
DMF Administrator’s Guide for IRIX®

Systems
007–3681–004

© 1997-1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

Silicon Graphics and IRIX are registered trademarks and SGI and the SGI logo are trademarks of Silicon Graphics, Inc. AMPEX is
a trademark of Ampex Corporation. DLT is a trademark of Quantum Corporation. FLEXlm is a trademark of GLOBEtrotter
Software, Inc. IBM is a trademark and MVS is a product of International Business Machines Corporation. NFS is a trademark of
Sun Microsystems, Inc. Raima and Raima Data Manager are trademarks of Raima Corporation. RedWood, STK, and TimberLine
are trademarks of Storage Technology Corporation. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. X/Open is a registered trademark of X/Open Company Limited.

New Features for Release 2.6.3

DMF Administrator’s Guide for IRIX ® Systems 007–3681–004

For information on changes in DMF functionality, including bugs fixed in recent releases, refer to the files
accessed by the Dependencies and News buttons on the DMF installation interface (dmmaint(8)).

Record of Revision

Version Description

2.6.1 October 1997
Original printing to support the Data Migration Facility (DMF) release 2.6.1 running
under SGI IRIX systems.

2.6.2 August 1998
Reprint with revision to support the Data Migration Facility (DMF) release 2.6.2
running under SGI IRIX systems.

2.6.2.2 December 1998
Reprint with revision to support the Data Migration Facility (DMF) update release
2.6.2.2 running under SGI IRIX systems.

004 September 1999
Reprint with revision to support the Data Migration Facility (DMF) release 2.6.3
running under SGI IRIX systems.

007–3681–004 i

Contents

Page

About This Guide ix

Related Publications . ix

Conventions . ix

Reader Comments . x

Introduction [1] 1

What Is DMF? . 1

How DMF Works . 3

Ensuring Data Integrity . 4

DMF Architecture . 5

Capacity and Overhead . 6

DMF Administration . 7

The User’s View of DMF . 9

DMF File Concepts and Terms . 10

Migrating a File . 11

Recalling a Migrated File . 11

Command Overview . 12

Configuration Commands . 12

DMF Daemon and Related Commands 12

Space Management Commands 14

MSP Commands . 14

Commands for Other Utilities . 15

Configuring DMF [2] 19

Overview of the Configuration Steps 19

Procedure 1: Configuration Steps 19

007–3681–004 iii

DMF Administrator’s Guide for IRIX® Systems

Page

Installation Considerations . 20

File System Mount Options . 20

Inode Size Configuration . 20

Configuring Daemon Database Record Length 20

Procedure 2: Daemon Database Record Length Configuration 21

Interprocess Communication Parameters 22

Configuring Automated Maintenance Tasks 22

Setting PATH Environment Variables 24

Configuration Objects . 25

Configuring the Base Object . 26

Procedure 3: Base Object Configuration 27

Configuring the DMF Daemon . 29

Procedure 4: Daemon Configuration 30

Configuring Daemon Maintenance Tasks 31

Procedure 5: Configuring the daemon_tasks Object 32

Procedure 6: Configuring the dump_tasks Object 34

Configuring File Systems . 37

Procedure 7: Configuring filesystem Objects 38

DMF Policies . 39

Automated Space Management Parameters 39

File Weighting and MSP Selection Parameters 41

Configuring Policies . 42

Procedure 8: Configuring Objects for Automated Space Management 43

Procedure 9: Configuring Objects for MSP Selection 45

Setting up Tape MSPs . 46

Procedure 10: Configuring Tape MSPs 49

Configuring Tape MSP Maintenance Tasks 50

Procedure 11: Configuring the msp_tasks Object 51

iv 007–3681–004

Contents

Page

Device Objects . 53

Device Objects for OpenVault As Mounting Service 54

Device Objects for TMF as Mounting Service 55

Procedure 12: Configuring Devices for TMF 55

Using OpenVault for Tape MSPs 56

Procedure 13: Configuring DMF to Use OpenVault 56

MSP Database Records . 59

Procedure 14: Creating MSP Database Records 60

Setting up FTP MSPs . 61

Procedure 15: Configuring the ftp Object 64

Setting up Disk MSPs . 65

Procedure 16: Configuring the dsk Object 67

Verifying the Configuration . 68

Initializing DMF . 68

General Message Log File Format 68

Automated Space Management [3] 71

Generating the Candidate List . 72

Selection of Migration Candidates 72

Automated Space Management Log File 75

The DMF Daemon [4] 77

Daemon Processing . 77

DMF Daemon Database and dmdadm 78

dmdadm Directives . 79

dmdadm Field and Format Keywords 81

dmdadm Text Field Order . 84

Daemon Logs and Journals . 85

007–3681–004 v

DMF Administrator’s Guide for IRIX® Systems

Page

The DMF Lock Manager [5] 89

dmlockmgr Communication and Log Files 89

dmlockmgr Individual Transaction Log Files 91

Media Specific Processes (MSPs) [6] 93

The Tape MSP . 93

Tape MSP Directories . 94

Media Concepts . 94

CAT Database Records . 96

VOL Database Records . 97

Tape MSP Journals . 98

Tape MSP Logs . 99

Example 1: Tape MSP Statistics Messages 100

Volume Merging . 101

dmcatadm Command . 103

dmcatadm Directives . 103

dmcatadm Field Keywords . 106

Example 2: dmcatadm list directive 108

dmcatadm Text Field Order 109

dmvoladm Command . 110

dmvoladm Directives . 110

dmvoladm Field and Format Keywords 112

Example 3: dmvoladm list directives 116

dmvoladm Text Field Order 120

dmatread Command . 121

Example 4: Restoring Hard-deleted Files Using dmatread 121

dmatsnf Command . 122

dmaudit verifymsp Command 122

FTP MSP . 122

vi 007–3681–004

Contents

Page

Processing of Requests . 123

Activity Log . 124

Messages . 125

Disk MSP . 125

Processing of Requests . 126

Activity Log . 127

Moving Migrated Data between MSPs 127

DMF Maintenance and Recovery [7] 129

Retaining Old DMF Daemon Log Files 129

Retaining Old DMF Daemon Journal Files 129

Soft- and Hard-deletes . 130

Using xfsdump and xfsrestore with Migrated Files 131

Dumping and Restoring Files without the dump_tasks Object 132

File System Consistency with xfsrestore 132

Using dmfill . 133

Database Recovery . 133

Database Backups . 134

Database Recovery Procedures 134

Procedure 17: Recovering the Databases 134

Example 5: Database Recovery Example 135

Appendix A Messages 137

Message Format . 137

Message Format for Catalog (CAT) Database and Daemon Database Comparisons . . . 137

Message Format for Volume (VOL) Database and Catalog (CAT) Database and Daemon
Database Comparisons . 138

dmcatadm Message Interpretation 139

dmvoladm Message Interpretation 140

007–3681–004 vii

DMF Administrator’s Guide for IRIX® Systems

Page

Glossary 143

Index 151

Figures
Figure 1. Application Data Flow 1

Figure 2. DMF Network Environment 2

Figure 3. DMF Architecture . 6

Figure 4. Relationship of Automated Space Management Targets 74

Figure 5. Media Concepts . 96

Tables
Table 1. Automated Maintenance Task Summary 23

Table 2. DMF Log File Message Types 69

Table 3. dmlockmgr Token Files 90

viii 007–3681–004

About This Guide

This publication documents administration of the Data Migration Facility
(DMF), release 2.6.3, on SGI systems running the IRIX operating system 6.4.1,
6.5, and later releases.

Related Publications

The following documents contain additional information about DMF that may
be helpful:

• DMF Release and Installation Guide for IRIX Systems, contains release-specific
information about features and describes how to install DMF.

• DMF Recovery and Troubleshooting Guide for IRIX Systems, describes how to
solve problems with DMF should you encounter them.

To order SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com. Find the title that you want and choose order
to get the ordering information page for that document.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items (such
as commands, files, routines, pathnames, signals,
messages, programming language structures, and
e-mail addresses) and items that appear on the
screen.

manpage (x) Man page section identifiers appear in
parentheses after man page names.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

007–3681–004 ix

DMF Administrator’s Guide for IRIX® Systems

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Send a fax to the attention of “Technical Publications” at: +1 650 932 0801.

• Use the Feedback option on the Technical Publications Library World Wide
Web page:

http://techpubs.sgi.com

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

For SGI IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or Cray Origin 2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

x 007–3681–004

Introduction [1]

This chapter provides an overview of the Data Migration Facility (DMF) and its
administration.

1.1 What Is DMF?

DMF is a hierarchical storage management system for Silicon Graphics
environments. Its primary purpose is to preserve the economic value of storage
media and stored data. The high I/O bandwidth of these machine
environments is sufficient to overrun online disk resources. Consequently,
capacity scheduling, in the form of native file system migration, has become an
integral part of many computing environments and is a requirement for
effective use of Silicon Graphics systems.

In addition to ensuring that adequate disk space is always available, capacity
scheduling allows you to maintain a data space that is larger than your online
disk resource. Oversubscription requires that the value of stored data be
recognized as the same or higher than that of online data; DMF provides this
capability. Figure 1 provides a conceptual overview of the data flow between
applications and storage media.

A
p
p
l
i
c
a
t
i
o
n
s

Data flow Memory

Disk

Tape/Optical

I/O
libraries

a11324

File
system

DMF

Figure 1. Application Data Flow

007–3681–004 1

DMF Administrator’s Guide for IRIX® Systems

DMF supports a range of storage management applications. In some
environments, DMF is used strictly to manage highly stressed online disk
resources. In other environments, it is also used as an organizational tool for
safely managing large volumes of offline data. In all environments, DMF scales
to the storage application and to the characteristics of the available storage
devices.

DMF interoperates with standard data export services such as Network File
System (NFS) and File Transfer Protocol (FTP). By combining these services
with DMF, as shown in Figure 2, you can configure a Silicon Graphics system
as a high-performance file server.

IRIX

a11325

Network

Exported data
(via NFS or FTP)

Migration path

Bulk
storage

CRAY
T90

Operating
system

Figure 2. DMF Network Environment

2 007–3681–004

Introduction [1]

DMF transports large volumes of data on behalf of many users. Because system
interrupts and occasional storage device failures cannot be avoided, it is
essential that the safety and integrity of data be verifiable. Therefore, DMF also
provides tools necessary to validate your storage environment.

DMF has evolved around these customer requirements for scalability and the
safety of data. As a file system migrator, DMF manages the capacity of online
disk resources by transparently moving file data from disk to offline media.
Most commonly, the offline medium is tape, managed by OpenVault or the
Tape Management Facility (TMF). However, the offline medium can be any
bulk-storage device accessible locally through NFS or FTP.

DMF accomplishes this data migration transparently; this means that a user
cannot determine, by using POSIX-compliant commands for file system enquiry,
whether a file is online or offline. Only when special commands or command
options are used can a file’s actual residence be determined. This transparent
migration is possible because DMF leaves inodes and directories intact within
the native file system.

1.2 How DMF Works

As a DMF administrator, you determine how disk space capacity is handled by
selecting which file systems DMF will manage and by specifying the volume of
free space that will be maintained on each file system. Space management
begins with a list of user files that are ranked according to criteria you define.
File size and file age are among the most common ranking criteria.

File migration occurs in two stages. First, a file is migrated to an offline
medium. Once the offline copy is secure, the file is eligible to have its data
blocks released (this usually occurs after a minimum space threshold is
reached). A file with all offline copies completed is called fully backed up. A file
that is fully backed up but whose data blocks have not yet been released is
called a dual-state file; its data exists both online and offline, simultaneously.
After a file’s data blocks have been released, the file is called an offline file.

You choose both the percentage of file system volume to migrate and the
volume of free space. You can trigger file migration, or file owners can issue
manual migration requests.

Offline media is the destination of all migrated data; offline media management
is handled by a daemon-like DMF component called the media-specific process
(MSP). The MSP manages a pool of media volumes and moves file system data
to and from offline media in response to migration requests. This component is
designed to make full use of high-capacity, compressible media and to handle a

007–3681–004 3

DMF Administrator’s Guide for IRIX® Systems

large volume of transactions. The data-recording format uses blocking and
checksumming to ensure the accuracy of the data and to facilitate recovery in
the event of media failure.

Media transports and robotic automounters are also key components of all
DMF installations. Generally, DMF can be used with any transport and
automounter that is supported by either OpenVault or TMF. The most
commonly used devices on IRIX systems are DLT 4000/7000, SCSI versions of
IBM 3590, and STK TimberLine and RedWood drives. All STK robots, Grau,
and IBM 3494 are supported. Additionally, DMF supports absolute block
positioning, a media transport capability that allows rapid positioning to an
absolute block address on the tape volume. When this capability is provided by
the transport, positioning speed is often three times faster than that obtained
when reading the volume to the specified position.

1.3 Ensuring Data Integrity

DMF provides several capabilities that enhance the safety of its operations and
ensure the integrity of offline data. For example, you can configure multiple
instances of the MSP, with each managing its own pool of media volumes.
Therefore, DMF can be configured so that file system data is migrated to
multiple offline locations.

DMF stores data that originates in an XFS file system (you can also convert
other file servers to IRIX file servers running DMF). Each object stored
corresponds to a file in the native file system. When a user deletes a file, the
inode for that file is removed from the file system. Deleting a file that has been
migrated begins the process of invalidating the offline image of that file. In the
tape MSP this eventually creates a gap in the migration medium. To ensure
effective use of media, the MSP provides a mechanism for reclaiming space lost
to invalid data. This process is called volume merging.

Much of the work done by DMF involves transaction processing that is
recorded in databases. DMF uses the Raima Data Manager (RDM) as its
database engine. This package provides for full transaction journaling and
employs two-phase commit technology. The combination of these two features
ensures that DMF applies only whole transactions to its database. Additionally,
in the event of an unscheduled system interrupt, it is always possible to replay
the database journals in order to restore consistency between the DMF
databases and the file system. DMF utilities also allow you to verify the general
integrity of the DMF databases themselves.

4 007–3681–004

Introduction [1]

1.4 DMF Architecture

DMF consists of the DMF daemon and one or more MSPs. The DMF daemon
accepts requests from the DMF administrator or from users to migrate file
system data, and communicates with the operating system kernel to maintain a
file’s migration state in that file’s inode.

The DMF daemon is responsible for dispensing a unique identifier (called a bit
file identifier, or bfid) for each file that is migrated. The daemon also determines
the destination of migration data and forms requests to the appropriate MSP to
make offline copies.

The MSP accepts requests from the DMF daemon. For outbound data, the MSP
accrues requests until the volume of data justifies a volume mount. Requests
for data retrieval are satisfied as they arrive. When multiple retrieval requests
involve the same volume, all file data is retrieved in a single pass across the
volume.

When running in the IRIX environment, DMF uses the Data Migration API
(DMAPI) kernel interface defined by the Data Management Interface Group
(DMIG). DMIG is also supported by X/Open, where it is evolving as the XDSM
standard.

Figure 3 illustrates the DMF architecture.

007–3681–004 5

DMF Administrator’s Guide for IRIX® Systems

a11326

DMF administration
interface

 Space management
 Audit

MSP administration
interface

 Volume merge
 Volume entry

Control

Native
user data

Data

DMF daemon

Kernel

DMF
databases

DMF store-
Media Specific
Process (MSP)

Cray TMF or
OpenVault

Offline data
storage

Figure 3. DMF Architecture

1.5 Capacity and Overhead

DMF has evolved in production-oriented, customer environments. It is
designed to make full use of parallel and asynchronous operations, and to
consume minimal system overhead while it executes, even in busy
environments in which files are constantly moving online or offline. Exceptions
to this rule will occasionally occur during infrequent maintenance operations
when a full scan of file systems or databases is performed.

The capacity of DMF is measured in several ways, as follows:

• Total number of files. File identifiers used within DMF are 64-bit, thus
providing a capacity of 2**64 files. DMF has been tested on file systems with
20 million inodes. The largest customer installation, on an inode-basis, is

6 007–3681–004

Introduction [1]

approximately 5 million. The average DMF database size is approximately 1
million entries.

• Total volume of data. Capacity in data volume is limited only by the
physical environment and the density of media. The largest customer
installation, on the basis of data volume stored, is approximately 300 Tbytes.
The average customer is storing 5 to 10 Tbytes.

• Total volume of data moved between online and offline media. The number
of tape drives configured for DMF, the number of tape channels, and the
number of disk channels all figure highly in the effective bandwidth. In
general, DMF provides full-channel performance to both tape and disk. The
largest data-velocity customer is moving approximately 2.5 Tbytes per day.

• Storage capacity. On IRIX XFS, the largest file is 9 Tbytes.

1.6 DMF Administration

DMF can be configured for a variety of environments including dedicated file
servers, lights-out operations and, most frequently, for support of batch and
interactive processing in a general-purpose environment with limited disk space.

DMF manages two primary resources: pools of offline media and free space on
native file systems.

As a DMF administrator, you first need to characterize and determine the size
of the environment in which DMF will run. You will want to plan for a certain
capacity, both in the number of files and in the volume of data. You will also
want to estimate the rate at which you will be moving data between the DMF
store and the native file system. You will select autoloaders and media
transports that are suitable for the data volume and delivery rates you
anticipate.

Beyond initial planning and setup, DMF requires that you perform recurring
administrative duties. DMF allows you to configure tasks that automate these
duties. A task is a cron-like process initiated on a time schedule you determine.
Configuration tasks are defined with configuration file parameters. The tasks
are described in detail in Section 2.6.1, page 31, and Section 2.9.1, page 50.

DMF requires administrative duties to be performed in the following areas:

• File ranking. You must decide which files are most important as migration
candidates. When DMF migrates and frees files, it chooses files based on
criteria you chose. The ordered list of files is called the DMF candidate list.
Whenever DMF responds to a critical space threshold, it builds a new

007–3681–004 7

DMF Administrator’s Guide for IRIX® Systems

migration candidate list for the file system that reached the threshold.
Section 3.1, page 72, describes candidate list generation.

• Automated space management. You must decide how much free space to
maintain on each managed file system. DMF has the ability to monitor file
system capacity and to initiate file migration and the freeing of space when
free space falls below the prescribed thresholds. Chapter 3, page 71,
provides details about automated space management.

• Offline data management. DMF offers the ability to migrate data to multiple
offline locations. Each location is managed by a separate MSP and is usually
constrained to a specific type of medium.

Complex strategies are possible when using multiple MSPs. For example,
short files can be migrated to a device with rapid mount times, while long
files can be routed to a device with extremely high density.

You can describe criteria for MSP selection. When setting up a tape MSP,
you assign a pool of tapes for use by that MSP. The dmvoladm(8) utility
provides management of the tape MSP media pools.

You can configure DMF to automatically merge tapes that are becoming
sparse—that is, full of data that has been deleted by the owner. With this
configuration (the run_merge_tapes.sh task), the media pool is merged
on a regular basis in order to reclaim unusable space.

Recording media eventually becomes unreliable. Sometimes, media
transports become misaligned so that a volume written on one cannot be
read from another. Two utilities are provided that support management of
failing media. The dmatsnf(8) utility is used to scan a DMF volume for
flaws, and dmatread(8) is used for recovering data. Additionally, the
volume merge process built into the MSP is capable of effectively recovering
data from failed media.

Chapter 6, page 93, provides more information on MSP administration.

• Integrity and reliability. Integrity of data is a central concern to the DMF
administrator. You will have to understand and monitor processes in order
to achieve the highest levels of data integrity, as described below:

– Even though you are running DMF, you will still have to run backups
because DMF moves only the data associated with files, not the file
inodes or directories. You can configure DMF to automatically run
backups of your DMF-managed file systems.

8 007–3681–004

Introduction [1]

The dump utility for your file system (xfsdump and xfsrestore on
IRIX systems) works in concert with DMF in that it understands when a
file is fully backed up. The dump utilities have an option that allows for
dumping only files that are not fully backed up.

You can establish a policy of migrating 100% of DMF-managed file
systems, thereby leaving only a small volume of data that the dump
utility must record. This practice can greatly increase the availability of
the machine on which DMF is running because, generally, dump
commands must be executed in a quiet environment.

You can configure the run_full_dump.sh and
run_partial_dump.sh tasks to ensure that all files have been
migrated. This can be configured to run when the environment is quiet.

– DMF databases record all information about stored data. The DMF
databases must be synchronized with the file systems DMF manages.
Much of the work done by DMF ensures that the DMF databases remain
aligned with the file systems.

You can configure DMF to automatically examine the consistency and
integrity of the DMF daemon and MSP databases. You can configure
DMF to periodically copy the databases to other devices on the system to
protect them from loss (using the run_copy_databases.sh task). This
task also uses the the dmdbcheck utility to ensure the integrity of the
databases before saving them.

DMF uses journal files to record database transactions. Journals can be
replayed in the event of an unscheduled system interrupt. You must
ensure that journals are retained in a safe place until a full backup of the
DMF databases can be performed.

You can configure the run_remove_logs.sh and
run_remove_journals.sh tasks to automatically remove old logs and
journals, which will prevent the DMF SPOOL_DIR directory from
overflowing.

You can configure the run_hard_delete.sh task to automatically perform
hard-deletes, which are described in Section 1.8.2, page 11.

1.7 The User’s View of DMF

While the administrator has access to a wide variety of commands for
controlling DMF, the end user sees very little. Migrated files remain cataloged

007–3681–004 9

DMF Administrator’s Guide for IRIX® Systems

in their original directories and are accessed as if they were still on disk. The
only difference users might notice is a delay in access time.

Commands are provided for file owners to affect the manual storing and
retrieval of data. Users can do the following:

• Explicitly migrate files by using the dmput(1) command

• Explicitly recall files by using the dmget(1) command

• Copy all or part of the data from a migrated file to an online file by using
the dmcopy(1) command

• Determine whether a file is migrated by using the dmfind(1) and/or
dmls(1) commands

• Test in shell scripts whether a file is online or offline by using the dmattr(1)
command

1.8 DMF File Concepts and Terms

DMF regards files as being one of the following:

• Regular files are user files residing only on disk

• Migrating files are files whose offline copies are in progress

• Migrated files can be either of the following:

– Dual-state files are files whose data resides both online and offline

– Offline files are files whose data is no longer on disk

DMF does not migrate pipes, directories, or UNIX special files.

Like a regular file, a migrated file has an inode. Only an offline file requires the
intervention of the DMF daemon to access its data.

The operating system informs the DMF daemon when a migrated file is
modified. If anything is written to a migrated file, the offline copy is no longer
valid, and the file becomes a regular file until it is migrated again.

10 007–3681–004

Introduction [1]

1.8.1 Migrating a File

A file is migrated when the automated space management controller
dmfsmon(8) selects the file or when an owner requests that the file be migrated
by using the dmput(1) command.

The DMF daemon keeps a record of all migrated files in its database. The key
to each file is its bfid. For each migrated file, the daemon assigns a bfid that is
stored in the file’s inode.

When the daemon receives a request to migrate a file, it adjusts the state of the
file, ensures that the necessary MSP(s) are active, and sends a request to the
MSP(s). MSPs copy data to the offline storage media.

When the MSP(s) have completed the offline copy (or copies), the daemon
marks the file as fully backed up in its database and changes the file to
dual-state. If the user specified the dmput -r option, or if dmfsmon requested
that the file’s space be released, the daemon releases the data blocks and
changes the user file state to offline.

1.8.2 Recalling a Migrated File

When a migrated file must be recalled, a request is made to the DMF daemon.
The daemon selects an MSP from its internal list of MSPs and sends that MSP a
request to recall a copy of the file. If more than one MSP has a copy, the first
MSP in the list is used. (The list of MSPs is created from the configuration file.)

After a user has modified or removed a migrated file, its bfid is soft-deleted. A
file is soft-deleted when it is logically deleted from the daemon database. This is
accomplished by setting the delete date field in the database to the current date
and time for each entry referring to the modified or removed file.

A file is hard-deleted when its bfid is physically removed from the DMF database.
You can configure DMF to automatically perform hard-deletes. This is done
using the run_hard_delete.sh task, which uses the dmhdelete(8) utility.

The soft-delete state allows for the possibility that the file system might be
restored after the user has removed a file. When a file system is reloaded from
a dump image, it is restored to a state at an earlier point in time. A file that had
been migrated and then removed might become migrated again due to the
restore operation. This can create serious problems if the database entries for
the file have been physically deleted (hard-deleted). In this case, the user would
receive an error when trying to open the file because the file cannot be retrieved.

007–3681–004 11

DMF Administrator’s Guide for IRIX® Systems

Do not hard-delete a database entry until after you are sure that the
corresponding files will never be restored. Hard-delete requests are sent to the
relevant MSPs so that copies of the file can be removed from media. For a tape
MSP this involves compression (or merging).

1.9 Command Overview

The following section provides definitions for administrator commands
grouped by function.

1.9.1 Configuration Commands

The configuration file, /etc/dmf/dmbase/host/hostname/dmf_config,
contains configuration objects and associated configuration parameters that control
the way DMF operates. The hostname is the name of the host on which you
installed DMF. By changing the values associated with these objects and
parameters, you can modify the behavior of DMF.

For information about editing the configuration file, see Chapter 2, page 19. The
following man pages are related to the configuration file:

Man page Description

dmf_config(5) Describes the DMF configuration objects and
parameters in detail

dmconfig(8) This command prints DMF configuration
parameters to standard output

1.9.2 DMF Daemon and Related Commands

The DMF daemon, dmdaemon(8), communicates with the kernel through a
device driver and receives backup and recall requests from users through a
socket. The daemon activates the appropriate MSPs for file migration and
recall, maintaining communication with them through unnamed pipes. It also
changes the state of inodes as they pass through each phase of the migration
and recall process. In addition, dmdaemon maintains a database containing
entries for every migrated file on the system. Updates to database entries are
logged in a journal file for recovery. See Chapter 4, page 77, for a detailed
description of the DMF daemon.

12 007–3681–004

Introduction [1]

!
Caution: If used improperly, commands that make changes to the DMF
database can cause data to be lost.

The following administrator commands are related to dmdaemon and the
daemon database:

Command Description

dmaudit(8) Reports discrepancies between file systems and
the daemon database. This command is executed
automatically if you configure the
run_audit.sh task.

dmcheck(8) Checks the DMF installation and configuration
and reports any problems.

dmdadm(8) Performs daemon database administrative
functions, such as viewing individual database
records.

dmdaemon(8) Starts the DMF daemon.

dmdbcheck(8) Checks the consistency of a database by
validating the location and key values associated
with each record and key in the data and key files
(also an MSP command). If you configure the
run_copy_database.sh task, this command is
executed automatically as part of the task. The
consistency check is completed before the DMF
databases are saved.

dmdbrecover(8) Updates the daemon and tape MSP databases
with journal entries.

dmdidle(8) Causes files not yet copied to tape to be flushed
to tape, even if this means forcing only a small
amount of data to a volume.

dmdstat(8) Indicates to the caller the current status of
dmdaemon.

dmdstop(8) Causes dmdaemon to shut down.

dmhdelete(8) Deletes unused daemon database entries and
releases corresponding MSP space. This

007–3681–004 13

DMF Administrator’s Guide for IRIX® Systems

command is executed automatically if you
configure the run_hard_delete.sh task.

dmmigrate(8) Migrates regular files that match specified criteria
in the specified file systems, leaving them as
dual-state. This utility is often used to migrate
files before running backups of a file system,
hence minimizing the size of the dump image.

dmsnap(8) Copies the DMF daemon and the MSP databases
to a specified location. If you configure the
run_copy_database.sh task, this command is
executed automatically as part of the task.

dmversion(8) Reports the version of DMF that is currently
executing.

1.9.3 Space Management Commands

The following commands are associated with automated space management,
which allows DMF to maintain a specified level of free space on a file system
through automatic file migration:

Command Description

dmfsfree(8) Attempts to bring the free space and migrated
space of a file system into compliance with
configured values.

dmfsmon(8) Monitors the free space levels in file systems
configured as auto (that is, automated space
management is enabled) and lets you maintain a
specified level of free space.

dmscanfs(8) Scans DMF file systems and prints status
information to stdout.

See Chapter 3, page 71, for a detailed description of automated space
management.

1.9.4 MSP Commands

The DMF tape MSP maintains a database that contains volume (VOL) records
and catalog (CAT) records. VOL records contain information about tape

14 007–3681–004

Introduction [1]

volumes, and CAT records contain information about offline copies of migrated
files.

The disk and FTP MSPs allow the use of local or remote disk storage for storing
migrated data. They use no special commands, utilities, or databases. For more
information, see Section 6.3, page 125, and Section 6.2, page 122.

Two commands manage the CAT and VOL records for the tape MSP:

Command Description

dmcatadm(8) Provides maintenance and recovery services for
the CAT database.

dmvoladm(8) Provides maintenance and recovery services for
the VOL database, including the selection of
volumes for tape merge operations.

Most data transfers to and from tape media are performed by components
internal to the MSP. However, there are also two utilities that can read tape
MSP volumes directly:

Command Description

dmatread(8) Copies data directly from MSP volumes to disk.

dmatsnf(8) Audits and verifies the format of MSP volumes.

There are also tools that check for MSP database inconsistencies:

Command Description

dmatvfy(8) Verifies the MSP database contents against the
dmdaemon(8) database. This command is
executed automatically if you configure the
run_audit.sh task.

dmdbcheck(8) Checks the consistency of a database by
validating the location and key values associated
with each record and key in the data and key files.

1.9.5 Commands for Other Utilities

The following utilities are also available:

007–3681–004 15

DMF Administrator’s Guide for IRIX® Systems

Command Description

dmclripc(8) Frees system interprocess communication (IPC)
resources and token files used by dmlockmgr
and its clients when abnormal termination
prevents orderly exit processing.

dmdate(8) Performs calculations on dates for administrative
support scripts.

dmdump(8) Creates a text copy of an inactive database file or
a text copy of an inactive complete DMF daemon
database.

dmdumpj(8) Creates a text copy of DMF journal transactions.

dmfill(8) Recalls migrated files to fill a percentage of a file
system. This command is mainly used in
conjunction with dump and restore commands to
return a corrupted file system to a previously
known valid state.

dmlockmgr(8) Invokes the database lock manager. The lock
manager is an independent process that
communicates with all applications that use the
DMF database, mediates record lock requests, and
facilitates the automatic transaction recovery
mechanism.

dmmove(8) Moves copies of a migrated file’s data to the
specified MSPs.

dmmaint(8) Calls the dmmaint utility, which performs DMF
version maintenance and provides interfaces for
licensing and initial configuration.

dmov_keyfile(8) Creates the file of DMF OpenVault keys, ensuring
that the contents of the file are semantically
correct and have the correct file permissions. This
command removes any DMF keys in the file for
the OpenVault server system and adds new keys
at the front of the file.

dmov_loadtapes(8) Scans a tape library for volumes not imported
into the OpenVault database and allows the user
to select a portion of them to be used by an MSP.
The selected tapes are imported into the

16 007–3681–004

Introduction [1]

OpenVault database, assigned to the DMF
application, and added to the MSP’s database.

dmov_makecarts(8) Makes the tapes in one or more MSP databases
accessible through OpenVault by importing into
the OpenVault database any tapes unknown to it
and by registering all volumes to the DMF
application not yet so assigned.

dmselect(8) Selects migrated files based on given criteria. The
output of this command can be used as input to
dmmove(8).

dmsort(8) Sorts files of blocked records.

dmxfsrestore(8) Calls the xfsrestore(1M) command to restore
files dumped to tape volumes that were produced
by DMF administrative maintenance scripts.

