count based on the number of
samples and the overflow value for the particular counter.

• The % column shows the percentage of the program’s overflows that occurred in
the function.

• The cum.% column shows the percentage of the program’s overflows that
occurred in the functions that have been listed so far.

• The samples column shows the number of times the program counter was
sampled during execution of the function.

110 007–3311–007

SpeedShop User’s Guide

• The function (dso: file, line) column lists the name, the DSO, the file
name, and line number of the function.

The following is output from a dsc_hwc hardware counter experiment:

SpeedShop profile listing generated Mon Feb 2 11:11:44 1998

prof generic.dsc_hwc.m294398

generic (n32): Target program

dsc_hwc: Experiment name

hwc,26,131:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file generic.dsc_hwc.m294398:

Caliper point 0 at target begin, PID 294398

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of R10K perf. counter overflow PC sampling data (dsc_hwc)--

6: Total samples

Sec cache D misses (26): Counter name (number)

131: Counter overflow value

786: Total counts

Function list, in descending order by counts

[index] counts % cum.% samples function (dso: file, line)

[1] 131 16.7% 16.7% 1 init2da (generic: generic.c, 1430)

[2] 131 16.7% 33.3% 1 genLog (generic: generic.c, 1686)

[3] 131 16.7% 50.0% 1 _write (libc.so.1: writeSCI.c, 27)

393 50.0% 100.0% 3 **OTHER** (includes excluded DSOs, rld, etc.)

786 100.0% 100.0% 6 TOTAL

007–3311–007 111

7: Analyzing Experiment Results: prof

ideal Experiment Reports

For ideal experiments, prof generates a function list annotated with the number of
cycles and instructions attributed to the function and the estimated time spent in the
function.

The prof command does not take into account interactions between basic blocks.
Within a single basic block, prof computes cycles for one execution and multiplies it
with the number of times that basic block is executed.

If any of the object files linked into the application have been stripped of line number
information (with ld -x, for example), prof warns about the affected procedures.
The instruction counts for such procedures are shown as a procedure total, not on a
per-basic-block basis. Where a line number would normally appear in a report on a
function without line numbers, question marks appear instead. The column headings
are as follows:

• The [index] column assigns a reference number to each function.

• The excl.secs column shows the minimum number of seconds that might be
spent in the function under ideal conditions.

• The excl.% column represents how much of the program’s total time was spent
in the function.

• The cum.% column shows the cumulative percentage of time spent in the
functions that have been listed so far.

• The cycles column reports the number of machine cycles used by the function.

• The instructions column shows the number of instructions executed by a
function.

• The calls column reports the number of calls to the function.

• The function (dso: file, line) column lists the function, its DSO name,
its file name, and the line number.

The following is output from an ideal experiment.

SpeedShop profile listing generated Mon Aug 14 13:51:00 2000

prof -butterfly generic.ideal.m46372

generic (n32): Target program

ideal: Experiment name

112 007–3311–007

SpeedShop User’s Guide

it:cu: Marching orders

R12000 / R12010: CPU / FPU

127: Number of CPUs

400: Clock frequency (MHz.)

Experiment notes--

From file generic.ideal.m46372:

Caliper point 0 at target begin, PID 46372

generic

Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

2048835049: Total number of instructions executed

2552056463: Total computed cycles

6.380: Total computed execution time (secs.)

1.246: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions incl.secs incl.%

calls function (dso: file, line)

[5] 6.088 95.4% 95.4% 2435240026 1956780024 6.088 95.4%

1 anneal (generic: generic.c, 1559)

If the -butterfly flag is added to prof, a list of callers and callees of each function
is provided:

Butterfly function list, in descending order by inclusive ideal time

attrib.% attrib.time(#calls) incl.time caller (callsite) [index]

[index] incl.% incl.time self% self-time procedure [index]

attrib.% attrib.time(#calls) incl.time callee (callsite) [index]

[1] 99.9% 6.376 0.0% 0.000 __start [1]

99.9% 6.376(0000001) 6.376 main [2]

0.0% 0.000(0000001) 0.000 __readenv_sigfpe [314]

0.0% 0.000(0000001) 0.000 __istart [315]

99.9% 6.376(0000001) 6.376 __start [1]

[2] 99.9% 6.376 0.0% 0.000 main [2]

99.9% 6.376(0000001) 6.376 Scriptstring [3]

007–3311–007 113

7: Analyzing Experiment Results: prof

99.9% 6.376(0000001) 6.376 main [2]

[3] 99.9% 6.376 0.0% 0.000 Scriptstring [3]

95.4% 6.088(0000001) 6.088 usrtime [4]

3.7% 0.238(0000001) 0.238 libdso [6]

0.8% 0.050(0000001) 0.050 cvttrap [9]

0.0% 0.000(0000001) 0.000 iofile [31]

0.0% 0.000(0000002) 0.000 genLog [36]

0.0% 0.000(0000001) 0.000 dirstat [56]

0.0% 0.000(0000001) 0.000 linklist [63]

0.0% 0.000(0000001) 0.000 fpetraps [65]

0.0% 0.000(0000002) 0.000 fprintf [54]

0.0% 0.000(0000002) 0.000 sprintf [49]

0.0% 0.000(0000061) 0.000 strcmp [47]

95.4% 6.088(0000001) 6.376 Scriptstring [3]

[4] 95.4% 6.088 0.0% 0.000 usrtime [4]

95.4% 6.088(0000001) 6.088 anneal [5]

0.0% 0.000(0000001) 0.000 genLog [36]

0.0% 0.000(0000001) 0.000 fprintf [54]

fpe Trace Reports

The fpe trace report shows information for each function. The function name is
shown in the right column of the report. The remaining columns are described below.

• The [index] column assigns a reference number to each function.

• The excl.FPEs column shows how many floating point exceptions were found in
the function.

• The excl.% column shows the percentage of the total number of floating-point
exceptions that were found in the function.

• The cum.% column shows the percentage of floating-point exceptions in the
program that have been encountered so far in the list.

• The incl.FPEs column shows how many floating-point exceptions were
attributed to the function and descendents of the function.

114 007–3311–007

SpeedShop User’s Guide

• The incl.% column shows the cumulative percentage of floating-point exceptions
attributed to the function and its descendents.

• The function (dso: file, line) column lists the function name, its DSO
name, its file name, and its line number.

SpeedShop profile listing generated Mon Feb 2 13:26:33 1998

prof generic.fpe.m12213

generic (n32): Target program

fpe: Experiment name

fpe:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.fpe.m12213:

Caliper point 0 at target begin, PID 12213

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of FPE callstack tracing data (fpe)--

4: Total FPEs

0: Samples with incomplete traceback

Function list, in descending order by exclusive FPEs

[index] excl.FPEs excl.% cum.% incl.FPEs incl.% function (dso: file, line)

[1] 4 100.0% 100.0% 4 100.0% fpetraps (generic: generic.c, 405)

Using prof Options
This section shows the output from calling prof with some of the options available
for prof.

Using the -dis Option

For pcsamp and ideal experiments, the -dis option to prof can be used to obtain
machine instruction information. prof provides the standard report and then

007–3311–007 115

7: Analyzing Experiment Results: prof

appends the machine instruction information to the end of the report. The following
example shows partial output from prof for a pcsamp experiment.

SpeedShop profile listing generated Tue Feb 3 10:48:59 1998

prof -dis generic.pcsamp.m14493

generic (n32): Target program

pcsamp: Experiment name

pc,2,10000,0:cu: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.pcsamp.m14493:

Caliper point 0 at target begin, PID 14493

/usr/demos/SpeedShop/c/generic

Caliper point 1 at exit(0)

Summary of statistical PC sampling data (pcsamp)--

2707: Total samples

27.070: Accumulated time (secs.)

10.0: Time per sample (msecs.)

2: Sample bin width (bytes)

Function list, in descending order by time

[index] secs % cum.% samples function (dso: file, line)

[1] 25.240 93.2% 93.2% 2524 anneal (generic: generic.c, 1573)

[2] 1.090 4.0% 97.3% 109 slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.390 1.4% 98.7% 39 __read (libc.so.1: read.s, 20)

[4] 0.230 0.8% 99.6% 23 cvttrap (generic: generic.c, 317)

[5] 0.090 0.3% 99.9% 9 _xstat (libc.so.1: xstat.s, 12)

[6] 0.010 0.0% 99.9% 1 __write (libc.so.1: write.s, 20)

[7] 0.010 0.0% 100.0% 1 _ngetdents (libc.so.1: ngetdents.s, 16)

[8] 0.010 0.0% 100.0% 1 _doprnt (libc.so.1: doprnt.c, 285)

27.070 100.0% 100.0% 2707 TOTAL

Disassembly listing, annotated with PC sampling overflows

116 007–3311–007

SpeedShop User’s Guide

.

.

.

/usr/demos/SpeedShop/linpack.demos/c/generic.c

anneal: <0x10006830-0x10006b3c> 2524 total samples(93.24%)