007–3681–004 17

Configuring DMF [2]

This chapter describes how to configure DMF, verify the configuration, and
perform some periodic maintenance tasks.

2.1 Overview of the Configuration Steps

The steps outlined in the following procedure are required to configure DMF.

Procedure 1: Configuration Steps

1. Install DMF, ensuring that FLEXlm licensing is set up correctly. Installation
is described in the DMF Release and Installation Guide for IRIX Systems.

Note: You must read Section 2.2 for a description of special configuration
issues regarding installation.

2. Ensure that your PATH and MANPATH environment variables are set to
include DMF paths. See Section 2.3, page 24.

3. Invoke dmmaint(8) so that you can create or modify your configuration file.
Using dmmaint is described in the DMF Release and Installation Guide for
IRIX Systems.

4. Determine how you want to complete periodic maintenance tasks. See
Section 2.2.5, page 22.

5. Edit the configuration file to define the base object, daemon object, the
objects for daemon maintenance tasks, and objects for automated space
management. See Section 2.5, page 26, through Section 2.8, page 39.

6. Define the media-specific process (MSP) objects, the object for MSP
maintenance tasks, set up the MSPs, and configure your mounting service.
See Section 2.9, page 46, through Section 2.11, page 65.

7. Verify the configuration with the dmcheck(8) script. See Section 2.12, page
68.

8. Start DMF. See Section 2.13, page 68.

007–3681–004 19

DMF Administrator’s Guide for IRIX® Systems

2.2 Installation Considerations

This section discusses installation considerations that will affect how your
system is configured.

2.2.1 File System Mount Options

The Data Management API (DMAPI) is the mechanism within IRIX and the XFS
file system for passing file management requests between the kernel and DMF.
Ensure that you have installed DMAPI and the appropriate patches as listed in
the files accessed by the News button on the DMF installation interface
(dmmaint(8)).

!
Caution: In order for file systems to be managed by DMF, they must be
mounted to enable the DMAPI interface. You can do this by using the
mount -o dmi command or by declaring parameter 4 in the fstab entry to
be dmi. (refer to the man pages for mount or fstab). Failure to enable dmi
for DMF-managed file systems will result in a configuration error.

2.2.2 Inode Size Configuration

DMF state information is kept within a file system structure called an extended
attribute. Extended attributes can be either inside the inode or in attribute
blocks associated with the inode. DMF runs much faster when the extended
attribute is inside the inode, because this minimizes the number of disk
references that are required to determine DMF information. In certain
circumstances, there can be a large performance difference between
inode-resident extended attribute and non-resident extended attribute.

You should configure your file systems to ensure that the extended attribute is
always inode-resident. This is done with the mkfs_xfs command. Declare the
inode size to be 512 bytes using the -i size=512 option. File systems that
already exist will have to be dumped, recreated, and restored. This change is
not mandatory.

2.2.3 Configuring Daemon Database Record Length

A daemon database entry is composed of one or more fixed length records: a
base record (dbrec) and zero or more path segment extension (pathseg)
records. If the path value that is returned to the daemon by the MSP can fit into
the path field of the daemon’s dbrec record, DMF does not require pathseg

20 007–3681–004

Configuring DMF [2]

records. If the MSP supplies a path value that is longer than the path field in
the dbrec, DMF creates one or more pathseg records.

The default size of the path field of the dbrec is 34 characters. This size allows
the default paths returned by the dmatmsp, dmdskmsp, and dmftpmsp to fit in
the dbrec path field as long as the user name portion of the dmftpmsp or
dmdskmsp path (username/bit_file_identifier) is 8 characters or fewer. In almost
all cases, you should not need to reconfigure the daemon database record.

The default size of the path field in the pathseg record is 64. For MSP path
values which are just slightly over the size of the dbrec path field, this will
result in a large amount of wasted space for each record that overflows into the
pathseg record. The ideal situation would be to have as few pathseg records
as possible.

The advantage of having very few pathseg records lies in increased efficiency
for retrieving daemon database records. There is no need to access the
pathseg key and data files to retrieve a complete daemon database record.

The disadvantage of using the default path size arises mainly in the tape MSP
application in which there is a small amount of wasted space in the daemon’s
dbrec data file. By extending the default path field size to 34 (8 bytes more than
the tape MSP requires), there is a resulting 5% wasted space in the daemon’s
dbrec data file. For a 10 MB dbrec file, this is 500 Kbytes of wasted space.

For installations that run only the tape MSP and for which the 5% wasted disk
space is an important consideration, the size of the path field in the daemon
dbrec record can be configured at any time before or after installation. (The
same holds true for any installation which might be using the dmftpmsp or
dmdskmsp with a different path-generating algorithm or any other MSP which
supplies a path longer than 34 characters to the daemon).

Procedure 2: Daemon Database Record Length Configuration

The steps to configure the database entry length are as follows:

1. If the dmdaemon is running, use dmdstop(8) to halt processing.

2. If a daemon database already exists, perform the following steps:

a. cd HOME_DIR/daemon (HOME_DIR is the value of HOME_DIR
returned by the dmconfig base command)

b. dmdump -c . > textfile (textfile is the name of a file that will contain
the text representation of the current database)

007–3681–004 21

DMF Administrator’s Guide for IRIX® Systems

c. cp dbrec* pathseg* dmd_db.dbd backup_dir (backup_dir is the
name of the directory that will hold the old version of the database)

d. rm dbrec* pathseg* dmd_db.dbd

3. cd /etc/dmf/dmbase/lib/rdm

4. Backup the dmd_db.dbd and dmd_db.ddl files that reside in
/etc/dmf/dmbase/lib/rdm. This will aid in disaster recovery should
something go wrong.

5. Edit dmd_db.ddl to set the new path field lengths for the dbrec and/or
pathseg records. For the most efficient use of disk space for the dmatmsp,
set the dbrec path size to 26.

6. Regenerate the new database definition:

/etc/dmf/dmbase/etc/dmddlp -drsx dmd_db.ddl

7. Backup the new versions of dmd_db.dbd and dmd_db.ddl for future
reference or disaster recovery.

8. If the daemon database was dumped to text in step 2, complete the
following steps:

a. cd HOME_DIR/daemon

b. dmdadm -u -c "load textfile" (textfile was created in step 2)

9. If the daemon was running in step 1, restart it by executing dmdaemon(8).

2.2.4 Interprocess Communication Parameters

Ensure that, in the operating system configuration file, the following IPC kernel
configuration parameters are set equal to or greater than the default: MSGMAX,
MSGMNI, MSGSEG, and MSGSSZ. The parameters are described in Appendix A of
IRIX Admin: System Configuration and Operation, document number 007-2859.

2.2.5 Configuring Automated Maintenance Tasks

DMF lets you configure parameters for completing periodic maintenance tasks
such as the following:

• Making backups (full or partial) of user file systems to tape

• Making backups of DMF databases to disk

22 007–3681–004

Configuring DMF [2]

• Removing old log files and old journal files

• Monitoring DMF logs for errors

• Running hard deletes

• Running dmaudit(8)

• Monitoring the status of tapes in tape MSPs

• Merging tapes that have become sparse (and stopping this process at a
specified time)

Each of these tasks can be configured in the DMF configuration file through the
use of TASK_GROUPS parameters for the DMF daemon and the tape MSP. The
tasks are then defined as objects.

For each task you configure, a time expression defines when the task should be
done and a script file is executed at that time. The tasks are provided for you in
the etc/admin directory in the configured DMF directory
(/etc/dmf/dmbase).

The automated tasks are described in Section 2.6.1, page 31, for the daemon
tasks and in Section 2.9.1, page 50, for the tape MSP.

provides a summary of the automated maintenance tasks:

Table 1. Automated Maintenance Task Summary

Task Purpose Parameters

Related
Object
Type

run_audit Audit databases daemon

run_copy_databases Backup DMF databases DATABASE_COPIES daemon

run_remove_journals Remove old journal files JOURNAL_RETENTION daemon

run_remove_logs Remove old log files LOG_RETENTION daemon

007–3681–004 23

DMF Administrator’s Guide for IRIX® Systems

Task Purpose Parameters

Related
Object
Type

run_full_dump Full backup of file system(s)
For restores, see
dmxfsrestore(8)

DUMP_DEVICE
DUMP_INVENTORY_COPY
DUMP_FILE_SYSTEMS
DUMP_MIGRATE_FIRST
DUMP_RETENTION
DUMP_VSNS_USED
DUMP_TAPES

daemon

run_hard_deletes Hard-delete files Uses DUMP_RETENTION daemon

run_merge_stop Stop tape merges msp

run_partial_dump Partial backup of file
system(s)

Uses parameters set for
run_full_dump

daemon

run_scan_logs Scan log files for errors daemon

run_tape_merge Merge sparse tapes DATA_LIMIT
THRESHOLD
VOLUME_LIMIT

msp

run_tape_report Create tape reports msp

2.3 Setting PATH Environment Variables

To use DMF commands and DMF man pages, set your PATH and MANPATH
environment variables. The DMF administrator commands and executables are
installed in /etc/dmf/dmbase/etc; the user commands are installed in
/etc/dmf/dmbase/bin. Man pages are installed in /etc/dmf/dmbase/man.

Note: If you are not familiar with setting the MANPATH environment variable,
you should know that some paths are checked even though they are not
listed by default. In other words, even though the command
echo $MANPATH appears to indicate that no variable is defined (in ksh it
returns no message or in csh it returns the message
MANPATH - Undefined variable), certain paths are still searched for
man pages. Setting the MANPATH environment variable as described below
will supersede the fact that these paths are searched.

If MANPATH has not been set, you should read the man(1) man page to
determined the paths that are checked and then include those paths in the
commands below.

24 007–3681–004

Configuring DMF [2]

The following example uses sh syntax to set and display the DMF PATH
environment variables:

PATH=$PATH:/etc/dmf/dmbase/etc:/etc/dmf/dmbase/bin; export PATH

MANPATH=$MANPATH:/etc/dmf/dmbase/man; export MANPATH

env | grep PATH

MANPATH=/usr/man:/usr/share/catman:/usr/catman:/usr/local/man:/etc/dmf/dmbase/man

PATH=/usr/sbin:/usr/bsd:/sbin:/usr/bin:/bin:/etc:/usr/etc:/usr/bin/X11:/etc/dmf/dmbase/etc:

/etc/dmf/dmbase/bin

The following example uses csh syntax to set and display the DMF PATH
environment variables:

% setenv PATH ${PATH}:/etc/dmf/dmbase/etc:/etc/dmf/dmbase/bin

% setenv MANPATH ${MANPATH}:/etc/dmf/dmbase/man

% env |grep PATH

MANPATH=/usr/man:/usr/share/catman:/usr/catman:/usr/local/man:/etc/dmf/dmbase/man

PATH=/usr/sbin:/usr/bsd:/sbin:/usr/bin:/bin:/etc:/usr/etc:/usr/bin/X11:/etc/dmf/dmbase/etc:

/etc/dmf/dmbase/bin

You can set the user command and man path names in the file /etc/profile
for all ksh users and /etc/cshrc for all csh users, or provide a module for
users.

2.4 Configuration Objects

The configuration file consists of configuration objects and parameters. The file
uses seven types of configuration objects:

• The base object, which defines path name and file size parameters necessary
for DMF operation

• The daemon object, which defines parameters necessary for dmdaemon(8)
operation

• The file system object, which define parameters necessary for migrating files
in that file system

• The policy objects, which specify parameters to determine MSP selection,
automated space management policies, and/or file weight calculations in
automatic space management

007–3681–004 25

DMF Administrator’s Guide for IRIX® Systems

• The MSP objects, which define parameters necessary for that MSP’s operation

• The device objects, which define parameters for DMF’s use of tape devices

• The taskgroup objects, which define parameters necessary for automatic
completion of specific maintenance tasks

DMF configuration objects and parameters are also defined in the
dmf_config(5) man page.

2.5 Configuring the Base Object

The base configuration parameters define path names and file sizes necessary
for DMF operation. It is expected that you will modify the path names,
although those provided will work without modification. All path names must
be unique.

Parameter Description

TYPE base (type of object).

ADMIN_EMAIL Email address to which to send output from
administrative tasks. The mail may include
errors, warnings, and output from any configured
tasks. You cannot specify a list of addresses, so if
you want multiple recipients for this mail, you
must set up an alias.

HOME_DIR Base path name used to construct directory
names for DMF directories in which databases
and related files reside. Generally referred to as
HOME_DIR.

JOURNAL_DIR Base path name used to construct directory names
for DMF directories in which the daemon and
tape MSP database journal files will be written.
To provide the best chance for database recovery,
this directory should be a separate file system
and a different physical device from HOME_DIR.
Generally referred to as JOURNAL_DIR.

JOURNAL_SIZE Maximum size (in bytes) of the database journal
file before DMF closes it and starts a new file.

LICENSE_FILE Full path name of the file containing the FLEXlm
license used by DMF. The default is

26 007–3681–004

Configuring DMF [2]

/usr/dmf/dmbase/flexlm/license.dat.
You should have no need to edit this parameter.

OV_KEY_FILE File containing the OpenVault keys used by DMF.
It is usually located in HOME_DIR and called
ovkeys. There is no default. (Use this parameter
only if you are using OpenVault as your tape
mounting service.)

OV_SERVER Name returned by the hostname(1) command on
the machine on which the OpenVault server is
running. This parameter only applies when
OpenVault is used as the mounting service. The
default value is the host name of the machine on
which you are running.

SPOOL_DIR Base path name used to construct the directory
names for DMF directories in which DMF log files
are kept. Generally referred to as SPOOL_DIR.

TMP_DIR Base path name used to construct the directory
names for DMF directories in which DMF puts
temporary files such as pipes. It is also used by
scripts for temporary files and is the directory
used by default by the tape MSP for caching files
if the CACHE_DIR parameter is not defined.
Generally referred to as TMP_DIR.

Warning: Do not change the directory names while DMF is running.

If you intend to run the OpenVault library management facility as the mounting
service for DMF, you must configure the OV_KEY_FILE and OV_SERVER
parameters. If you are running a different mounting service, you do not need
these parameters. More configuration steps are necessary to configure DMF to
use OpenVault; see Section 2.9.3, page 56.

Procedure 3: Base Object Configuration

The following example defines a base object:

define base

TYPE base

ADMIN_EMAIL root@dmfserver
HOME_DIR /dmf/home

007–3681–004 27

DMF Administrator’s Guide for IRIX® Systems

TMP_DIR /tmp/dmf

SPOOL_DIR /dmf/spool/
JOURNAL_DIR /dmf/journals

JOURNAL_SIZE 10m

LICENSE_FILE /var/flexlm/dmf_license.dat

OV_KEY_FILE /dmf/home/ovkeys

OV_SERVER localhost

enddef

Note: Do not use automated space management to manage the HOME_DIR,
SPOOL_DIR, or JOURNAL_DIR directories because DMF daemon processes
will deadlock if files that they are actively using within these directories are
migrated. dmcheck(8) reports an error if any of the HOME_DIR, SPOOL_DIR,
or JOURNAL_DIR parameters are also configured as DMF-managed file
systems. Configure the daemon_tasks object to manage old log files and
journal files in these directories (you can change the namedaemon_tasks to
be anything you prefer). See Section 2.6.1, page 31, for more information.

The following steps explain pertinent information for configuring the base
object:

1. Ensure that TYPE is set to base.

2. Configure the email address specified by the ADMIN_EMAIL parameter to
be the user to whom you want to send the output of the configured tasks
described in Section 2.2.5, page 22.

3. Configure the file system specified by the HOME_DIR configuration
parameter (referred to as HOME_DIR) as a separate file system, and restrict
its contents to DMF databases and relatively static files such as DMF scripts.

DMF cannot run if HOME_DIR runs out of space, and such an event is
more likely to happen if it is simply another directory in /usr.

4. Set TMP_DIR to be any file system that can store temporary files. /tmp or a
directory below /tmp is a common choice.

5. Configure the log file directory (referred to as SPOOL_DIR) as a separate
file system so that log file growth does not impact the rest of the system.

6. Ensure that the journal file directory (referred to as JOURNAL_DIR) resides
on a physical device completely separate from the one on which
HOME_DIR resides. Backup copies of DMF databases should also be stored
on the JOURNAL_DIR file system.

28 007–3681–004

Configuring DMF [2]

7. Configure the JOURNAL_SIZE parameter to be the maximum size allowable
for a journal file before DMF closes it.

8. If you plan to run OpenVault, configure the OV_KEY_FILE parameter to be
the name of the key file that holds security information for OpenVault. For
more information, see Procedure 13, page 56.

9. If you plan to run OpenVault, configure the OV_SERVER parameter to the
name of the server that runs OpenVault. For more information, see
Procedure 13, page 56.

2.6 Configuring the DMF Daemon

The daemon object defines configuration parameters necessary for dmdaemon
operation. It is expected that you will modify the values for the path names
and MSP names.

Parameter Description

TYPE dmdaemon (type of object)

MESSAGE_LEVEL Specifies the highest message level number that
will be written to the daemon log. It must be an
integer between 0 and 6; the higher the number,
the more messages written to the log file. The
default is 2. For more information on message
levels, see Section 2.14, page 68.

MIGRATION_LEVEL Sets the highest level of migration service allowed
on all DMF file systems (you can configure a
lower service level for a specific file system). The
value can be none (no migration), user (requests
from dmput(1) or dmmigrate(8) only), or auto
(automated space management). The default is
auto.

MOVE_FS Names the scratch file system used by dmmove(8)
to move files between MSPs. There is no default.

MSP_NAMES Names the MSPs used by this daemon. Necessary
only if you have more than one MSP.

TASK_GROUPS Names the task groups that contain tasks the
daemon should run. They are configured as
objects of TYPE taskgroup. There is no default.
For more information, see Section 2.6.1, page 31.

007–3681–004 29

DMF Administrator’s Guide for IRIX® Systems

SGI recommends that you use the task groups
specified in the sample configuration file,
changing the parameters as necessary for your
site.

Procedure 4: Daemon Configuration

The following example defines a daemon object:

define daemon

TYPE dmdaemon

MOVE_FS /move_fs

MIGRATION_LEVEL auto

MSP_NAMES cart1 cart2
TASK_GROUPS daemon_tasks dump_tasks

enddef

The following steps explain pertinent information for configuring the daemon
object:

1. Ensure that TYPE is set to dmdaemon. There is no default.

2. If you have more than one MSP, ensure that the MOVE_FS parameter is set
to a file system that can accept temporary files. This must be the root of a
DMAPI file system. There is no default.

3. The MIGRATION_LEVEL parameter determines the level of service for
migration to offline media. Migration from offline media (either automatic
or manual recall) is not affected by the value of MIGRATION_LEVEL.

Configure MIGRATION_LEVEL to be none, user, or auto. This value is the
highest level you want to allow anywhere in your DMF environment. You
can configure a lower level for a specific file system. none means no
migration will take place on any DMF file system. user means that
users/administrators can perform dmput(1) or dmmigrate(8) commands
and no other migration will take place. auto means that you want
automated space management on at least one DMF file system. The default
is auto. See Section 2.8, page 39, for information about configuring
automated space management.

4. Configure MSP_NAMES to be the names of the MSPs to be used by this
daemon. You need to specify this parameter if you have more than one
MSP. You will use these names when defining the MSP objects and in
SELECT_MSP parameters within policies. See Procedure 10, page 49.

30 007–3681–004

Configuring DMF [2]

5. Configure the TASK_GROUPS parameter to the name(s) of the object(s) used
to define how periodic maintenance tasks are completed. In the example,
daemon_tasks defines the tasks such as scanning and managing log files
and journal files. The dump_tasks object defines tasks that back up
DMF-managed file systems. You can change the object names themselves
(dump_tasks and daemon_tasks) to be any name you like. There is no
default value for the object. See Section 2.6.1 for more information.

2.6.1 Configuring Daemon Maintenance Tasks

You can configure daemon_tasks parameters to manage how the DMF
daemon performs the following maintenance tasks:

• Auditing databases (the run_audit.sh task)

• Scanning recent log files for errors (the run_scan_logs.sh task)

• Removing old log files (the run_remove_logs.sh task and the
LOG_RETENTION parameter)

• Removing old journal files (the run_remove_journals.sh task and the
JOURNAL_RETENTION parameter)

• Backing up DMF databases (the run_copy_databases.sh task and the
DATABASE_COPIES parameter)

For each of these tasks, you can configure when the task should be run. For
some of the tasks, you must provide more information such as destinations or
retention times for output.

You can configure dump_tasks parameters to manage how the daemon
completes the following tasks to back up the DMF-managed file systems:

• Fully backing up DMF-managed file systems (the run_full_dump.sh task)

• Partially backing up DMF-managed file systems (the
run_partial_dump.sh task)

• Hard-deleting files no longer on backup tape (the run_hard_deletes.sh
task)

• Managing the data from the file system dumps (the DUMP_TAPES,
DUMP_RETENTION, DUMP_DEVICE, DUMP_MIGRATE_FIRST,
DUMP_INVENTORY_COPY, DUMP_FILE_SYSTEMS, and DUMP_VSNS_USED
parameters)

007–3681–004 31

DMF Administrator’s Guide for IRIX® Systems

For each of these tasks, you can configure when the task is run. To manage the
tapes, you must provide information such as tape and device names, retention
times for output, whether to migrate files before dumping the file system, and
locations for inventory files. Table 1, page 23, provides a summary of
automated maintenance tasks.

Procedure 5: Configuring the daemon_tasks Object

The following steps explain how to define a daemon_tasks object. You can
change the object name itself (daemon_tasks) to be any name you like.

Do not change the script names.

You may comment out the RUN_TASK parameters for any tasks you do not
want to run.

The following example would configure a daemon_tasks object:

define daemon_tasks

TYPE taskgroup
RUN_TASK $ADMINDIR/run_audit.sh every day \

at 23:00

#

RUN_TASK $ADMINDIR/run_scan_logs.sh at 00:01

#

RUN_TASK $ADMINDIR/run_remove_logs.sh every \
day at 1:00

LOG_RETENTION 4w

#

RUN_TASK $ADMINDIR/run_remove_journals.sh every \

day at 1:00
JOURNAL_RETENTION 4w

#

RUN_TASK $ADMINDIR/run_copy_databases.sh \

every day at 3:00 12:00 21:00

DATABASE_COPIES /save/dmf_home /alt/dmf_home
enddef

1. Define the object to have the same name that you provided for the
TASK_GROUPS parameter of the daemon object. In the example it is
daemon_tasks.

2. Ensure that TYPE is set to taskgroup. There is no default.

32 007–3681–004

Configuring DMF [2]

3. Configure the RUN_TASK parameters. DMF substitutes $ADMINDIR in the
path with the actual etc/admin directory in the configured DMF directory
(/etc/dmf/dmbase). When the task is run, it is given the name of the
object that requested the task as the first parameter and the name of the
task group (in this case daemon_tasks) as the second parameter. The task
itself may use the dmconfig(8) command to obtain further parameters
from either of these objects.

All of the RUN_TASK parameters require that you provide a time_expression.

The time_expression defines when a task should be done. It is a schedule
expression that has the following form:

[every n period] [at hh:mm[:ss] ...] [on day ...]

period is one of minute[s], hour[s], day[s], week[s], or month[s].

n is an integer.

day is a day of the month (1 through 31) or day of the week (sunday
through saturday).

The following are examples of valid time expressions:

at 2:00

every 5 minutes

at 1:00 on tuesday

Some of the tasks defined by the RUN_TASK parameters require more
information. The following steps specify what you must provide.

a. The run_audit.sh task runs dmaudit. For this task, provide a
time_expression. If it detects any errors, the run_audit.sh task mails
the errors to the email address defined by the ADMIN_EMAIL parameter
of the base object (described in Section 2.5, page 26).

b. The run_scan_logs.sh task scans the DMF log files for errors. For
this task, provide a time_expression. If the task finds any errors, it sends
email to the email address defined by the ADMIN_EMAIL parameter of
the base object.

c. The run_remove_logs.sh task removes logs that are older than the
value you provide by specifying the LOG_RETENTION parameter. You
also provide a time_expression to specify when you want the
run_remove_logs.sh to run. In the example, log files more than 4
weeks old are deleted each day at 1:00 A.M. Valid values for

007–3681–004 33

DMF Administrator’s Guide for IRIX® Systems

LOG_RETENTION are a number followed by m[inutes], h[ours],
d[ays], or w[eeks].

The run_remove_journals.sh task removes journals that are older
than the value you provide by specifying the JOURNAL_RETENTION
parameter. You also provide a time_expression to specify when you want
the run_remove_journal.sh to run. In the example, journal files
more than 4 weeks old are deleted each day at 1:00 A.M. Valid values
for JOURNAL_RETENTION are a number followed by m[inutes],
h[ours], d[ays], or w[eeks].

Note: The run_remove_journals.sh and run_remove_logs.sh
tasks are not limited to the daemon logs and journals; they also clear
the logs and journals for MSP(s).

d. The run_copy_databases.sh task makes a copy of the DMF
databases. For this task, in addition to a value for time_expression,
provide a value for the DATABASE_COPIES parameter that specifies
one or more directories. If you specify multiple directories, breaking the
directories among multiple disk devices minimizes the chance of losing
all the copies of the database.

The task copies a snapshot of the current DMF databases to the
directory with the oldest copy. Integrity checks are done on the
databases before the copy is saved. If the checks fail, the copy is not
saved, and the task sends email to the email address defined by the
ADMIN_EMAIL parameter of the base object.

Procedure 6: Configuring the dump_tasks Object

The following steps explain how to define a dump_tasks object. You can
change the object name itself (dump_tasks) to be any name you like.

Do not change the script names.

You may comment out the RUN_TASK parameters for any tasks you do not
want to run.

The following example would configure a dump_tasks object:

define dump_tasks

TYPE taskgroup

RUN_TASK $ADMINDIR/run_full_dump.sh on \

sunday at 00:01

RUN_TASK $ADMINDIR/run_partial_dump.sh on \
monday tuesday wednesday thursday \

34 007–3681–004

Configuring DMF [2]

friday saturday at 00:01

RUN_TASK $ADMINDIR/run_hard_deletes.sh
at 23:00

#

DUMP_TAPES HOME_DIR/tapes

DUMP_RETENTION 4w

DUMP_DEVICE SILO_2

DUMP_MIGRATE_FIRST yes
DUMP_INVENTORY_COPY /save/dump_inventory

enddef

1. Define the object to have the same name that you provided for the
TASK_GROUPS parameter of the daemon object. In the example it is
dump_tasks.

2. Ensure that TYPE is set to taskgroup. There is no default.

3. Configure the RUN_TASK parameters. See step 3 in Procedure 5, page 32,
for information about $ADMINDIR and time_expression.

The following steps specify the information you must provide for the tasks
to run correctly.

a. The run_full_dump.sh task runs a full backup of DMF-managed file
systems at intervals specified by the time_expression. In the example, the
full backup is run each week on Sunday morning one minute after
midnight.

b. The run_partial_dump.sh task backs up only those files in
DMF-managed file systems that have changed since the time a full
backup was completed. The backups are run at intervals specified by
the time_expression. In the example, it is run each day of the week
except Sunday, at one minute after midnight.

c. The run_hard_deletes.sh task removes from the database any files
that have been deleted but can no longer be restored because the
backup tapes have been recycled (that is, it hard-deletes the files). The
backup tapes are recycled at the time interval set by the
DUMP_RETENTION parameter described in the next step. For more
information on hard-deleting files, see Section 7.3, page 130.

007–3681–004 35

DMF Administrator’s Guide for IRIX® Systems

d. Manage the data from the file system dumps by configuring the
following parameters:

DUMP_TAPES
DUMP_RETENTION

DUMP_DEVICE

DUMP_MIGRATE_FIRST

DUMP_INVENTORY_COPY

DUMP_FILE_SYSTEMS

DUMP_VSNS_USED

The DUMP_TAPES parameter specifies the path of a file that contains
tape volume serial numbers (one per line) for the dump tasks to use.

The DUMP_RETENTION parameter specifies how long the backups of the
file system will be kept before the tapes are reused. This is also the
value used by the run_hard_deletes.sh task to determine how old
soft-deleted database entries must be before removing them from the
database. Valid values for DUMP_RETENTION are a number followed by
m[inutes], h[ours], d[ays], or w[eeks].

The DUMP_DEVICE parameter specifies the name of the device object in
the configuration file that defines how to mount the tapes that the
dump tasks will use. See Section 2.9.2, page 53, for information about
device objects.

If you set DUMP_MIGRATE_FIRST to YES, the dmmigrate command is
run before the dumps are done to ensure that all migratable files are
migrated, thus reducing the tapes needed for the dump. The default is
NO.

The DUMP_INVENTORY_COPY parameter specifies the path name of a
directory into which are copied the xfsdump(1M) inventory files for the
backed-up file systems.

The DUMP_FILE_SYSTEMS parameter specifies one or more file systems
to dump. If not specified, the task dumps all the file systems configured
in the configuration file. Use this parameter only if your site needs
different dump policies (such as different dump times) for different file
systems. It is safest not to specify a value for this parameter and
therefore dump all file systems configured.

The DUMP_VSNS_USED parameter is optional. It specifies the name of a
file to which the tasks that dump the file systems will append the VSN,

36 007–3681–004

Configuring DMF [2]

one per line, of each volume used by xfsdump. If you don’t specify
this parameter, the task uses /dev/null as the file name.

The dump_tasks object employs scripts that call the xfsdump(1M) command
in conjunction with the dmtape DMF support program. This mechanism gives
you flexible and efficient use of a predetermined set of backup volumes that are
automatically allocated to the xfsdump program as needed during the backup.
In order to allow you an equally flexible and efficient method for restoring files
backed up by the dump_tasks object, the dmxfsrestore(8) command should
be used any time a restore is required for a dump_tasks-managed file system.
Please see the dmxfsrestore(8) man page for more information on running
the command.

2.7 Configuring File Systems

You must have a filesystem object for each file system that can migrate files.

The filesystem object parameters are as follows:

Parameter Value

TYPE filesystem (type of object).

MESSAGE_LEVEL Specifies the highest message level number that
will be written to the automated space
management log (autolog). It must be an
integer between 0 and 6; the higher the number,
the more messages written to the log file. The
default is 2. For more information on message
levels, see Section 2.14, page 68.

MIGRATION_LEVEL Sets the level of migration service for the file
system. Valid values are none (no migration),
user (only user-initiated migration), or auto
(automated space management). The migration
level actually used for the file system is the lesser
of the MIGRATION_LEVEL of the daemon object
and this value. The default is auto.

POLICIES Specifies the names of the configuration objects
defining policies for this file system.

TASK_GROUPS Names the task groups that contain tasks the
daemon should run. They are configured as
objects of TYPE taskgroup. There is no default.

007–3681–004 37

DMF Administrator’s Guide for IRIX® Systems

Currently there are no defined tasks for file
systems.

Procedure 7: Configuring filesystem Objects

The following example defines a filesystem object:

define /c

TYPE filesystem
MIGRATION_LEVEL user

POLICIES fs_msp

enddef

The following steps explain pertinent information for configuring the above
filesystem object:

1. Ensure that define has a value that is the mount point of the file system
you want DMF to manage. Do not use the name of a symbolic link. There
is no default.

2. Ensure that TYPE is set to filesystem. There is no default.

3. The MIGRATION_LEVEL parameter determines the level of service for
migration to offline media. Migration from offline media (either automatic
or manual recall) is not affected by the value of MIGRATION_LEVEL.

Configure MIGRATION_LEVEL to be one of none , user, or auto. none
means no migration will take place on this file system. user means that
users/administrators can perform dmput(1) or dmmigrate(8) commands
but no other migration will take place. auto means that you want
automated space management on this file system.

The default is auto, which means that you do not need to include this line
unless you want to specify user or none. See Section 2.8 and Procedure 8,
page 43, for information about configuring automated space management
policies.

Note: user is the highest migration level that can be associated with a
real-time partition.

4. The POLICIES parameter is used to declare one or more migration policies
that will be associated with this file system. Policies are defined with
policy objects (see Section 2.8). The POLICIES parameter is required;
there is no default value. A policy can be unique to each DMF-managed file
system, or it can be reused numerous times.

38 007–3681–004

Configuring DMF [2]

2.8 DMF Policies

A policy object is used to specify a migration policy. Three types of migration
policies can be defined: automated space management, file weighting, and MSP
selection.

The following rules govern the use of policy objects with the POLICIES
parameter of the filesystem object:

• The POLICIES parameter for a file system must specify one and only one
MSP selection policy.

• If the MIGRATION_LEVEL for a file system is auto, the POLICIES parameter
for that file system must specify one and only one space management policy.

• You do not need to specify a weighting policy if the default values are
acceptable.

• You can configure one policy that defines all three groups of policy
parameters (space management, file weight, and MSP selection) and share
that policy among all the file systems. Alternatively, you might create an
MSP selection policy for all file systems and a space management policy
(including weighting parameters) for all file systems.

The policy object parameters described below are grouped by function.

2.8.1 Automated Space Management Parameters

DMF lets you automatically monitor file systems and migrate data as needed to
prevent file systems from filling. This capability is implemented in DMF with a
daemon called dmfsmon(8). After the dmfsmon daemon has been initiated, it
will begin to monitor the DMF-managed file system to maintain the level of free
space configured (in the configuration file).

Chapter 3, page 71, describes automated space management in more detail.

The following are parameters that control automated space management on a
file system:

Parameter Description

TYPE policy (type of object).

FREE_SPACE_MINIMUM Minimum percentage of free file system space
that dmfsmon maintains. dmfsmon will begin to
migrate files when the available free space for the

007–3681–004 39

DMF Administrator’s Guide for IRIX® Systems

file system falls below this percentage value. This
parameter is required; there is no default.

FREE_SPACE_TARGET Percentage of free file system space that dmfsmon
will try to achieve if free space reaches or falls
below FREE_SPACE_MINIMUM. This parameter is
required; there is no default.

MIGRATION_TARGET Percentage of file system capacity that DMF
maintains as a reserve of dual-state files whose
online space can be freed if free space reaches or
falls below FREE_SPACE_MINIMUM. dmfsmon
tries to make sure that this percentage of the file
system is migrated, migrating, or free after it runs
to make space available. This parameter is
required; there is no default.

FREE_SPACE_DECREMENT Percentage of file system space by which
dmfsmon will decrement FREE_SPACE_MINIMUM
if it cannot find enough files to migrate so that
the value is reached. The decrement is applied
until a value is found that dmfsmon can achieve.
If space later frees up, the
FREE_SPACE_MINIMUM is reset to its original
value. Valid values are between 1 and the value
of FREE_SPACE_TARGET. The default is 2.

FREE_DUALSTATE_FIRST When set to on, dmfsmon will free dual-state files
before freeing files it will have to migrate first.
The default is off.

Note: Ideal values for these parameters are highly site-specific, based largely
on file system sizes and typical file sizes.

Note: The dump_tasks object employs scripts that call the xfsdump(1M)
command in conjunction with the dmtape DMF support program. This
mechanism gives you flexible and efficient use of a predetermined set of
backup volumes that are automatically allocated to the xfsdump program as
needed during the backup. In order to allow you an equally flexible and
efficient method for restoring files backed up by the dump_tasks object, the
dmxfsrestore(8) command should be used any time a restore is required
for a dump_tasks-managed file system. Please see the dmxfsrestore(8)
man page for more information on running the command.

40 007–3681–004

Configuring DMF [2]

2.8.2 File Weighting and MSP Selection Parameters

An important part of automatic space management is selecting files to migrate
and determining where to migrate them. When DMF is conducting automated
space management, it derives an ordered list of files, called a candidate list, and
migrates or frees files starting at the top of the list. The ordering of the
candidate list is determined by weighting factors that are defined by using
weighting-factor parameters in the configuration file.

DMF can be configured to have many MSPs. Each MSP manages its own set of
volumes. The MSP selection parameters allow you to direct DMF to migrate
files with different characteristics to different MSPs.

The file weighting and MSP selection parameters can be used more than once to
specify that different files should have different weighting or MSP selection
values.

The policy parameters for file weighting are as follows:

Parameter Description

AGE_WEIGHT Specifies a floating point constant and floating
point multiplier to use to calculate the weight
given to a file’s age. AGE_WEIGHT is calculated as
constant + (multiplier * file_age_in_days). If DMF
cannot locate values for this parameter, it uses a
floating point constant of 1 and a floating point
multiplier of 1.

SPACE_WEIGHT Specifies a floating point constant and floating
point multiplier to use to calculate the weight
given to a file’s size. SPACE_WEIGHT is
calculated as constant + (multiplier *
file_disk_space_in_bytes). If DMF cannot locate
values for this parameter, it uses a floating point
constant of 0 and a floating point multiplier of 0.

The parameter for MSP selection follows:

Parameter Description

SELECT_MSP Specifies the MSP(s) to use for a file. You can list
as many MSP names as you have MSP objects
defined. A copy of the file will be migrated to
each MSP listed. The special MSP name none
means that the file will not be migrated. If you

007–3681–004 41

DMF Administrator’s Guide for IRIX® Systems

define more than one MSP, separate the names
with white space. If no SELECT_MSP parameter
applies to a file, it will not be migrated. The
parameters are processed in the order they
appear in the policy. There is no default.

The file weighting and MSP selection parameters accept an optional when clause
to restrict the set of files to which that parameter applies.

This clause has the form when expression.

expression can include any of the following simple expressions:

Expression Description

age Days since last modification or last access of the
file, whichever is more recent

space Number of bytes the file occupies on disk (always
a multiple of the blocksize, which may be larger
or smaller than the length of the file)

gid Group ID of one or more files

uid User ID of one or more files

Combine expressions by using and, or, and ().

Use the operators =, >, <, =>, =<, and in to specify values.

The following are examples of valid expressions:

space < 10m (space used is less than 10 million bytes)
uid <= 123 (file’s user ID is less than or equal to 123)
gid = 55 (file’s group ID is 55)
age >= 15 (file’s age is greater than or equal to 15 days)
space > 1g (space used is greater than 1 billion bytes)
uid in (10 82-110 200) (file’s user ID is 10, between 82 and 110, or 200)
(gid = 55 or uid <= 123) and age < 5

(file’s age is greater than 5 days and its
group ID is 55 or its user ID is higher than 123)

2.8.3 Configuring Policies

The following procedures explain how to create policies for automated space
management (including file weighting) and MSP selection.

42 007–3681–004

Configuring DMF [2]

Procedure 8: Configuring Objects for Automated Space Management

The following example defines a policy object for automated space
management:

define fs_space

TYPE policy

MIGRATION_TARGET 50

FREE_SPACE_TARGET 10

FREE_SPACE_MINIMUM 5
FREE_DUALSTATE_FIRST off

AGE_WEIGHT 0 0.00 when age < 10

AGE_WEIGHT 1 0.01 when age < 30

AGE_WEIGHT 10 0.05 when age < 120

AGE_WEIGHT 50 0.1

SPACE_WEIGHT 0 0

enddef

The following steps explain pertinent information for configuring the above
policy object:

1. Ensure that define has a value you set previously in the POLICIES
parameter of a filesystem object. There is no default.

2. Ensure that TYPE is set to policy. There is no default.

3. Configure automated space management as follows:

a. Configure MIGRATION_TARGET to an integer percentage of total file
system space. DMF attempts to maintain this percentage as a reserve of
space that is free or occupied by dual-state files that can be deleted if
the file system free space reaches or falls below
FREE_SPACE_MINIMUM. The default is 30.

b. Configure FREE_SPACE_TARGET to an integer percentage of total file
system space. DMF will try to achieve this level of free space when free
space reaches or falls below FREE_SPACE_MINIMUM. The default is 20.

c. Configure FREE_SPACE_MINIMUM to an integer percentage of the total
file system space that DMF must maintain as free. DMF will begin to
migrate files when the available free space for the configured file
system reaches or falls below this percentage value. The default is 10.

007–3681–004 43

DMF Administrator’s Guide for IRIX® Systems

d. Configure FREE_DUALSTATE_FIRST to be on if you want DMF to free
the space used by dual-state files before it migrates and frees regular
files. The default is off.

4. Configure the age and size weighting factors associated with a file when it
is evaluated for migration as follows:

a. The syntax of the AGE_WEIGHT parameter is a floating-point constant
followed by a floating-point multiplier. The age weight is calculated as
follows:

constant + (multiplier x age_in_days)

Add a when clause to select which files should use these values. DMF
checks each AGE_WEIGHT parameter in turn, in the order they occur in
the configuration file. If the when clause is present, DMF determines
whether the file matches the criteria in the clause. If no clause is
present, a match is assumed. If the file matches the criteria, the file
weight is calculated from the parameter values. If they do not match,
the next instance of that parameter is examined.

An AGE_WEIGHT of 1 1.0 is used if no AGE_WEIGHT applies for a file.

In the example policy, files that have been accessed or modified within
the last 10 days have a weight of zero. File migration likelihood
increases with the length of time since last access because the file will
have a greater weight. The final line specifies that files which have not
been accessed or modified in 120 days or more have a far greater
weight than all other files.

b. The syntax of SPACE_WEIGHT parameters is a floating-point constant
followed by a floating-point multiplier. The space weight is calculated
as follows:

constant + (multiplier x file_disk_space_in_bytes)

In the example policy, the size of the file does not affect migration
because all files have SPACE_WEIGHT of zero.

A SPACE_WEIGHT of 0 0.0 is used if no SPACE_WEIGHT applies for a
file.

c. Configure negative values to ensure that files are never automatically
migrated. For example, you might want to set a minimum age for

44 007–3681–004

Configuring DMF [2]

migration. The following parameter specifies that files that have been
accessed or modified within 1 day are never automatically migrated:

AGE_WEIGHT -1 0.0 when age <= 1

The following parameter specifies that small files are never
automatically migrated:

SPACE_WEIGHT -1 0 when space <= 4k

Note: DMF calculates the size weight and age weight separately. If either
value is less than zero, the file is not automatically migrated or freed.
Otherwise, the two values are summed to form the file’s weight.

Procedure 9: Configuring Objects for MSP Selection

The following example defines a policy object for MSP selection:

define fs_msp

TYPE policy
SELECT_MSP none when space < 65536

SELECT_MSP cart1 cart2 when gid = 22

SELECT_MSP cart1 when space >= 50m

SELECT_MSP cart2

enddef

The following steps explain pertinent information for configuring the above
policy object:

1. Ensure that define has a value that you set previously in the POLICIES
parameter of the filesystem object. There is no default.

2. Ensure that TYPE is set to policy. There is no default.

3. Ensure that the MSP name (or names) you specify as the first value of the
SELECT_MSP parameter is a name you set previously in the MSP_NAMES
parameter of the daemon object. There is no default.

4. Configure MSP selection criteria as follows:

a. If you want to select an MSP based on file size, use parameters such as
the following, which send large files to cart1 and small files to cart2:

SELECT_MSP cart1 when space >= 50m
SELECT_MSP cart2 when space >= 65536

007–3681–004 45

DMF Administrator’s Guide for IRIX® Systems

b. If you want certain files to be copied to more than one MSP, use syntax
such as the following, which migrates all files that have a group ID of
22 to both of the configured MSPs:

SELECT_MSP cart1 cart2 when gid = 22

Separate multiple MSP names with a blank space.

c. If you want to ensure that some files are never migrated, you can
designate the MSP selection as none. The following line from the
sample file ensures that files smaller than 65,536 bytes are not migrated:

SELECT_MSP none when space < 65536

Note: The space expression references the number of bytes the file occupies
on disk, which may be larger or smaller than the length of the file. For
example, you might use the following line in a policy:

SELECT_MSP none when space < 4096

Your intent would be to restrict files smaller than 4 Kbytes from migrating.

However, this line may actually allow files as small as 1 byte to be migrated,
because while the amount of data in the file is 1 byte, it will take 1 block to
hold that 1 byte. If your file system uses 4–Kbyte blocks, the space used by
the file is 4096, and it does not match the policy line.

To ensure that files smaller than 4 Kbytes do not migrate, use the following
line:

SELECT_MSP none when space <= 4096

2.9 Setting up Tape MSPs

Each MSP you create must have an object defined in the configuration file.

The tape MSP entry has the following options, listed in the order in which they
appear in the sample file:

Option Description

TYPE msp (type of object).

COMMAND Binary file to execute in order to initiate this MSP.
For the tape MSP, this value must be dmatmsp.

CACHE_DIR Directory in which the MSP stores chunks while
merging them from sparse tapes. If you do not

46 007–3681–004

Configuring DMF [2]

specify this parameter, DMF uses the value of
TMP_DIR from the base object.

CACHE_SPACE Amount of disk space (in bytes) that dmatmsp
can use when merging chunks from sparse tapes.
During merging, small chunks from sparse tapes
are cached on disk before being written to a tape.
The default is 0, which causes all files to be
merged via sockets. For more information, see
Procedure 10, step 5, page 50.

CHILD_MAXIMUM Maximum number of child processes the MSP is
allowed to fork. The maximum value is 100; the
default is 4.

DISK_IO_SIZE Transfer size (in bytes) used when reading from
or writing to files within a DMF file system. The
value must be between 4096 and 16 million
(16m). The default is 65536.

HFREE_TIME Minimum number of seconds that a tape no
longer containing valid data must remain unused
before the MSP overwrites it. The default value is
172,800 seconds (2 days), and the minimum
allowed value is 0.

When an MSP removes all data from a tape, it
sets the hfree (hold free tape) flag bit in the
tape’s volume (VOL) database entry to prevent
that tape from being immediately reused. The
next time the MSP scans the database for volumes
after HFREE_TIME seconds have passed, the MSP
clears the hfree flag, allowing the tape to be
rewritten. If HFREE_TIME is set to 0, the MSP will
never clear hfree, so an unused tape will not be
reused until you clear its hfree flag manually.
See the dmvoladm man page for a description of
how to set and clear the hfree flag manually.

MAX_CACHE_FILE Largest chunk (in bytes) that will be merged
using the merge disk cache. Larger files are
transferred directly via a socket from the read
child to the write child. The default is 25% of the
CACHE_SPACE value. Valid values are 0 through
the value of CACHE_SPACE.

007–3681–004 47

DMF Administrator’s Guide for IRIX® Systems

MAX_CHUNK_SIZE Specifies that the MSP should break up large files
into chunks no larger than this value (specified in
bytes) as it writes data to tape. If a file is larger
than this size, it is broken up into pieces of the
specified size, and, depending on other activity,
more than one write child may be used to write
the data to tape. If MAX_CHUNK_SIZE is 0 (the
default) the MSP only breaks a file into chunks
when an end of volume is reached.

MAX_PUT_CHILDREN Maximum number of write child processes the
MSP will schedule. The default and the
maximum are the value of CHILD_MAXIMUM; the
minimum is 1.

MERGE_CUTOFF Limit at which the MSP will stop scheduling
tapes for merging. This number refers to the sum
of the active and queued children generated from
gets, puts, and merges. The default is
CHILD_MAXIMUM, which means that, if sparse
tapes are available, children will be created until
there are CHILD_MAXIMUM children, thus using
tape efficiently. However, if any recall requests
arrive, they will be started before new merges.

Setting this number below CHILD_MAXIMUM
reserves some tape units for recalls as the expense
of merge efficiency. Setting this number above
CHILD_MAXIMUM increases the priority of merges
relative to recalls.

MESSAGE_LEVEL Highest message level number that will be
written to the MSP log. It must be an integer
between 0 and 6; the higher the number, the more
messages written to the log file. The default is 2.
For more information on message levels, see
Section 2.14, page 68.

MIN_TAPES Minimum number of unused tapes that can exist
in the MSP VOL database before operator
notification. If the number of unused tapes falls
below MIN_TAPES, the operator will be asked to
add new tapes. The default is 10; the minimum is
0.

48 007–3681–004

Configuring DMF [2]

TAPE_TYPE Specifies the name of a device object that
describes how the tapes are accessed and used.
There is no default. The device object is
described in Section 2.9.2, page 53.

TASK_GROUPS Names the task groups that contain tasks the
MSP should run. They are configured as objects
of TYPE taskgroup. There is no default. See
Section 2.9.1, page 50, for more information.

TIMEOUT_FLUSH Minutes after which the MSP will flush files to
tape. The default is 120 minutes.

Procedure 10: Configuring Tape MSPs

The following procedure does not use all the possible options for configuring a
tape MSP; it defines two tape MSPs named cart1 and cart2.

define cart1
TYPE msp

COMMAND dmatmsp

TAPE_TYPE SILO_1

CACHE_SPACE 110m

CHILD_MAXIMUM 3
MESSAGE_LEVEL 2

TASK_GROUP msp_tasks

enddef

#

define cart2

TYPE msp
COMMAND dmatmsp

TAPE_TYPE SILO_2

CACHE_SPACE 50m

CACHE_DIR /cache

MAX_CACHE_FILE 50m
CHILD_MAXIMUM 10

TASK_GROUP msp_tasks

enddef

The following steps explain pertinent information for configuring the msp
objects:

1. Ensure that define has a value that you set previously in the MSP_NAMES
parameter of the daemon object. There is no default.

2. Ensure that TYPE is set to msp. There is no default.

007–3681–004 49

DMF Administrator’s Guide for IRIX® Systems

3. Ensure that COMMAND is set to dmatmsp. There is no default.

4. Define a TAPE_TYPE parameter that names the device type object for the
MSP. There is no default. Use the value you set here in defining device
objects. See Section 2.9.2, page 53.

5. Configure the CACHE_SPACE parameter to be at least twice the configured
tape zone size. If you do not set this parameter, DMF will merge tapes via
sockets, which means that the read and write children have to synchronize.
Using CACHE_SPACE is far more efficient, especially for small files.

The MSP is able to merge tapes more efficiently if it can stage most of the
files to disk. Setting the CACHE_SPACE parameter tells the MSP how much
disk space it can use. The MAX_CACHE_FILE parameter specifies the largest
file it will place in the CACHE_SPACE. The default for CACHE_SPACE is 0,
which causes all data to be transferred by sockets.

See Section 6.1.2, page 94, for more information on tape zone sizes.

6. Configure the CHILD_MAXIMUM to be the number of tape drives this MSP
can use. The default is 4, and the maximum is 24.

7. Configure the MESSAGE_LEVEL of an MSP to be higher than 2 (the default)
for debugging purposes only. Valid values are 0 to 6.

8. Configure the MAX_CACHE_FILE to be the size (in bytes) of the largest
chunk that will be merged using the merge cache space (defined by
CACHE_SPACE). Large files are transferred directly via socket. The largest
value you can use is the value of CACHE_SPACE, and the default is 25% of
CACHE_SPACE.

9. Configure the TASK_GROUPS parameter to the name(s) of the object(s) used
to define how periodic maintenance tasks are completed. There is no
default. See Section 2.9.1, for more information.

2.9.1 Configuring Tape MSP Maintenance Tasks

You can configure parameters for how the tape MSP daemon performs the
following maintenance tasks:

• Creating tape reports (the run_tape_report.sh task)

• Merging sparse tapes (the run_tape_merge.sh task and the THRESHOLD,
VOLUME_LIMIT, and DATA_LIMIT parameters)

• Stopping tape merges at a specified time (the run_merge_stop.sh task)

50 007–3681–004

Configuring DMF [2]

For each of these tasks, you can configure when the task is run. For the second
task, you must provide more information such as what determines that a tape is
sparse and how many tapes can be merged at one time.

Note: The run_remove_journals.sh and run_remove_logs.sh tasks
are configured as part of the daemon_tasks object, but these tasks also clear
the MSP logs and journals. These tasks are described in Section 2.6.1, page 31.

Table 1, page 23, provides a summary of automated maintenance tasks.

Procedure 11: Configuring the msp_tasks Object

The following steps explain how to define the msp_tasks object. You can
change the object name itself (msp_tasks) to be any name you like.

Do not change the path names or task names.

You may comment out the RUN_TASK parameters for any tasks you do not
want to run.

define msp_tasks

TYPE taskgroup
RUN_TASK $ADMINDIR/run_tape_report.sh at 00:10

#

RUN_TASK $ADMINDIR/run_tape_merge.sh on \

monday wednesday friday at 2:00

THRESHOLD 50

#VOLUME_LIMIT 20
#DATA_LIMIT 5g

#

RUN_TASK $ADMINDIR/run_merge_stop.sh at 5:00

1. Define the object to have the same name that you provided for the
TASK_GROUPS parameter of the tape msp object. In the example it is
msp_tasks.

2. Ensure that TYPE is set to taskgroup. There is no default.

3. Configure the RUN_TASK parameters. DMF substitutes $ADMINDIR in the
path with the actual etc/admin directory in the configured DMF directory
(/etc/dmf/dmbase). When the task is run, it is given the name of the
object that requested the task as the first parameter and the name of the
task group (in this case msp_tasks) as the second parameter. The task
itself may use the dmconfig(8) command to obtain further parameters
from either of these objects.

007–3681–004 51

DMF Administrator’s Guide for IRIX® Systems

The RUN_TASK parameters require that you provide a time_expression.

The time_expression defines when a task should be done. It is a schedule
expression that has the following form:

[every n period] [at hh:mm[:ss] ...] [on day ...]

period is one of minute[s], hour[s], day[s], week[s], or month[s].

n is an integer.

day is a day of the month (1 through 31) or day of the week (sunday
through saturday).

The following are examples of valid time expressions:

at 2:00
every 5 minutes

at 1:00 on tuesday

The following steps specify the information you must provide for the tasks
to run correctly.

a. The run_tape_report.sh generates a report on the tapes in the MSP
tape pool and on MSP activity. In the example, it runs every day at 10
minutes after midnight.

b. The run_tape_merge.sh task merges sparse tapes. You can specify
the criteria that DMF uses to determine that a tape is sparse, as follows:

• Use the THRESHOLD parameter to set an integer percentage of active
data on a tape. DMF will consider a tape to be sparse when it has
less than this percentage of data that is still active.

• Use the VOLUME_LIMIT parameter to set the maximum number of
tape volumes that can be selected for merging at one time.

• Use the DATA_LIMIT parameter to set the maximum amount of
data (in bytes) that should be selected for merging at one time.

c. The run_merge_stop.sh task shuts down volume merging (tape
merging) at a time you specify by using a time_expression. This task is
an alternative to using the VOLUME_LIMIT and DATA_LIMIT
parameters to stop merging at specified points. In the example, the
limit parameters are commented out because run_merge_stop.sh is
used to control volume merging.

52 007–3681–004

Configuring DMF [2]

2.9.2 Device Objects

Each tape device type name you use in the MSP or in the dump_tasks object
should be defined as a device object in the configuration file. The parameters
you define are based on which mounting service you intend to use.

The following parameters are common to all device objects:

Parameter Description

TYPE device (type of object).

BLOCK_SIZE Block size used when writing tapes from the
beginning. The default depends upon the device,
with DMF setting defaults as follows:

AMPEX DIS/DST 1199840

DLT 131072

STK 9840 126796
Other devices 65536

LABEL_TYPE Label type used when writing tapes from the
beginning. Possible values are nl (no label), sl
(standard label, for IBM tapes), and al (ANSI
label). The default is al.

MOUNT_SERVICE Specifies the mounting service to use. Supported
values are openvault and tmf. This parameter
is required; there is no default.

POSITIONING Specifies how the tape should be positioned to a
zone; either skip or direct. skip specifies the
use of tape mark skipping. direct specifies the
use of block ID seek capability if the block ID is
known. The default is direct.

POSITION_RETRY Level of retry in the event of a failure during
zone positioning; one of none, lazy, or
aggressive. lazy specifies that the MSP will
retry if a reasonably fast alternative method of
positioning is available. aggressive specifies
that the MSP may try more costly and
time-consuming alternatives. If the MSP is unable
to position to a zone, the MSP aborts all recalls
for files with data in that zone (however, DMF
does not abort them if a copy exists in another
MSP). The default is lazy.

007–3681–004 53

DMF Administrator’s Guide for IRIX® Systems

VERIFY_POSITION Specifies whether the tape MSP write child
should (prior to writing) verify that the tape is
correctly positioned and that the tape was
properly terminated by the last use. The default
is to verify. Specifying no or off turns
verification off; anything else ensures verification.

WRITE_CHECKSUM Specifies that tape block should be checksummed
before writing. If a tape block has a checksum, it
is verified when read. The default is on.

ZONE_SIZE Specifies approximately how much data the write
child should put in a zone. The write child adds
files and chunks to a zone until the data written
equals or exceeds this value, at which time it
writes a tape mark and updates the database.
Smaller values allow faster recalls and better
recoverability but poorer write performance. The
MSP also uses zone size to determine when to
start write children. The default is 50 MB.

2.9.2.1 Device Objects for OpenVault As Mounting Service

The device object may have the following parameters when it is configured for
OpenVault:

Parameter Description

OV_ACCESS_MODES Specifies a list of access mode names that control
how data is written to tape. The default value is
readwrite when migrating and readonly
when recalling. This parameter is optional.

OV_INTERCHANGE_MODES Specifies a list of interchange mode names that
control how data is written to tape. This can be
used to control whether the device compresses
data as it is written. This optional parameter is
applied when a tape is mounted or rewritten.

Examples of the use of these parameters are provided in Procedure 13, page 56.

OpenVault requires several configuration steps in addition to configuring the
device object. They are described in Section 2.9.3, page 56.

54 007–3681–004

Configuring DMF [2]

2.9.2.2 Device Objects for TMF as Mounting Service

Tape mounting can be accomplished by using the Tape Management Facility
(TMF). To use TMF as a mounting service, there are no required parameters
that you must specify, but the TMF_TMMNT_OPTIONS parameter allows you to
specify some tmmnt options:

Parameter Description

TMF_TMMNT_OPTIONS Specifies command options that should be added
to the tmmnt command when mounting a tape.

DMF uses the -Z option to tmmnt, so options
controlling block size and label parameters are
ignored. Use the BLOCK_SIZE and LABEL_TYPE
device parameters instead.

Use -g if the group name is different from the
device object’s name. Use -i to request
compression.

Procedure 12: Configuring Devices for TMF

The following example defines a device object for use with TMF:

define SILO_3

TYPE device
MOUNT_SERVICE tmf

BLOCK_SIZE 131072

LABEL_TYPE sl

TMF_TMMNT_OPTIONS -g DLT

enddef

The following steps explain pertinent information for configuring the device
object for TMF:

1. Ensure that define has a value that you set previously in the TAPE_TYPE
parameter of the msp object. There is no default.

2. Ensure that TYPE is set to device. There is no default.

3. Configure the MOUNT_SERVICE to be tmf.

Note: DMF uses the -Z option to tmmnt, so options controlling block size
and label parameters would be ignored if you were to specify them for the
TMF_TMMNT_OPTIONS parameter. Use the BLOCK_SIZE and LABEL_TYPE
device parameters instead.

007–3681–004 55

DMF Administrator’s Guide for IRIX® Systems

4. Configure the BLOCK_SIZE parameter to be the block size used when
writing tapes from the beginning. In the example, 131072 is used because
DLTs write more efficiently with this blocksize.

5. Configure the LABEL_TYPE parameter to be the label type used when
writing tapes from the beginning. In the example, sl is used to specify
standard label for IBM tapes.

6. Configure the TMF_TMMNT_OPTIONS parameter to specify command
options that should be added to the tmmnt command when mounting a
tape. In the example, the -g option specifies that the TMF tape group is
DLT. If this option on this parameter had not been specified, DMF would
have used the name of this device object (in the example, SILO_3).

2.9.3 Using OpenVault for Tape MSPs

This section describes the steps you must take to configure OpenVault for a
tape MSP. You must execute OpenVault commands, create security key files,
and edit the DMF configuration file.

Procedure 13: Configuring DMF to Use OpenVault

The following procedure describes how to make OpenVault and DMF work
together. The OpenVault setup script can be used to enable the DMF
application. See the OpenVault Operator’s and Administrator’s Guide for a
description of this script.

Note: The example that follows assumes that before you complete the steps
described, the OpenVault server is configured and all drives and libraries are
configured and OpenVault is running.

1. On the OpenVault server, add DMF as both a privileged and unprivileged
OpenVault application for this host. To do this, use the setup script, menu
item 1, submenu 5.

2. Add the DMF application as a valid user to appropriate drive groups. It is
preferable that you use the OpenVault setup script, menu item 2, submenu
7. If for some reason you cannot use the setup script, you can enter the
command manually, as follows:

ov_drivegroup -a drive_group -A dmf

56 007–3681–004

Configuring DMF [2]

3. Add DMF as a valid application to appropriate tape groups. It is preferable
that you use the OpenVault setup script, menu item 2, submenu 8. You
can enter the command manually, as follows:

ov_cartgroup -a tape_group -A dmf

4. Configure the base object for use with OpenVault:

define base

TYPE base

HOME_DIR /dmf/home

.

.

.

OV_KEY_FILE /dmf/home/ovkeys

OV_SERVER hostname
enddef

a. Configure the OV_KEY_FILE parameter name of the key file that holds
security information for OpenVault. It is usually located in HOME_DIR
and called ovkeys.

b. Configure the OV_SERVER parameter to the value returned by the
hostname(1) command on the machine on which the OpenVault server
is running. This parameter only applies when OpenVault is used as the
mounting service. The default value is the host name of the machine on
which you are running.

5. Use the dmov_keyfile(8) command to create the file defined by the
OV_KEY_FILE parameter. This command will prompt you for the
privileged and unprivileged keys that you defined in step 1.

6. Configure the device object for use with OpenVault:

define timber
TYPE device

MOUNT_SERVICE openvault

OV_ACCESS_MODES readwrite

OV_INTERCHANGE_MODES compression

ZONE_SIZE 200m

enddef

a. Ensure that define has a value that you set previously in the
TAPE_TYPE parameter of the msp object. There is no default.

b. Configure TYPE to be device. There is no default.

007–3681–004 57

DMF Administrator’s Guide for IRIX® Systems

c. Configure the MOUNT_SERVICE parameter to be openvault.

d. Configure the OV_ACCESS_MODES parameter to be a list of access mode
names that control how the tape is used. The parameter is optional.
The default value is readwrite when migrating and readonly when
recalling. Use this parameter to force readwrite.

The other possible values that OpenVault can use are not configurable
in DMF: for rewind/norewind, DMF uses rewind; for
variable/fixed, DMF uses variable.

e. Configure the OV_INTERCHANGE_MODES parameter to be a list of
interchange mode names that control how data is written to tape. This
can be used to control whether the device compresses data as it is
written. This parameter is optional.