[1573] 0x10006830 0x27bdffd0 addiu sp,sp,-48 # 1

[1573] 0x10006834 0xffbc0020 sd gp,32(sp) # 2

[1573] 0x10006838 0xffbf0018 sd ra,24(sp) # 3

[1573] 0x1000683c 0x3c030002 lui v1,0x2 # 4

[1573] 0x10006840 0x246397e8 addiu v1,v1,-26648 # 5

[1573] 0x10006844 0x0323e021 addu gp,t9,v1 # 6

[1575] 0x10006848 0xd7808370 ldc1 $f0,-31888(gp) # 7

<2 cycle stall for following instruction>

[1575] 0x1000684c 0xf7a00000 sdc1 $f0,0(sp) # 10

[1577] 0x10006850 0x24010001 li at,1 # 11

[1577] 0x10006854 0x8f82816c lw v0,-32404(gp) # 12

<2 cycle stall for following instruction>

[1577] 0x10006858 0xac410000 sw at,0(v0) # 15

[1578] 0x1000685c 0x8f998148 lw t9,-32440(gp) # 16

[1578] 0x10006860 0x0c00171b jal 0x10005c6c # 17

[1578] 0x10006864 0000000000 nop # 18

<2 cycle stall for following instruction>

[1586] 0x10006868 0xafa00008 sw zero,8(sp) # 21

[1586] 0x1000686c 0x8fa40008 lw a0,8(sp) # 22

<2 cycle stall for following instruction>

[1586] 0x10006870 0x28842710 slti a0,a0,10000 # 25

[1586] 0x10006874 0x108000ac beq a0,zero,0x10006b28 # 26

[1586] 0x10006878 0000000000 nop # 27

<2 cycle stall for following instruction>

[1588] 0x1000687c 0x24070001 li a3,1 # 30

[1588] 0x10006880 0xafa7000c sw a3,12(sp) # 31

[1588] 0x10006884 0x8f868164 lw a2,-32412(gp) # 32

<2 cycle stall for following instruction>

[1588] 0x10006888 0x8cc60000 lw a2,0(a2) # 35

<2 cycle stall for following instruction>

[1588] 0x1000688c 0x24c6ffff addiu a2,a2,-1 # 38

[1588] 0x10006890 0x8fa5000c lw a1,12(sp) # 39

<2 cycle stall for following instruction>

[1588] 0x10006894 0x00a6282a slt a1,a1,a2 # 42

[1588] 0x10006898 0x10a0009c beq a1,zero,0x10006b0c # 43

[1588] 0x1000689c 0000000000 nop # 44

007–3311–007 117

7: Analyzing Experiment Results: prof

<2 cycle stall for following instruction>

[1589] 0x100068a0 0x240a0001 li t2,1 # 47

^------ 1 samples(0.04%)------^

[1589] 0x100068a4 0xafaa0010 sw t2,16(sp) # 48

^------ 1 samples(0.04%)------^

[1589] 0x100068a8 0x8f898164 lw t1,-32412(gp) # 49

<2 cycle stall for following instruction>

[1589] 0x100068ac 0x8d290000 lw t1,0(t1) # 52

<2 cycle stall for following instruction>

[1589] 0x100068b0 0x2529ffff addiu t1,t1,-1 # 55

[1589] 0x100068b4 0x8fa80010 lw t0,16(sp) # 56

<2 cycle stall for following instruction>

[1589] 0x100068b8 0x0109402a slt t0,t0,t1 # 59

[1589] 0x100068bc 0x11000089 beq t0,zero,0x10006ae4 # 60

[1589] 0x100068c0 0000000000 nop # 61

<2 cycle stall for following instruction>

[1590] 0x100068c4 0x8faf000c lw t7,12(sp) # 64

^------ 27 samples(1.00%)------^

<2 cycle stall for following instruction>

[1590] 0x100068c8 0x25ef0001 addiu t7,t7,1 # 67

^------ 7 samples(0.26%)------^

[1590] 0x100068cc 0x000f7080 sll t6,t7,2 # 68

^------ 30 samples(1.11%)------^

[1590] 0x100068d0 0x01cf7021 addu t6,t6,t7 # 69

^------ 8 samples(0.30%)------^

[1590] 0x100068d4 0x000e70c0 sll t6,t6,3 # 70

^------ 5 samples(0.18%)------^

[1590] 0x100068d8 0x8faf0010 lw t7,16(sp) # 71

^------ 8 samples(0.30%)------^

<2 cycle stall for following instruction>

[1590] 0x100068dc 0x01cf7021 addu t6,t6,t7 # 74

^------ 9 samples(0.33%)------^

[1590] 0x100068e0 0x000e70c0 sll t6,t6,3 # 75

^------ 27 samples(1.00%)------^

[1590] 0x100068e4 0x8f8f817c lw t7,-32388(gp) # 76

^------ 14 samples(0.52%)------^

<2 cycle stall for following instruction>

[1590] 0x100068e8 0x01cf7021 addu t6,t6,t7 # 79

^------ 9 samples(0.33%)------^

[1590] 0x100068ec 0x25ce0008 addiu t6,t6,8 # 80

^------ 28 samples(1.03%)------^

118 007–3311–007

SpeedShop User’s Guide

[1590] 0x100068f0 0xd5c10000 ldc1 $f1,0(t6) # 81

^------ 7 samples(0.26%)------^

[1590] 0x100068f4 0x8fad000c lw t5,12(sp) # 82

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x100068f8 0x25ad0001 addiu t5,t5,1 # 85

^------ 21 samples(0.78%)------^

[1590] 0x100068fc 0x000d6080 sll t4,t5,2 # 86

^------ 19 samples(0.70%)------^

[1590] 0x10006900 0x018d6021 addu t4,t4,t5 # 87

^------ 9 samples(0.33%)------^

[1590] 0x10006904 0x000c60c0 sll t4,t4,3 # 88

^------ 14 samples(0.52%)------^

[1590] 0x10006908 0x8fad0010 lw t5,16(sp) # 89

^------ 8 samples(0.30%)------^

<2 cycle stall for following instruction>

[1590] 0x1000690c 0x018d6021 addu t4,t4,t5 # 92

^------ 8 samples(0.30%)------^

[1590] 0x10006910 0x000c60c0 sll t4,t4,3 # 93

^------ 30 samples(1.11%)------^

[1590] 0x10006914 0x8f8d817c lw t5,-32388(gp) # 94

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x10006918 0x018d6021 addu t4,t4,t5 # 97

^------ 8 samples(0.30%)------^

[1590] 0x1000691c 0xd5820000 ldc1 $f2,0(t4) # 98

^------ 28 samples(1.03%)------^

[1590] 0x10006920 0x8fab000c lw t3,12(sp) # 99

^------ 9 samples(0.33%)------^

<2 cycle stall for following instruction>

[1590] 0x10006924 0x256b0001 addiu t3,t3,1 # 102

^------ 11 samples(0.41%)------^

[1590] 0x10006928 0x000b5080 sll t2,t3,2 # 103

^------ 25 samples(0.92%)------^

[1590] 0x1000692c 0x014b5021 addu t2,t2,t3 # 104

^------ 11 samples(0.41%)------^

[1590] 0x10006930 0x000a50c0 sll t2,t2,3 # 105

^------ 8 samples(0.30%)------^

[1590] 0x10006934 0x8fab0010 lw t3,16(sp) # 106

^------ 11 samples(0.41%)------^

<2 cycle stall for following instruction>

007–3311–007 119

7: Analyzing Experiment Results: prof

[1590] 0x10006938 0x014b5021 addu t2,t2,t3 # 109

^------ 7 samples(0.26%)------^

[1590] 0x1000693c 0x000a50c0 sll t2,t2,3 # 110

^------ 26 samples(0.96%)------^

[1590] 0x10006940 0x8f8b817c lw t3,-32388(gp) # 111

^------ 13 samples(0.48%)------^

<2 cycle stall for following instruction>

[1590] 0x10006944 0x014b5021 addu t2,t2,t3 # 114

^------ 9 samples(0.33%)------^

[1590] 0x10006948 0x254afff8 addiu t2,t2,-8 # 115

^------ 26 samples(0.96%)------^

[1590] 0x1000694c 0xd5430000 ldc1 $f3,0(t2) # 116

^------ 11 samples(0.41%)------^

[1590] 0x10006950 0x8fa9000c lw t1,12(sp) # 117

^------ 10 samples(0.37%)------^

<2 cycle stall for following instruction>

[1590] 0x10006954 0x00094080 sll t0,t1,2 # 120

^------ 11 samples(0.41%)------^

.

.

.

The listing shows statistics about the procedure anneal() in the file generic.c and
lists the beginning and ending addresses of anneal(): <0x10006830-0x10006b3c>.
The five columns display the following information:

Column Displays

1 Line number of the instruction: [1573].

2 Beginning address of the instruction: 0x10006830.

3 Instruction in hexadecimal: 0x27bdffd0.

4 Assembler form (mnemonic) of the instruction: addiu sp,sp,-48.

5 Cycle in which the instruction executed: # 1.

Other information includes:

• The number of times the immediately preceding branch was executed and taken
(ideal only).

• The total number of cycles in a basic block and the percentage of the total cycles
for that basic block; the number of times the branch terminating that basic block

120 007–3311–007

SpeedShop User’s Guide

was executed; and the number of cycles for one execution of that basic block
(ideal only).

• The total number of samples at an instruction (pcsamp only).

• Any cycle stalls, that is, cycles that were wasted.

Using the -S Option

For ideal experiments, the -S option to prof can be used to obtain source line
information. prof provides the standard report and then appends the source line
information to the end of the report.

This example shows output from calling prof for an ideal experiment. Note that
some lines are wrapped here to accommodate page width:

SpeedShop profile listing generated Mon Jul 17 14:45:28 2000

prof -S generic.ideal.m190404

generic (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R12000 / R12010: CPU / FPU

128: Number of CPUs

400: Clock frequency (MHz.)

Experiment notes--

From file generic.ideal.m190404:

Caliper point 0 at target begin, PID 190404

generic

Caliper point 1 bgn_calc

Caliper point 2 at exit(0)

Summary of ideal time data (ideal)--

2048886059: Total number of instructions executed

2552098900: Total computed cycles

6.380: Total computed execution time (secs.)

1.246: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls

function (dso: file, line)

007–3311–007 121

7: Analyzing Experiment Results: prof

[1] 6.088 95.4% 95.4% 2435240026 1956780024 1

anneal (generic: generic.c, 1560)

[2] 0.238 3.7% 99.1% 95000839 75000732 1

slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.050 0.8% 99.9% 20000056 15000054 1

cvttrap (generic: generic.c, 317)

[4] 0.001 0.0% 99.9% 503138 559313 5212

resolve_relocations (rld: rld.c, 2636)

[5] 0.001 0.0% 100.0% 274847 282220 1255

general_find_symbol (rld: rld.c, 2038)

[6] 0.000 0.0% 100.0% 116756 120371 3

fix_all_defineds (rld: rld.c, 3419)

[7] 0.000 0.0% 100.0% 115819 145585 1270

elfhash (rld: obj.c, 1184)

[8] 0.000 0.0% 100.0% 102496 146324 6406

obj_dynsym_got (rld: objfcn.c, 46)

[9] 0.000 0.0% 100.0% 89123 116619 948

fread (libc.so.1: fread.c, 27)

[10] 0.000 0.0% 100.0% 74339 58123 1

init2da (generic: generic.c, 1417)

.

.

.

disassembly listing

*DF*_generic.MIPS.stubs_1

*DF*_generic.MIPS.stubs_1@0x10001fd4-0x100023d8: <0x10001fd4-0x100023d8>

.

.

.

/usr/people/n4733/demos/SpeedShop/generic/generic.c

main: <0x10002500-0x10002640>

31 total cycles(0.00%) invoked 1 times, average 31 cycles/invocation

File ’/usr/people/n4733/demos/SpeedShop/generic/generic.c’:

Skipping source listing to line 91

92: void sproctestgrandchild(void *); /* sproc grandchild code */

93:

94: static struct timeval starttime; /* starting time - first timestamp */

122 007–3311–007

SpeedShop User’s Guide

95: static struct timeval ttime; /* last-recorded timestamp */

96: static struct timeval deltatime;

97:

98: int pagesize;

99:

100: main(unsigned argc, char **argv)

101: {

[101] 0x10002500 0x27bdffd0 addiu sp,sp,-48 # 1

[101] 0x10002504 0xffbc0010 sd gp,16(sp) # 2

[101] 0x10002508 0xffbf0008 sd ra,8(sp) # 3

[101] 0x1000250c 0x3c010002 lui at,0x2 # 3

[101] 0x10002510 0x2421eb28 addiu at,at,-5336 # 4

[101] 0x10002514 0x0321e021 addu gp,t9,at # 5

[101] 0x10002518 0xafa40024 sw a0,36(sp) # 5

[101] 0x1000251c 0xafa5002c sw a1,44(sp) # 6

102: int i;

103:

104: /* initialize the timestamp */

105: (void) gettimeofday(& starttime, NULL);

[105] 0x10002520 0x27848198 addiu a0,gp,-32360 # 6

[105] 0x10002524 0x00002825 move a1,zero # 6

[105] 0x10002528 0x8f998064 lw t9,-32668(gp) # 7

<2 cycle stall for following instruction>

[105] 0x1000252c 0x0320f809 jalr ra,t9 # 8

[105] 0x10002530 0000000000 nop # 9

^--- 11 total cycles(0.00%) executed 1 times, average 11 cycles.---^

106:

107: /* set up to reap any children */

108: (void) sigset(SIGCHLD, (SIG_PF)reapSig);

[108] 0x10002534 0x24040012 li a0,18 # 1

[108] 0x10002538 0x8f858130 lw a1,-32464(gp) # 2

[108] 0x1000253c 0x8f998068 lw t9,-32664(gp) # 3

<2 cycle stall for following instruction>

[108] 0x10002540 0x0320f809 jalr ra,t9 # 4

[108] 0x10002544 0000000000 nop # 5

^--- 6 total cycles(0.00%) executed 1 times, average 6 cycles.---^

109:

110: if(argc == 1) {

[110] 0x10002548 0x8fa20024 lw v0,36(sp) # 1

[110] 0x1000254c 0x24030001 li v1,1 # 2

<2 cycle stall for following instruction>

007–3311–007 123

7: Analyzing Experiment Results: prof

[110] 0x10002550 0x1443000c bne v0,v1,0x10002584 # 3

[110] 0x10002554 0000000000 nop # 4

Preceding branch executed 1 times, taken 0 times.