To specify that you want data compressed, use
OV_INTERCHANGE_MODES compression

To force all tapes to be written as DLT4000, use
OV_INTERCHANGE_MODES DLT4000

This parameter is applied when a tape is first used or rewritten.

f. Configure other parameters relevant to your site. The example sets the
ZONE_SIZE parameter to 200 MB. The target zone size is a major factor
in determining how much data is written before writing a tape mark
and updating the MSP database. Here, the tapes used by the SILO_2
MSP will, in general, have more data written in a zone than DMF uses
as a default. Smaller values allow faster recalls and better recovery, but
they cause poorer write performance than larger values. The default is
50 MB. See Section 6.1.2, page 94, for more information on how tape
zone sizes are determined.

7. Make the appropriate cartridges accessible to the MSPs by assigning the
cartridges to the DMF application in OpenVault. To do this, you must know
the following:

• Cartridge type name. To determine the cartridge types allowed by a
given drive, enter the following:

ov_stat -c -D drive | grep base

The fourth column shown in the output is the cartridge type.

58 007–3681–004

Configuring DMF [2]

• Cartridge group. To determine the possible cartridge groups, enter the
following:

ov_cartgroup -l -A dmf

a. If you already have tapes defined in your MSP database, tell OpenVault
about these tapes by entering the following:

dmov_makecarts -g cartgroup -t carttype msp

b. If there are unmanaged cartridges in an OpenVault managed library,
you can import the unmanaged cartridges, assign them to DMF, and
add them to an MSP database by entering the following:

dmov_loadtapes -l library -g cartgroup -t carttype msp

This command will invoke a vi(1) session. In the vi(1) session, delete
any cartridges that you do not want added to the MSP.

c. If neither of the above cases are appropriate, you can manually
configure the cartridges. The following commands can be useful in this
effort:

• To list cartridges in a library, enter the following:

ov_stat -s -L library

• To list information on cartridges known to OpenVault, enter the
following:

ov_lscarts -f ’.*’

• To import cartridges into OpenVault and optionally assign them to
DMF use the ov_import command.

• To assign a cartridge known to OpenVault to an application, use the
ov_vol command with the -n option.

2.9.4 MSP Database Records

After you have added the tape MSP information to the configuration file, use
the dmvoladm(8) command with the -m option to create any missing directories
with the proper labels and to create the volume (VOL) and catalog (CAT)
records in the MSP database.

You can follow the steps in Procedure 14 for all the tape MSPs you have defined.

007–3681–004 59

DMF Administrator’s Guide for IRIX® Systems

!
Caution: Each tape MSP must have a unique set of volume serial numbers.

Procedure 14: Creating MSP Database Records

The following procedure is shown as an example that assumes you have an
MSP called cart1.

1. If you have not yet done so, set your PATH environment variable to include
/etc/dmf/dmbase/etc. (See Section 2.3, page 24.)

2. Enter the following command and it will respond as shown:

% dmvoladm -m cart1

dmvoladm: at rdm_open - created database atmsp_db

adm: 1>

The response is an informational message indicating that dmvoladm could
not open an existing MSP databases, so it is creating a new and empty one.
You should get this message the first time you use dmvoladm for an MSP,
but never again. The next line is the prompt for dmvoladm directives.

3. Assume that you will use 200 tapes of type CART with standard labels
PA0001 through PA0200.

After the prompt, enter the following directive:

adm:1> create PA0001-PA0200

4. After entering this directive, you will receive 200 messages, one for each
entry created, beginning with the following:

VSN PA0001 created.

VSN PA0002 created.

5. Use the following dmvoladm directive to list all of the tape VSNs in the
newly created library:

adm:2> list all

60 007–3681–004

Configuring DMF [2]

Note: The dmvoladm tapesize field is purely for site documentation
and is not used by the MSP. The blocksize field documents the value
used when the tape is first written or rewritten. It should not be changed
in the database; however, if you want another value, change the
BLOCK_SIZE nnn configuration parameter of the device object.

6. Issue the dmvoladm quit directive to complete setting up the MSP.

adm:3> quit

2.10 Setting up FTP MSPs

To enable a file transfer protocol (FTP) MSP, include a name for it on the
MSP_NAMES parameter in the daemon object and define an msp object for it in
the DMF configuration file.

DMF has the capability to use an FTP MSP to convert a non-DMF file server to
DMF with a minimal amount of down time for the switch over, and at
site-determined pace. Contact your customer service representative for
information about technical assistance with file server conversion.

An FTP MSP object has the following options (defaults are provided here or in
Procedure 16, page 67):

Parameter Description

TYPE msp (type of object).

COMMAND Binary file to execute in order to initiate this MSP.
For the FTP MSP, this value must be dmftpmsp.

CHILD_MAXIMUM Maximum number of child processes the MSP is
allowed to fork. The default is 4; the maximum is
100.

DISK_IO_SIZE Transfer size (in bytes) used when reading from
or writing to files within a DMF file system. The
value must be between 4096 and 16 million
(16m). The default is 65536.

FTP_ACCOUNT Account ID to use when migrating files to the
remote system.

FTP_COMMAND Additional commands to send to the remote
system. There may be more than one instance of
this parameter.

007–3681–004 61

DMF Administrator’s Guide for IRIX® Systems

FTP_DIRECTORY Directory to use on the remote system.

FTP_HOST Internet host name of the remote machine on
which files are to be stored.

FTP_PASSWORD File containing the password to use when
migrating files to the remote system. This file
must be owned by root and be only accessible
by root.

FTP_PORT Port number of the FTP server on the remote
system. The default value is the value configured
for ftp in the services file.

FTP_USER User name to use when migrating files to the
remote system.

GUARANTEED_DELETES Number of child processes that are guaranteed to
be available for processing delete requests. If
CHILD_MAXIMUM is nonzero, its value must be
greater than the sum of GUARANTEED_DELETES
and GUARANTEED_GETS. The default is 1.

GUARANTEED_GETS Number of child processes that are guaranteed to
be available for processing dmget(1) requests. If
CHILD_MAXIMUM is nonzero, its value must be
greater than the sum of GUARANTEED_DELETES
and GUARANTEED_GETS. The default is 1.

IMPORT_ONLY Specifies that the MSP is used for importing only.
Set this parameter ON when the data is stored as a
bit-for-bit copy of the file and needs to be
available to DMF as part of a conversion. The
MSP will not accept dmput(1) requests when this
parameter is enabled. The MSP will, by default,
ignore hard-delete requests when this parameter
is enabled.

When the DMF daemon recalls a file from an
IMPORT_ONLY MSP, it makes the file a regular
file rather than a dual-state file, and it soft-deletes
the MSP’s copy of the file.

IMPORT_DELETE Specifies if the MSP should honor hard-delete
requests from the DMF daemon. This parameter
applies only if IMPORT_ONLY is set to on. Set
IMPORT_DELETE to on if you wish files to be

62 007–3681–004

Configuring DMF [2]

deleted on the destination system when hard
deletes are processed.

NAME_FORMAT Remote file name template that creates names for
files stored on remote machines. The default is
username/bfid (the bfid is the full bfid in
hexadecimal).

MESSAGE_LEVEL Specifies the highest message level number that
will be written to the MSP log. It must be an
integer between 0 and 6; the higher the number,
the more messages written to the log file. The
default is 2. For more information on message
levels, see Section 2.14, page 68.

MVS_UNIT Defines the storage device type on an MVS
system. This must be specified when the
destination is an MVS system. Valid values are
3330, 3350, 3380, and 3390.

TASK_GROUPS Names the task groups that contain tasks the MSP
should run. They are configured as objects of
TYPE taskgroup. There is no default. Currently
there are tasks defined only for the tape MSP.

The MSP checks the DMF configuration file just before it starts child processes.
If the DMF configuration file changed, it is reread.

If CHILD_MAXIMUM is non-zero, its value must be greater than the sum of
GUARANTEED_DELETES and GUARANTEED_GETS.

The parameters COMMAND, FTP_HOST, FTP_USER, FTP_PASSWORD, and
FTP_DIRECTORY must be present.

The MVS_UNIT parameter affects only IBM machines; they are further described
in the dmf_config(5) man page.

Note: The MSP will not operate if the FTP_PASSWORD file is readable by
anyone other than root.

The default value for NAME_FORMAT creates a unique file name and a
subdirectory on the remote machine. The subdirectory is named after the file’s
owner at the time of migration. This default works well if the remote machine
runs an operating system based on UNIX. The default may not work at all if
the remote machine runs an operating system that is not based on UNIX. The
unique file name is the encoded bit-file identifier (bfid) of the file.

007–3681–004 63

DMF Administrator’s Guide for IRIX® Systems

Possible substitutes you may specify to create the NAME_FORMAT file name are
as follows:

%1 substitutes for the first 32 bits of the bfid in hexadecimal

%2 substitutes for the second 32 bits of the bfid in hexadecimal

%3 substitutes for the third 32 bits of the bfid in hexadecimal

%4 substitutes for the fourth 32 bits of the bfid in hexadecimal

%b substitutes for the full bfid in hexadecimal

%u substitutes for the user name of the file owner

%U substitutes for the user ID of the file owner

%g substitutes for the group name of the file

%G substitutes for the group ID of the file

%% substitutes for the literal % character

The %1, %2, %3, %4, and %b substitutions generate uppercase hexadecimal
numbers. The NAME_FORMAT must include either %b or %2, %3, %4 in some
combination.

Procedure 15: Configuring the ftp Object

The following example defines an FTP MSP:

define ftp

TYPE msp
COMMAND dmftpmsp

FTP_HOST fileserver

FTP_USER dmf

FTP_ACCOUNT dmf.disk

FTP_PASSWORD /dmf/ftp/password

FTP_DIRECTORY ftpmsp
FTP_COMMAND umask 022

enddef

The following steps explain pertinent information for configuring the ftp object:

1. Ensure that define has a value that you set previously in the MSP_NAMES
parameter of the daemon object. There is no default.

2. Ensure that TYPE is set to msp. There is no default.

3. Ensure that COMMAND is set to dmftpmsp. There is no default.

64 007–3681–004

Configuring DMF [2]

4. Set the FTP_USER parameter to the user name to use on the remote FTP
server during session initialization. There is no default.

5. Set the FTP_ACCOUNT parameter (if necessary) to the account to use on the
remote FTP server during session initialization. Most FTP servers do not
need account information. When account information is required, its nature
and format will be dictated by the remote machine and will vary from
operating system to operating system. There is no default.

6. Set the FTP_PASSWORD parameter to the name of the file containing the
password to be used on the remote FTP server during session initialization.
This file must be owned by root and only be accessible by root. In the
example, the password for the user dmf on fileserver is stored in the
file /dmf/ftp/password. There is no default.

7. Set the FTP_DIRECTORY parameter to the directory into which files will be
placed on the remote FTP server. There is no default.

8. If necessary, specify commands to the remote machine’s FTP daemon. In
the example, the umask for files created is set to 022 (removes write
permission for group and other). There is no default.

2.11 Setting up Disk MSPs

To enable a disk MSP, include a name for it on the MSP_NAMES parameter in the
daemon object and define an msp object for it in the DMF configuration file.

As with the FTP MSP, you can use a disk MSP to convert a non-DMF file server
to DMF with a minimal amount of down time for the switch over, and at a
site-determined pace. Contact your customer service representative for
information about technical assistance with file server conversion.

A disk MSP object has the following options:

Parameter Description

TYPE msp (type of object).

COMMAND Binary file to execute in order to initiate this MSP.
For the disk MSP, this value must be dmdskmsp.

CHILD_MAXIMUM Maximum number of child processes the MSP is
allowed to fork. The default is 4; the maximum is
100.

007–3681–004 65

DMF Administrator’s Guide for IRIX® Systems

DISK_IO_SIZE Transfer size (in bytes) used when reading from
or writing to files within a DMF file system. The
value must be between 4096 and 16 million
(16m). The default is 65536.

GUARANTEED_DELETES Number of child processes that are guaranteed to
be available for processing delete requests. The
default is 1.

GUARANTEED_GETS Number of child processes that are guaranteed to
be available for processing dmget(1) requests.
The default is 1.

IMPORT_DELETE Applies only if IMPORT_ONLY is set to on. Set
IMPORT_DELETE to on if you wish files to be
deleted in STORE_DIRECTORY when hard deletes
are processed.

IMPORT_ONLY MSP is used for importing only. Set this
parameter on when the data is stored as a
bit-for-bit copy of the file and needs to be
available to DMF as part of a conversion. The
MSP will not accept dmput(1) requests when this
parameter is enabled. The MSP will, by default,
ignore hard delete requests when this parameter
is enabled.

MESSAGE_LEVEL Specifies the highest message level number that
will be written to the MSP log. It must be an
integer between 0 and 6; the higher the number,
the more messages written to the log file. The
default is 2. For more information on message
levels, see Section 2.14, page 68.

NAME_FORMAT Template that creates names for files in
STORE_DIRECTORY. The default is username/bfid
(the bfid is the full bfid in hexadecimal).

STORE_DIRECTORY Specifies the directory used to store files for this
MSP.

TASK_GROUPS Names the task groups that contain tasks the MSP
should run. They are configured as objects of

66 007–3681–004

Configuring DMF [2]

TYPE taskgroup. There is no default. Currently
there are tasks defined only for the tape MSP.

The default value for NAME_FORMAT creates a unique file name and a
subdirectory in the STORE_DIRECTORY. The subdirectory is named after the
file’s owner at the time of migration. The unique file name is the encoded
bit-file identifier of the file.

Procedure 16: Configuring the dsk Object

The following example describes setting up a disk MSP:

define dsk

TYPE msp

COMMAND dmdskmsp

CHILD_MAXIMUM 8
GUARANTEED_DELETES 3

GUARANTEED_GETS 3

STORE_DIRECTORY /remote/dir

enddef

The following steps explain pertinent information for configuring the dsk object:

1. Ensure that define has a value that you set previously in the MSP_NAMES
parameter of the daemon object. There is no default.

2. Ensure that TYPE is set to msp. There is no default.

3. Ensure that COMMAND is set to dmdskmsp. There is no default.

4. Set the CHILD_MAXIMUM parameter to the maximum number of child
processes you want this MSP to be able to fork. The default is 4. The
example allows 8.

5. Set the GUARANTEED_DELETES parameter to the number of child processes
that are guaranteed to be available for processing delete requests. The
default is 1. The example allows 3.

6. Set the GUARANTEED_GETS parameter to the number of child processes that
are guaranteed to be available for processing dmget requests. The default is
1. The example allows 3.

7. Set the STORE_DIRECTORY to the directory where files will be stored. This
parameter is required; there is no default.

007–3681–004 67

DMF Administrator’s Guide for IRIX® Systems

2.12 Verifying the Configuration

To verify the DMF configuration, run the dmcheck(8) script. This command
checks the configuration file object and parameters, and reports on
inconsistencies.

2.13 Initializing DMF

The DMF daemon database is created in HOME_DIR/daemon_name as
dbrec.dat, dbrec.keys, pathseg.dat, and pathseg.keys. The database
definition file (in the same directory) that describes these files and their record
structure is named dmd_db.dbd. The database journal file is named
dmd_db.yyyymmdd.[hhmmss]. It is created in the directory
JOURNAL_DIR/daemon_name (JOURNAL_DIR is specified by the JOURNAL_DIR
configuration parameter).

The dmmaint(8) utility sets up system startup and shutdown scripts to start
and stop DMF. You can start the DMF daemon manually by executing the
dmdaemon command and stop it by executing the dmdstop(8) command.

After dmdaemon is activated, the dmget(1) and dmput(1) user commands can
be used to manage file system space manually.

2.14 General Message Log File Format

The dmdaemon, dmlockmgr, dmfsmon, and MSP processes all create message
files that are used to track various DMF events. These DMF message log files
use the same general naming convention and message format. The message log
file names are created using the extension .yyyymmdd, which represents the
year, month, and day of log file creation.

Each line in a message log file begins with the time the message was issued, an
optional message level, the process ID number, and the name of the program
that issued the message.

The optional message level is described below. The remainder of the line
contains informative or diagnostic information. The following sections provide
details about each of these log files:

• See Section 4.3, page 85, for information about dmdaemon and
dmdlog.yyyymmdd

68 007–3681–004

Configuring DMF [2]

• See Section 5.1, page 89, for information about dmlockmgr and
dmlocklog.yyyymmdd

• See Section 3.3, page 75, for information about dmfsmon and
autolog.yyyymmdd

• See Section 6.1.6, page 99, and Section 6.2.2, page 124, for information about
dmatmsp, dmdskmsp, and dmftpmsp and msplog.yyyymmdd

• See Chapter 7, page 129, for information about log file maintenance.

Messages in the dmdlog, dmlocklog, and msplog files contain a 2–character
field immediately following the time field in each message that is issued. This
feature helps to categorize the messages and can be used to extract error
messages automatically from these logs. Because the only indication of DMF
operational failure may be messages written to the DMF logs, recurring
problems can go undetected if you do not check the logs daily.

Possible message types for autolog, dmdlog, msplog, and dmlocklog are
defined as follows; the corresponding message level in the configuration file is
also provided:

Table 2. DMF Log File Message Types

Field Message type Message level

E Error 0

O Ordinary 0

I Informative 1

V Verbose 2

1 Debug level 1 3

2 Debug level 2 4

3 Debug level 3 5

4 Debug level 4 6

007–3681–004 69

Automated Space Management [3]

The DMF file system monitor, dmfsmon(8), is a daemon that monitors the free
space levels in file systems configured as auto (that is, automated space
management is enabled) and lets you maintain a specified level of free space.
When the free space in one of the file systems falls below the free-space
minimum, dmfsmon invokes dmfsfree(8).

The dmfsfree command attempts to bring the free space and migrated space of
a file system into compliance with configured values. The dmfsmon command
uses dmfsfree to bring the free space and migrated space into compliance with
configured values. dmfsfree may also be invoked by system administrators.

When the free space in one of the file systems falls below its free-space
minimum, the dmfsfree command performs the following steps:

• Scans the file system for files that can be migrated and freed. Each of these
candidates is assigned a file weight. This information is used to create a list,
called a candidate list, that contains an entry for each file and is ordered by
file weight (largest to smallest).

• Selects enough candidates to bring the free space back up to the desired
level. Files are selected in order from largest file weight to smallest.

• Selects enough non-migrated files from the candidate list to achieve the
migration target, which is the percentage of file system space you want to
have as free space and space occupied by migrated but online files. Files are
selected from the candidate list in order from largest file weight to smallest.

The dmfsmon daemon should be running whenever DMF is active. You control
automated space management by setting the file system and policy
configuration parameters in the DMF configuration file. The configuration
parameters specify targets for migration and free-space as well as one or more
policies for file weighting. Only file systems configured as MIGRATION_LEVEL
auto in the configuration file are included in the space-management process.
Section 2.8, page 39, describes how to configure automated space management.

You can change the migration level of a file system by editing the configuration
file.

The following sections describe space management and associated processes.

007–3681–004 71

DMF Administrator’s Guide for IRIX® Systems

3.1 Generating the Candidate List

The first step in the migration process occurs when dmfsmon determines it is
time to invoke dmfsfree, which scans the file system and generates the
candidate list. During candidate list generation, the inode of each online file in
the specified file system is audited, and a weight is computed for it.

A file system is associated with a file weighting policy in the DMF
configuration file. The applicable file weighting policy determines a file’s total
weight. Total file weight is the sum of the AGE_WEIGHT and SPACE_WEIGHT
parameters. Defaults are provided for these parameters, and you can configure
either to make a change. You do not need to configure a weighting policy if the
defaults are acceptable, but you should be aware that the default selects files
based on age and not on size. If you want to configure a policy based on size
that ignores file age, you should overwrite the default for AGE_WEIGHT.

The default weighting policy bases the weight of the file on the time that has
passed since the file was last accessed or modified. Usually, the more recent a
file’s access, the more likely it is to be accessed again.

The candidate list is ordered by total file weight (largest to smallest). You can
configure the weighting parameters to have a negative value and ensure that
certain files are never automatically migrated.

Note: If you use negative weights to exclude files from migration, you must
ensure that a file system does not fill with files that are never selected for
automatic migration.

You can use the dmscanfs(8) command to print file information to standard
output (stdout).

3.2 Selection of Migration Candidates

The dmfsfree(8) utility processes each ordered candidate list sequentially,
seeking candidates to migrate and possibly free. The extent of the selection
process is governed by values defined for the file system in the DMF
configuration file as described in Section 2.8, page 39.

The most essential parameters are as follows:

• FREE_SPACE_MINIMUM specifies the minimum percentage of file system
space that must be free. When this value is reached, dmfsmon will take
action to migrate and free enough files to bring the file system into
compliance. For example, setting this parameter to 10 indicates that when
less than 10% of the file system space is free, dmfsmon will migrate and free

72 007–3681–004

Automated Space Management [3]

files to achieve the percentage of free space specified by
FREE_SPACE_TARGET. For the information on how this parameter is used
when automated space management is not configured, see the
dmf_config(5) man page.

• FREE_SPACE_TARGET specifies the percentage of free file system space the
dmfsmon will try to achieve if free space falls below FREE_SPACE_MINIMUM.
For example, if this parameter is set to 15 and FREE_SPACE_MINIMUM is set
to 10, dmfsmon takes action when the file system is less than 10% free and
migrates and frees files until 15% of the file system is available.

• MIGRATION_TARGET specifies the percentage of file system capacity that is
maintained as a reserve of space that is free or occupied by dual-state files.
DMF attempts to maintain this reserve in the event that the file system free
space reaches or falls below FREE_SPACE_MINIMUM.

When dmfsmon detects that the free space on a file system has fallen below the
level you have set as FREE_SPACE_MINIMUM, it invokes dmfsfree to select a
sufficient number of candidates to meet the FREE_SPACE_TARGET. The
dmfsfree utility ensures that these files are fully migrated and releases their
disk blocks. It then selects additional candidates to meet the
MIGRATION_TARGET and migrates them.

Figure 4 shows the relationship of automated space management migration
targets to each other. Migration events occur when file activity causes free file
system space to drop below FREE_SPACE_MINIMUM. dmfsmon generates a
candidate list and begins to migrate files and free the disk blocks until the
FREE_SPACE_TARGET is met, and then it migrates regular files (creating
dual-state files) until the MIGRATION_TARGET is met:

007–3681–004 73

DMF Administrator’s Guide for IRIX® Systems

Regular files

Dual-state files

Free space

100%

Migration
target

Free space
target

Free space
minimum

0%

File activity

F
ile

 s
ys

te
m

 s
pa

ce

Threshold-driven
migration events

a11389

O O OO

Figure 4. Relationship of Automated Space Management Targets

If dmfsmon does not find enough files to migrate (because all remaining files
are exempt from migration), it uses another configuration parameter to
decrement FREE_SPACE_MINIMUM.

FREE_SPACE_DECREMENT specifies the percentage of file system space by
which dmfsmon will decrement FREE_SPACE_MINIMUM if it cannot find
enough files to migrate to reach FREE_SPACE_MINIMUM. For example, suppose
FREE_SPACE_MINIMUM is set to 10 and FREE_SPACE_DECREMENT is set to 2. If
dmfsmon cannot find enough files to migrate to reach 10% free space, it will
decrement FREE_SPACE_MINIMUM to 8 and try to find enough files to migrate
so that 8% of the file system is free. If dmfsmon cannot achieve this percentage,
it will decrement FREE_SPACE_MINIMUM to 6. dmfsmon will continue until it
reaches a value for FREE_SPACE_MINIMUM that it can achieve, and it will try to
maintain that new value. dmfsmon restores FREE_SPACE_MINIMUM to its

74 007–3681–004

Automated Space Management [3]

configured value when it can be achieved. The default value for
FREE_SPACE_DECREMENT is 2.

Note: DMF manages real-time partitions differently than files in a normal
partition. The dmfsfree command can only migrate files in the
non-real-time partition; it ignores files in the real-time partition. Any
configuration parameters you set will apply only to the non-real-time
partition. Files in the real-time partition can be manually migrated with the
commands dmget(1), dmput(1), and dmmigrate(8). Files are retrieved
automatically when they are read.

3.3 Automated Space Management Log File

All of the space-management commands record their activities in a common log
file, autolog.yyyymmdd (where yyyymmdd is the year, month, and day of log
file creation). The first space-management command to execute on a given day
creates the log file for that day. This log file resides in the directory
SPOOL_DIR/daemon_name (SPOOL_DIR is specified by the SPOOL_DIR
configuration parameter; see Section 2.5, page 26). The space-management
commands create the daemon_name subdirectory in SPOOL_DIR if it does not
already exist. The full path name of the common log file follows:

SPOOL_DIR/daemon_name/autolog.yyyymmdd

Each line in the autolog file begins with the time of message issue, followed
by the process number and program name of the message issuer. The remainder
of the line contains informative or diagnostic information such as the following:

• The name of the file system being processed

• The number of files selected for migration and freeing

• The number of disk blocks that were migrated and freed

• The names of any other DMF commands executed

• The command’s success or failure in meeting the migration and free-space
targets

The following excerpt show the format of an autolog file:

11:44:55-V 26968-dmfsmon /dmi - free_space=5.44, minimum=5

11:46:55-V 26968-dmfsmon /dmi - free_space=5.12, minimum=5

11:47:35-I 26968-dmfsmon Started 15135 for execution on /dmi

11:48:55-V 26968-dmfsmon /dmi - free_space=4.79, minimum=5

007–3681–004 75

DMF Administrator’s Guide for IRIX® Systems

11:49:48-I 15135-dmfsmon Number of blocks in the filesystem = 17769424

11:49:48-I 15135-dmfsmon Number of blocks in the migration target = 8884712 (50%)

11:49:48-I 15135-dmfsmon Number of blocks currently migrated = 16428664 (92.5%)

11:49:48-I 15135-dmfsmon Number of blocks to migrate = 0 (0.0%)

11:49:48-I 15135-dmfsmon Number of blocks in the free space target = 1776942 (10%)

11:49:48-I 15135-dmfsmon Number of blocks currently free = 886824 (5.0%)

11:49:48-I 15135-dmfsmon Number of blocks to free = 890118 (5.0%)

11:49:48-I 15135-dmfsmon Summary of files: online = 93050, offline = 342836, unmigrating = 0.

11:49:48-I 15135-dmfsmon Number of candidates = 93050, rejected = 0

11:50:55-V 26968-dmfsmon /dmi - free_space=7.26, minimum=5

11:51:49-I 15135-dmfsmon Migrated 272 blocks in 1 files.

11:51:49-I 15135-dmfsmon Freed 890184 blocks in 4197 files

11:51:49-O 15135-dmfsmon Exiting: minimum reached - targets met by outstanding requests.

11:52:55-V 26968-dmfsmon /dmi - free_space=9.73, minimum=5

11:54:55-V 26968-dmfsmon /dmi - free_space=9.73, minimum=5

76 007–3681–004

The DMF Daemon [4]

The DMF daemon, dmdaemon(8), is the core component of DMF. The daemon
passes messages between commands, the MSPs, and the kernel. It also assigns
bit file identifiers (bfids) to migrated files and maintains the DMF database
entries for offline copies.

When DMF is started, the daemon database is automatically initialized. To start
the daemon manually, use the dmdaemon command, as follows (assuming your
PATH environment variable includes /etc/dmf/dmbase/etc):

dmdaemon

Typically, dmdaemon should be called as part of the normal system startup
procedure by using a direct call in a system startup script in the /etc/rc2.d
directory.

After dmdaemon is activated, the dmget(1) and dmput(1) user commands can
be used to manage file system space manually.

You can restart the daemon by using the dmdaemon command.

The following sections provide additional information about the daemon
database and daemon processing.

4.1 Daemon Processing

After initialization, dmdaemon performs the following steps:

1. Isolates itself as a daemon process.

2. Checks for the existence of other dmdaemon processes. If another
dmdaemon exists, the newer one terminates immediately.

3. Initializes the dmdaemon log.

4. Opens the daemon database.

5. Initializes the daemon request socket.

6. Initiates the MSPs.

7. Enters its main request processing.

The daemon uses log files and journal files as described in Section 4.3.

007–3681–004 77

DMF Administrator’s Guide for IRIX® Systems

The main request processing section of the DMF daemon consists of the
following sequence:

• The select(2) system call, which is used to wait for requests or for a
default time-out interval

• A request dispatch switch to read and process requests detected by the
select call

• A time processor, which checks activities (such as displaying statistics and
running the administrator tasks) done on a time-interval basis

This processing sequence is repeated until a stop request is received from the
dmdstop(8) command. When a normal termination is received, the MSPs are
terminated, the database is closed, and the logs are completed.

A typical request to the daemon starts with communication from the requester.
The requester is either the kernel (over the DMF device interface) or a user-level
request (from the command pipe). A user-level command can originate from
the automated space-management commands or from an individual user.

After receipt, the command is dispatched to the appropriate command
processor within the daemon. Usually, this processor must communicate with
an MSP before completing the specified request. The commands are queued
within the daemon and are also queued to a specific group of database entries.
All entries referring to the same file share the same bfid. The command is
dormant until the reply from the MSP is received or the MSP terminates. When
command processing is completed, a final reply is sent to the issuing process, if
it still exists.

A final reply usually indicates that the command has completed or an error has
occurred. Often, error responses require that you analyze the dmdaemon log to
obtain a full explanation of the error. An error response issued immediately
usually results from an invalid or incorrect request (for example, a request to
migrate a file that has no data blocks). A delayed error response usually
indicates a database, daemon, or MSP problem.

4.2 DMF Daemon Database and dmdadm

The DMF daemon maintains a database that resides in the directory
HOME_DIR/daemon_name (HOME_DIR is specified by the HOME_DIR
configuration parameter). This database contains information about the offline
copies of a given file, as well as some information about the original file. The

78 007–3681–004

The DMF Daemon [4]

database also contains the bit file identifier (bfid), which is assigned when the
file is first migrated.

Other information maintained on a per-entry basis includes the following:

• File size (in bytes)

• MSP name and MSP recall path

• Date and time information, including the following:

– Time at which the database record was created

– Time at which the database record was last updated

– A check time for use by the administrator

– A soft-delete time, indicating when the entry was soft-deleted

• Original device and inode number

• Base portion of the original file name, if known

The dmdadm(8) command provides maintenance services for the daemon
database.

dmdadm executes directives from stdin or from the command line when you
use the -c option. All directives start with a directive name followed by one or
more parameters. Parameters may be positional or keyword-value pairs,
depending on the command. White space separates the directive name,
keywords, and values.

When you are inside the dmdadm interface (that is, when you see the adm
command_number > prompt), the command has a 30–minute timeout associated
with it. If you do not enter a response within 30 minutes of the prompt having
been displayed, the dmdadm session terminates with a descriptive message. This
behavior on all the database administrative commands limits the amount of time
that an administrator can lock the daemon and MSP databases from updates.

4.2.1 dmdadm Directives

The dmdadm directives are as follows:

Directive Description

count Displays the number of records that match the
expression provided.

007–3681–004 79

DMF Administrator’s Guide for IRIX® Systems

create Deletes an existing database record.

dump Prints the specified database records to standard
out in ASCII; each database field is separated by
the pipe character (|).

help Displays help.

list Shows the fields of selected database records. You
may specify which fields are shown.

load Applies records to the database obtained from
running the dump directive.

quit Stops program execution after flushing any
changed database records to disk. The
abbreviation q and the string exit produce the
same effect.

set Specifies the fields to be shown in subsequent
list directives.

update Modifies an existing database record.