^--- 5 total cycles(0.00%) executed 1 times, average 5 cycles.---^

111: Scriptstring(DEFAULT_SCRIPT);

[111] 0x10002558 0x8f848034 lw a0,-32716(gp) # 1

<1 cycle stall for following instruction>

[111] 0x1000255c 0x24848008 addiu a0,a0,-32760 # 2

[111] 0x10002560 0x8f998138 lw t9,-32456(gp) # 2

[111] 0x10002564 0x0c000a14 jal 0x10002850 # 2

[111] 0x10002568 0000000000 nop # 3

^--- 4 total cycles(0.00%) executed 1 times, average 4 cycles.---^

112: exit(0);

[112] 0x1000256c 0x00002025 move a0,zero # 1

[112] 0x10002570 0x8f99805c lw t9,-32676(gp) # 2

<2 cycle stall for following instruction>

[112] 0x10002574 0x0320f809 jalr ra,t9 # 3

[112] 0x10002578 0000000000 nop # 4

^--- 5 total cycles(0.00%) executed 1 times, average 5 cycles.---^

[112] 0x1000257c 0x10000020 b 0x10002600 # 1

[112] 0x10002580 0000000000 nop # 2

^--- 0 total cycles(0.00%) executed 0 times, average 2 cycles.---^

113: } else {

114:

115: i = argc;

[115] 0x10002584 0x8fa60024 lw a2,36(sp) # 1

[115] 0x10002588 0xafa60000 sw a2,0(sp) # 2

.

.

.

Using the -calipers Option

When you run prof on the output of an experiment in which you have recorded
caliper points, you can use the -calipers option to specify the area of the program
for which you want to generate a performance report. For example, if you record just
one caliper point in the middle of your program, prof can provide a report from the
beginning of the program up to the first caliper point using the following command:

prof -calipers 0,1 executable_name.exp_type.id

124 007–3311–007

SpeedShop User’s Guide

The prof command can also provide a report from the caliper point to the end of the
program using the following command:

prof -calipers 1,2 executable_name.exp_type.id

If you record two caliper points (0, 1, 2, 3), prof can generate a report from the
second to the third caliper point:

prof -calipers 1,2 executable_name.exp_type.id

Using the -butterfly Option

For ideal, usertime, and fpe experiments, the -butterfly option to prof can
be used to obtain inclusive metric information. prof provides the standard report
and then appends the inclusive function counts information to the end of the report.
The following example is partial output from prof, showing just the inclusive
function counts report.

With inclusive cycle counting, prof prints a list of functions at the end, which are
called but not defined. It also includes functions from libss; they are instrumented,
but their data is normally excluded.

The prof report does not list the cycles of a procedure in the inclusive listing for the
following reasons:

• init, fini, and MIPS.stubs sections are not part of any procedure.

• Calls to procedures that do not use a “jump and link” are not recognized as
procedure calls. (This is not true for ideal experiments.)

• When global procedures with the same name are executed in different DSOs, only
one of them is listed.

These exceptions are listed at the end of the report.

This example shows output from calling prof for a usertime experiment:

SpeedShop profile listing generated Thu Feb 12 13:52:09 1998

prof -butterfly generic.usertime.m10981

generic (n32): Target program

usertime: Experiment name

ut:cu: Marching orders

R4400 / R4000: CPU / FPU

007–3311–007 125

7: Analyzing Experiment Results: prof

1: Number of CPUs

175: Clock frequency (MHz.)

Experiment notes--

From file generic.usertime.m10981:

Caliper point 0 at target begin, PID 10981

/usr/demos/SpeedShop/linpack.demos/c/generic

Caliper point 1 at exit(0)

Summary of statistical callstack sampling data (usertime)--

809: Total Samples

0: Samples with incomplete traceback

24.270: Accumulated Time (secs.)

30.0: Sample interval (msecs.)

Function list, in descending order by exclusive time

[index] excl.secs excl.% cum.% incl.secs incl.% samples function

(dso: file, line)

[4] 22.770 93.8% 93.8% 22.770 93.8% 759 anneal

(generic: generic.c, 1573)

[6] 1.020 4.2% 98.0% 1.020 4.2% 34 slaveusrtime

(dlslave.so: dlslave.c, 22)

[9] 0.210 0.9% 98.9% 0.210 0.9% 7 cvttrap

(generic: generic.c, 317)

[12] 0.120 0.5% 99.4% 0.120 0.5% 4 _pm_create_special

(libc.so.1: pm.c, 191)

[14] 0.090 0.4% 99.8% 0.090 0.4% 3 _migr_policy_args_init

(libc.so.1: pm.c, 398)

[10] 0.030 0.1% 99.9% 0.180 0.7% 6 iofile

(generic: generic.c, 464)

[11] 0.030 0.1% 100.0% 0.150 0.6% 5 _doscan_f

(libc.so.1: inline_doscan.c, 615)

[1] 0.000 0.0% 100.0% 24.270 100.0% 809 __start

(generic: crt1text.s, 101)

[2] 0.000 0.0% 100.0% 24.270 100.0% 809 main

(generic: generic.c, 101)

[3] 0.000 0.0% 100.0% 24.270 100.0% 809 Scriptstring

(generic: generic.c, 184)

[5] 0.000 0.0% 100.0% 22.770 93.8% 759 usrtime

(generic: generic.c, 1377)

126 007–3311–007

SpeedShop User’s Guide

[15] 0.000 0.0% 100.0% 0.090 0.4% 3 dirstat

(generic: generic.c, 348)

[16] 0.000 0.0% 100.0% 0.090 0.4% 3 _pread

(libc.so.1: preadSCI.c, 33)

[13] 0.000 0.0% 100.0% 0.120 0.5% 4 _fullocale

(libc.so.1: _locale.c, 77)

[7] 0.000 0.0% 100.0% 1.020 4.2% 34 libdso

(generic: generic.c, 619)

[8] 0.000 0.0% 100.0% 1.020 4.2% 34 dlslave_routine

(dlslave.so: dlslave.c, 7)

Butterfly function list, in descending order by inclusive time

attrib.% attrib.time incl.time caller

(callsite) [index]

[index] incl.% incl.time self% self-time function [index]

attrib.% attrib.time incl.time callee

(callsite) [index]

[1] 100.0% 24.270 0.0% 0.000 __start [1]

100.0% 24.270 24.270 main

(@0x10001fac; generic: crt1text.s, 177) [2]

100.0% 24.270 24.270 __start

(@0x10001fac; generic: crt1text.s, 177) [1]

[2] 100.0% 24.270 0.0% 0.000 main [2]

100.0% 24.270 24.270 Scriptstring

(@0x10002040; generic: generic.c, 111) [3]

100.0% 24.270 24.270 main

(@0x10002040; generic: generic.c, 111) [2]

[3] 100.0% 24.270 0.0% 0.000 Scriptstring

[3]

93.8% 22.770 22.770 usrtime

(@0x10002460; generic: generic.c, 214) [5]

4.2% 1.020 1.020 libdso

(@0x10002460; generic: generic.c, 214) [7]

0.9% 0.210 0.210 cvttrap

(@0x10002460; generic: generic.c, 214) [9]

0.7% 0.180 0.180 iofile

007–3311–007 127

7: Analyzing Experiment Results: prof

(@0x10002460; generic: generic.c, 214) [10]

0.4% 0.090 0.090 dirstat

(@0x10002460; generic: generic.c, 214) [15]

93.8% 22.770 22.770 usrtime

(@0x10005c30; generic: generic.c, 1393) [5]

[4] 93.8% 22.770 93.8% 22.770 anneal [4]

93.8% 22.770 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[5] 93.8% 22.770 0.0% 0.000 usrtime [5]

93.8% 22.770 22.770 anneal

(@0x10005c30; generic: generic.c, 1393) [4]

4.2% 1.020 1.020 dlslave_routine

(@0x5ffe0690; dlslave.so: dlslave.c, 9) [8]

[6] 4.2% 1.020 4.2% 1.020 slaveusrtime

[6]

4.2% 1.020 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[7] 4.2% 1.020 0.0% 0.000 libdso [7]

4.2% 1.020 1.020 dlslave_routine

(@0x100032a0; generic: generic.c, 650) [8]

4.2% 1.020 1.020 libdso

(@0x100032a0; generic: generic.c, 650) [7]

[8] 4.2% 1.020 0.0% 0.000 dlslave_routine [8]

4.2% 1.020 1.020 slaveusrtime

(@0x5ffe0690; dlslave.so: dlslave.c, 9) [6]

0.9% 0.210 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[9] 0.9% 0.210 0.9% 0.210 cvttrap [9]

0.7% 0.180 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[10] 0.7% 0.180 0.1% 0.030 iofile [10]

0.6% 0.150 0.150 _doscan_f

(@0x10002d48; generic: generic.c, 483) [11]

128 007–3311–007

SpeedShop User’s Guide

0.6% 0.150 0.180 iofile

(@0x10002d48; generic: generic.c, 483) [10]

[11] 0.6% 0.150 0.1% 0.030 _doscan_f [11]

0.5% 0.120 0.120 _fullocale

(@0x0fadebe4; libc.so.1: inline_doscan.c, 808) [13]

0.5% 0.120 0.120 _fullocale

(@0x0fb0b1b8; libc.so.1: _locale.c, 84) [13]

[12] 0.5% 0.120 0.5% 0.120 _pm_create_special [12]

0.5% 0.120 0.150 _doscan_f

(@0x0fadebe4; libc.so.1: inline_doscan.c, 808) [11]

[13] 0.5% 0.120 0.0% 0.000 _fullocale [13]

0.5% 0.120 0.120 _pm_create_special

(@0x0fb0b1b8; libc.so.1: _locale.c, 84) [12]

0.4% 0.090 0.090 _pread

(@0x0fb05928; libc.so.1: preadSCI.c, 33) [16]

[14] 0.4% 0.090 0.4% 0.090 _migr_policy_args_init [14]

0.4% 0.090 24.270 Scriptstring

(@0x10002460; generic: generic.c, 214) [3]

[15] 0.4% 0.090 0.0% 0.000 dirstat [15]

0.4% 0.090 0.090 _pread

(@0x10002a5c; generic: generic.c, 381) [16]

0.4% 0.090 0.090 dirstat

(@0x10002a5c; generic: generic.c, 381) [15]

[16] 0.4% 0.090 0.0% 0.000 _pread [16]

0.4% 0.090 0.090 _migr_policy_args_init

(@0x0fb05928; libc.so.1: preadSCI.c, 33) [14]

Generating Reports for Different Machine Types
If you need to generate a report for a machine model that is different from the one on
which the experiment was performed, you can use several of the prof options to
specify a machine model.

007–3311–007 129

7: Analyzing Experiment Results: prof

For example, if you record an ideal experiment on an R4000 processor with a clock
frequency of 100 megahertz, but you want to generate a report for an R10000 processor
with a clock frequency of 196 megahertz, the prof command would be the following:

prof -r10000 -clock 196 generic.ideal.m4561

Generating Reports for Multiprocessed Executables
You can gather data from executables that use the sproc(2) and sprocsp(2) system
calls, such as those executables generated by POWER Fortran and POWER C. Prepare
and run the job using the same method as for uniprocessed executables. For
multiprocessed executables, each thread of execution writes its own separate data file.
View these data files with prof.

The only difference between multiprocessed and regular executables is how the data
files are named. The data files are named prog_name.experiment_type.id.

The experiment ID, id, consists of one or two letters (designating the process type)
and the process ID number. See Table 1-4, page 11 for the letter codes and their
meanings. This naming convention avoids the potential conflict of multiple threads
attempting to write simultaneously to the same file.

Determining Program Overhead
You can determine the overhead of a parallel program by including the -overhead
argument on the prof command line. The overhead information will be included at
the end of the usual report.

You can get the overhead report for any experiment, but it may be the most useful for
the following experiments:

• pcsamp

• usertime

• ideal

• The hardware counter experiments (*_hwc and *_hwctime)

Use the following steps to generate an overhead report on a system with multiple
processors.

130 007–3311–007

SpeedShop User’s Guide

1. Run the ideal experiment on the executable:

% ssrun -ideal linpackd

The ssrun command generates the following files, each from a different
processor, for an 8-processor program:

linpackd.ideal.m422744

linpackd.ideal.p421778

linpackd.ideal.p422191

linpackd.ideal.p422252

linpackd.ideal.p422313

linpackd.ideal.p422620
linpackd.ideal.p422704

linpackd.ideal.p422731

2. Combine the experiment files into one experiment file using the ssaggregate(1)
command.

% ssaggregate -e linpackd.ideal* -o ideal.8ps

3. Execute the prof command with the -overhead option to create the data file.

% prof -overhead ideal.8ps >result

The result file contains the usual ideal experiment output with the overhead
information at the end. Note that some lines are wrapped here to accommodate page
width:

SpeedShop profile listing generated Fri Jun 25 09:21:27 1999

prof -overhead ideal.8ps

linpackd (n32): Target program

ideal: Experiment name

it:cu: Marching orders

R10000 / R10010: CPU / FPU

16: Number of CPUs

195: Clock frequency (MHz.)

Experiment notes--

From file ideal.8ps:

Caliper point 0 at target begin, PID 422744

linpackd

Caliper point 0 at target begin, PID 422620

linpackd

007–3311–007 131

7: Analyzing Experiment Results: prof

Caliper point 0 at target begin, PID 422731

linpackd

Caliper point 0 at target begin, PID 422704

linpackd

Caliper point 0 at target begin, PID 422252

linpackd

Caliper point 0 at target begin, PID 421778

linpackd

Caliper point 0 at target begin, PID 422191

linpackd

Caliper point 0 at target begin, PID 422313

linpackd

Caliper point 1 at exit(0)

Summary of ideal time data (ideal)--

29877509668: Total number of instructions executed

20592366537: Total computed cycles

105.602: Total computed execution time (secs.)

0.689: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls

function (dso: file, line)

[1] 72.955 69.1% 69.1% 14226219437 24895879414 140

__mp_slave_wait_for_work (libmp.so: mp_parallel_do.s, 593)

[2] 30.344 28.7% 97.8% 5917081268 4669997342 772633

daxpy (linpackd: linpack.f, 495)

.

.

.

OpenMP Report

Parallelization Overhead: 00.000%

Load Imbalance: 00.076%

Insufficient Parallelism: 69.085%

Barrier Loss: 00.002%

Synchronization Loss: 00.000%

132 007–3311–007

SpeedShop User’s Guide

Other Model-specific Overhead: 00.000%

The parallel model used in the program was OpenMP, although other parallel models
(such as MPI and pthreads) are supported. The categories for which information is
returned vary depending on the model. The OpenMP categories have the following
meanings:

Parallelization Overhead

The percentage of the program’s time spent doing work necessary to
a parallel program, such as distributing loop iterations and data
among the processors. The percentage is negligible for this program.

Load Imbalance

The percentage of a program’s time lost because work was not spread
evenly across the processors. This number would be 0 if each
processor had exactly the same amount of work.

Insufficient Parallelism

The percentage of a program’s time in which the processors were not
working in parallel. The number returned for this program tells us
that about two-thirds of the program time was not parallelized.

Barrier Loss

The percentage of the program’s time used by the barrier process.
This is not the time processors spent waiting at barriers.

Synchronization Loss

The percentage of the program’s time used by the other
synchronization processes.

Other Model-specific Overhead

The percentage of a program’s time spent in other OpenMP (in this
case) processes.

The same aggregated experiment file created above can be used by the cvperf(1)
command to display overhead information in its own window. For an example, see
the Developer Magic: Performance Analyzer User’s Guide.

007–3311–007 133

7: Analyzing Experiment Results: prof

Generating Compiler Feedback Files
If you run an ideal experiment, run prof with the -feedback option to generate a
feedback file that can be used to arrange procedures more efficiently on the next
compilation. You can rearrange procedures using the -fb option on compiler
command lines.

To reorder code regions for the cord(1) command, use the -cordfb or -cordfball
option to prof.

For more information, see your compiler man page, the cord(1) man page, or the
MIPSpro Compiling and Performance Tuning Guide.

134 007–3311–007

Chapter 8

Using SpeedShop in Expert Mode: pixie

This chapter provides information on how to run pixie and prof without invoking
ssrun. By calling pixie directly, you can generate the following performance data:

• An exact count of the number of times each basic block in your program is
executed. A basic block is a sequence of instructions that is entered only at the
beginning of the sequence and is exited only at the end. No jumps into or out of a
basic block are permitted.

• Counts for callers of a routine as well as counts for callees. prof can provide
inclusive basic block counting by propagating regular counts to callers of a routine.

For more information on basic block counting and inclusive basic block counting, see
"How SpeedShop Prepares Files", page 54 and "Inclusive Basic Block Counting", page
55.

This chapter contains the following sections:

• "Using pixie", page 135

• "Obtaining Basic Block Counts", page 138

• "Obtaining Inclusive Basic Block Counts", page 145

Using pixie

Your can use pixie to measure the frequency of code execution. pixie reads an
executable program, partitions it into basic blocks, and writes (instruments) an
equivalent program containing additional code that counts the execution of each basic
block.

Note that the execution time of an instrumented program is two to five times longer
than that of an uninstrumented one. This timing change may alter the behavior of a
program that deals with a graphical user interface (GUI) or depends on events that
are based on an external clock, such as SIGALRM.

pixie Syntax

The syntax for pixie is as follows:

007–3311–007 135

8: Using SpeedShop in Expert Mode: pixie

pixie infile [options]

infile Name of an executable to be used as input to pixie.

options Zero or more of the keywords listed in Table 8-1.

pixie Options

Table 8-1 lists commonly-used pixie options. For a complete list of options, see the
pixie(1) man page.

Table 8-1 Options for pixie

Name Result

-addlibs
lib1.so[:lib2.so...[:libn.so]]

Specifies DSOs to add to the library list of the executable. No
libraries are added by default.

-addlibs_file file Specifies DSOs in the named file to add to the library list of the
executable file. Blank lines and lines starting with a # symbol are
ignored. Specify one DSO per line. By default, libpixrt.so is
always added; if pixie is running under SpeedShop,
libss.so.pix* and libssrt.so.pix* are also added.

-[no]autopixie Permits or does not (noautopixie) prevent a recursive
instrumenting of all dynamic shared libraries used by the input file
during run time. pixie keeps the timestamp and checksum from the
original executable. Thus, before instrumenting a shared library,
pixie checks any files that it has already processed that match the
lib it is to instrument. If the fields match, they are not instrumented.
pixie cannot detect shared libraries opened with dlopen(), and
hence it does not instrument them. All used DSOs need to be
instrumented for the pixified executable to work. The default
behavior with shared libraries is -noautopixie. The default
behavior with an executable is -autopixie.

-copy Produces a copy of the executable with function list (map) and arc
list (graph) sections but does not instrument the executable. An
executable file and library files ending in the extension _Info32,
_Infon32, or _Info64, as appropriate, will be produced.

136 007–3311–007

SpeedShop User’s Guide

Name Result

-counts_file file Specifies the name to be used for the output .Counts file. By
default, .Counts is appended to the original infile name.

-directory dir_name Writes output files to dir_name. Files are written to the current
directory by default.

-dso Treats the executable as if it were compiled with the -o32 ABI.
Performs a search of standard o32 library directories. A .pix32
extension is used.

-dso32 Treats the executable as if it was compiled with the -n32 ABI.
Performs a search of standard n32 library directories. A .pixn32
extension is used.

-dso64 Treats the executable as if it was compiled with the -64 ABI.
Performs a search of standard n64 library directories. A .pix64
extension is used.

-fcncounts Produces an instrumented executable that counts function calls and
arc calls but not basic-block or branch counts.

-[no]longbranch During instrumentation, some transformations can push a branch
offset beyond its legal range and pixie generates warnings about
branch offsets being out of range. This option causes pixie to
transform these instructions into jumps. The default is
-nolongbranch.

-[no]pids The -pids option appends the process ID number to the end of the
file.Counts. This is useful if you want to run the program
instrumented with pixie through a variety of tests before generating
the statistics with prof(1). If specified, the -nopids option is
overridden by any process that issues a fork(2) or sproc(2) system
call. The default is -nopids.

-pixie_file name Specifies the name of the executable file created by pixie.

-suffix .suffix Appends .suffix to the executable processed by pixie. The default
suffix is .pixie.

-[no]verbose Prints or suppresses (-noverbose) messages summarizing the
binary-to-binary translation process. The default is -noverbose.

007–3311–007 137

8: Using SpeedShop in Expert Mode: pixie

pixie Output

The pixie command generates a set of files with a .pixie extension. These files are
essentially copies of your original executable and any DSOs you specified in the call
to pixie with code inserted to enable the collection of performance data when the
.pixie version of your program is run.

If you use the -verbose flag with pixie, it reports the size of the old and new code.
The new code size is the size of the code pixie will actually execute. It does not
count read-only data (including a copy of the original text and another data block the
same size as the original text) put into the text section. Calling size on the .pixie
file reports a much larger text size than pixie -verbose, because size also counts
everything in the text segment.

When you run the .pixie version of your program, one or more .Counts files are
generated. The name of an output .Counts file is that of the original program with
any leading directory names removed and .Counts appended. If the program
executes calls to sproc(), sprocsp(), or fork(), multiple .Counts files are
generated: one for each process in the shared group. In this case, each file will have
the process ID appended to its name.

Obtaining Basic Block Counts
Use this procedure to obtain basic block counts. Also refer to Figure 8-1, page 140,
which illustrates how basic block counting works. Though the preferred method of
getting basic block information is using ssrun -ideal, you can use pixie directly.

1. Compile and link your program. The following example uses the input file
myprog.c:

% cc -o myprog myprog.c

The cc compiler compiles myprog.c into an executable called myprog.

2. Run pixie to generate the equivalent program containing basic-block-counting
code.

% pixie myprog

The pixie command takes myprog and writes an equivalent program,
myprog.pixie, containing additional code that counts the execution of each
basic block. pixie also writes an equivalent program for each shared object used
by the program (in the form: libname.so.pix*), containing additional code

138 007–3311–007

SpeedShop User’s Guide

that counts the execution of each basic block. For example, if myprog uses
libc.so.1, pixie generates libc.so.1.pix*. (The value of * depends on the
ABI.)

3. Execute the files generated by pixie (myprog.pixie) in the same way you
executed the original program:

% ./myprog.pixie

This program generates a list of basic block counts in files named
myprog.Counts. If the program executes fork or sproc, a process ID is
appended to the end of the file name (for example, myprog.Counts.m34521)
for each process.

Note: Your program may not run as you expect when you invoke it with a
.pixie extension. Some programs, uncompress and vi, for example, treat their
arguments differently when the name of the program changes. You may need to
rename the .pixie version of your program back to its original name.

A valid .Counts file is generated under most normal and abnormal program
terminations. If signal handlers are installed, you must use exit(2) to terminate,
since the run-time fatal signal handlers will be overwritten.

4. Run the profile formatting program prof(1), specifying the name of the .Counts
file for the program, as shown in the following example:

% prof myprog.Counts

The prof program extracts information from myprog.Counts and prints it in an
easily readable format. If multiple .Counts files exist, you can use the wildcard
character (*) to specify all the files.

% prof myprog.Counts*

You can run the program several times, altering the input data, to create multiple
profile data files.

The time computation assumes a best case execution; actual execution takes longer.
This is because the time includes predicted stalls within a basic block, but not actual
stalls that may occur entering a basic block. It also assumes that all instructions and
data are in cache, that is, it excludes the delays due to cache misses, memory fetches
and stores, translation look-aside buffer and page faults, and other operating system
overhead.

007–3311–007 139

8: Using SpeedShop in Expert Mode: pixie

Formatted listing

of profile statistics

Execute

prof progname.Counts

to format data

Execute new program

(progname.pixie)

to collect data

Execute pixie to create

a new equivalent program

pixie progname

Compile

progname.c

Data Files

(progname.