The syntax for the dmdadm directives is summarized as follows:

count selection [limit]
delete selection [limit]
dump selection [limit]
help

list selection [format]
load filename
quit (or q or exit)

set [format]
update selection [limit] to fields...

The value for selection can be one of the following:

• A bfid or range of bfids

• The keyword all

• A period (.), which recalls the previous selection

• An expression involving any of the above, field value comparisons, and, or,
or parentheses.

80 007–3681–004

The DMF Daemon [4]

A field value comparison may use < (less than), > (greater than), = (equal to),
<= (less than or equal to), or >= (greater than or equal to) to compare a field
keyword to an appropriate value.

The syntax for selection is as follows:

selection ::= or-expr
or-expr ::= and-expr [or or-expr]
and-expr ::= nested-expr [and and-expr]
nested-expr ::= comparison | (expression)
comparison ::= bfid-range | field-keyword op field-value
op ::= < | > | = | >= | <=
bfid-range ::= bfid [- bfid] | [bfid - [bfid]] | key-macro
key-macro ::= all
field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
bfid ::= character representation of the bit file identifier

Thus valid selections could be any of the following:

305c74b200000010-305c74b200000029
7fffffff000f4411-

-305c74b2000004c8

all

origsize>1m

. and origage<7d

mspkey 456 to origuid 2570

4.2.2 dmdadm Field and Format Keywords

The field keywords listed below specify new values for fields. Some of the
keywords are valid only if you also specify the -u option.

Keyword Description

checkage (ca) The time at which the database record was last
checked; the same as checktime, except that it is
specified as age. Valid only in unsafe (-u) mode.

checktime (ct) The time at which the database record was last
checked; an integer that reflects raw UNIX time.
Valid only in unsafe (-u) mode.

deleteage (da) The time at which the database record was
soft-deleted; the same as deletetime, except

007–3681–004 81

DMF Administrator’s Guide for IRIX® Systems

that it is specified as age. Valid only in unsafe
(-u) mode.

deletetime (dt) The time at which the database record was
soft-deleted; an integer that reflects raw UNIX
time. Valid only in unsafe (-u) mode.

mspname (mn) The name of the MSP with which the file is
associated; a string of up to 8 characters. Valid
only in unsafe (-u) mode.

mspkey (mk) The string that the MSP can use to recall a
database record; a string of up to 50 characters.
Valid only in unsafe (-u) mode.

origage (oa) Time at which the database record was created;
the same as origtime, except that it is specified
as age.

origdevice (od) Original device number of the file; an integer.

originode (oi) Original inode number of the file; an integer.

origname (on) Base portion of the original file name; a string of
up to 14 characters.

origsize (os) Original size of the file; an integer.

origtime (ot) Time at which the database record was created;
an integer that reflects raw UNIX time.

origuid (ou) Original user ID of the database record; an
integer.

updateage (ua) Time at which the database record was last
updated; the same as updatetime, except that it
is specified as age.

updatetime (ut) Time at which the database record was last
updated; an integer that reflects raw UNIX time.

The time field keywords (checktime, deletetime, origtime, and
updatetime) have a value of either now or raw UNIX time (seconds since
January 1, 1970). These keywords display their value as raw UNIX time. The
value comparison > used with the date keywords means newer than the value
given. For example, >36000 is newer than 10AM on January 1, 1970, and
>852081200 is newer than 10AM on January 1, 1997.

82 007–3681–004

The DMF Daemon [4]

The age field keywords (checkage, deleteage, origage, and updateage)
let you express time as age. age is a string in a form such as 8w12d7h16m20s,
meaning 8 weeks, 12 days, 7 hours, 16 minutes, and 20 seconds old. The age
keywords display their value as an integer followed by w, d, h, m, or s (weeks,
days, hours, minutes, and seconds, respectively). The comparison > used with
the age keywords means older than the value given (that is, >5d is older than 5
days).

The limit keywords restrict the records acted upon:

Keyword Description

recordlimit (rl) Limits the number of records acted upon to the
value that you specify; an integer.

recordorder (ro) Specifies the order that records are scanned; may
be either bfid or data. bfid specifies that the
records are scanned in bfid order. data specifies
that the records are scanned in the order in which
they are found in the database data file. data is
more efficient for large databases, although it is
essentially unordered.

The format keyword selects a format to use for the display. If, for example, you
want to display fields in a different order than the default or want to include
fields that are not included in the default display, you specify them with the
format keyword. Values for format can be default, keyword, or a list of
field keywords enclosed in quotation marks.

For any field that takes a byte count, you may append the letter k, m, or g (in
either uppercase or lowercase) to the integer to indicate that the value is to be
multiplied by one thousand, one million, or one billion, respectively.

The following is sample output from the dmdadm list directive;
recordlimit 20 specifies that you want to see only the first 20 records.

007–3681–004 83

DMF Administrator’s Guide for IRIX® Systems

adm 3>list all recordlimit 20

BFID ORIG ORIG ORIG MSP MSP
UID SIZE AGE NAME KEY

--

305c74b200000010 20934 69140480 537d silo1 88b49f

305c74b200000013 26444 279290 537d silo1 88b4a2

305c74b200000014 10634 67000 537d silo1 88b4a3

305c74b200000016 10634 284356608 537d silo1 88b4a5
305c74b200000018 10634 1986560 537d silo1 88b4a7

305c74b20000001b 26444 232681 537d silo1 88b4aa

305c74b20000001c 10015 7533688 537d silo1 88b4ab

305c74b200000022 8964 23194990 537d silo1 88b4b1

305c74b200000023 1294 133562368 537d silo1 88b4b2
305c74b200000024 10634 67000 537d silo1 88b4b3

305c74b200000025 10634 284356608 537d silo1 88b4b4

305c74b200000026 10634 1986560 537d silo1 88b4b5

305c74b200000027 1294 1114112 537d silo1 88b4b6

305c74b200000028 10634 25270 537d silo1 88b4b7
305c74b200000029 1294 65077248 537d silo1 88b4b8

305c74b20000002b 9244 2740120 537d silo1 88b4ba

305c74b200000064 9335 9272 537d silo1 88b4f3

305c74b200000065 9335 10154 537d silo1 88b4f4

305c74b200000066 9335 4624 537d silo1 88b4f5

305c74b200000067 9335 10155 537d silo1 88b4f6
adm 4>

The following example displays the number of records in the database that are
associated with user ID 11789 and that were updated during the last five days:

adm 3>count origuid=11789 and updateage<5d

72 records found.

4.2.3 dmdadm Text Field Order

The text field order for daemon records generated by the dmdump(8),
dmdumpj(8), and the dump directive in dmdadm is listed below. This is the
format expected by the load directives in dmdadm:

1. bfid

2. origdevice

84 007–3681–004

The DMF Daemon [4]

3. originode

4. origsize

5. origtime

6. updatetime

7. checktime

8. deletetime

9. origuid

10. origname

11. mspname

12. mspkey

To isolate the mspname and mspkey from the daemon records soft-deleted
fewer than three days ago, use the following command:

dmdadm -c "dump deleteage<3d and deletetime>0" | awk "-F|" ’(print $11,$12}’

4.3 Daemon Logs and Journals

The DMF daemon uses log files to track various types of activity. Journal files
are used to track DMF database transactions.

The ASCII log of daemon actions has the following format (SPOOL_DIR refers
to the directory specified by the SPOOL_DIR configuration parameter):

SPOOL_DIR/daemon_name/dmdlog.yyyymmdd

The file naming convention is that yyyy, mm, and dd correspond to the date on
which the log was created (representing year, month, and day, respectively).
Logs are created automatically by the DMF daemon.

Note: Because the DMF daemon will continue to create log files and journal
files without limit, you must remove obsolete files periodically by
configuring the run_remove_logs and run_remove_journals tasks in
the configuration file, as described in Section 2.6.1, page 31.

007–3681–004 85

DMF Administrator’s Guide for IRIX® Systems

The DMF daemon automatically creates journal files that track database
transactions. They have the following path name format (JOURNAL_DIR refers
to the directory defined by the JOURNAL_DIR configuration parameter):

JOURNAL_DIR/daemon_name/dmd_db.yyyymmdd[.hhmmss]

Existing journal files are closed and new ones created in two circumstances:

• When the first transaction after midnight occurs

• When the journal file reaches size defined by the JOURNAL_SIZE
configuration parameter

When the first transaction after midnight occurs, the existing open journal file is
closed, and the suffix .235959 is appended to the current file name no matter
what the time (or date) of closing. The closed file represents the last (or only)
transaction log of the date yyyymmdd. A new journal file with the current date
is then created.

When the journal file reaches JOURNAL_SIZE, the file is closed and the suffix
.hhmmss is added to the name; hh, mm, and ss represent the hour, minute, and
second of file closing. A new journal file with the same date but no time is then
created.

For example, the following shows the contents of a
JOURNAL_DIR/daemon_name directory on 15 June 1998:

dmd_db.19980604.235959 dmd_db.19980612.235959

dmd_db.19980605.235959 dmd_db.19980613.145514

dmd_db.19980608.235959 dmd_db.19980613.214233
dmd_db.19980609.235959 dmd_db.19980613.235959

dmd_db.19980610.235959 dmd_db.19980614.235959

dmd_db.19980611.094745 dmd_db.19980615

dmd_db.19980611.101937

dmd_db.19980611.110429
dmd_db.19980611.235959

For every date on which database transactions occurred, there will exist a file
with that date and the suffix .235959, with the exception of an existing open
journal file. Some dates have additional files because the transaction log
reached JOURNAL_SIZE at a specified time and the file was closed.

You can configure daemon_tasks parameters to remove old journal files
(using the run_remove_journals.sh task and the JOURNAL_RETENTION
parameter. For more information, see Section 2.6.1, page 31.

86 007–3681–004

The DMF Daemon [4]

Warning: If a daemon database becomes corrupt, recovery consists of
applying journals to a backup copy of the database. Database recovery
procedures are described in Section 7.6, page 133.

007–3681–004 87

The DMF Lock Manager [5]

The dmlockmgr(8) process must be executing at all times for any DMF process
to safely access and update a DMF database. The dmlockmgr and its clients
(DMF processes such as dmatmsp, dmdaemon(8), dmvoladm(8), dmcatadm(8)
and others) communicate through various methods. These methods include
files, semaphores, and message queues. There are times when abnormal process
terminations will result in non-orderly exit processing which will leave files
and/or interprocess communication (IPC) resources allocated. As a DMF
administrator, periodically you will want to look for these resources to remove
them.

Note: In this chapter, SPOOL_DIR refers to the value of the SPOOL_DIR
parameter in the DMF configuration file.

The dmlockmgr files used by the database utilities are found in several
different places. There are 3 types of files:

• dmlockmgr communication and log files

• Individual transaction log files

5.1 dmlockmgr Communication and Log Files

The dmlockmgr communication and log files are all found in a directory
formed by SPOOL_DIR/RDM_LM. This directory contains the token files used to
form the keys that are used to create and access the IPC resources necessary for
the dmlockmgr to communicate with its clients, its standard output file, and
the transaction file.

The token files in SPOOL_DIR/RDM_LM have the form shown in Table 3, page
90:

007–3681–004 89

DMF Administrator’s Guide for IRIX® Systems

Table 3. dmlockmgr Token Files

File Description

dmlockmgr Used by the dmlockmgr and its clients to
access dmlockmgr’s semaphore and input
message queue

dmatmspmsp_name Used by the MSP msp_name and dmlockmgr
to access the MSP’s input message queue

dmdaemondaemon Used by the DMF daemon and dmlockmgr to
access the daemon’s input message queue

dmatreadPID

dmatsnfPID

dmcatadmPID

dmdbrecoverPID

dmdbasePID

dmvoladmPID

Used by the process whose process ID is PID
to access the process’s input message queue

The dmlockmgr, dmatmsp, and dmdaemon token files are limited in number,
and they change infrequently. If a dmlockmgr, dmatmsp, or dmdaemon
terminates without removing the file, an existing token file will be used on
restart. If a dmatmsp or dmdaemon fails to remove the file and MSP name is
changed, the file will remain until it is manually removed.

The files of the PID versions listed in Table 3 are removed from the lockmgr
directory automatically when the command terminates or when the DMF
daemon initializes. Do not create files of this name format in this directory
because the daemon is likely to remove them.

The IPC resources used by DMF are always released during normal process exit
cleanup. If one of the dmlockmgr client processes dies without removing its
message queue, dmlockmgr will remove that queue when it detects the death
of the client. It will not remove the token file.

Note: Normally, the dmlockmgr process is terminated as part of normal
shutdown procedures. However, if you wish to stop it manually, you must
kill the process by using kill(1). Killing the dmlockmgr process does not
remove the dmlockmgr IPC resources or token file. If the dmlockmgr is
restarted automatically by a DMF process, it will reuse the token file and IPC
resources it left behind.

90 007–3681–004

The DMF Lock Manager [5]

If the dmlockmgr process aborts, all DMF processes must be stopped and
restarted in order to relogin to a new dmlockmgr process. If the dmdaemon or
dmatmsp processes abort during a period when the dmlockmgr has died, when
they restart they will attempt to restart the dmlockmgr. The new dmlockmgr
process will detect existing DMF processes that were communicating with the
now-dead copy of dmlockmgr, and it will send a termination message to those
DMF processes.

The dmlockmgr maintains a log file that is named as follows, where yyyy, mm,
and dd are the year, month, and day:

SPOOL_DIR/RDM_LM/dmlocklog.yyyymmdd

The log file is closed and a new one opened at the first log request of a new
day. These files are not typically large files, but a new file will be created each
day and you should periodically remove older versions. You should maintain
the dmlockmgr log files for as long as you maintain the database transaction
journal files.

5.2 dmlockmgr Individual Transaction Log Files

The individual transaction log files have the following form:

dmatmspmsp_name.log
dmdaemonPID.log
dmvoladmPID.log
dmcatadmPID.log
dmdbasePID.log
dmdbrecoverPID.log
dmselectPID.log

Most of the transaction log files will reside in the database directory
(HOME_DIR/daemon_name for the dmdaemon, HOME_DIR/msp_name for the
dmatmsp). In the case of the dmdaemon and dmatmsp, each new transaction
will reuse the same file generated by the last transaction, and there is no need
to remove these files.

In the case of the PID transaction log files, the commands that generate them
will generally remove them during their normal exit processing code. If there is
an abnormal termination, these files will not be removed, and they may be
quite large.

007–3681–004 91

DMF Administrator’s Guide for IRIX® Systems

!
Caution: Do not delete any orphaned transaction log files until you are sure
the database is not actively in use. If a process aborts during a committed
but incomplete transaction, the next process that contacts the dmlockmgr
will use the information in the transaction log file to recover the incomplete
transaction.

After you are sure the transaction log file will not be needed, it can be removed.

It is wise to periodically check for these files. Several DMF commands allow
accessing of copies of database files in places other than the standard location,
which may result in unnecessary transaction log files consuming disk space.

The transaction activity file, SPOOL_DIR/RDM_LM/vista.taf, is the
transaction log file that contains information about active transactions in the
system. It is used to facilitate automatic database transaction processing.

!
Caution: Do not delete the SPOOL_DIR/RDM_LM/vista.taf file.

92 007–3681–004

Media Specific Processes (MSPs) [6]

A file is migrated from online disk to offline media by a media-specific process
(MSP). There are three types of MSPs:

• Tape MSP, which copies files from a disk to tape, or copies files from tape to
disk

• File transfer protocol (FTP) MSP, which allows the DMF daemon to manage
data by moving it to a remote machine

• Disk MSP, which migrates data to a directory that is accessed on the current
system

The following sections provide a general description of MSP operation.

6.1 The Tape MSP

The tape MSP consists of three programs: dmatmsp, dmatwc, and dmatrc.

The DMF daemon executes dmatmsp as a child process. The MSP
communicates with the daemon through a pair of unnamed pipes. In turn,
dmatmsp executes dmatwc (the write child) to write data to tape and dmatrc
(the read child) to read data from tape.

The dmatmsp maintains two types of records in its database:

• CAT records, which contain information about the files the MSP maintains

• VOL records, which contain information about the media the MSP uses

The database is not a text file and cannot be updated by standard utility
programs. Detailed information about the database and its associated utilities is
provided in Section 6.1.3, page 96, and Section 6.1.4, page 97.

The tape MSP provides a mechanism for copying active data from volumes that
contain largely obsolete data to volumes that contain mostly active data. This
process is referred to as volume merging or compression. Data on MSP volumes
becomes obsolete when users delete or modify their files. Volume merging can
be configured to occur automatically (see Section 2.9.1, page 50). It can also be
triggered by marking MSP volumes as sparse with the dmvoladm(8) command.

The tape MSP provides two utilities that read MSP volumes directly:

007–3681–004 93

DMF Administrator’s Guide for IRIX® Systems

• dmatread(8), which copies all or part of a migrated file to disk

• dmatsnf(8), which audits and verifies MSP volumes

6.1.1 Tape MSP Directories

Each instance of the tape MSP needs three types of directories, one for each of
the following:

• Databases

• Database journal files

• Log files

Sites define the location of these directories by editing the base object
configuration file parameters HOME_DIR, JOURNAL_DIR, and SPOOL_DIR,
whose values are referred to as HOME_DIR, JOURNAL_DIR, and SPOOL_DIR
in this document. A given instance of the tape MSP creates a subdirectory
named after itself in each of these three directories.

For example, if an instance of the tape MSP is called cart1, its database files
reside in directory HOME_DIR/cart1. If another instance of the tape MSP is
called cart2, its database files reside in HOME_DIR/cart2.

Similarly, MSP cart1 stores its journal files in directory JOURNAL_DIR/cart1
and its log files and other working files in SPOOL_DIR/cart1.

6.1.2 Media Concepts

The tape MSP takes full advantage of the capabilities of modern tape devices,
including data compression and fast media positioning. To accommodate these
capabilities and to provide recovery from surface or other media defects,
dmatmsp uses a number of structural concepts built on top of traditional tape
structure.

The components are as follows:

• The block is the basic structural component of most tape technologies. It is
the physical unit of I/O to and from the media. The optimal block size
varies with the device type. For example, the default block size for a
3480/3490 device is 65,536 bytes.

• A chunk is as much or as little of a user file as fits on the remainder of the
tape (see Figure 5, page 96). Thus, every migrated file has at least one, and

94 007–3681–004

Media Specific Processes (MSPs) [6]

sometimes many, chunks. Such a concept is necessary because the capacity
of a volume is unknown until written, both because of natural variation in
the medium itself and because the effect of data compression varies with the
data contents.

• A zone is a logical block containing several physical blocks ending with a
tape mark. A zone has a target size that is configurable by media type. The
default zone target size is 50 MB.

The MSP writes chunks into the zone until one of three conditions occurs:

– The zone size is exceeded

– The MSP exhausts chunks to write

– The end of tape is encountered

Thus, the actual zone size can vary from well below the target size to the
entire tape volume. A zone never spans physical volumes.

The zone plays several roles:

– The zone size is the amount of data that triggers dmatmsp to start a
process to write files to tape.

– The MSP records the position of the beginning of each zone in its
database so that it can use fast hardware positioning functions to return
there to restore the chunks in that zone.

– When a tape volume develops a defect, the data loss usually will be
restricted to the zone.

Because getting the tape position and writing a tape mark can be very costly,
the concept of a zone and the target size provides a way to control the trade
offs between write performance, safety, and recall speed.

Figure 5 illustrates the way files are distributed over chunks, zones, and
volumes, depending upon the file size. The tape with volume serial number
(VSN) VOL001 has two zones and contains six files and part of a seventh. The
tapes with VSNs VOL002 and VOL003 contain the rest of file g. Notice that on
VOL001 file g is associated with chunk 7, while on the other two tapes it is
associated with chunk 1. File g has three VSNs associated with it, and each tape
associates the file with a chunk and zone unique to that tape.

007–3681–004 95

DMF Administrator’s Guide for IRIX® Systems

VOL001

Tape mark

Zone 1 Zone 2

File a, chunk 1

File b, chunk 2

File c, chunk 3

File d, chunk 4

File g, chunk 7

File f, chunk 6

File e, chunk 5

VOL002

Zone 1

File g, chunk 1

Tape mark

Tape mark

VOL003

Zone 1

File g, chunk 1

Tape mark

EOT chunk

EOT zone

Tape mark

Tape mark

EOT zone

EOT zone

Tape mark

a10436

Figure 5. Media Concepts

6.1.3 CAT Database Records

Records in the tape catalog (CAT), tpcrdm, store the location of each file chunk
in terms of its volume, zone, and chunk number. The key for these records is
the file’s bit file identifier (bfid).

You do not explicitly create CAT records in the database. They are created with
files migrate.

96 007–3681–004

Media Specific Processes (MSPs) [6]

The CAT portion of the MSP database consists of three files:

• tpcrdm.dat, which contains the data records themselves

• tpcrdm.key1.keys and tpcrdm.key2.keys, which contain the indexes
to those records

The database definition file (in the same directory) that describes these files and
their record structure is named atmsp_db.dbd.

All files are non-ASCII and cannot be maintained by standard utility programs.
The dmcatadm command provides facilities to create, query, and modify CAT
database records (see Section 6.1.8, page 103).

Note: The ability to create or modify CAT database records with dmcatadm
is provided primarily for testing purposes. In the normal course of
operations, you would never use this capability.

6.1.4 VOL Database Records

Records in the tape volume (VOL) portion of the MSP database, tpvrdb,
contain information about each volume that exists in the pool of tapes to be
used by dmatmsp. These records are indexed by the volume serial number
(VSN) of each volume and contain such information as the volume’s type,
estimated capacity, label type, and a number of flags indicating the state of the
volume. Unlike the CAT records, you must create the VOL records in the
database before using dmatmsp for the first time.

The VOL portion of the MSP database consists of two files:

• tpvrdm.dat, which contains the volume records themselves

• tpvrdm.vsn.keys, which contains the indexes to the records

The database definition file (in the same directory) that describes these files and
their record structure is named atmsp_db.dbd.

Both files contain binary data and require special maintenance utilities. The
dmvoladm command, described in more detail in Section 6.1.9, page 110,
provides facilities to create, query, and modify VOL records in the database.
Additional database maintenance utilities are described in Section 7.6, page 133.

Note: If you have more than one instance of the tape MSP, you must ensure
that the volume sets for each MSP are mutually exclusive.

007–3681–004 97

DMF Administrator’s Guide for IRIX® Systems

6.1.5 Tape MSP Journals

Each instance of dmatmsp protects its database by recording every transaction
in a journal file. The journal file path names have the following format:

JOURNAL_DIR/msp_name/atmsp_db.yyyymmdd[.hhmmss]

The MSP creates journal files automatically.

Existing journal files are closed and new ones created in two circumstances:

• When the first transaction after midnight occurs

• When the journal file reaches the size defined by the JOURNAL_SIZE
configuration parameter

When the first transaction after midnight occurs, the existing open journal file is
closed and the suffix .235959 is appended to the current file name no matter
what the time (or date) of closing. The closed file represents the last (or only)
transaction log of the date yyyymmdd. A new journal file with the current date
is then created.

When the journal file reaches JOURNAL_SIZE, the file is closed and the suffix
.hhmmss is added to the name; hh, mm, and ss represent the hour, minute, and
second of file closing. A new journal file with the same date but no time is then
created.

For example, the following shows the contents of a JOURNAL_DIR/msp_name
directory on 15 June 1998:

atmsp_db.19980527.235959 atmsp_db.19980606.235959

atmsp_db.19980528.235959 atmsp_db.19980607.235959

atmsp_db.19980529.235959 atmsp_db.19980608.235959

atmsp_db.19980530.235959 atmsp_db.19980609.235959
atmsp_db.19980531.235959 atmsp_db.19980610.235959

atmsp_db.19980601.235959 atmsp_db.19980611.235959

atmsp_db.19980602.235959 atmsp_db.19980612.235959

atmsp_db.19980603.235959 atmsp_db.19980613.235959

atmsp_db.19980604.235959 atmsp_db.19980614.235959
atmsp_db.19980605.235959 atmsp_db.19980615

For every date on which database transactions occurred, there will exist a file
with that date and the suffix .235959, with the exception of an existing open
journal file. Some dates may have additional files because the transaction log
reached JOURNAL_SIZE at a specified time and the file was closed.

98 007–3681–004

Media Specific Processes (MSPs) [6]

You can configure daemon_tasks parameters to remove old journal files
(using the run_remove_journals.sh task and the JOURNAL_RETENTION
parameter. For more information, see Section 2.6.1, page 31.

If an MSP database becomes corrupt, recovery consists of applying the journal
files to a backup copy of the database.

6.1.6 Tape MSP Logs

All DMF MSPs maintain log files named msplog.yyyymmdd in the MSP spool
directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is
configured in the base object of the configuration file; mspname is the name of
the MSP in the daemon object of the configuration file; yyyymmdd is the current
year, month, and day.

These log files are distinct from the logs maintained by the DMF daemon;
however, some of the messages that occur in the daemon log are responses that
the tape MSP generates. The content of the log is controlled by the
MESSAGE_LEVEL configuration parameter. For a description of the levels of
logging available, see the dmf_config(5) man page.

The msplog.yyyymmdd file is the primary log for the tape MSP and contains
most of the messages. This file is written by dmatmsp, dmatrc, and dmatwc.
A new msplog.yyyymmdd is created for each day.

This section describes informational statistics provided by the tape log files.
These messages appear in the SPOOL_DIR/msp_name/msplog.yymmdd files.
Timing information provided (such as MB transferred per second) should not
be used as an accurate benchmark of actual data transfer rates. This
information is provided for monitoring DMF and should only be used in
comparison to similar data provided by DMF. Text in all uppercase references a
parameter defined in the DMF configuration file. You can reference the
comments in the sample configuration file or in the dmf_config(5) man page
for a more detailed definition of these parameters.

Note: Because the MSP will continue to create log files and journal files
without limit, you must remove obsolete files periodically by configuring the
run_remove_logs.sh and run_remove_journals.sh tasks in the
configuration file, as described in Section 2.6.1, page 31.

007–3681–004 99

DMF Administrator’s Guide for IRIX® Systems

Example 1: Tape MSP Statistics Messages

The following is an example of advanced tape MSP statistics messages taken
from an msplog.yyyymmdd file. These messages are automatically issued by
the MSP every 5 minutes.

02:02:00-I 27082-dmatmsp stats: children=5/5/8, btp=2818446/100000000/0, wc=1/8, cwc=47952

02:02:00-I 27082-dmatmsp stats: data put=48480.521 mb, data recalled= 93.446 mb

02:02:00-I 27082-dmatmsp stats: dm_put - 0 65179 0 77

02:02:00-I 27082-dmatmsp stats: dm_get - 2 23706 743 5

02:02:00-I 27082-dmatmsp stats: dm_delete - 0 27459 0 0

02:02:00-I 27082-dmatmsp stats: dm_cancel - 0 82 12 0

02:02:00-I 27082-dmatmsp stats: dm_flushall - 0 1820 0 0

02:02:00-I 27082-dmatmsp stats: dm_snapshot - 0 120 0 0

02:02:00-I 27082-dmatmsp stats: dm_merge - 33 5967 0 0

02:02:00-I 27082-dmatmsp stats: mc=8, ms=1000000000, mu=74854430, sm=0

The information provided by these entries is defined as follows:

• The first line contains the following information:

– children=5/5/8 represents the total child processes (5), the active
child processes (5), and the configured value of CHILD_MAXIMUM (8)

– btp=2818446/100000000/0 represents the bytes queued for putting
(2818446), the threshold at which to start the next put child (100,000,000),
and the bytes assigned to socket I/O (0)

– wc=1/8 represents the active write child processes (1) and the configured
value of MAX_PUT_CHILDREN (8)

– cwc=47952 represents the process ID of the current write child (that is,
the write child which is accepting data to write)

• The next six lines provide statistics for each type of MSP request. Statistics
information is provided only for requests that have been issued since the
MSP was started. These lines have the following format:

request_name active successful errors canceled

active represents the number of requests not yet completed; successful
represents the number of successfully completed requests; error represents
the number of requests that completed with errors; canceled represents the
number of canceled requests.

• The last line provides the following information:

100 007–3681–004

Media Specific Processes (MSPs) [6]

– mc is the configured value for MERGE_CUTOFF, the cutoff to stop
scheduling tapes for merging (8)

– ms is the configured value for CACHE_SPACE, the merge cache space
available (1 Gbyte)

– mu is the merge cache space used (74854430)

– sm is the number of socket merge children (0)

The tape MSP write child (dmatwc) and read child (dmatrc) also produce
statistics messages in the MSP log file. These messages contain timing statistics
whose format changes from release to release, and they are not documented in
this manual.

6.1.7 Volume Merging

When users delete or modify their migrated files, the copy on tape becomes
obsolete. Over time, some volumes will become entirely empty and can be
reused. However, most volumes experience a gradual increase in the ratio of
obsolete data to active data; such volumes are said to be sparsely populated or
simply sparse. To reclaim the unused space on these volumes, DMF provides a
volume merge facility, which copies the active data from several sparse volumes
to a new volume, thus freeing the sparse volumes for reuse. Volume merging
can be configured to occur automatically by using the run_merge_tapes.sh
task (see Section 2.9.1, page 50).

Volume merging can also be done manually. dmatmsp performs merge
operations whenever sparse volumes and the necessary resources exist at the
same time. Use the dmvoladm select directive to mark MSP volumes as
sparse. (The select directive is described in Section 6.1.9, page 110.) Because
the merge processing occurs simultaneously with other DMF activities, it is
easiest to configure DMF to automatically perform merges at night or during
other periods of relatively low activity.

The dmatmsp can perform volume-to-volume merging. Volume-to-volume
merging is accomplished by moving data across a socket connection between
the MSP tape read-child and the MSP tape write-child. The benefit of using a
socket to transfer data between volumes is that you do not have to reserve disk
space. The drawback to using a socket for data transfer is the cost of linking the
process that performs the read with the process that performs the write.

In busy environments that have heavy contention for tape drives, the close
coupling between the socket’s tape reader and tape writer can be costly,
especially when short files are being transferred. For large files, the overhead

007–3681–004 101

DMF Administrator’s Guide for IRIX® Systems

and possible delays in waiting for both tapes to be mounted is small compared
to the benefit of rapid transfer and zero impact on free disk space. For this
reason, you can move small files through a disk cache and big files through a
socket. This process is mediated by the following configuration parameters:

Parameter Description

CACHE_SPACE Specifies the amount of disk space that will be
used to temporarily store chunks during a merge
operation.

CACHE_DIR Specifies the directory into which the MSP will
store chunks while merging them from sparse
tapes. If CACHE_DIR is not specified, TMP_DIR is
used.

MAX_CACHE_FILE Specifies the largest chunk that will be stored
temporarily on disk during a merge operation.

MERGE_CUTOFF Specifies the number of child processes after
which the MSP will stop scheduling tapes for
merging. This number is the sum of the active
and queued children generated from gets, puts,
and merges.

Using a small amount of disk space to hold small chunks can have a significant
impact on the total time required to perform merges. The default configuration
options are set to move 100% of merge data across sockets.

102 007–3681–004

Media Specific Processes (MSPs) [6]

Note: It is important to avoid volume merging on more than one MSP
simultaneously if the two MSPs share a tape device. If you initiate a merge
process on more than one MSP on the same device at the same time (either
by entering the same time in the dmf_config configuration file or by
triggering the process manually), both processes will compete for tape
transports. When a limited number of tape transports are available, a
deadlock can occur. If you chose not to configure DMF to perform merges
automatically by configuring the run_tape_merge.sh task, ensure that
your cron jobs that automatically initiate volume merging refrain from
initiating a second merge process until after all previously initiated merges
are complete. You can accomplish this by using the dmvoladm command
within the cron job to check for tapes that have the hsparse flag:

tapes=$(dmvoladm -m msp1 -c "count hsparse")

if [[-z "$tapes"]]; then
start merge on msp2

dmvoladm -m msp2 -c "select hfull threshold<=30"

fi

6.1.8 dmcatadm Command

The dmcatadm(8) command provides maintenance services for CAT records in
the MSP database.

When you are inside the dmcatadm interface (that is, when you see the adm
command_number > prompt), the command has a 30–minute timeout associated
with it. If you do not enter a response within 30 minutes of the prompt having
been displayed, the dmcatadm session terminates with a descriptive message.
This behavior on all the database administrative commands limits the amount
of time that an administrator can lock the daemon and MSP databases from
updates.

Note: Most of these facilities, especially the ability to create and modify CAT
database records, are intended primarily for testing purposes.

6.1.8.1 dmcatadm Directives

The dmcatadm command executes directives from stdin or from the
command line when you use the -c option. All directives start with a directive
name followed by one or more parameters. Parameters may be positional or
keyword-value pairs, depending on the command. White space separates the
directive name, keywords, and values.

007–3681–004 103

DMF Administrator’s Guide for IRIX® Systems

The dmcatadm directives are as follows:

Directive Description

count Displays the number of records that match the
expression provided.

create Creates a CAT record.

delete Deletes an existing CAT record.

dump Prints the specified CAT records to standard out
in ASCII; each database field is separated by the
pipe character (|).

help Displays help.

list Shows the fields of selected CAT records. You
may specify which fields are shown.

load Applies records to the MSP database obtained
from running the dump directive.

quit Stops program execution after flushing any
changed database records to disk. The
abbreviation q and the string exit produce the
same effect.

set Specifies the fields to be displayed in subsequent
list directives.

update Modifies an existing CAT record.

verify Verifies the MSP database against the dmdaemon
database.

The first parameter of most directives specifies the database records to
manipulate, and the remaining parameters are keyword-value pairs.

104 007–3681–004

Media Specific Processes (MSPs) [6]

The syntax for the dmcatadm directives is summarized as follows:

count selection [limit]
create key field...
delete selection [limit]
dump selection [limit]
help

list selection [limit] [format]
load filename
quit (or q or exit)
set [format]
update selection [limit] to fields...
verify selection [entries] [mspname] [limit]

The value for key may be a bit file identifier (bfid) designator in the form of a
hexadecimal number.

The value for selection can be one of the following:

• A key or range of keys in the form key [-] [key]. key- specifies all records
starting with key, and -key specifies all records up to key.

• The keyword all

• A period (.), which recalls the previous selection

• An expression involving any of the above, field value comparisons, and, or,
or parentheses.

A field value comparison may use < (less than), > (greater than), = (equal to),
<= (less than or equal to), or >= (greater than or equal to) to compare a field
keyword to an appropriate value.

The syntax for selection is as follows:

selection ::= or-expr
or-expr ::= and-expr [or or-expr]

and-expr ::= nested-expr [and and-expr]

nested-expr ::= comparison | (expression)
comparison ::= key-range | field-keyword op field-value
op ::= < | > | = | >= | <=

key-range ::= key [- key] | [key - [key]] | key-macro
key-macro ::= all

field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
key ::= character representation of the record key

007–3681–004 105

DMF Administrator’s Guide for IRIX® Systems

Thus valid selections could be any of the following:

1510-1514

10000000000-
-15138

all

chunkoffset>0

chunknumber>0 and writeage<5d

. recordorder data

vsn=S07638

6.1.8.2 dmcatadm Field Keywords

The field keywords listed below specify new values for fields. Some of the
keywords are valid only if you also specify the -u option.

Keyword Description

chunkdata (cd) Specifies the actual number of bytes written to
tape by the MSP for the chunk. In the case of
sparse files, this field will be smaller than
chunklength. This is valid only in unsafe (-u)
mode.

chunklength (cl) The size of the chunk in bytes; an integer. This is
valid only in unsafe (-u) mode.

chunknumber (cn) The ordinal of the chunk on its volume. For
example, 1 if the chunk is the first chunk on the
volume, 2 if it is the second, and so on. Valid
only as part of selection.

chunkoffset (co) The byte offset within the file where the chunk
begins; an integer. For example, the first chunk of
a file has chunkoffset 0. If that first chunk is
1,000,000 bytes long, the second chunk would
have chunkoffset 1000000. This is valid only in
unsafe (-u) mode.

filesize (fs) The original file size in bytes, an integer. This is
valid only in unsafe (-u) mode.

flags (fl) Not yet used by DMF.

106 007–3681–004

Media Specific Processes (MSPs) [6]

readage (ra) The date and time when the chunk was last read;
the same as readdate, except specified as age.

readcount (rc) The number of times the chunk has been recalled
to disk; an integer.

readdate (rd) The date and time when the chunk was last read,
an integer that reflects raw UNIX time.

vsn (v) The volume serial number(s); a list of one or
more 6-character alphanumeric volume serial
numbers separated by colons (:).

writeage (wa) The date and time when the chunk was written;
the same as writedate, except specified as age.
This is valid only in unsafe (-u) mode.

writedate(wd) The date and time when the chunk was written,
an integer that reflects raw UNIX time. This is
valid only in unsafe (-u) mode.

zoneblockid (zb) Allows just the block ID portion of the zonepos
to be displayed, returned, or changed. This is
valid only in unsafe (-u) mode.

zonenumber (zn) Allows just the zone number portion of the
zonepos to be displayed, returned, or changed.
This is valid only in unsafe (-u) mode.

zonepos (zp) The physical address of the zone on the volume,
expressed in the form integer/hexinteger,
designating a zone number and block ID. A value
of zero is used for hexinteger if no block ID is
known. integer is the same as zonenumber, and
hexinteger is the same as zoneblockid. This is
valid only in unsafe (-u) mode.

The date field keywords (readdate and writedate) have a value of either
now or raw UNIX time (seconds since January 1, 1970). These keywords display
their value as raw UNIX time. The value comparison > used with the date
keywords means newer than the value given. For example, >36000 is newer
than 10AM on January 1, 1970, and >852081200 is newer than 10AM on
January 1, 1997.

The age field keywords (readage and writeage) let you express time as age, a
string in a form such as 8w12d7h16m20s (meaning 8 weeks, 12 days, 7 hours,
16 minutes, and 20 seconds old). The age keywords display their value as an

007–3681–004 107

DMF Administrator’s Guide for IRIX® Systems

integer followed by w, d, h, m, or s (weeks, days, hours, minutes, and seconds,
respectively). The comparison > used with the age keywords means older than
the value given (that is, >5d is older than 5 days).

The limit keywords limit the records acted upon:

Keyword Description

recordlimit (rl) Limits the number of records acted upon to the
value that you specify; an integer.

recordorder (ro) Specifies the order that records are scanned; may
be key, vsn, or data. key specifies that records
are scanned in ascending order of the chunk key.
vsn specifies that records are scanned in
ascending order of the chunk VSN. data
specifies that records are scanned in the order in
which they are stored in the database, which is
fastest but essentially unordered.

The following keywords specify files of daemon database entries:

Keyword Description

entries (e) Specifies a file of daemon database entries; a
string.

mspname (mn) Specifies the name of the MSP associated with the
record; a string.

The format keyword selects a format to use for the display. If, for example, you
want to display fields in a different order than the default or want to include
fields that are not included in the default display, you specify them with the
format keyword. Values for format can be default, keyword, or a list of
field keywords enclosed in quotation marks.

For any field that takes a byte count, you may append the letter k, m, or g (in
either uppercase or lowercase) to the integer to indicate that the value is to be
multiplied by one thousand, one million, or one billion, respectively.

For information about the role of the dmcatadm(8) command in database
recovery, see Section 7.6, page 133.

Example 2: dmcatadm list directive

The following is sample output from the dmcatadm list directive. The file
with key 3273d5420001e244 has two chunks because it spans two physical

108 007–3681–004

Media Specific Processes (MSPs) [6]

tape volumes; the first chunk contains bytes 0 through 24821759, and the
second chunk bytes 24821760 (the CHUNK OFFSET) to the end of the file.

adm 3>list 3273d5420001e242- recordlimit 10

FILE WRITE CHUNK CHUNK CHUNK

KEY SIZE AGE OFFSET LENGTH NUM VSN

3273d5420001e242 77863935 61d 0 77863935 13 S12940

3273d5420001e244 48365568 61d 0 24821760 168 S12936

3273d5420001e244 48365568 61d 24821760 23543808 1 S12945

3273d5420001e245 51019776 61d 0 51019776 2 S12945

3273d5420001e246 45629440 61d 0 45629440 59 S12938

3273d5420001e247 35586048 61d 0 35586048 60 S12938

3273d5420001e248 9568256 61d 0 9568256 3 S12944

3273d5420001e249 14221312 61d 0 14221312 4 S12944

3273d5420001e24a 458752 61d 0 458752 5 S12944

3273d5420001e24b 14155776 61d 0 14155776 6 S12944

6.1.8.3 dmcatadm Text Field Order

The text field order for chunk records generated by the dmdump(8), dmdumpj(8),
and the dump directive in dmcatadm is listed below. This is the format
expected by the load directives in dmcatadm:

1. C (indicates the chunk record type)

2. bfid (hexadecimal digits)

3. filesize

4. writedata

5. readdate

6. readcount

7. chunkoffset

8. chunklength

9. chunkdata

10. chunknumber

11. flags (in octal)

007–3681–004 109

DMF Administrator’s Guide for IRIX® Systems

12. zoneposition (zonenumber/zoneblockid) (in hexadecimal)

13. vsn

6.1.9 dmvoladm Command

The dmvoladm(8) command provides maintenance services for VOL records in
the MSP database. In addition to the creation and modification of volume
records, dmvoladm has an important role in the recovery of VOL records from a
database checkpoint and is the mechanism that triggers volume merge activity.

When you are inside the dmvoladm interface (that is, when you see the adm
command_number > prompt), the command has a 30–minute timeout associated
with it. If you do not enter a response within 30 minutes of the prompt having
been displayed, the dmvoladm session terminates with a descriptive message.
This behavior on all the database administrative commands limits the amount
of time that an administrator can lock the daemon and MSP databases from
updates.

6.1.9.1 dmvoladm Directives

The dmvoladm command executes directives from stdin or from the
command line when you use the -c option. The syntax is the same as for
dmcatadm: a directive name followed by parameters or paired keywords and
values, all separated by white space. dmvoladm directives follow:

Directive Description

count Displays the number of records that match the
expression provided.

create Creates a VOL record.

delete Deletes an existing VOL record.

dump Prints the specified VOL records to standard
output in ASCII. Each database field is separated
by the pipe character (|).

help Displays help.

list Shows the fields of selected VOL records. You
may specify which fields are shown.

load Applies VOL records to the database obtained
from running the dump directive.

110 007–3681–004

Media Specific Processes (MSPs) [6]

quit Stops program execution after flushing any
changed database records to disk. The
abbreviation q and the string exit produce the
same effect.

repair Causes dmvoladm to adjust the usage
information for specified volumes based on CAT
data in the database. This directive is valid only
in unsafe (-u) mode.

select Marks selected volumes as being sparse.
Equivalent to update expression to hsparse
on.

set Specifies the fields to be shown in subsequent
list directives.

update Modifies an existing VOL record.

verify Verifies the MSP databases against the dmdaemon
databases.

The syntax for the dmvoladm directives is summarized as follows:

count selection
create vsnlist [field...]
delete selection [limit...]
dump selection [limit...]
help
list selection [limit...] [format]
load filename
quit (or q, or exit

repair selection
select selection [limit...]
set [format]
update selection [limit...] to field
verify selection

The value for vsnlist may be a single 6–character volume serial number (VSN)
or a range of VSNs separated by the hyphen (-) character. A VSN string may
consists entirely of letters, entirely of digits, or may be a series of letters followed
by digits. In a range of VSNs, the first must be lexically less than the second.

The value for selection may be one of the following:

• A vsnlist or range of VSNs in the form vsn[-vsn]. vsn- specifies all records
starting with vsn, and -vsn specifies all records up to vsn.

007–3681–004 111

DMF Administrator’s Guide for IRIX® Systems

• A period (.), which recalls the previous selection

• The name of one of the flags in the keyword list that follows in this section.

• One of the words all, used, empty, or partial or any of the hflags,
whose meanings are as follows:

Flag Description

all Specifies all volumes in the database

empty Specifies all volumes in which data written is 0

partial Specifies used volumes in which hfull is off

used Specifies all volumes in which data written is
not 0

The syntax for selection is as follows:

selection ::= or-expr
or-expr ::= and-expr [or or-expr]

and-expr ::= nested-expr [and and-expr]

nested-expr ::= comparison | (expression)

comparison ::= vsnlist | field-keyword op field-value
op ::= < | > | = | >= | <=
key-range ::= vsn [- vsn] | [vsn - [vsn]] | key-macro
key-macro ::= all | empty | used | partial | flag(s)
field-keyword ::= name or abbreviation of the record field
field-value ::= appropriate value for the field
vsnlist ::= character representation of the volume serial number

Thus valid selections could be any of the following:

tape01-tape02

tape50-
-vsn900

all

herr or hbadmnt

used and hfull=off

datawritten>0 and hfull=off
. and eotchunk>3000 and (eotchunk<3500 or hfree=on)

hfull and threshold<30

6.1.9.2 dmvoladm Field and Format Keywords

The field keywords specify new values for fields:

112 007–3681–004

Media Specific Processes (MSPs) [6]

Keyword Description

blocksize (bs) Specifies the data block size in bytes when the
tape was first written; an integer. The default is
65,536. This keyword is used only when
mounting tapes with existing valid data. When
an empty tape is first written, the MSP uses the
default value for the tape type, unless it is
overridden by a value in the BLOCK_SIZE
parameter for the tape device in the DMF
configuration file. This is valid only in unsafe
(-u) mode.

chunksleft (cl) Specifies the number of active chunks on the
volume; an integer. This is valid only in unsafe
(-u) mode.

dataleft (dl) Specifies the number of bytes of active data on
the volume. You specify this number as an
integer, but for readability purposes it is
displayed in megabytes (MB). This is valid only
in unsafe (-u) mode.

datawritten (dw) Specifies the maximum number of bytes ever
written to the volume. You specify this number
as an integer, but for readability purposes it is
displayed in MB. This is valid only in unsafe (-u)
mode.

eotblockid (eb) Specifies the blockid of the chunk containing the
end-of-tape marker; a hexinteger. This is valid
only in unsafe (-u) mode.

eotchunk (ec) Specifies the number of the chunk containing the
end-of-tape marker; an integer. This is valid only
in unsafe (-u) mode.

eotpos (ep) Specifies the absolute position of the end-of-tape
marker zone in the form integer/hexinteger,
designating a zone number and block ID. A value
of zero is used for hexinteger if no block ID is
known. integer the same as eotzone, and
hexinteger is the same as eotblockid. This is
valid only in unsafe (-u) mode.

007–3681–004 113

DMF Administrator’s Guide for IRIX® Systems

eotzone (ez) Specifies the number of the zone containing the
end-of-tape marker; an integer. This is valid only
in unsafe (-u) mode.

label (lb) Specifies the label type: al for ANSI standard
labels; sl for IBM standard labels; or nl for
nonlabeled volumes. The default is al.

tapesize (ts) Specifies the estimated capacity in bytes; an
integer. The default is 215 MB.

threshold (th) Specifies the ratio of dataleft to datawritten
as a percentage. This field cannot be displayed or
updated.

upage (ua) (Display only.) Specifies the date and time of the
last update to the volume’s database record. The
same as for update, except that it is expressed as
age. This is valid only in unsafe (-u) mode.

update (ud) (Display only.) Specifies the date and time of the
last update to the volume’s database record,
expressed as an integer that reflects raw UNIX
time. This is valid only in unsafe (-u) mode.

version (v) Specifies the DMF tape format version, an integer.
This is valid only in unsafe (-u) mode.

wfage (wa) Specifies the date and time that the volume was
written to or freed for reuse. The same as for
wfdate, except that it is expressed as age. This is
valid only in unsafe (-u) mode.

wfdate (wd) Specifies the date and time that the volume was
written to or freed for reuse, expressed as an
integer that reflects raw UNIX time. This is valid
only in unsafe (-u) mode.

The date field keywords (update and wfdate) have a value of either now or
raw UNIX time (seconds since January 1, 1970). These keywords display their
value as raw UNIX time. The value comparison > used with the date keywords
means newer than the value given. For example, >36000 is newer than 10AM
on January 1, 1970, and >852081200 is newer than 10AM on January 1, 1997.

The age field keywords (upage and wfage) let you express time as age, a string
in a form such as 8w12d7h16m20s (meaning 8 weeks, 12 days, 7 hours, 16
minutes, and 20 seconds old). The age keywords display their value as an

114 007–3681–004

Media Specific Processes (MSPs) [6]

integer followed by w, d, h, m, or s (weeks, days, hours, minutes, and seconds,
respectively). The comparison > used with the age keywords means older than
the value given (that is, >5d is older than 5 days).

The limit keywords restrict the volumes acted upon:

Keyword Description

datalimit (no
abbreviation)

Specifies a value in bytes. The directive stops
when the sum of dataleft of the volumes
processed so far exceeds this value.

recordlimit (rl) Specifies a number of records; an integer. The
directive stops when the number of volumes
processed equals this value.

recordorder (ro) Specifies the order that records are scanned; may
be either data or vsn. vsn specifies that the
records are scanned in ascending order of the
chunk VSN. data specifies that the records are
scanned in the order in which they are found in
the database, which is fastest but essentially
unordered.

The format keyword selects a format to use for the display. If, for example, you
want to display fields in a different order than the default or want to include
fields that are not included in the default display, you specify them with the
format keyword. Values for format can be default, keyword, or a list of
field keywords enclosed in quotation marks.

The flag keywords change the settings of hold flags:

Keyword Description

hbadmnt (hb) Indicates that the volume could not be mounted.
If the problem causing the mount to fail is
transient, the MSP will clear the flag the next time
it attempts to mount the tape and succeeds.
Typically this flag indicates a permanent
condition that should be investigated and
corrected. It is displayed as --------b.

herr (he) Indicates that an I/O error has occurred on the
volume; displayed as e--------.

007–3681–004 115

DMF Administrator’s Guide for IRIX® Systems

hflags (no
abbreviation)

(Display only.) Shows the complete set of hold
flags as a 9–character string. Each flag has a
specific position and alphabetic value. If the flag
is off, a dash (-) is displayed in its position; if the
flag is on, the alphabetic character is displayed in
that position.

hfree (no
abbreviation)

Indicates that the volume has no active data and
is available for reuse after HFREE_TIME has
expired, displayed as -f-------. See the
dmf_config(5) man page for information about
the HFREE_TIME configuration parameter. This is
valid only in unsafe (-u) mode.

hfull (hu) Indicates that the volume cannot hold any more
data; displayed as ------u--.

hlock (hl) Currently unused, displayed as ----l----.

hoa (ho) Indicates that the volume is not to be used for
either input or output, displayed as --o------.

hro (hr) Indicates that the volume is read-only, displayed
as ---r-----; this inhibits the MSP from using
the volume for output.

hrsv (h*) Currently unused (reserved); displayed as
----*----. This is valid only in unsafe (-u)
mode.

hsparse (hs) Indicates that the volume is considered sparse
and thus a candidate for a volume merge
operation, displayed as -------s-.

For any field that takes a byte count, you may append the letter k, m, or g (in
either uppercase or lowercase) to the integer to indicate that the value is to be
multiplied by one thousand, one million, or one billion, respectively.

For information about the role of the dmvoladm command in database recovery,
see Section 7.6, page 133. For details about dmvoladm syntax, see the man page.

Example 3: dmvoladm list directives

The following example illustrates the default format for the list directive. The
column marked HFLAGS uses a format similar to the ls -l command in that
each letter has an assigned position and its presence indicates that the flag is

116 007–3681–004

Media Specific Processes (MSPs) [6]

“on”. The positions spell the string efor*lmusb, representing herr, hfree,
hoa, hro, hrsv, hlock, hfull, hsparse, and hbadmnt, respectively.

adm 1>list S03232-S03254

DATA EOT WR/FR

VSN LB DATA LEFT WRITTEN CHUNK HFLAGS AGE

--

S03232 sl 185.105446 400.000000 10 ------u-- 997d

S03233 sl 177.057792 400.000000 2 ------u-- 495d

S03234 sl 253.573185 400.000000 598 ------u-- 906d

S03235 sl 170.963133 400.000000 18 ------u-- 497d

S03236 sl 194.456616 400.000000 38 ------u-- 915d

S03237 sl 250.533926 400.000000 92 ------u-- 803d

S03238 sl 0.000000 0.000000 1 --------- 114d

S03239 sl 0.000000 0.000000 1 --------- 114d

S03240 sl 0.000000 0.000000 1 --------- 114d

S03241 sl 252.162452 400.000000 325 ------u-- 369d

S03242 sl 166.635861 400.000000 81 ------u-- 631d

S03243 sl 202.468129 400.000000 26 ------u-- 400d

S03244 sl 0.000000 0.000000 1 --------- 96d

S03245 sl 383.047890 400.000000 26 ------u-- 212d

S03246 sl 288.721920 400.000000 5 ------u-- 687d

S03247 sl 261.498716 400.000000 186 ------u-- 691d

S03248 sl 255.480486 400.000000 17 ------u-- 288d

S03249 sl 319.990661 400.000000 526 ------u-- 253d

S03250 sl 0.000000 0.000000 1 --------- 114d

S03251 sl 241.785669 400.000000 533 ------u-- 327d

S03252 sl 1223.947545 1223.947545 157 ------u-- 44d

S03253 sl 386.038988 400.000000 636 ------u-- 136d

S03254 sl 170.798521 400.000000 38 ------u-- 228d

007–3681–004 117

DMF Administrator’s Guide for IRIX® Systems

The following example illustrates using the list command to show only
volumes meeting some criterion (in this case, those having their hfree flag set):

adm: 1>list hfree

DATA EOT WR/FR

VSN LB DATA LEFT WRITTEN CHUNK HFLAGS AGE

003249 sl 0.000000 115.000000 9 -f-r------ 3h

003250 sl 0.000000 115.000000 9 -f-r------ 3h

003251 sl 0.000000 115.000000 10 -f-r------ 3h

003252 sl 0.000000 115.000000 11 -f-r------ 3h

003255 sl 0.000000 115.000000 15 -f-r------ 3h

003258 sl 0.000000 115.000000 13 -f-r------ 3h

003263 sl 0.000000 115.000000 12 -f-r------ 3h

003264 sl 0.000000 0.000000 1 -f-------- 4h

003289 sl 0.000000 0.000000 1 -f-r------ 3h

003290 sl 0.000000 215.000000 29 -f-r------ 3h

003294 sl 0.000000 0.000000 1 -f-------- 4h

118 007–3681–004

Media Specific Processes (MSPs) [6]

The following example shows one way you can customize the list format to
show only the fields that you want to see. The other way is to use the set
format command with the same keyword list.

adm 21>list S03232-S03254 format "eotchunk eotzone eotpos"

EOT EOT

VSN CHUNK ZONE EOTPOS

S03232 10 2 2/4294967295

S03233 2 2 2/4294967295

S03234 598 2 2/4294967295

S03235 18 2 2/4294967295
S03236 38 2 2/4294967295

S03237 92 2 2/4294967295

S03238 1 1 1/4294967295

S03239 1 1 1/4294967295

S03240 1 1 1/4294967295

S03241 325 2 2/4294967295
S03242 81 2 2/4294967295

S03243 26 2 2/4294967295

S03244 1 1 1/4294967295

S03245 26 2 2/4294967295

S03246 5 2 2/4294967295
S03247 186 2 2/4294967295

S03248 17 2 2/4294967295

S03249 526 2 2/4294967295

S03250 1 1 1/4294967295

S03251 533 2 2/4294967295
S03252 157 17 17/2147483648

S03253 636 2 2/4294967295

S03254 38 2 2/4294967295

007–3681–004 119

DMF Administrator’s Guide for IRIX® Systems

The following example gives a convenient way to show the several flag bits in a
way different from their usual representation.

adm 23>list 003232-003254 format "herr hfree hfull hlock hoa hro"

herr hfree hfull hlock hoa hro

VSN

003232 off off on off off off

003233 off off off off off off

003234 off off off off off off

003235 off off off off off off

003236 off off on off off off
003237 off off on off off off

003238 off off on off off off

003239 off off on off off off

003240 off off off off off off

003241 off off on off off off

003242 off off on off off off
003243 off off off off off off

003244 off off off off off off

003245 off off on off off off

003246 off off off off off off

003247 off off on off off off
003248 off off on off off on

003249 off on off off off on

003250 off on off off off on

003251 off on off off off on

003252 off on off off off on
003253 off off on off off on

003254 off off on off off on

6.1.9.3 dmvoladm Text Field Order

The text field order for volume records generated by the dmdump(8),
dmdumpj(8), and the dump directive in dmvoladm is listed below. This is the
format expected by the load directives in dmvoladm:

1. V (indicates the volume record type)

2. vsn

3. lbtype

120 007–3681–004

Media Specific Processes (MSPs) [6]

4. capacity

5. blocksize

6. hflags (in octal)

7. version

8. datawritten

9. eotchunk

10. eotposition (eotzone/eotblockid) (in hexadecimal)

11. dataleft

12. chunksleft

13. wfdate

14. update

15. id (in octal). This field indicates the type of process that last updated the
record.

6.1.10 dmatread Command

Use the dmatread(8) command to copy all or part of the data from a migrated
file back to disk. You might want to do this if, for example, a user accidentally
deleted a file and did not discover that the deletion had occurred until after the
database entries had been removed by the hard delete procedure. Using backup
copies of the databases from before the hard delete was performed, dmatread
can restore the data to disk, assuming that the tape volume has not been reused
in the meantime.

Example 4: Restoring Hard-deleted Files Using dmatread

To copy migrated files back to disk, perform the following steps:

1. Determine the bfid of the file you want to restore. You can use backup
copies of dmdlog or your dbrec.dat files, or a restored dump copy of the
deleted file’s inode (and the dmattr command).

2. Using backup copies of the MSP databases, use a dmatread(8) command
similar to the following:

dmatread -p /a/dmbackup -B 342984C50000000000084155

007–3681–004 121

DMF Administrator’s Guide for IRIX® Systems

342984C50000000000084155 is the bfid of the file to be restored, and
/a/dmbackup is the directory containing the backup copies of the MSP
databases. Your file will be restored to the current directory as
B342984C50000000000084155

DMF does not know the original name of the file; you must manually move the
restored data to the appropriate file.

If you have access to chunk and VSN information for the file to be restored, you
can use the dmatread -c and -v options and avoid using backup copies of the
MSP database. In this case, dmatread will issue messages indicating that the
chunk is not found in the current database, but it will continue with the request
and restore the file as described in this example.

6.1.11 dmatsnf Command

Use the dmatsnf(8) command to verify the readability of or to audit the
contents of MSP volumes. You may also generate text database records that can
be applied to the MSP databases (using the load directive in dmcatadm and
dmvoladm, respectively), in order to add the contents of a volume to the MSP
database (although this is impractical for large numbers of volumes).

dmatsnf can be used to verify one or more tape volumes against the MSP
databases. It also can be used to generate journal entries, which can be added
to the MSP databases by using the load directive in dmvoladm and dmcatadm.

6.1.12 dmaudit verifymsp Command

Use the verifymsp option of the dmaudit(8) command to check the
consistency of the DMF daemon and MSP databases after an MSP, DMF, or
system failure. This command captures the database files and compares the
contents of the daemon database with each MSP database. Any problems are
reported to standard output, but no attempt is made to repair them.

This function can also be done directly using dmatvfy(8) after a snapshot has
been taken.

6.2 FTP MSP

The FTP MSP allows the DMF daemon to manage data by moving it to a
remote machine. Data is moved to and from the remote machine with the

122 007–3681–004

Media Specific Processes (MSPs) [6]

protocol described in RFC 959 (FTP). The remote machine must understand this
specific protocol.

Note: It is desirable that the remote machine run an operating system based
on UNIX, so that the MSP can create subdirectories to organize the offline
data. However, this is not a requirement.

The FTP MSP does not need a private database to operate; all information
necessary to retrieve offline files is kept in the daemon database, DMF
configuration file, and login information file. The login information file contains
configuration information, such as passwords, that must be kept private. As a
safeguard, the MSP will not operate if the login information file is readable by
anyone other than the system administrator.

6.2.1 Processing of Requests

The FTP MSP is always waiting for requests to arrive from the DMF daemon,
but, to improve efficiency, it holds PUT and DELETE requests briefly and groups
similar requests together into a single FTP session. No PUT request will be held
longer than 60 seconds. No DELETE request will be held longer than 5 seconds.
GET requests are not held. The MSP will stop holding requests if it has a large
amount of work to do (more than 1024 individual files or 8 MB of data). The
FTP MSP also limits the number of FTP sessions that can be active at once and
the rate at which new sessions can be initiated.

After a request has been held for the appropriate amount of time, it enters a
ready state. Processing usually begins immediately, but may be delayed if
resources are not available.

The following limits affect the maximum number of requests that can be
processed:

• An administrator-controlled limit on the maximum number of concurrent
FTP sessions per MSP (CHILD_MAXIMUM).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing delete requests
(GUARANTEED_DELETES).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing dmget(1) requests
(GUARANTEED_GETS).

• A system-imposed limit of 85 FTP sessions in any 60-second period. This
limit is seldom a concern because of the MSP’s ability to transfer many files

007–3681–004 123

DMF Administrator’s Guide for IRIX® Systems

in one session. Because requests are grouped into batches only when
resources are immediately available, GET requests (which are not normally
held) are batched when resources are in short supply.

Requests are processed by forking off a child process. The parent process
immediately resumes waiting for requests to arrive from the DMF daemon. The
child process attempts to initiate an FTP session on the remote FTP server. If
the remote machine has multiple Internet Protocol (IP) addresses, all of them
are tried before giving up. If the child process cannot connect, it waits 5
minutes and tries again until it succeeds.

Once a connection is established, the child process provides any required user
name, password, account, and default directory information to the remote FTP
server. PUT, GET, or DELETE operations are then performed as requested by the
DMF daemon. PUT, GET, or DELETE operations are not intermixed within a
batch. If an individual request does not complete successfully, it does not
necessarily cause other requests in the same batch to fail. Binary transfer mode
is used for all data transfer.

The stored files are not verbatim copies of the user files. They are stored using
the same format used to write tapes, and you can use MSP utilities such as
dmatread and dmatsnf to access the data in them.

6.2.2 Activity Log

All DMF MSPs maintain log files named msplog.yyyymmdd in the MSP spool
directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is
configured in the base object of the configuration file; mspname is the name of
the MSP in the daemon object of the configuration file; yyyymmdd is the current
year, month, and day.

The activity log shows the arrival of new requests, the successful completion of
requests, failed requests, creation and deletion of child processes, and all FTP
transactions. Sensitive information (passwords and account information) does
not appear in the activity log. In addition, the MSP lists the contents of its
internal queues in its activity log if it is given an INTERRUPT signal.