Counts)

a11550

Figure 8-1 How Basic Block Counting Works

140 007–3311–007

SpeedShop User’s Guide

Examples of Basic Block Counting

The examples in this section illustrate how to use prof to obtain basic block counting
information from a C program, generic.

Example Using prof with No Options

The partial listing that follows illustrates the report generated for basic block counts
generic. The prof command first provides a standard report of basic block counts,
then provides a report reflecting any options provided to prof.

SpeedShop profile listing generated Tue Feb 3 14:25:43 1998

prof generic.Counts

generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2062563311: Total number of instructions executed

3929944454: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls

function (dso: file, line)

[1] 21.453 95.5% 95.5% 3754320037 1971220024 1

anneal (generic: generic.c, 1573)

[2] 0.829 3.7% 99.2% 145001152 75000732 1

slaveusrtime (dlslave.so: dlslave.c, 22)

[3] 0.171 0.8% 100.0% 30000081 16000054 1

cvttrap (generic: generic.c, 317)

[4] 0.001 0.0% 100.0% 101504 58124 1

init2da (generic: generic.c, 1430)

[5] 0.001 0.0% 100.0% 91200 38400 1600

_drand48 (libc.so.1: drand48.c, 116)

[6] 0.001 0.0% 100.0% 89072 55011 447

007–3311–007 141

8: Using SpeedShop in Expert Mode: pixie

fread (libc.so.1: fread.c, 34)

[7] 0.000 0.0% 100.0% 74859 47364 53

_doprnt (libc.so.1: doprnt.c, 285)

[8] 0.000 0.0% 100.0% 64035 29479 628

__sinf (libm.so: fsin.c, 93)

[9] 0.000 0.0% 100.0% 32355 7182 9

offtime (libc.so.1: time_comm.c, 180)

[10] 0.000 0.0% 100.0% 17112 11916 305

_readdir (libc.so.1: readdir.c, 135)

• The [index] column assigns a reference number to each function.

• The excl.secs column shows the number of seconds spent in each procedure.
For example, 21.453 seconds were spent in the anneal function. The time
represents an idealized computation based on modeling the machine. It ignores
potential floating-point interlocks and memory latency time (cache misses and
memory bus contention).

• The excl.% column lists the percentage of the program’s total time spent in each
function. The anneal function takes 95.5% of the total time.

• The cum.% column shows the cumulative percentage of calls. For example, 99.2%
of the total program time was spent in the top two functions in the listing:
anneal and slaveusrtime.

• The cycles column reports the number of machine cycles used for the procedure.
For example, 3,754,320,037 cycles were spent in the anneal function.

• The instructions column shows the number of instructions executed by a
function. For example, the anneal function executed 1,971,220,024 instructions.

• The calls column reports the number of calls to each function. For example,
there was just one call to the anneal function.

• The function (dso: file, line) column lists the function name, its DSO
name, its file name, and its line number. For example, the first line reports
statistics for the function anneal, in the file generic, the DSO generic.c, and
the line number 1573.

Example Using prof -heavy

The partial listing that follows shows the source code lines responsible for the largest
portion of execution time produced using the -heavy option.

142 007–3311–007

SpeedShop User’s Guide

% prof -heavy generic generic.Counts

The following partial listing shows basic block counts sorted in descending order of
cycles used. Note that some lines are wrapped to accommodate page width:

SpeedShop profile listing generated Mon Jul 17 14:56:42 2000

prof -heavy generic generic.Counts

generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R12000 / R12010: CPU / FPU

128: Number of CPUs

400: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2048900832: Total number of instructions executed

2552124432: Total computed cycles

6.380: Total computed execution time (secs.)

1.246: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls function

(dso: file, line)

[1] 6.088 95.4% 95.4% 2435240026 1956780024 1 anneal

(generic: generic.c, 1560)

[2] 0.238 3.7% 99.1% 95000839 75000732 1 slaveusrtime

(dlslave.so: dlslave.c, 22)

[3] 0.050 0.8% 99.9% 20000056 15000054 1 cvttrap

(generic: generic.c, 317)

[4] 0.001 0.0% 99.9% 503642 559957 5240 resolve_relocations

(rld: rld.c, 2636)

[5] 0.001 0.0% 100.0% 310609 310711 1255 general_find_symbol

(rld: rld.c, 2038)

[6] 0.000 0.0% 100.0% 117497 121140 4 fix_all_defineds

(rld: rld.c, 3419)

[7] 0.000 0.0% 100.0% 115211 144829 1266 elfhash

(rld: obj.c, 1184)

[8] 0.000 0.0% 100.0% 102576 146439 6411 obj_dynsym_got

(rld: objfcn.c, 46)

007–3311–007 143

8: Using SpeedShop in Expert Mode: pixie

[9] 0.000 0.0% 100.0% 89123 116619 948 fread

(libc.so.1: fread.c, 27)

[10] 0.000 0.0% 100.0% 74339 58123 1 init2da

(generic: generic.c, 1417)

.

.

.

Example Using prof -quit

You can limit the output of prof to collect information on only the most
time-consuming parts of the program by specifying the -quit option. You can
instruct prof to quit after a particular number of lines of output, after listing the
elements consuming more than a certain percentage of the total, or after the portion
of each listing whose cumulative use is a certain amount.

Consider the following sample listing, which displays only the first four entries:

% prof -quit 4 generic generic.Counts

SpeedShop profile listing generated Wed Feb 4 10:18:58 1998

prof -quit 4 generic generic.Counts

generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R4400 / R4000: CPU / FPU

1: Number of CPUs

175: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2062563311: Total number of instructions executed

3929944454: Total computed cycles

22.457: Total computed execution time (secs.)

1.905: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions calls function

(dso: file, line)

[1] 21.453 95.5% 95.5% 3754320037 1971220024 1 anneal

144 007–3311–007

SpeedShop User’s Guide

(generic: generic.c, 1573)

[2] 0.829 3.7% 99.2% 145001152 75000732 1 slaveusrtime

(dlslave.so: dlslave.c, 22)

[3] 0.171 0.8% 100.0% 30000081 16000054 1 cvttrap

(generic: generic.c, 317)

[4] 0.001 0.0% 100.0% 101504 58124 1 init2da

(generic: generic.c, 1430)

Obtaining Inclusive Basic Block Counts
Inclusive basic block counting counts basic blocks and generates a call graph. By
propagating regular counts to callers of a routine, prof provides inclusive basic block
counting. For more information, see "Inclusive Basic Block Counting", page 55.

To see inclusive data, run the profile formatting program prof, specifying the
-butterfly flag, the name of the original program, and the .Counts file for the
program as follows:

% prof -butterfly myprog myprog.Counts

The prof program extracts information from myprog.Counts and prints it in an
easily readable format. If multiple .Counts files exist, you can use the wildcard
character (*) to specify all of the files.

% prof -butterfly myprog myprog.Counts*

Example of prof -butterfly

This section contains part of a sample output obtained by using the -butterfly
option. For more information, see "Using the -butterfly Option", page 125. The
following command generated the output:

% prof -butterfly generic generic.Counts

The following output, which has been adjusted slightly in this example, concentrates
on the -butterfly function list part of the display. The first line in the header
applies to the function that called the function under consideration. The second line
in the header applies to the function under consideration. The third line applies to the
functions it called. Note that some lines are wrapped to accommodate page width:

007–3311–007 145

8: Using SpeedShop in Expert Mode: pixie

SpeedShop profile listing generated Mon Jul 17 14:58:43 2000

prof -butterfly generic generic.Counts

generic (n32): Target program

pixie-counts: Experiment name

pixie-counts: Marching orders

R12000 / R12010: CPU / FPU

128: Number of CPUs

400: Clock frequency (MHz.)

Summary of ideal time data (pixie-counts)--

2048900832: Total number of instructions executed

2552124432: Total computed cycles

6.380: Total computed execution time (secs.)

1.246: Average cycles / instruction

Function list, in descending order by exclusive ideal time

[index] excl.secs excl.% cum.% cycles instructions incl.secs incl.% calls

function (dso: file, line)

[5] 6.088 95.4% 95.4% 2435240026 1956780024 6.088 95.4% 1

anneal (generic: generic.c, 1560)

[8] 0.238 3.7% 99.1% 95000839 75000732 0.238 3.7% 1

slaveusrtime (dlslave.so: dlslave.c, 22)

[9] 0.050 0.8% 99.9% 20000056 15000054 0.050 0.8% 1

cvttrap (generic: generic.c, 317)

[12] 0.001 0.0% 99.9% 503642 559957 0.001 0.0% 5240

resolve_relocations (rld: rld.c, 2636)

[17] 0.001 0.0% 100.0% 310609 310711 0.001 0.0% 1255

general_find_symbol (rld: rld.c, 2038)

[14] 0.000 0.0% 100.0% 117497 121140 0.001 0.0% 4

fix_all_defineds (rld: rld.c, 3419)

[28] 0.000 0.0% 100.0% 115211 144829 0.000 0.0% 1266

elfhash (rld: obj.c, 1184)

[30] 0.000 0.0% 100.0% 102576 146439 0.000 0.0% 6411

obj_dynsym_got (rld: objfcn.c, 46)

[34] 0.000 0.0% 100.0% 89123 116619 0.000 0.0% 948

fread (libc.so.1: fread.c, 27)

[31] 0.000 0.0% 100.0% 74339 58123 0.000 0.0% 1

init2da (generic: generic.c, 1417)

146 007–3311–007

SpeedShop User’s Guide

[15] 0.000 0.0% 100.0% 56644 71762 0.001 0.0% 1243

resolve_symbol (rld: rld.c, 1828)

[20] 0.000 0.0% 100.0% 53136 68857 0.001 0.0% 1209

resolving (rld: rld.c, 1499)

[44] 0.000 0.0% 100.0% 46400 35200 0.000 0.0% 1600

_drand48 (libc.so.1: drand48.c, 116)

[41] 0.000 0.0% 100.0% 43882 49586 0.000 0.0% 54

_doprnt (libc.so.1: doprnt.c, 227)

[47] 0.000 0.0% 100.0% 37939 92324 0.000 0.0% 1637

strcmp (rld: strcmp.s, 34)

[48] 0.000 0.0% 100.0% 36954 15714 0.000 0.0% 18

offtime (libc.so.1: time_comm.c, 179)

[52] 0.000 0.0% 100.0% 30312 25270 0.000 0.0% 2536

obj_set_dynsym_got (rld: objfcn.c, 82)

[50] 0.000 0.0% 100.0% 26713 31882 0.000 0.0% 7

search_for_externals (rld: rld.c, 3987)

.

.

.