Note: Because the MSP will continue to create log files and journal files
without limit, you must remove obsolete files periodically by configuring the
run_remove_logs and run_remove_journals tasks in the configuration
file, as described in Section 2.6.1, page 31.

124 007–3681–004

Media Specific Processes (MSPs) [6]

6.2.3 Messages

The MSP also recognizes and handles the following messages issued from the
DMF daemon:

Message Description

CANCEL Issued when a previously requested action is no
longer necessary, for example, when a file being
migrated with a PUT request is removed. The
MSP is able to cancel a request if it is being held
or if it is waiting for resources. A request that has
begun processing cannot be canceled and will run
to normal completion.

FINISH Issued during normal shutdown. When the MSP
receives a FINISH message, it finishes all
requested operations as quickly as it can and then
exits.

FLUSHALL Issued in response to the dmdidle(8) command.
When the MSP receives a FLUSHALL message, it
finishes all requested operations as quickly as it
can.

!
Caution: If the remote file system must be restored to a previous state,
inconsistencies may arise: remote files that reappear after being deleted are
never removed, and remote files that disappear unexpectedly result in data
loss. There is presently no way to detect these inconsistencies. You should
avoid situations that require the remote file system to be restored to a
previous state.

6.3 Disk MSP

The disk MSP (dmdskmsp) migrates data into a directory that is accessed on the
current system. It uses POSIX file interfaces to open, read, write, and close files.
The directory may be NFS-mounted. The data is read and written with root
(uid 0) privileges. By default, dmdskmsp stores the data in DMF-blocked
format, which allows the MSP to do the following:

• Keep meta-data with a file

• Keep sparse files sparse when they are recalled

007–3681–004 125

DMF Administrator’s Guide for IRIX® Systems

• Verify that a file is intact on recall

The disk MSP does not need a private database to operate; all information
necessary to retrieve offline files is kept in the daemon database and DMF
configuration file.

The disk MSP may also be used as an import MSP. In this case, it only permits
recalls and copies the data unchanged for a recall.

6.3.1 Processing of Requests

The disk MSP is always waiting for requests to arrive from the DMF daemon,
but, to improve efficiency, it holds PUT and DELETE requests briefly and groups
similar requests together into a single session. No PUT request will be held
longer than 60 seconds. No DELETE request will be held longer than 5 seconds.
GET requests are not held. The MSP will stop holding requests if it has a large
amount of work to do (more than 1024 individual files or 8 MB of data).

After a request has been held for the appropriate amount of time, it enters a
ready state. Processing usually begins immediately, but may be delayed if
resources are not available.

The following limits affect the maximum number of requests that can be
processed:

• An administrator-controlled limit on the maximum number of concurrent
operations per MSP (CHILD_MAXIMUM).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing delete requests
(GUARANTEED_DELETES).

• An administrator-controlled limit on the number of child processes that are
guaranteed to be available for processing dmget(1) requests
(GUARANTEED_GETS).

Requests are processed by forking off a child process. The parent process
immediately resumes waiting for requests to arrive from the DMF daemon.

PUT, GET, or DELETE operations are performed as requested by the DMF
daemon. PUT, GET, or DELETE operations are not intermixed within a batch. If
an individual request does not complete successfully, it does not necessarily
cause other requests in the same batch to fail. Binary transfer mode is used for
all data transfer.

126 007–3681–004

Media Specific Processes (MSPs) [6]

The stored files are not verbatim copies of the user files. They are stored using
the same format used to write tapes, and you can use MSP utilities such as
dmatread and dmatsnf to access the data in them.

6.3.2 Activity Log

All DMF MSPs maintain log files named msplog.yyyymmdd in the MSP spool
directory which, by default, is SPOOL_DIR/mspname. SPOOL_DIR is
configured in the base object of the configuration file; mspname is the name of
the MSP in the daemon object of the configuration file; yyyymmdd is the current
year, month, and day).

The log file shows the arrival of new requests, the successful completion of
requests, failed requests, and creation and deletion of child processes. In
addition, the MSP lists the contents of its internal queues in its activity log if it
is given an INTERRUPT signal.

Note: Because the MSP will continue to create log files and journal files
without limit, you must remove obsolete files periodically by configuring the
run_remove_logs and run_remove_journals tasks in the configuration
file, as described in Section 2.6.1, page 31.

6.4 Moving Migrated Data between MSPs

DMF provides a mechanism to move copies of offline or dual-state files from
one MSP to another. The dmmove(8) command takes a list of such files and
moves them to a specified set of MSPs. The list of MSPs specified to the
dmmove command indicates which MSPs are to contain migrated copies of a file
after the move process is completed. All other migrated copies are hard-deleted.

Note: All migrated copies of files are hard-deleted, including those on MSPs
that are not indicated on the dmmove command.

If a file’s migrated state is offline, dmmove recalls the file to disk and then
remigrates it to the specified MSPs. When the migration process is complete,
the online copy is removed. The file is recalled to a scratch file system that is
specified by the MOVE_FS configuration parameter. If the file is dual-state,
dmmove does not need to recall the file first, but instead uses the existing online
copy.

The dmselect(8) command can be used to determine which files you want to
move. dmselect selects files based on age, size, ownership, and MSP criteria.

007–3681–004 127

DMF Administrator’s Guide for IRIX® Systems

The output from the dmselect command can be used with the dmmove
command. The dmmove command also accepts a list of path names as input.

See the man pages for dmselect and dmmove for all the possible options and
further information.

128 007–3681–004

DMF Maintenance and Recovery [7]

This chapter contains information for the administrative maintenance of DMF.

7.1 Retaining Old DMF Daemon Log Files

The daemon generates the SPOOL_DIR/daemon_name/dmdlog.yyyymmdd log
file, which contains a record of DMF activity and can be useful for problem
solving for several months after creation. All MSPs generate a
SPOOL_DIR/msp_name/msplog.yyyymmdd log file, which also contains
sometimes useful information about its activity. These log files should be
retained for a period of some months. Log files more than a year old are
probably not very useful.

Do not use DMF to manage the SPOOL_DIR file system.

The dmfsmon(8) automated space management daemon generates a log file in
SPOOL_DIR/daemon_name/autolog./yyyymmdd, which is useful for analyzing
problems related to space management.

To manage the log files, configure the run_remove_logs.sh task, which
automatically deletes old log files according to a policy you set. See Section
2.6.1, page 31, for more information.

7.2 Retaining Old DMF Daemon Journal Files

Both the daemon and tape MSP generate journal files that are needed to recover
databases in the event of file system damage or loss. You also configure DMF to
generate backup copies of those databases on a periodic basis. You need only
retain those journal files that contain records created since the oldest database
backup that you keep. In theory, you should need only one database backup
copy, but most sites probably feel safer with more than one generation of
database backups.

For example, if you configure DMF to generate daily database backups and
retain the three most recent backup copies, then at the end of 18 July there
would be backups from the 18th, 17th, and 16th. Only the journal files for those
dates need be kept for recovery purposes.

To manage the journal files and the backups, configure the
run_remove_journals.sh and run_copy_databases.sh tasks. These

007–3681–004 129

DMF Administrator’s Guide for IRIX® Systems

tasks automatically delete old journal files and generate backups of the
databases according to a policy you set. See Section 2.6.1, page 31, for more
information.

7.3 Soft- and Hard-deletes

When a file is first migrated, a bit-file identifier, or bfid, (the key into the daemon
database) is placed in the inode. When a migrated file is removed, its bfid is no
longer needed in the daemon database.

Initially, it would seem that you could delete daemon database entries when
their files are modified or removed. However, if you actually delete the daemon
database entries and then the associated file system is damaged, the files will be
irretrievable after you restore the file system.

For example, assume that migrated files were located in the /x file system, and
you configured DMF to generate a full backup of /x on Sunday as part of your
site’s weekly administrative procedures (the run_full_dump.sh task). Next,
suppose that you removed the migrated files in /x on Monday morning and
removed the corresponding daemon database entries. If a disk hardware failure
occurs on Monday afternoon, you must restore the /x file system to as recent a
state as possible. If you restore the file system to its state as of Sunday, the
migrated files are also returned to their state as of Sunday. As migrated files,
they contain the old bfid from Sunday in their inodes, and, because you
removed their bfids from the daemon database, you cannot recall these files.

Because of the nature of the file system, a daemon database entry is not
removed when a migrated file is modified or removed. Instead, a deleted date
and time field is set in the database. This field indicates when you were
finished with the database entry, except for recovery purposes; it does not
prohibit the daemon from using the database entry to recall a file. When the /x
file system is restored in the preceding example, the migrated files have bfids in
their inodes that point to valid database entries. If the files are later modified or
removed again, the delete field is updated with this later date and time.

The term soft-deleted refers to a database entry that has the delete date and time
set. The term hard-deleted refers to a file that is removed completely from the
daemon database and the MSPs. You should hard-delete the older soft-deleted
entries periodically; otherwise, the daemon database continues to grow in size
without limit as old, unnecessary entries accumulate. Configure the
run_hard_deletes.sh task to perform hard-deletes automatically. See
Section 2.6.1, page 31, for more information.

130 007–3681–004

DMF Maintenance and Recovery [7]

If you look at all of the tapes before and after a hard-delete operation, you will
see that the amount of space used on some (or all) of the tapes has been reduced.

7.4 Using xfsdump and xfsrestore with Migrated Files

File system backup is a vital operational procedure and DMF-managed file
systems should be backed up regularly. Running DMF affords a high degree of
protection for user data. Because DMF only migrates user data and not inodes,
directories, or other file system structures, you must backup file systems that
hold important data.

The xfsdump(1M) and xfsrestore(1M) commands back up file systems.
These utilities are designed to perform the backup function quickly and with
minimal system overhead. They operate with DMF in two ways:

• When xfsdump encounters an offline file, it does not cause the associated
data to be recalled. This distinguishes the utility from tar(1) and cpio(1),
both of which cause the file to be recalled when they reference an offline file.

• Because DMF provides safe, reliable management of offline data, it can be
viewed as a data backup service. The dmmigrate(8) command lets you
implement a 100% migration policy that does not interfere with customary
management of space thresholds. The -a option of the xfsdump command
causes xfsdump to skip the data associated with any dual-state file.
Whenever xfsdump detects a file that is backed up by DMF, it retains only
the inode for that file, since DMF already has a copy of the data itself.

When you run xfsdump -a in concert with dmmigrate, the volume of
backup data produced by xfsdump can be significantly reduced, thereby
reducing the amount of time spent performing backups.

Most installations periodically do a full (level 0) dump of file systems.
Incremental dumps (levels 1 through 9) are done between full dumps; these
may happen once per day or several times per day. You can continue this
practice after DMF is enabled. When a file is migrated (or recalled), the inode
change time is updated. The inode change time ensures that the file gets
dumped at the time of the next incremental dump.

You can configure tasks in the dump_tasks object to automatically do full and
incremental dumps of the DMF-managed file systems. See Section 2.6.1, page
31, for more information.

The dump_tasks object employs scripts that call the xfsdump(1M) command
in conjunction with the dmtape DMF support program. This mechanism gives

007–3681–004 131

DMF Administrator’s Guide for IRIX® Systems

you flexible and efficient use of a predetermined set of backup volumes that are
automatically allocated to the xfsdump program as needed during the backup.
In order to allow you an equally flexible and efficient method for restoring files
backed up by the dump_tasks object, the dmxfsrestore(8) command should
be used any time a restore is required for a dump_tasks-managed file system.
Please see the dmxfsrestore(8) man page for more information on running
the command.

7.4.1 Dumping and Restoring Files without the dump_tasks Object

If you choose to dump and restore DMF file systems without using the
provided dump_tasks object, there are several items that you must remember:

• The dump_tasks object uses xfsdump with the -a option to dump only
data not backed up by DMF. You may also wish to consider using the -a
option on xfsdump when dumping DMF file systems manually.

• Do not use the -A option on either xfsdump or xfsrestore. The -A
option avoids dumping or restoring extended attribute information. DMF
information is stored within files as extended attributes, so if you do use -A,
migrated files restored from those dump tapes will not be recallable by DMF.

• When restoring migrated files using xfsrestore, you must specify the -D
option in order to guarantee that restored files will be recallable by DMF.

• If you use the Tape Management Facility (TMF) to mount tapes for use by
xfsdump, be aware that xfsdump will not detect the fact that the device is a
tape, and will behave as if the dump is instead being written to a regular
disk file. This means that xfsdump will not be able to append new dumps
to the end of an existing tape. It also means that if xfsdump encounters
end-of-tape, it will abort the backup rather than prompting for additional
volumes. You must ensure that you specify enough volumes using the
tmmnt -v option before beginning the dump in order to guarantee that
xfsdump will not encounter end-of-tape.

7.4.2 File System Consistency with xfsrestore

When you restore files, you might be restoring some inodes containing bfids
that were soft-deleted since the time the dump was taken. (For information
about soft-deletes, see Section 7.3, page 130.) dmaudit(8) will report this as an
inconsistency between the file system and the database, indicating that the
database entry should not be soft-deleted.

132 007–3681–004

DMF Maintenance and Recovery [7]

Another form of inconsistency occurs if you happen to duplicate offline or
dual-state files by restoring all or part of an existing directory into another
directory. In this case, dmaudit will report as an inconsistency that two files
share the same bfid. If one of the files is subsequently deleted causing the
database entry to be soft-deleted, the dmaudit-reported inconsistency will
change to the type described in the previous paragraph.

While these dmaudit-reported inconsistencies may seem serious, there is no
risk of any user data loss. The dmhdelete(8) program responsible for
removing unused database entries always first scans all DMF-managed file
systems to make sure that there are no remaining files which reference the
database entries it is about to remove. It is able to detect either of these
inconsistencies and will not remove the database entries in that case.

Sites should be aware that inconsistencies between a file system and the DMF
database can occur as a result of restoring migrated files, and that it is good
practice to run dmaudit after a restore to correct those inconsistencies.

7.5 Using dmfill

The dmfill(8) command allows you to fill a restored file system to a specified
capacity by recalling offline files. When you execute xfsdump -a, only inodes
are dumped for all files that have been migrated (including dual-state files).
Therefore, when the file system is restored, only the inodes are restored, not the
data. You can use dmfill in conjunction with xfsrestore to restore a
corrupted file system to a previously valid state. dmfill recalls migrated files
in the reverse order of migration until the requested fill percentage is reached
or until there are no more migrated files left to recall on this file system.

7.6 Database Recovery

The basic strategy for recovering a lost or damaged DMF database is to recreate
it by applying journal records to a backup copy of the database. For this reason
it is essential that the database backup copies and journal files reside on a
different physical device from the production databases; it is also highly
desirable that these devices have different controllers and channels. The
following sections discuss the database recovery strategy in more detail.

007–3681–004 133

DMF Administrator’s Guide for IRIX® Systems

7.6.1 Database Backups

You configure tasks in the run_copy_databases.sh task in the dump_tasks
object to automatically generate DMF database backups. See Section 2.6.1, page
31, for more information.

There are several databases in the DMF package. The daemon database consists
of the following files:

• HOME_DIR/daemon_name/dbrec.dat

• HOME_DIR/daemon_name/dbrec.keys

• HOME_DIR/daemon_name/pathseg.dat

• HOME_DIR/daemon_name/pathseg.keys

The database definition file (in the same directory) that describes these files and
their record structure is named dmd_db.dbd.

Each tape MSP has two databases in the HOME_DIR/msp_name directory:

• The CAT database (files tpcrdm.dat, tpcrdm.key1.keys, and
tpcrdm.key2.keys)

• The VOL database (files tpvrdm.dat and tpvrdm.vsn.keys)

The database definition file (in the same directory) that describes these files and
their record structure is named atmsp_db.dbd.

7.6.2 Database Recovery Procedures

The DMF daemon and the tape MSP write journal file records for every
database transaction. These files contain binary records that cannot be edited by
normal methods and that must be applied to an existing database with the
dmdbrecover(8) command. The following procedure explains how to recover
the daemon database.

Warning: If you are running multiple MSPs, always ensure that you have the
correct journals restored in the correct directories. Recovering a database
with incorrect journals can cause irrecoverable problems.

Procedure 17: Recovering the Databases

If you lose a database through disk spindle failure or through some form of
external corruption, use the following procedure to recover it:

134 007–3681–004

DMF Maintenance and Recovery [7]

1. Stop DMF.

2. If you have configured the run_copy_databases task, copy the files from
the directory with the most recent copy of the databases that were in
HOME_DIR.

3. If you have not configured the run_copy_databases task, reload an old
version of the daemon or tape MSP database. Typically, these will be from
the most recent dump tapes of your file system.

4. Ensure that the default JOURNAL_DIR/daemon_name (or
JOURNAL_DIR/msp_name) directory contains all of the time-ordered journal
files since the last update of the older database.

For the daemon, the files are named dmd_db.yyyymmdd[.hhmmss].

For the tape MSP, the journal files are named
atmsp_db.yyyymmdd[.hhmmss].

5. Note the time of the last database update from step 2.

6. Use dmdbrecover to update the old database with the journal entries from
journal files identified in step 3.

Example 5: Database Recovery Example

Suppose that the file system containing HOME_DIR was destroyed on February
1, 1997, and that your most recent backup copy of the daemon and tape MSP
databases is from January 28, 1997. To recover the database, you would do the
following:

1. Stop DMF.

007–3681–004 135

DMF Administrator’s Guide for IRIX® Systems

2. Ensure that JOURNAL_DIR/daemon_name (or JOURNAL_DIR/msp_name)
contains the following journal files (one or more for each day):

JOURNAL_DIR/daemon_name

dmd_db.19970128.235959
dmd_db.19970129.235959

dmd_db.19970130.235959

dmd_db.19970131.235959

dmd_db.19970201

JOURNAL_DIR/msp_name

atmsp_db.19970128.235959

atmsp_db.19970129.235959

atmsp_db.19970130.235959
atmsp_db.19970131.235959

atmsp_db.1997020

3. Restore databases from January 28, to HOME_DIR/daemon_name and/or
HOME_DIR/msp_name. The following files should be present:

HOME_DIR/daemon_name

dbrec.dat

dbrec.keys

pathseg.dat

pathseg.keys

HOME_DIR/MSP_Name

tpcrdm.dat
tpcrdm.key1.keys

tpcrdm.key2.keys

tpvrdm.dat

tpcrdm.vsn.keys

4. Update the database files created in step 3 by using the following
commands:

dmdbrecover -n daemon_name dmd_db

dmdbrecover -n msp_name atmsp_db

136 007–3681–004

Messages [A]

This appendix describes the format and interpretation of messages reported by
dmcatadm(8) and dmvoladm(8). If you are uncertain about how to correct these
errors, contact your customer service representative.

A.1 Message Format

Messages in this section are divided into the format used for dmcatadm and
dmvoladm.

A.1.1 Message Format for Catalog (CAT) Database and Daemon Database Comparisons

Error messages generated when comparing the CAT database to the daemon
database will start with the following phrase:

Bfid bfid -

The bfid is the bit file ID associated with the message.

The preceding phrase will be completed by one or more of the following
phrases:

missing from cat db

missing from daemon db

for vsn volume_serial_number chunk chunk_number msg1 msg2

In the above, msgn can be one of the following:

filesize < 0

chunkoffset < 0

chunklength < 0

zonenumber < 0
chunknumber <0

filesize < chunklength + chunkoffset

zonenumber

missing or improper vsn

filesize != file size in daemon entry (size)

no chunk for bytes msg1, msg2

007–3681–004 137

DMF Administrator’s Guide for IRIX® Systems

In the above, msgn gives the byte range as nnn - nnn

nnn bytes duplicated

A.1.2 Message Format for Volume (VOL) Database and Catalog (CAT) Database and Daemon
Database Comparisons

Error messages generated when comparing the VOL database to the CAT
database will start with the following phrase:

Vsn vsn

The vsn is the volume serial number associated with the message.

The preceding phrase will be completed by one or more of the following
phrases:

missing

eotpos < largest position in cat (3746)
eotchunk < largest chunk in cat (443)

eotzone < largest zone in cat (77)

chunksleft != number of cat chunks (256)

dataleft !=sum of cat chunk lengths (4.562104mb)

tapesize is bad

version is bad

blocksize is bad

zonesize is bad

eotchunk < chunksleft
dataleft > datawritten

volume is empty but msg1, msg2

In the above, msgn can be one of the following:

hfull is on

hsparse is on

hrsv is on

datawritten != 0
eotpos != 1/0

eotchunk != 1

volume is not empty but msg1, msg2

138 007–3681–004

Messages [A]

In the above, msgn is one of the following:

hfree is on

version < 4 but msg1, msg2

In the above, msgn can be one of the following:

volume contains new chunks

hfull is off
eotpos !=2/0

A.2 dmcatadm Message Interpretation

The following lists the meaning of messages associated with the dmcatadm
database.

nnn bytes duplicated Two or more chunks in the database
contain data from the same region of the
file.

for vsn DMF001 chunk 77 chunkoffset < 0 The chunkoffset value for chunk 77
on volume serial number (VSN) DMF001
is obviously bad because it is less than 0.

for vsn DMF001 chunk 77 chunklength < 0 The chunklength value for chunk 77
on VSN DMF001 is obviously bad
because it is less than 0.

for vsn DMF001 chunk 77 chunknumber < 0 The chunknumber value for chunk 77
on VSN DMF001 is obviously bad
because it is less than 0.

for vsn DMF001 chunk 77 filesize < 0 The filesize value for chunk 77 on
DMF001 is obviously bad because it is
less than 0.

for vsn DMF001 chunk 77 filesize < chunklength +
chunkoffset

The value of chunklength plus
chunkoffset should be less than or
equal to the filesize. Therefore, one
or more of these values is wrong.

007–3681–004 139

DMF Administrator’s Guide for IRIX® Systems

for vsn DMF001 chunk 77 missing or improper vsn The list of volume serial numbers for the
chunk is improperly constructed. The
list should contain one or more
6-character names separated by colons.

for vsn DMF001 chunk 77 zonenumber < 0 The zonenumber value for chunk 77 on
DMF001 is obviously bad because it is
less than 0.

for vsn DMF001 chunk 77 zonenumber > chunknumber Either the zonenumber value or the
chunknumber value for chunk 77 on
DMF001 is wrong, because the
zonenumber is larger than the
chunknumber value. (Each zone
contains at least two chunks, because the
end-of-zone header on the tape counts as
a chunk.)

for vsn DMF001 chunk 77 filesize != file size in
daemon entry (nnn)

The filesize value in the chunk entry
is different from the file size in the
daemon record. If no daemon record
was provided, this message indicates
that more than one chunk exists for the
bfid and that the filesize value is not
the same for all the chunks.

missing from cat db The daemon entry was not found in the
CAT database.

missing from daemon db No daemon entry was found for the
entry in the CAT database.

no chunk for bytes nnn - nnn There is no chunk that contains the
specified bytes of the file.

A.3 dmvoladm Message Interpretation

The following lists the meaning of messages associated with the dmvoladm
database.

140 007–3681–004

Messages [A]

blocksize is bad The tapesize field for the tape is
not a multiple of 4096.

eotpos < largest position in cat (3746) The position for the EOT descriptor
on the tape is less than the largest
position of all the chunk entries for
the tape.

chunksleft != number of cat chunks (256) The number of chunks referencing
the tape in the CAT database does
not equal the number of chunks left
recorded in the VOL entry for the
tape.

dataleft != sum of cat chunk lengths (4.562104mb) The sum of the chunks length for
chunks referencing the tape in the
CAT database does not equal the
dataleft value recorded in the
VOL entry for the tape.

dataleft > datawritten The entry shows that more data
remains on the tape than was
written.

eotchunk < chunksleft The entry shows that more chunks
remain on the tape than were
written.

eotchunk < largest chunk in cat (443) The chunk number of the EOT
descriptor on the tape is less than
the largest chunk number of all the
chunk entries for the tape.

eotzone < largest zone in cat (77) The zone number of the EOT
descriptor on the tape is less than
the largest zone number of all the
chunk entries for the tape.

missing The volume was found in a chunk
entry from the CAT database but is
not in the VOL database.

tapesize is bad The tapesize field for the tape is
an impossible number.

007–3681–004 141

DMF Administrator’s Guide for IRIX® Systems

version is bad The version field for the tape is not
1, 2, or 3 (for a tape still containing
data written by an old MSP) or 4
(for a tape written by this MSP).

volume is empty but hfull is on

volume is empty but hsparse is on
volume is empty but hrsv is on

When a volume is empty, the hfull,
hsparse, and hrsv hold flags should
be off.

volume is empty but datawritten != 0

volume is empty but eotpos != 1/0

volume is empty but eotchunk != 1

When the hfree hold flag is
cleared, the datawritten field is
set to 0, the eotpos field is set to
1/0, and the eotchunk is set to 1.
The entry is inconsistent and should
be checked.

volume is not empty but hfree is on When a volume contains data, the
hfree hold flag must be off.

volume is not empty and version < 3 but volume
contains new chunks

One or more of the chunks
associated with this volume were
written by the advanced tape MSP,
which only writes tapes that have a
version value equal to 3. However,
the version value of the tape is
less than 3.

volume is not empty and version < 3 but hfull is off Tapes containing data with a version
value of less than 3 must have
hfull set, because the MSP cannot
append to the tape.

volume is not empty and version < 3 but eotpos != 2/0 Tapes imported from the old MSP
only have one zone of data, so
eotpos must be 2/0.

zonesize is too small The zonesize field for the tape is
an impossible number.

142 007–3681–004

Glossary

active database entry

A valid daemon database entry. See also soft-deleted database entry and
hard-deleted database entry.

alternate media

The media onto which migrated data blocks are stored, usually tapes.

automated space management

The combination of utilities that allows DMF to maintain a specified level of
free space on a file system through automatic file migration.

base object

The configuration object that defines path name and file size parameters
necessary for DMF operation.

bitfile ID

See bfid.

bfid

The bit file identifier, or bfid, is a unique identifier, assigned to each file during
the migration process, that links a migrated file to its data on alternate media.

bfid set

The collection of database entries and the user file associated with a particular
bfid.

bfid-set state

The sum of the states of the components that comprise a bfid set: the file state
of any user file and the state of any database entries (incomplete, complete,
soft-deleted, or active).

007–3681–004 143

DMF Administrator’s Guide for IRIX® Systems

block

Physical unit of I/O to and from media, usually tape. The size of a block is
determined by the type of device being written. A tape block is accompanied
by a header identifying the chunk number, zone number, and its position
within the chunk.

candidate list

A list that contains an entry for each file in a file system eligible for migration,
ordered from largest file weight (first to be migrated) to smallest. This list is
generated and used internally by dmfsmon(8). The dmscanfs(8) command
prints similar file status information to standard output.

CAT records

The catalog (CAT) records in the tape MSP database that track which migrated
files reside on which tape volumes.

chunk

That portion of a user file that fits on the current media (tape) volume. Most
small files are written as single chunks. When a migrated file cannot fit onto a
single volume, the file is split into chunks.

complete MSP daemon-database entry

An entry in the daemon database whose path field contains a key returned by
its MSP, indicating that the MSP maintains a valid copy of the user file.

compression

The mechanism provided by the tape MSP for copying active data from
volumes that contain largely obsolete data to volumes that contain mostly
active data. This process is also known as volume merging or tape merging.

configuration object

A series of parameter definitions in the DMF configuration file that controls the
way DMF operates. By changing the parameters associated with objects, you
can modify the behavior of DMF.

144 007–3681–004

Glossary

configuration parameter

A string in the DMF configuration file that defines a part of a configuration
object. By changing the values associated with these parameters, you can
modify the behavior of DMF. The parameter serves as the name of the line.
Some parameters are reserved words, some are supplied by the site.

daemon database

A database maintained by the DMF daemon. This database contains such
information as the bfid, the MSP name, and MSP key for each copy of a
migrated file.

daemon object

The configuration object that defines parameters necessary for dmdaemon(8)
operation

data-pointer area

The portion of the inode that points to the file’s data blocks.

device object

The configuration objects that define parameters for DMF’s use of tape devices.

direct-access storage device (DASD)

An IBM disk drive.

DMF state

See file state.

dual-state file

A file whose data resides both online and offline.

dual-state file systems

Those file systems that have the necessary inode space to support dual-state
files.

fhandle

See file handle.

007–3681–004 145

DMF Administrator’s Guide for IRIX® Systems

file

An inode and its associated data blocks; an empty file has an inode but no data
blocks.

file handle

The DMAPI identification for a file. You can use the dmscanfs(8), dmattr(1),
and dmfind(1) commands to find file handles.

file state

The migration state of a file as indicated by the dmattr(1) command. A file can
be regular (not migrated), migrating, dual-state, offline, unmigrating,
never-migrated, or have an invalid DMF state.

freed file

A user file that has been migrated and whose data blocks have been released.

fully backed up file

A file that has one or more complete offline copies and no pending or
incomplete offline copies.

hard-deleted database entry

An MSP database entry that has been removed from the daemon database and
whose MSP copy has been discarded. See also active database entry and
soft-deleted database entry.

inode

The portion of a file that contains the bfid, the state field, and the data pointers.

incomplete MSP daemon-database entry

An entry in the daemon database for an MSP that has not finished copying the
data, and therefore has not yet returned a key. The path field in the database
entry is NULL.

incompletely migrated file

A file that has begun the migration process, but for which one or more copies
on alternate media have not yet been made.

146 007–3681–004

Glossary

media-specific process (MSP)

The daemon-like process by which data blocks are copied onto alternate media,
and which assigns keys to identify the location of the migrated data.

migrated file

A file that has a bfid and whose offline copies (or copy) are completed.
Migrated files can be dual-state or offline.

migrating file

A file that has a bfid but whose offline copies (or copy) are in progress.

MSP

See media-specific process (MSP).

MSP database entry

The configuration objects that define parameters necessary for that MSP’s
operation. There is one MSP object for each MSP.

MSP objects

The configuration objects that define parameters necessary for that MSP’s
operation

nonmigrated file

A file that does not have a bfid or any offline copies. See regular file.

offline file

A file whose inode contains a bfid but whose disk blocks have been removed.
The file’s data exists elsewhere in copies on alternate media.

offline pointer

In tape MSP processing, a character string that the MSP returns to the daemon
to indicate how a file is to be retrieved. For the tape MSP, the offline pointer is
the character key into the MSP catalog (CAT) records of the database.

007–3681–004 147

DMF Administrator’s Guide for IRIX® Systems

orphan chunks

Unused chunks in the tape MSP catalog (CAT) database entries resulting from
the removal of migrated files.

orphan database entries

Unused database entries resulting from the removal of migrated files during a
period in which the DMF daemon is not running.

parameter

See configuration parameter.

policy objects

The configuration objects that specify parameters to determine MSP selection,
automated space management policies, and/or file weight calculations in
automatic space management.

recall

To request that a migrated file’s data be moved back (unmigrated) onto the file
system disk, either by explicitly entering the dmget(1) command or by
executing another command that will open the file, such as the vi(1) command.

regular file

DMF considers a regular file to be one with no bfid and no offline copies.

snapshot

The information about all bfid sets that is collected and analyzed by
dmaudit(8). The snapshot analysis is available from the report function.

soft-deleted database entry

A daemon database entry for which the MSP copy of the data is no longer
valid. Data remains on the alternate media until the database entry is
hard-deleted. See also active database entry and hard-deleted database entry.

sparse tape

A tape containing only a small amount of active information.