Butterfly function list, in descending order by inclusive ideal time

attrib.% attrib.time(#calls) incl.time caller (callsite) [index]

[index] incl.% incl.time self% self-time procedure [index]

attrib.% attrib.time(#calls) incl.time callee (callsite) [index]

[1] 99.9% 6.376 0.0% 0.000 __start [1]

99.9% 6.376(0000001) 6.376 main [2]

0.0% 0.000(0000001) 0.000 __readenv_sigfpe [308]

0.0% 0.000(0000001) 0.000 __istart [309]

99.9% 6.376(0000001) 6.376 __start [1]

[2] 99.9% 6.376 0.0% 0.000 main [2]

99.9% 6.376(0000001) 6.376 Scriptstring [3]

99.9% 6.376(0000001) 6.376 main [2]

[3] 99.9% 6.376 0.0% 0.000 Scriptstring [3]

95.4% 6.088(0000001) 6.088 usrtime [4]

3.7% 0.238(0000001) 0.238 libdso [6]

0.8% 0.050(0000001) 0.050 cvttrap [9]

0.0% 0.000(0000001) 0.000 iofile [26]

007–3311–007 147

8: Using SpeedShop in Expert Mode: pixie

0.0% 0.000(0000001) 0.000 dirstat [57]

0.0% 0.000(0000002) 0.000 genLog [33]

0.0% 0.000(0000001) 0.000 linklist [62]

0.0% 0.000(0000001) 0.000 fpetraps [64]

0.0% 0.000(0000002) 0.000 fprintf [53]

0.0% 0.000(0000002) 0.000 sprintf [49]

0.0% 0.000(0000061) 0.000 strcmp [47]

95.4% 6.088(0000001) 6.376 Scriptstring [3]

[4] 95.4% 6.088 0.0% 0.000 usrtime [4]

95.4% 6.088(0000001) 6.088 anneal [5]

0.0% 0.000(0000001) 0.000 genLog [33]

0.0% 0.000(0000001) 0.000 fprintf [53]

95.4% 6.088(0000001) 6.088 usrtime [4]

[5] 95.4% 6.088 95.4% 6.088 anneal [5]

0.0% 0.000(0000001) 0.000 init2da [31]

3.7% 0.238(0000001) 6.376 Scriptstring [3]

[6] 3.7% 0.238 0.0% 0.000 libdso [6]

3.7% 0.238(0000001) 0.238 dlslave_routine [7]

0.0% 0.000(0000001) 0.000 genLog [33]

0.0% 0.000(0000001) 0.000 fprintf [53]

0.0% 0.000(0000001) 0.000 sprintf [49]

3.7% 0.238(0000001) 0.238 libdso [6]

[7] 3.7% 0.238 0.0% 0.000 dlslave_routine [7]

3.7% 0.238(0000001) 0.238 slaveusrtime [8]

0.0% 0.000(0000001) 0.000 fprintf [53]

3.7% 0.238(0000001) 0.238 dlslave_routine [7]

[8] 3.7% 0.238 3.7% 0.238 slaveusrtime [8]

0.0% 0.000(0000001) 0.000 fprintf [53]

0.0% 0.000(0000001) 0.000 malloc [208]

0.8% 0.050(0000001) 6.376 Scriptstring [3]

[9] 0.8% 0.050 0.8% 0.050 cvttrap [9]

0.0% 0.000(0000001) 0.000 genLog [33]

0.0% 0.000(0000001) 0.000 fprintf [53]

[10] 0.0% 0.002 0.0% 0.000 _rld_text_resolve [10]

148 007–3311–007

SpeedShop User’s Guide

0.0% 0.002(0000032) 0.002 lazy_text_resolve [11]

0.0% 0.000(0000032) 0.000 restore_pixie_regs [133]

0.0% 0.000(0000032) 0.000 save_pixie_regs [136]

.

.

.

007–3311–007 149

Chapter 9

Miscellaneous Commands

This chapter describes SpeedShop commands for exploring memory usage and
paging, and for printing data files generated by SpeedShop tools. It contains the
following sections:

• "Using the thrash Command", page 151

• "Using the squeeze Command", page 152

• "Calculating the Working Set of a Program", page 153

• "Dumping Performance Data Files", page 155

• "Dumping Compiler Feedback Files", page 162

• "Converting an MPI Experiment File to Vampir Format", page 163

Using the thrash Command
The thrash command allows you to explore paging behavior by allocating a region
of virtual memory and accessing that memory either randomly or sequentially.

thrash Syntax

The syntax for the thrash(1) command is as follows:

thrash args [-n count] [-s] [-w time]

args One of the following flags:

-k n The amount of memory to access in kilobytes, where n is
the number of kilobytes. The minimum value for n is the
size of one page, or the value will be changed
appropriately.

-m n The amount of memory to access in megabytes, where n
is the number of megabytes.

-p n The amount of memory to access in pages, where n is the
number of pages.

007–3311–007 151

9: Miscellaneous Commands

-n [count] The number of references to make before exiting. The default is 10,000.

-s Sequential thrashing. The default is random.

-w time An integer amount of time, in seconds, thrash should sleep after
thrashing but before exiting. The default is 0 seconds.

Effects of thrash

Once the memory is allocated, thrash prints a message on stdout, saying how
much memory it is using and then proceeds to access it. The following is an example:

% thrash -m 4

thrashing randomly: 4.00 MB (= 0x00400000 = 4194304 bytes = 1024 pages)

10000 iterations

You can use thrash in conjunction with ssusage(1) and squeeze(1) to determine
the approximate available working memory on a system, as described in "Calculating
the Working Set of a Program", page 153.

Using the squeeze Command
The squeeze command lets you specify an amount of virtual memory to lock down
into real memory, thus making it unavailable to other processes. This command can
be used only in superuser mode.

squeeze Syntax

The syntax for the squeeze(1) command is as follows:

squeeze [unit] amount

unit One of the following options indicating the unit of measure. If no
option is specified, the default is megabytes.

-k Kilobytes

-m Megabytes

-p Pages

152 007–3311–007

SpeedShop User’s Guide

-% A percentage of the installed memory

amount The amount of memory to be locked.

Effects of squeeze

The squeeze(1) command performs the following operations:

• Locks down the amount of virtual memory you supply as an argument to the
command.

• Prints a message to stdout that provides information on how much memory has
been locked and how much working memory is available.

• Sleeps indefinitely, or until interrupted by SIGINT or SIGTERM. At that time, it
frees up the memory and exits with an exit message.

Wait until after the exit message is printed before doing any experiments.

Here is an example that locks down 4 megabytes of memory:

% squeeze 4
squeeze: leaving 60.00 MB (= 0x03c01000 = 62918656) available memory;

pinned 4.00 MB (= 0x00400000 = 4194304) at address 0x1000e000;

from 64.00 MB (= 0x04001000 = 67112960) installed memory.

Use Ctrl-C to exit squeeze. The following message is printed:

squeeze exiting

Calculating the Working Set of a Program
You can use the thrash, squeeze, and ssusage commands together to determine
the approximate working set of a program. For all practical purposes, the working set
of your program is the size of memory allocated. The following procedure assumes
that you are running on a system that is either stand-alone or where the environment
will not change while you are running these tests.

The process involves three steps:

1. Determine the working set of the kernel and other applications:

007–3311–007 153

9: Miscellaneous Commands

a. Choose a machine that has a large amount of physical memory (enough to
allow your target application to run without any paging other than at startup).

b. Make sure that the machine is running a minimal number of applications that
will remain fairly consistent for the duration of these steps.

c. Run thrash with ssusage to determine the working set of the kernel and
any other applications you have running.

In this example, the thrash command uses 4 MB of memory:

% ssusage thrash -m 4

When the thrash command completes, ssusage prints the resource usage
of thrash. The value labeled majf gives the number of major page faults
(that is, the number of faults that required a physical I/O). When you run on
a machine with a large amount of physical memory, this value is the number
of faults needed to start the program, which is the minimum number for any
run. For more information on ssusage, see Chapter 5, "Collecting Data on
Machine Resource Usage", page 69.

d. As super user in a separate window, run the squeeze command to lock
down an amount of memory.

e. Rerun thrash with ssusage, as shown here:

% ssusage thrash -m 4

f. Repeat steps d and e, increasing the amount of memory for squeeze, until
the majf number begins to rise.

The amount of working memory available reported by squeeze at the point
at which page faults begin to rise for thrash tells you the combined working
set of thrash (approximately 4 MB), the kernel, and any other applications
you have running.

g. Deduct the 4 MB that thrash uses from the amount of working memory
reported by squeeze at the point the page faults began to rise.

This computation helps you find the approximate base working set of the
kernel and any other applications that are running on the machine. You will
need this number when you reach the next steps.

2. Determine the working set size of all of the applications described in step 1, plus
your program.

154 007–3311–007

SpeedShop User’s Guide

a. The applications that the machine is running should remain consistent with
the setup from step 1b.

b. Run ssusage with your program to ensure that the machine has the amount
of memory your program needs.

ssusage prog_name

When your program exits, ssusage prints the application’s resource usage.
The majf field gives the number of major page faults. When run on a
machine with a large amount of physical memory, this value is the number of
faults needed to start the program, which is the minimum number for any run.

c. In another window, become super user.

d. In this new window, run squeeze to lock down an amount of memory. The
following example locks down 15 megabytes of memory:

squeeze 15

e. In the first window, rerun your program with ssusage.

f. In the second window running squeeze, enter ctrl-c to cause squeeze to
exit.

g. Repeat steps d, e, and f, using squeeze to lock down increasing amounts of
memory until the majf number begins to rise.

h. Deduct the amount squeezed at the point at which the application begins to
page fault from the total amount of physical memory in the system. This
computation determines the combined working set of your program, the
kernel, and any other applications you have running.

3. Calculate the working set size of your program.

Deduct the amount of working memory calculated in step 1g from the combined
working set size calculated in step 2h. This computation determines the
approximate working set of your program.

Dumping Performance Data Files
All the performance data for a single process is in one file. The file begins with a
prologue and continues with a mixture of performance data, sample records, and
control records.

007–3311–007 155

9: Miscellaneous Commands

The ssdump command can be used for printing performance data files. It provides a
formatted ASCII dump of one or more performance experiment data files. This
command is most likely to be useful in verifying performance data that does not
seem accurate when reported through prof.

ssdump Syntax

The syntax of the ssdump(1) command is as follows:

ssdump [options] files

options Zero or more of the following print options:

-d Prints detailed information for each record in the
experiment file. For compressed records, the compressed
form will be dumped.

-D Prints detailed information for each record in the
experiment file. For compressed records, the
uncompressed form will be dumped. If both -D and -d
are specified, both forms are written for compressed
records, but only one copy is written for records that are
not recorded in compressed form.

-h Prints the hexadecimal contents of the body of each
record in the experiment file.

-i index Prints only one record at index in the file. An index value
may be obtained from a previous ssdump where all of
the records in the file were dumped.

-q Suppresses the printing of those fields that will normally
change from run to run, such as process IDs and time
stamps. This option is useful for quality assurance work
to enable automatic comparisons of recorded experiments.

-s offset Prints only one record of the experiment file at offset into
the file. An offset value may be obtained from a previous
ssdump where all of the records in the file were dumped.

156 007–3311–007

SpeedShop User’s Guide

files One or more SpeedShop experiment files. If more than one file is
specified, use a space to separate the file names.

Experiment File Format

The experiment file is written as a string of experiment records, each of which has the
following characteristics:

• A 32-bit type

• A 32-bit byte count

• A body whose length is given by the byte count, rounded up to a doubleword
boundary

The file prologue consists of the following records:

• File identifier records, which act as a magic number, indicating that the file is a
SpeedShop data file

• Machine and executable name

• Hardware inventory describing the machine

• Machine page size

• O/S revision, date, and checksum information about the executable

• Target name (the target is the executable after instrumentation)

• Arguments with which the target was invoked

• Instrumentation performed

• Types of performance data that are to be recorded in the remainder of the file

The following example instructs ssdump to display the performance data of a
pcsamp experiment:

% ssdump generic.pcsamp.m847

The following is partial output from ssdump. The format has been adjusted slightly
to meet presentation needs.

Printing experiment record file ‘‘generic.pcsamp.m847’’ (2688 bytes), last written

on Tue 15 Apr 1997 15:27:02

007–3311–007 157

9: Miscellaneous Commands

SpeedShop File Preface 1, offset 0 = 0x00000000 (size 32)
file type 1 (SSRUN); version 4

process control flags: 0xd

_SPEEDSHOP_TRACE_FORK=True

_SPEEDSHOP_TRACE_FORK_TO_EXEC=False

_SPEEDSHOP_TRACE_SPROC=True
_SPEEDSHOP_TRACE_EXEC=True

_SPEEDSHOP_TRACE_SYSTEM=False

ancestor exp file name:

created: Tue 15 Apr 1997 15:26:10.719

Hardware Inventory 2, offset 40 = 0x00000028 (size 280)

hardware inventory: 17 items
class 1, type 1, contrlr 100, unit 255, state 12

class 1, type 3, contrlr 0, unit 0, state 8192

class 1, type 2, contrlr 0, unit 0, state 8208

class 4, type 8, contrlr 0, unit 0, state 2

class 5, type 5, contrlr 0, unit 0, state 1
class 3, type 3, contrlr 0, unit 0, state 16384

class 3, type 4, contrlr 0, unit 0, state 16384

class 3, type 9, contrlr 0, unit 0, state 64

class 3, type 1, contrlr 0, unit 0, state 67108864

class 12, type 3, contrlr 0, unit 0, state 16

class 8, type 7, contrlr 17, unit 0, state 16777472
class 10, type 3, contrlr 0, unit 0, state 16400

class 8, type 0, contrlr 0, unit 0, state 1

class 2, type 1, contrlr 0, unit 13, state 2

class 2, type 2, contrlr 0, unit 2, state 0

class 2, type 2, contrlr 0, unit 1, state 0
class 7, type 14, contrlr 0, unit 0, state 0

Experiment name 3, offset 328 = 0x00000148 (size 8)

pcsamp

Experiment marching orders 4, offset 344 = 0x00000158 (size 16)

pc,2,10000,0:cu

Capture module symbol 5, offset 368 = 0x00000170 (size 16)

pc,2,10000,0

Capture module symbol 6, offset 392 = 0x00000188 (size 8)

cu

158 007–3311–007

SpeedShop User’s Guide

Executable file 7, offset 408 = 0x00000198 (size 8)

generic

Target file 8, offset 424 = 0x000001a8 (size 8)

generic

Target arguments 9, offset 440 = 0x000001b8 (size 32)

Time: Tue 15 Apr 1997 15:26:10.719, process pid = 847

arguments: ""

Target begin 10, offset 480 = 0x000001e0 (size 40)

process # -1, pid = 847, event # 0
event type = 0,0

at time = Tue 15 Apr 1997 15:26:10.719

Program Object List 11, offset 528 = 0x00000210 (size 312)

process # -1, pid = 847, event # 0, -- 5 DSOs

Program Object 0, Named g` eneric’
Link Time Address: 0x0000000010000000

Run Time Address: 0x0000000010000000

Size: 0x0000000000007000 (28672)

Base Pointer: 0x0000000000000000

Program Object 1, Named /` usr/lib32/libss.so’
Link Time Address: 0x0000000009e50000

Run Time Address: 0x0000000009e50000

Size: 0x0000000000002000 (8192)

Base Pointer: 0x0000000000000000

Program Object 2, Named /` usr/lib32/libssrt.so’

Link Time Address: 0x0000000009da0000

Run Time Address: 0x0000000009da0000

Size: 0x000000000008b000 (569344)

Base Pointer: 0x0000000000000000

Program Object 3, Named /` usr/lib32/libm.so’

Link Time Address: 0x000000000f840000

Run Time Address: 0x000000000f840000

Size: 0x0000000000028000 (163840)

Base Pointer: 0x0000000000000000

Program Object 4, Named /` usr/lib32/libc.so.1’

007–3311–007 159

9: Miscellaneous Commands

Link Time Address: 0x000000000fa00000
Run Time Address: 0x000000000fa00000

Size: 0x0000000000108000 (1081344)

Base Pointer: 0x0000000000000000

Target DSO open 12, offset 848 = 0x00000350 (size 56)

process # -1, pid = 847, event # 0

at time = Tue 15 Apr 1997 15:27:00.716

fname = ./dlslave.so

Program Object List 13, offset 912 = 0x00000390 (size 360)

process # -1, pid = 847, event # 0, -- 6 DSOs
Program Object 0, Named g` eneric’

Link Time Address: 0x0000000010000000

Run Time Address: 0x0000000010000000

Size: 0x0000000000007000 (28672)

Base Pointer: 0x0000000000000000

Program Object 1, Named /` usr/lib32/libss.so’

Link Time Address: 0x0000000009e50000

Run Time Address: 0x0000000009e50000

Size: 0x0000000000002000 (8192)

Base Pointer: 0x0000000000000000

Program Object 2, Named /` usr/lib32/libssrt.so’

Link Time Address: 0x0000000009da0000

Run Time Address: 0x0000000009da0000

Size: 0x000000000008b000 (569344)
Base Pointer: 0x0000000000000000

Program Object 3, Named /` usr/lib32/libm.so’

Link Time Address: 0x000000000f840000

Run Time Address: 0x000000000f840000
Size: 0x0000000000028000 (163840)

Base Pointer: 0x0000000000000000

Program Object 4, Named /` usr/lib32/libc.so.1’

Link Time Address: 0x000000000fa00000

Run Time Address: 0x000000000fa00000
Size: 0x0000000000108000 (1081344)

Base Pointer: 0x0000000000000000

160 007–3311–007

SpeedShop User’s Guide

Program Object 5, Named .` /dlslave.so’

Link Time Address: 0x000000005ffe0000

Run Time Address: 0x000000005ffe0000

Size: 0x0000000000001000 (4096)

Base Pointer: 0x0000000000000000

Sample event trigger 14, offset 1280 = 0x00000500 (size 40)

process # -1, trap index # -1

at time = Tue 15 Apr 1997 15:27:01.989, #-1

Compressed PC sampling array (16-bit) 15, offset 1328 = 0x00000530 (size 320)
compressed short array, dso index = 0, array size = 7168, 156

compressed

Compressed PC sampling array (16-bit) 16, offset 1656 = 0x00000678 (size 16)

compressed short array, dso index = 1, array size = 2048, 4 compressed

Compressed PC sampling array (16-bit) 17, offset 1680 = 0x00000690 (size 40)

compressed short array, dso index = 2, array size = 142336, 16

compressed

Compressed PC sampling array (16-bit) 18, offset 1728 = 0x000006c0 (size 16)
compressed short array, dso index = 3, array size = 40960, 4 compressed

Compressed PC sampling array (16-bit) 19, offset 1752 = 0x000006d8 (size 64)

compressed short array, dso index = 4, array size = 270336, 28

compressed

Compressed PC sampling array (16-bit) 20, offset 1824 = 0x00000720 (size 48)

compressed short array, dso index = 5, array size = 1024, 20 compressed

PC sampling array (16-bit) 21, offset 1880 = 0x00000758 (size 16)
short array, dso index = -1, array size = 1

Resource usage 22, offset 1904 = 0x00000770 (size 680)

Sample data end marker 23, offset 2592 = 0x00000a20 (size 40)

Target termination 24, offset 2640 = 0x00000a50 (size 40)

process # -1, pid = 847, event # 0

007–3311–007 161

9: Miscellaneous Commands

event type = 0,0 (normal termination, exit status 0)
at time = Tue 15 Apr 1997 15:27:02.231

** End-of-File 25, offset 2688 = 0x00000a80 (size 0)

**** End of experiment record file ‘‘generic.pcsamp.m847’’

Dumping Compiler Feedback Files
The fbdump command prints the compiler feedback files generated by running prof
-feedback. For more information on using compiler feedback files, view the
cord(1) or cc(1) man pages.

fbdump Syntax

The syntax for the fbdump(1) command is as follows:

fbdump [options] file

options Zero or more of the options described in Table 9-1.

file The feedback file name. This file has a .cfb extension.

Table 9-1 Options for fbdump

Option Prints

-all Feedback using all options. This is the default. This option cannot
be specified with any other option.

-ascii Feedback in the same style as an earlier version of the feedback
dump program.

-bb Feedback per the basic block table, as described in the cmplrs/
fb.h file. If -verbose is specified, all basic blocks are printed,
even those with zero execution counts. If -verbose is not
specified, fbdump prints only the basic blocks that have nonzero
execution counts.

162 007–3311–007

SpeedShop User’s Guide

Option Prints

-call Feedback call table as described in the cmplrs/fb.h file. If
-verbose is specified, all the points of call are printed, even if
they have not been called. If -verbose is not specified, fbdump
prints only the relevant information on the calls.

-header Feedback file header as described in the cmplrs/fb.h file.

-proc Feedback procedure table as described in the cmplrs/fb.h file. If
-verbose is specified, all procedures will be printed, even if they
are not invoked. If -verbose is not specified, fbdump prints only
the relevant information on the procedures that have been invoked.

-sections Feedback file section headers table as described in the cmplrs/
fb.h file.

-str Feedback string table.

-verbose All the information in verbose mode, including a table with all
zero entries.

Converting an MPI Experiment File to Vampir Format
The vampir software product displays and analyzes Message Passing Interface (MPI)
experiment files. It is a product of Pallas, a software company specializing in high
performance computing. For more information on the company and the vampir
software, see the following web site:

http://www.pallas.com

The ssfilter(1) command converts a SpeedShop MPI experiment file into a form in
which it can be viewed using vampir. For information on generating MPI experiment
files, see "Running Experiments on MPI Programs", page 88.

The following commands generate a pcsampx experiment file on each of the four
processors involved in the MPI program and converts them to a single file in vampir
format:

mpirun -np 4 ssrun -pcsampx verge

ssfilter verge.mpi.f* -o verge.vampir

By default, ssfilter periodically returns status information while it is processing.
The status tells you what percentage of its job is complete and what percentage

007–3311–007 163

9: Miscellaneous Commands

remains to be done. You can turn the status messages off by specifying the
-noverbose option. For information on all of the options, see the ssfilter(1) man
page.

164 007–3311–007

Chapter 10

Glossary

This glossary defines terms used in this document.

basic block A set of instructions with a single entry point, a single
exit point, and no branches into or out of the set.

bead A record in an experiment.

caliper points A caliper point is a point at which you wish to mark
your program so that later you may display
performance taken between the marks (caliper points)
you have set. A caliper point may be set at a particular
location in the source, after a particular time interval, or
when a particular signal is received by your program.
An implicit caliper point is always present at the start
of execution of the process. A final caliper point is set
when the process calls _exit. Caliper points are
numbered so you can select them with displaying
performance data.

call stack A software stack of functions and routines that
represent the state of the program at any time. The
functions and routines are listed in the reverse order,
from top to bottom, in which they were called. If
function a is immediately below function b in the stack,
then a was called by b. The function at the bottom of
the stack is the one currently executing.

context switch The act of saving the state of one process and replacing
it with that of another when both processes time-share
a single processor.

counts The number of times an event takes place during data
gathering. For example, a count may be kept of the
number of times a function executes.

CPU time Process virtual time (see the glossary entry) plus time
spent when the system is running on behalf of the
process, performing such tasks as executing a system
call. This is the time returned in pcsamp and
usertime experiments. It can be specified in an
experiment by using the ut,30000,2 marching orders.

007–3311–007 165

10: Glossary

dynamic shared object
(DSO)

An object file that is similar in structure to an executable
program, but it has no main program. Instead, it has:

1. A shared component, which consists of shared text
and read-only data

2. A private component, which consists of data and
the Global Offset Table (GOT)

3. Several sections that hold information needed to
load and link the object

4. A liblist, which is the list of other DSOs referenced
by this object.

These DSOs are usually loaded by rld when your
executable is loaded at runtime. Delay-loaded DSOs are
not loaded until they are needed during program
execution.

exclusive time The execution time of a given function but not of any
functions called by that function. See inclusive time.

graduated instruction As a performance enhancement, when an R10000
system comes to a point in the execution of a program
at which either of two paths might be taken, it begins
to execute both paths until it knows for sure which
path is correct. Graduated instructions are those on the
path it will eventually follow. Issued instructions are
those on the path it does not follow.

inclusive time The execution time both of a given function and of any
functions called by that function. See exclusive time.

issued instruction See the definition of graduated instruction.

overflow interval As used by the hardware counter experiments, it is the
number at which a hardware counter exceeds a preset
value. See the speedshop(1) man page, dsc_hwc
experiment.

PC Program counter. A register that contains the address of
the instruction that is currently executing.

process virtual time Time spent when a program is actually running. This
does not include either 1) the time spent when the

166 007–3311–007

SpeedShop User’s Guide

program is swapped out and waiting for a CPU or 2)
the time when the operating system is in control, such
as executing a system call for the program. The
marching orders ut,30000,1 return process virtual
time.

rld The runtime linker. This is invoked when a dynamic
executable is run. It maps in shared objects used by the
executable, resolves relocations as ld does at static link
time, and allocates common, if required.

statistical data Sampling. The results from this method of data
gathering vary from run to run.

system time The time the operating system spends performing
services for a program, such as executing system calls
and I/O.

TLB Translation lookaside buffer. This is hardware used by
the CPU to quickly translate a virtual address (such as
the name of a variable) to a physical memory address.

TDT model Target Description Table model. A CPU model used to
calculate ideal time.

user time The same as CPU time.

wall-clock time Total time a program takes to execute, including the
time it takes waiting for a CPU. This is real time, not
computer time. The marching orders ut,30000,0
return wall-clock time.

007–3311–007 167

Index

A

API
setting calipers 12

B

basic block counting
overview ideal experiment

overview 6
-butterfly

example 145

C

calipers
automatic 95
pollpoint

time oriented 95
sample traps

using the debugger 98
sample traps calipers 95
setting calipers 94
time-oriented 96

calipers option to prof 11
-calipers 12
commands in SpeedShop 4
compiler feedback files 134
compiler optimization restrictions 72
cord 134

compiler feedback 162
.Counts file pixie

.Counts file 139
cy_hwc experiment 59
cy_hwctime experiment 61

D

data display anomalies 72
dc_hwc experiment 60
dc_hwctime experiment 62
debugger

setting calipers 12, 95, 98
using ssrun 88

demo program SpeedShop
C and C++ 13

dsc_hwc experiment 60
dsc_hwctime experiment 62
DSOs shared libraries 8

E

environment variables 73
MPI_RLD_HACK_OFF 74
_RLD_LIST 99
_SPEEDSHOP_CALIPER_POINT_SIG 74, 95, 97
_SPEEDSHOP_DEBUG_NO_SIG_TRAPS . . 80
_SPEEDSHOP_DEBUG_NO_STACK_UNWIND

80
_SPEEDSHOP_EXPERIMENT_TYPE . . 79, 99
_SPEEDSHOP_FILE_BUFFER_LENGTH . . 79
_SPEEDSHOP_HWC_COUNTER_NUMBER

60, 75
_SPEEDSHOP_HWC_COUNTER_OVERFLOW

61, 75
_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER

num 75
_SPEEDSHOP_INIT_DEFERRED_SIG . . . 78
_SPEEDSHOP_INSTR_ARGS 75
_SPEEDSHOP_MARCHING_ORDERS . 79, 99
_SPEEDSHOP_OUTPUT_DIRECTORY . . . 75
_SPEEDSHOP_OUTPUT_FILENAME . . . 75

007–3311–007 169

Index

_SPEEDSHOP_OUTPUT_NOCOMPRESS . . 75
_SPEEDSHOP_POLLPOINT_CALIPER_POINT

76, 96
_SPEEDSHOP_REUSE_FILE_DESCRIPTORS 76
_SPEEDSHOP_RLD full_path_name 76
_SPEEDSHOP_SAMPLING_MODE 78
_SPEEDSHOP_SBRK_BUFFER_ADDR . . . 76
_SPEEDSHOP_SBRK_BUFFER_LENGTH 76, 79
_SPEEDSHOP_SHUTDOWN_SIG 78
_SPEEDSHOP_SILENT 76
_SPEEDSHOP_TRACE_EXEC [True|False] . 77
_SPEEDSHOP_TRACE_FORK 77
_SPEEDSHOP_TRACE_FORK_TO_EXEC . . 77
_SPEEDSHOP_TRACE_SPROC 78
_SPEEDSHOP_TRACE_SYSTEM 78
_SPEEDSHOP_VERBOSE 76
_SSMALLOC_NO_BUFFERING 77

examples
c tutorial 13
fortran tutorial 33

exec system call 8
executable requirements

calipers 71
executables

calculating a working set 153
experiment data

controlling output file 73
file format 157
file name examples 73

experiment data files
combining 67
performance data 10

experiments
choosing 51
fpe, trace floating-point exceptions 66
hardware counter 110
heap trace 67
ideal 54

F

fbdump
overview 4

fbdump files
compiler feedback 162

feedback, compiler 162
floating-point exception trace

experiment description 66
overview 6

fork processes 8
Fortran

files for tutorial 33
limitations, multiprocessor executables . . . 72

fpcsampx 53
fpe trace experiment 66

tutorial experiments
fpe trace floating-point exceptions 30

fsc_hwctime experiment 62

G

gfp_hwc experiment 60
gfp_hwctime experiment 62
gi_hwc experiment 59
gi_hwctime experiment 61

H

hardware counter experiment reports 110
hardware counter experiments

cy_hwc 59
cy_hwctime 61
dc_hwc 60
dc_hwctime 62
dsc_hwc 60
dsc_hwctime 62
fsc_hwctime 62
gfp_hwc 60

170 007–3311–007

SpeedShop User’s Guide

gfp_hwctime 62
gi_hwc 59
gi_hwctime 61
_hwc 58
_hwctime 61
ic_hwc 59
ic_hwctime 62
introduction 58
isc_hwc 59
isc_hwctime 62
prof_hwc 60
prof_hwctime 63
tlb_hwc 60
tlb_hwctime 62
tutorial experiments 23, 42

hardware counter numbers 63
_hwc hardware counter experiments 58
_hwctime hardware counter experiments . . . 61

I

I/O-bound 2
ic_hwc experiment 59
ic_hwctime experiment 62
ideal experiment

basic block counting 54
effects 98, 99
tutorial experiments

ideal basic block counting 26, 44
introduction to performance analysis 1
isc_hwc experiment 59
isc_hwctime experiment 62

L

libfpe_ss.so
overview 7

libmalloc.so
overview 7

libpixrt.so

overview 7
libraries

libss.so 99
libssrt.so 99
linking in SpeedShop 96
overview 7

libss.so 7
libssrt.so

overview 7

M

machine resource usage 69
marching orders 80

experiment specifier 81
memory

locking 152
MP Fortran limitations 72
MPI

conversion to vampir format 163
with ssrun 88

MPI message-passing paradigms 8
MPI_RLD_HACK_OFF 1 variable

. 74
multiprocessor executables 8

profiling 130

O

OpenMP
and ssrun 94

OpenMP support 8

P

pc sampling
pcsamp experiment

overview 5

007–3311–007 171

Index

pcsamp experiment 39
example 85
PC sampling program 53
tutorial experiments

PC sampling tutorial 20
perfex 58
performance analysis

introduction 1
phases 8
sources of performance problems 1

performance problems
bugs 3
cpu-bound processes 2
I/O-bound processes 2
memory-bound processes 2

pixie 54, 135
-autopixie option 136
command syntax pixie

command option 135
examples 138
overview 4
using with prof 101
-verbose option 137

prof
-butterfly example profiling

inclusive basic block counts 113
options 102
output 107
overview 4
-S example 121
syntax 101
using with ssrun 101

prof compiler feedback 162
prof_hwc experiment 60
prof_hwctime experiment 63
profiling

-clock option 103
command syntax prof , 101
-dis option 104
-dis option prof

-dis example 115
-dsolist option 104

–heavy option
example prof 142

–quit option 144
-exclude option 104
-feedback option 104
fpe trace experiment experiments

fpe fpe trace experiment reports . . . 114
hardware counter experiments 110
-heavy option 105
ideal experiment experiments

ideal ideal experiment reports 112
-lines option 105
machine scheduler option reports

for different machine models 129
-only option 105
pcsamp experiment experiments

pcsamp pcsamp experiment reports . . 109
processor scheduler option option 106
-quit option 105
-S option 106, 121
usertime experiment experiments

usertime usertime experiment reports . 108
pthreads 8

and ssrun 93

R

rearranging procedures 134
reordering code regions 54
_RLD_LIST variable 99

S

setup ssrun 71
signals

setting calipers 12, 97
SpeedShop

overview 3
speedshop api 7

172 007–3311–007

SpeedShop User’s Guide

SpeedShop demo
Fortran 33

SpeedShop hardware counter experiments
introduction 58

SpeedShop libraries 99
libss.so libraries 7
linking libss.so 96

_SPEEDSHOP_CALIPER_POINT_SIG variable
74, 95, 97

_SPEEDSHOP_DEBUG_NO_SIG_TRAPS variable 80
_SPEEDSHOP_DEBUG_NO_STACK_UNWIND

variable 80
_SPEEDSHOP_EXPERIMENT_TYPE variable 79, 99
_SPEEDSHOP_FILE_BUFFER_LENGTH variab 79
_SPEEDSHOP_HWC_COUNTER_NUMBER . . 60
_SPEEDSHOP_HWC_COUNTER_NUMBER

variable 75
_SPEEDSHOP_HWC_COUNTER_OVERFLOW 61
_SPEEDSHOP_HWC_COUNTER_OVERFLOW

variable 75
_SPEEDSHOP_HWC_COUNTER_PROF_NUMBER

num variable 75
_SPEEDSHOP_INIT_DEFERRED_SIGNAL

variable 78
_SPEEDSHOP_INSTR_ARGS variable 75
_SPEEDSHOP_MARCHING_ORDERS variable

79, 99
_SPEEDSHOP_OUTPUT_DIRECTORY variable 75
_SPEEDSHOP_OUTPUT_FILENAME variable 75
_SPEEDSHOP_OUTPUT_NOCOMPRESS

variable 75
_SPEEDSHOP_POLLPOINT_CALIPER_POINT

environment variable 95, 96
_SPEEDSHOP_POLLPOINT_CALIPER_POINT

variable
. 76

_SPEEDSHOP_REUSE_FILE_DESCRIPTORS
variable 76

_SPEEDSHOP_RLD variable 76
_SPEEDSHOP_SAMPLING_MODE variable . . 78
_SPEEDSHOP_SBRK_BUFFER_ADDR variable 76

_SPEEDSHOP_SBRK_BUFFER_LENGTH
variable 76, 79

_SPEEDSHOP_SHUTDOWN_SIG variable . . 78
_SPEEDSHOP_SILENT variable 76
_SPEEDSHOP_TARGET_FILE variable 99
_SPEEDSHOP_TRACE_EXEC variable 77
_SPEEDSHOP_TRACE_FORK variable 77
_SPEEDSHOP_TRACE_FORK_TO_EXEC variable77
_SPEEDSHOP_TRACE_SPROC variable . . . 78
_SPEEDSHOP_TRACE_SYSTEM variable . . . 78
_SPEEDSHOP_VERBOSE variable

. 76
sproc system call 8
squeeze

calculating a working set 153
locking memory 152
overview 5

ssdump
overview 5

ssdump performance data files
dumping files

performance data 156
ssfilter command 163
_SSMALLOC_NO_BUFFERING variable . . . 77
ssrt_caliper_point 7, 71
ssrt_caliper_point calipers 95, 96
ssrun

and OpenMP 94
effects 98
flags 84
MPI programs 88
overview 4
overview ssrun

steps prof 9
pthreads programs 93
syntax 84
using a debugger 88
-v option example 87

ssrun command
examples 85
syntax 83

007–3311–007 173

Index

ssrun setup 71
ssusage

calculating a working set 153
overview 4

statistical call stack profiling
overview usertime experiment

overview 5
statistical hardware counter sampling

overview hardware counter experiments
overview hwc experiments 5

stripped executables programs 72
system call 8

T

techniques to improve I/O 2
thrash

calculating a working set 153
overview 5

thrash paging behavior 151
tlb_hwc experiment 60
tlb_hwctime experiment 62
Tutorial

c 13
tutorial experiments

PC sampling 39

U

usertime experiment
restrictions 71
tutorial experiments

call stack profiling 16
usertime call stack profiling 36

usertime call stack profiling 53

V

vampir format 163

W

working set 153

174 007–3311–007