148 007–3681–004

Glossary

special file

UNIX special files are never migrated by DMF.

state field

The field in the inode that shows the current migration state of a file.

tape block

See block.

tape chunk

See chunk.

task

A process initiated by the DMF event mechanism. Configuration tasks that
allow certain recurring administrative duties to be automated are defined with
configuration file parameters.

unmigratable file

A file that the daemon will never select as a migration candidate.

unmigrate

See recall.

unmigration file

A special file created in the user file’s file system by the DMF daemon when a
file is recalled. The unmigration file holds the data pointers until the MSP
process successfully copies the file’s data back onto the file system disk from
the alternate media; when the copy is complete, the daemon moves the data
pointers from the unmigration file inode back into the user file’s inode.

unmigration directory

A directory in which unmigration files are stored.

voided bfid-set state

A bfid-set state that consists of one or more soft-deleted daemon database
entries, either incomplete or complete. There is no user file.

007–3681–004 149

DMF Administrator’s Guide for IRIX® Systems

voiding the bfid

The process of removing the bfid from the user file inode and soft-deleting all
associated database entries.

VOL records

The volume (VOL) records in the tape MSP database that contain information
about each tape volume that exists in the pool of tapes used by the tape MSP.

volume merging

The mechanism provided by the tape MSP for copying active data from volumes
that contain largely obsolete data to volumes that contain mostly active data.

zone

A logical grouping of chunks. Zones are separated by file marks and are the
smallest block-addressable unit on the tape volume. The target size of a zone is
configurable by media type.

150 007–3681–004

Index

A

Absolute block positioning
definition, 4

ADMIN_EMAIL configuration parameter
base object

definition, 26
$ADMINDIR directory

daemon maintenance tasks, 33
MSP maintenance tasks, 51

Administration
overview, 7

Administrative tasks
daemon configuration, 31

TASK_GROUPS parameter, 29
file system backups, 8

configuring automated tasks, 34
MSP configuration, 50
overview, 7
overview of automated maintenance tasks, 22
tape management

configuring automation, 51
Administrative tips, 129
age expression

configuration file
definition, 42

AGE_WEIGHT configuration parameter
definition, 41

all keyword
dmvoladm command, 112

Application data flow, 1
Architecture

overview, 5
atmsp_db journal file

dmatmsp, 98
atmsp_db.dbd

database definition file, 97, 134
atmsp_db.dbd database definition file, 97
autolog log file, 75

message format, 69
Automated maintenance tasks

daemon configuration, 31
TASK_GROUPS parameter, 29

MSP configuration, 50
overview, 22

Automated space management
candidate list generation, 72
configuration parameters

definitions, 37, 39
daemon configuration

MIGRATION_LEVEL parameter, 29
filesystem configuration

MIGRATION_LEVEL parameter, 37
log file, 75

message format, 69
relationship of targets, 74
selection of migration candidates

configuration parameters, 72
file exclusion, 72
FREE_SPACE_DECREMENT

configuration parameter, 74
FREE_SPACE_MINIMUM configuration

parameter, 72
FREE_SPACE_TARGET configuration

parameter, 73
MIGRATION_TARGET configuration

parameter, 73
Automated space management commands

overview, 14
Automounters

supported, 4

B

Backups
of daemon database

007–3681–004 151

DMF Administrator’s Guide for IRIX® Systems

configuring automated task, 34
Bandwidth

I/O, 1
Base object

configuration, 26
configuration file

definition, 25
configuration parameters

definitions, 26
bfid

definition, 5
bfid record

dmcatadm text field order, 109
dmdadm text field order, 84

bit file identifier
See "bfid", 5

BLOCK_SIZE configuration parameter
device object

definition, 53
Blocks

DMF tape concepts, 94
blocksize keyword

dmvoladm command, 113
blocksize record

dmvoladm text field order, 121

C

CACHE_DIR configuration parameter
dmatmsp

definition, 46, 102
CACHE_SPACE configuration parameter

dmatmsp
definition, 47, 102

CANCEL message
FTP MSP, 125

Candidate list
creation, 71
definition, 7
generation, 72

Candidates for migration
file exclusion, 72

file selection, 72
FREE_SPACE_DECREMENT

configuration parameter, 74
FREE_SPACE_MINIMUM configuration

parameter, 72
FREE_SPACE_TARGET configuration

parameter, 73
MIGRATION_TARGET configuration

parameter, 73
relationship of space management targets, 74

Capacity
of DMF, 6
scheduling, 1

capacity record
dmvoladm text field order, 121

CAT database
backup, 133
message format comparison, 137
message interpretation, 139

CAT records
dmatmsp database, 93
tape MSP database

directories, 96
checkage keyword

dmdadm command, 81
checktime keyword

dmdadm command, 81
dmdadm text field order, 85

CHILD_MAXIMUM configuration parameter
dmatmsp

definition, 47
dmdskmsp

definition, 65
dmftpmsp

definition, 61
chunkdata keyword

dmvoladm command, 106
chunkdata record

dmcatadm text field order, 109
chunklength keyword

dmcatadm command, 106
chunklength record

152 007–3681–004

Index

dmcatadm text field order, 109
chunknumber keyword

dmcatadm command, 106
chunknumber record

dmcatadm text field order, 109
chunkoffset keyword

dmcatadm command, 106
chunkoffset record

dmcatadm text field order, 109
Chunks

DMF tape concepts, 94
chunksleft keyword

dmvoladm command, 113
chunksleft record

dmvoladm text field order, 121
COMMAND configuration parameter

dmatmsp
definition, 46

dmdskmsp
definition, 65

dmftpmsp
definition, 61

Configuration
command overview, 12
installing binary files, 20
overview, 19
tape MSPs

setting up, 59
verifying, 68

Configuration file
automated space management

configuration, 39
base object configuration, 26
daemon object configuration, 29
daemon_tasks object, 32
device object configuration, 53

OpenVault mounting service, 54
TMF mounting service, 55

disk MSP configuration, 65
dump_tasks object, 34
file weighting parameters, 41
filesystem object configuration, 37

FREE_SPACE_DECREMENT configuration
parameter, 74

FREE_SPACE_MINIMUM configuration
parameter, 72

FREE_SPACE_TARGET configuration
parameter, 73

FTP MSP configuration, 61
MIGRATION_TARGET configuration

parameter, 73
MSP selection parameters, 41
msp_tasks object, 51
OpenVault mounting service configuration, 56
policy object configuration, 39
space management parameters, 72
tape MSP configuration, 46

Configuration objects
configuration file, 25
definition, 12

Configuration parameters
automated space management

definitions, 39
base object

definitions, 26
daemon object

definitions, 29
definition, 12
device object

definitions, 53
OpenVault mounting service, 54
TMF mounting service, 55

disk MSP
definitions, 65

file weighting
definitions, 41
procedure for configuring, 43

filesystem object
definitions, 37

FTP MSP
definitions, 61

HOME_DIR, 94
JOURNAL_DIR

dmatmsp, 94

007–3681–004 153

DMF Administrator’s Guide for IRIX® Systems

dmatmsp and, 98
dmdaemon and, 86

JOURNAL_SIZE
dmdaemon and, 86
tape MSP and, 98

MSP selection
definitions, 41
procedure for configuring, 45

policy object
definitions, 39

SPOOL_DIR, 75, 85, 94
tape MSP

definitions, 46
procedure for configuring, 49

count directive
dmcatadm command, 104
dmdadm command, 79
dmvoladm command, 110

cpio command
file recall, 131

create directive
dmcatadm command, 104
dmvoladm command, 110

D

Daemon
commands

overview, 12
configuration parameters

definitions, 29
configuring automated maintenance tasks, 31
database, 78

automating copying for reliability, 34
backup, 133
configuring automated verification task, 33
directory location, 78
message format comparison, 137, 138
recovery, 134
recovery example, 135
selection, 133

database record length, 20

procedure for configuring, 21
dmdadm command, 79
log file

message format, 69
logs and journals, 85
processing, 77
shutdown, 78

Daemon object
configuration, 29
configuration file

definition, 25
daemon_tasks object

configuration, 32
parameters

definitions, 31
Data integrity

administrative tasks and, 8
copying file system data

configuring automated tasks, 34
overview, 4

Data reliability
administrative tasks and, 8
copying daemon database

configuring automated task, 34
copying file system data

configuring automated tasks, 34
DATA_LIMIT parameter

msp_tasks object
configuration, 52

Database definition file
atmsp_db.dbd, 97, 134
dmd_db.dbd, 68, 134

Database journal files
dmlockmgr process, 89

DATABASE_COPIES parameter
daemon_tasks object

configuration, 34
Databases

CAT
backup, 133

daemon, 78, 134
backup, 133

154 007–3681–004

Index

configuring record length, 21
database record length, 20
directory location, 78
example of recovery, 135

message format for comparisons, 137, 138
message interpretation

dmcatadm, 139
dmvoladm, 140

tape MSP recovery, 134
example, 135

VOL
backup, 133

dataleft keyword
dmvoladm command, 113

dataleft record
dmvoladm text field order, 121

datalimit keyword
dmvoladm command, 115

datawritten keyword
dmvoladm command, 113

datawritten record
dmvoladm text field order, 121

dbrec.dat file, 134
dbrec.keys file, 134
delete directive

dmcatadm command, 104
dmdadm command, 80
dmvoladm command, 110

deleteage keyword
dmdadm command, 81

deletetime keyword
dmdadm command, 82
dmdadm text field order, 85

device object
configuration file

definition, 26
configuration parameters

definitions, 53
OpenVault mounting service, 54
TMF mounting service, 55

Directories
daemon database, 78

Disk MSP, 125

configuration parameters
definitions, 65

log files, 127
request processing, 126

Disk resources
overruns, 1

Disk space capacity
handling, 3

DISK_IO_SIZE configuration parameter
dmatmsp

definition, 47
dmdskmsp

definition, 66
dmftpmsp

definition, 61
dmatmsp, 93

CAT database records, 96
configuration parameters

definitions, 46
procedure for configuring, 49

directories, 94
dmatread command, 121
dmatsnf command, 122
dmaudit verifymsp command, 122
dmcatadm command, 103
dmcatadm message format, 137
dmcatadm message interpretation, 139
dmvoladm command, 110
dmvoladm message interpretation, 140
dmvoladm messages, 138
journal files, 98
log files, 99
merging tape volumes, 101
setup, 59
VOL database records, 97

dmatread command, 121
definition, 15
reading MSP volumes, 94

dmatsnf command, 122
definition, 15
reading MSP volumes, 94

dmattr command

007–3681–004 155

DMF Administrator’s Guide for IRIX® Systems

definition, 10
dmatvfy command

definition, 15
dmaudit command

definition, 13
dmaudit verifymsp command, 122
dmcatadm command, 103

chunkdata keyword, 106
chunklength keyword, 106
chunknumber keyword, 106
chunkoffset keyword, 106
count directive, 104
create directive, 104
definition, 15
delete directive, 104
directives, 103

field keywords, 106
format keywords, 106
syntax, 105

dmdump command
text field order, 109

dump directive, 104
entry keyword, 108
example of list directive, 108
filesize keyword, 106
flags keyword, 106
format keyword, 108
help directive, 104
limit keywords, 108
list directive, 104
load directive, 104
message format, 137
message interpretation, 139
mspname keyword, 108
quit directive, 104
readage keyword, 107
readcount keyword, 107
readdate keyword, 107
recordlimit keyword, 108
recordorder keyword, 108
set directive, 104
text field order, 109
update directive, 104

verify directive, 104
vsn keyword, 107
writeage keyword, 107
writedate keyword, 107
zoneblockid keyword, 107
zonenumber keyword, 107
zonepos keyword, 107

dmcheck command
definition, 13

dmclripc command
definition, 16

dmconfig command
definition, 12

dmcopy command
definition, 10

dmd_db journal file, 86
dmd_db.dbd

database definition file, 68, 134
dmdadm command, 78

checkage keyword, 81
checktime keyword, 81
count directive, 79
create directive, 80
definition, 13
deleteage keyword, 81
deletetime keyword, 82
directives, 79

field keywords, 81
format keywords, 81
syntax, 80

dmdump
text field order, 84

dump directive, 80
example of list directive, 84
format keyword, 83
help directive, 80
limit keywords, 83
list directive, 80
load directive, 80
mspkey keyword, 82
mspname keyword, 82
origage keyword, 82

156 007–3681–004

Index

origdevice keyword, 82
originode keyword, 82
origname keyword, 82
origsize keyword, 82
origtime keyword, 82
origuid keyword, 82
quit directive, 80
recordlimit keyword, 83
recordorder keyword, 83
selection expression, 80
set directive, 80
text field order, 84
update directive, 80
updateage keyword, 82
updatetime keyword, 82

dmdaemon command, 77
daemon startup, 77
definition, 13

dmdbcheck command
definition, 13, 15

dmdbrecover command
database recovery, 134
definition, 13

dmdidle command
definition, 13

dmdlog log file, 77, 85
message format, 69

dmdskmsp, 125
log files, 127
request processing, 126

dmdstat command
overview, 13

dmdstop command, 68
daemon shutdown, 78
definition, 13

dmdump command
definition, 16

dmdumpj command
definition, 16

DMF
shutdown, 68

DMF state information
extended attribute structure, 20

dmf_config man page
definition, 12

dmfill command
definition, 16
file restoration, 133

dmfind command
definition, 10

dmfsfree command
candidate list creation, 71
definition, 14
migration target and, 71

dmfsmon command, 39
candidate list creation, 71
candidate list generation, 72
candidate selection, 72
configuration parameters, 72
definition, 14
file exclusion, 72

dmftpmsp, 122
configuration parameters

definitions, 61
log files, 124
messages, 125
request processing, 123

dmget command
definition, 10

dmhdelete command
definition, 13

dmlocklog log file
message format, 69

dmlockmgr command
definition, 16

dmlockmgr process, 89
abort, 91
communication and log files, 89
database journal files, 89
interprocess communication, 90
log file

message format, 69
shutdown, 90
token files, 90
transaction log files, 89, 91

007–3681–004 157

DMF Administrator’s Guide for IRIX® Systems

dmls command
definition, 10

dmmaint command
definition, 16

dmmigrate command
definition, 14
file backup, 131

dmmove command
definition, 16
moving data between MSPs, 127
scratch file system location

MOVE_FS configuration parameter, 29
dmov_keyfile command, 57

definition, 16
dmov_loadtapes command, 59

definition, 16
dmov_makecarts command, 59

definition, 17
dmput command

definition, 10
dmscanfs command

definition, 14
uses, 72

dmselect command
definition, 17
moving data between MSPs, 127

dmsnap command
definition, 14

dmsort command
definition, 17

dmversion command
definition, 14

dmvoladm command, 110
all keyword, 112
blocksize keyword, 113
chunksleft keyword, 113
count directive, 110
create directive, 110
dataleft keyword, 113
datalimit keyword, 115
datawritten keyword, 113
definition, 15
delete directive, 110

directives, 110
format keywords, 112
syntax, 111

dmdump
text field order, 120

dump directive, 110
empty keyword, 112
eotblockid keyword, 113
eotchunk keyword, 113
eotpos keyword, 113
eotzone keyword, 114
examples of list directive, 116
field keywords, 112
flag keywords, 115
format keywords, 112
hbadmnt flag, 115
help directive, 110
herr flag, 115
hflags flag, 116
hfree flag, 116
hfull flag, 116
hlock flag, 116
hoa flag, 116
hro flag, 116
hrsv flag, 116
hsparse flag, 116
label keyword, 114
limit keywords, 115
list directive, 110
load directive, 110
message interpretation, 140
messages, 138
partial keyword, 112
quit directive, 111
recordlimit keyword, 115
recordorder keyword, 115
repair directive, 111
select directive, 101, 111
selection expression, 111
set directive, 111
tapesize keyword, 114
text field order, 120

158 007–3681–004

Index

threshold keyword, 114
upage keyword, 114
update directive, 111
update keyword, 114
used keyword, 112
verify directive, 111
version keyword, 114
vsnlist expression, 111
wfage keyword, 114
wfdate keyword, 114

dmxfsrestore command
definition, 17

Dual-state file
definition, 3, 10
xfsdump and, 131

dump and restore
migrated files, 131

dump directive
dmcatadm command, 104
dmdadm command, 80
dmvoladm command, 110

Dump utilities
administrative tasks and, 9

DUMP_DEVICE parameter
dump_tasks object

configuration, 36
DUMP_FILE_SYSTEMS parameter

dump_tasks object
configuration, 36

DUMP_INVENTORY_COPY parameter
dump_tasks object

configuration, 36
DUMP_MIGRATE_FIRST parameter

dump_tasks object
configuration, 36

DUMP_RETENTION parameter
dump_tasks object

configuration, 36
DUMP_TAPES parameter

dump_tasks object
configuration, 36

dump_tasks object
configuration, 34

parameters
definition, 31

DUMP_VSNS_USED parameter
dump_tasks object

configuration, 36

E

empty keyword
dmvoladm command, 112

entries keyword
dmcatadm command, 108

Environment variables
setting PATH and MANPATH, 24

eotblockid keyword
dmvoladm command, 113

eotchunk keyword
dmvoladm command, 113

eotchunk record
dmvoladm text field order, 121

eotpos keyword
dmvoladm command, 113

eotposition record
dmvoladm text field order, 121

eotzone keyword
dmvoladm command, 114

Error reports
tapes

configuring automated tasks, 51
Extended attribute structure

and DMF states, 20

F

Field keywords
dmcatadm command, 106
dmdadm command, 81
dmvoladm command, 112

File concepts
definition, 10

007–3681–004 159

DMF Administrator’s Guide for IRIX® Systems

File migration
automated selection of candidates, 72

FREE_SPACE_DECREMENT
configuration parameter, 74

FREE_SPACE_MINIMUM configuration
parameter, 72

FREE_SPACE_TARGET configuration
parameter, 73

MIGRATION_TARGET configuration
parameter, 73

excluding files from, 72
MSP selection for files

configuration parameter definition, 41
procedure for configuring, 45

overview, 3, 11
real-time partitions and, 75
relationship of space management targets, 74
weighting of files

configuration parameter definition, 41
procedure for configuring, 43

File recall
overview, 11

File system
backups

configuring automated tasks for
retaining, 36

configuration parameters
definitions, 37

conversion
dmdskmsp configuration parameters, 66
dmftpmsp configuration parameters, 62

mount options, 20
File weighting configuration parameters

definitions, 41
procedure for configuring, 43

filesize keyword
dmcatadm command, 106

filesize record
dmcatadm text field order, 109

filesystem object
configuration, 37
configuration file

definition, 25

FINISH message
FTP MSP, 125

Flag keywords
dmvoladm command, 115

flags keyword
dmcatadm command, 106

flags record
dmcatadm text field order, 109

FLEXlm license configuration
LICENSE_FILE base object parameter

definition, 26
FLUSHALL message

FTP MSP, 125
format keyword

dmcatadm command, 108
dmdadm command, 83
dmvoladm command, 115

Format keywords
dmcatadm command, 106
dmdadm command, 81
dmvoladm command, 112

Free space
managing

overview, 3
FREE_DUALSTATE_FIRST configuration

parameter
policy object

definition, 40
FREE_SPACE_DECREMENT configuration

parameter
and automated space management, 74
policy object

definition, 40
FREE_SPACE_MINIMUM configuration

parameter
and automated space management, 72
policy object

definition, 39
FREE_SPACE_TARGET configuration

parameter
and automated space management, 73
policy object

160 007–3681–004

Index

definition, 40
FTP

DMF interoperability, 2
FTP MSP, 122

configuration parameters
definitions, 61

log files, 124
messages, 125
request processing, 123

FTP_ACCOUNT configuration parameter
dmftpmsp

definition, 61
FTP_COMMAND configuration parameter

dmftpmsp
definition, 61

FTP_DIRECTORY configuration parameter
dmftpmsp

definition, 62
FTP_HOST configuration parameter

dmftpmsp
definition, 62

FTP_PASSWORD configuration parameter
dmftpmsp

definition, 62
FTP_PORT configuration parameter

dmftpmsp
definition, 62

FTP_USER configuration parameter
dmftpmsp

definition, 62
Fully backed up file

definition, 3

G

gid expression
configuration file

definition, 42
GUARANTEED_DELETES configuration

parameter
dmdskmsp

definition, 66

dmftpmsp
definition, 62

GUARANTEED_GETS configuration parameter
dmdskmsp

definition, 66
dmftpmsp

definition, 62

H

Hard-deleted files
defined, 131
definition, 11
maintenance/recovery, 130

hbadmnt keyword
dmvoladm command, 115

help directive
dmcatadm command, 104
dmdadm command, 80
dmvoladm command, 110

herr keyword
dmvoladm command, 115

hflags keyword
dmvoladm command, 116

hflags record
dmvoladm text field order, 121

hfree keyword
dmvoladm command, 116

HFREE_TIME configuration parameter
dmatmsp

definition, 47
hfull keyword

dmvoladm command, 116
hlock keyword

dmvoladm command, 116
hoa keyword

dmvoladm command, 116
HOME_DIR configuration parameter

definition, 26
dmatmsp and, 94

HOME_DIR directory

007–3681–004 161

DMF Administrator’s Guide for IRIX® Systems

location of, 28
hro keyword

dmvoladm command, 116
hrsv keyword

dmvoladm command, 116
hsparse keyword

dmvoladm command, 116

I

id record
dmvoladm text field order, 121

IMPORT_DELETE configuration parameter
dmdskmsp

definition, 66
dmftpmsp

definition, 62
IMPORT_ONLY configuration parameter

dmdskmsp
definition, 66

dmftpmsp
definition, 62

Initialization
of DMF, 68

Inode size
configuration, 20

Installation
binary files, 20

Interprocess communication (IPC)
configuring operating system parameters, 22
dmlockmgr process, 89, 90
exit cleanup, 90

J

Journal files
configuring automated task for retaining, 34
dmdaemon, 85
dmlockmgr process, 89
retaining, 129
tape MSP, 98

JOURNAL_DIR configuration parameter
definition, 26
dmatmsp, 94, 98
dmdaemon and, 86

JOURNAL_DIR directory
location of, 29

JOURNAL_RETENTION parameter
daemon_tasks object

configuration, 34
JOURNAL_SIZE configuration parameter

definition, 26
dmdaemon and, 86
tape MSP and, 98

L

label keyword
dmvoladm command, 114

LABEL_TYPE configuration parameter
device object

definition, 53
lbtype record

dmvoladm text field order, 120
LICENSE_FILE configuration parameter

definition, 26
Limit keywords

dmcatadm command, 108
dmdadm command, 83
dmvoladm command, 115

list directive
dmcatadm command, 104
dmdadm command, 80
dmvoladm command, 110

list keyword
dmdadm command

example, 84
load directive

dmcatadm command, 104
dmdadm command, 80
dmvoladm command, 110

Lock manager

162 007–3681–004

Index

aborts, 91
communication and log files, 89
database journal files, 89
interprocess communication, 90
RDM, 89
shutdown, 90
token files, 90
transaction log files, 89, 91

Log files
automated space management, 75
configuring automated task for retaining, 33
disk MSP, 127
dmdaemon, 85
dmlockmgr process, 89, 91
FTP MSP, 124
general format, 68
retaining, 129
tape MSP, 99

LOG_RETENTION parameter
daemon_tasks object

configuration, 33

M

Maintenance and recovery
cleaning up journal files, 129
cleaning up log files, 129
database backup, 133, 134

daemon, 134
daemon example, 135
tape MSP, 134
tape MSP example, 135

database recovery
example, 135

dmfill command, 133
dumping migrated files, 131
hard-deletes, 130
restoring migrated files, 131
soft-deletes, 130
tape MSP database, 134

example, 135
Maintenance tasks

automated
overview, 22

configuring, 50
daemon configuration, 31

Man pages
setting environment variables for, 24

MANPATH environment variable
setting, 24

MAX_CACHE_FILE configuration parameter
dmatmsp

definition, 47, 102
MAX_CHUNK_SIZE configuration parameter

dmatmsp
definition, 48

MAX_PUT_CHILDREN configuration
parameter

dmatmsp
definition, 48

Media concepts, 94
Media transports

supported, 4
Media-specific processes

See "MSP", 3
MERGE_CUTOFF configuration option

dmatmsp
definition, 102

MERGE_CUTOFF configuration parameter
dmatmsp

definition, 48
Merging tapes

configuration of automated task, 52
stopping automatically, 52

MESSAGE_LEVEL configuration parameter
daemon object

definition, 29
dmatmsp

definition, 48
dmdskmsp

definition, 66
dmftpmsp

definition, 63
filesystem object

007–3681–004 163

DMF Administrator’s Guide for IRIX® Systems

definition, 37
Messages

dmcatadm
interpretation, 139

dmcatadm database, 137
dmdaemon database, 137, 138
dmvoladm

interpretation, 140
dmvoladm database, 138
FTP MSP, 125
log file

general format, 68
Migrated data

moving between MSPs, 127
Migrated file

definition, 10
recalling, 11

Migrating file
definition, 10

Migration
MSP selection for files

configuration parameter definition, 41
procedure for configuring, 45

weighting of files
configuration parameter definition, 41
procedure for configuring, 43

Migration candidates
file exclusion, 72
file selection, 72

FREE_SPACE_DECREMENT
configuration parameter, 74

FREE_SPACE_MINIMUM configuration
parameter, 72

FREE_SPACE_TARGET configuration
parameter, 73

MIGRATION_TARGET configuration
parameter, 73

relationship of space management targets, 74
Migration of files

overview, 11
Migration target

definition, 71
MIGRATION_LEVEL configuration parameter

daemon object
definition, 29

filesystem object
definition, 37

MIGRATION_TARGET configuration
parameter

and automated space management, 73
policy object

definition, 40
MIN_TAPES configuration parameter

dmatmsp
definition, 48

mount command
DMF-managed file systems, 20

MOUNT_SERVICE configuration parameter
device object

definition, 53
MOVE_FS configuration parameter

daemon object
definition, 29

MSGMAX operating system parameter
configuring, 22

MSGSEG operating system parameter
configuring, 22

MSGSSZ operating system parameter
configuring, 22

MSP
commands, 14
configuring automated maintenance tasks, 50
database

dmcatadm message format, 137
dmcatadm message interpretation, 139
dmvoladm message format, 138
dmvoladm message interpretation, 140

definition, 3
description, 93
disk, 125

log files, 127
request processing, 126

dmdaemon, 93
FTP, 122

log files, 124

164 007–3681–004

Index

request processing, 123
journals

dmatmsp, 98
log files

and automated maintenance tasks, 34
message format, 69

moving migrated data between MSPs, 127
selection for migrating files

configuration parameter definition, 41
procedure for configuring, 45

tape, 93
CAT database records, 96
definition, 93
directories, 94
dmatread command, 121
dmatsnf command, 122
dmaudit verifymsp command, 122
dmcatadm command, 103
dmcatadm message format, 137
dmcatadm message interpretation, 139
dmvoladm command, 110
dmvoladm message interpretation, 140
dmvoladm messages, 138
journals, 98
log files, 99
setup, 59
VOL database records, 97
volume merging, 101

tape pool
configuring automated task to report

status, 52
MSP database

CAT records, 93, 96
VOL records, 93, 97

files, 97
MSP log files

and automated maintenance tasks, 51
msp object

configuration file
definition, 26

MSP selection configuration parameters
definitions, 41
procedure for configuring, 45

MSP_NAMES configuration parameter
daemon object

definition, 29
msp_tasks object

configuration, 51
parameters

definitions, 50
mspkey keyword

dmdadm command, 82
dmdadm text field order, 85

msplog file
dmatmsp, 99

statistics messages, 100
dmdskmsp, 127
dmftpmsp, 124
message format, 69

mspname keyword
dmcatadm command, 108
dmdadm command, 82
dmdadm text field order, 85

MVS_UNIT configuration parameter
dmftpmsp

definition, 63

N

NAME_FORMAT configuration parameter
dmdskmsp

definition, 66
dmftpmsp

definition, 63
Network environment, 2
NFS

DMF interoperability, 2

O

Objects
configuration file, 25

Offline data management

007–3681–004 165

DMF Administrator’s Guide for IRIX® Systems

overview, 8
Offline file

definition, 3, 10
OpenVault mounting service

configuration, 56
device object configuration parameters, 54
OV_ACCESS_MODES base object parameter

definition, 54
OV_INTERCHANGE_MODES base object

parameter
definition, 54

OV_KEY_FILE base object parameter
definition, 27

OV_SERVER base object parameter
definition, 27

origage keyword
dmdadm command, 82

origdevice field
dmdadm text field order, 84

origdevice keyword
dmdadm command, 82

originode keyword
dmdadm command, 82
dmdadm text field order, 85

origname keyword
dmdadm command, 82
dmdadm text field order, 85

origsize keyword
dmdadm command, 82
dmdadm text field order, 85

origtime keyword
dmdadm command, 82
dmdadm text field order, 85

origuid keyword
dmdadm command, 82
dmdadm text field order, 85

OV_ACCESS_MODES configuration parameter
device object

definition, 54
OV_INTERCHANGE_MODES configuration

parameter
device object

definition, 54

OV_KEY_FILE configuration parameter
definition, 27

OV_SERVER configuration parameter
definition, 27

Overhead
of DMF, 6

Oversubscription, 1

P

partial keyword
dmvoladm command, 112

PATH environment variable
setting, 24

pathseg.dat file, 134
pathseg.keys file, 134
Periodic maintenance tasks

daemon configuration, 31
MSP configuration, 50

POLICIES configuration parameter
filesystem object

definition, 37
Policy configuration parameters

definitions, 39
policy object

configuration, 39
configuration file

definition, 25
POSITION_RETRY configuration parameter

device object
definition, 53

POSITIONING configuration parameter
device object

definition, 53
Product overview, 1

Q

quit directive
dmcatadm command, 104

166 007–3681–004

Index

dmdadm command, 80
dmvoladm command, 111

R

Raima Data Manager
See "RDM", 89

RDM
lock manager, 89

aborts, 91
communication and log files, 89
database journal files, 89
interprocess communication, 90
shutdown, 90
token files, 90
transaction log files, 89, 91

readage keyword
dmcatadm command, 107

readcount keyword
dmcatadm command, 107

readcount record
dmcatadm text field order, 109

readdate keyword
dmcatadm command, 107

readdate record
dmcatadm text field order, 109

Recall
migrated files, 11

Record length
daemon database, 20

procedure for configuring, 21
recordlimit keyword

dmcatadm command, 108
dmdadm command, 83
dmvoladm command, 115

recordorder keyword
dmcatadm command, 108
dmdadm command, 83
dmvoladm command, 115

Recovery
daemon database, 134

example, 135

tape MSP database, 134
example, 135

Regular file
definition, 10

Reliability
copying daemon database

configuring automated tasks, 34
repair directive

dmvoladm command, 111
Request processing

disk MSP, 126
FTP MSP, 123

restore utilities
migrated files, 131

Retention of journal files
configuration of automated task, 34

Retention of log files
configuration of automated task, 33

run_audit.sh task
configuration, 33
definition, 31

run_copy_databases.sh task
configuration, 34
definition, 31

run_full_dump.sh task
configuration, 35
definition, 31

run_hard_deletes.sh task
configuration, 36
definition, 31

run_merge_stop.sh task
configuration, 52

run_partial_dump.sh task
configuration, 35
definition, 31

run_remove_journals.sh task
and MSP logs, 34, 51
configuration, 34
definition, 31

run_remove_logs.sh task
and MSP logs, 34, 51
configuration, 33

007–3681–004 167

DMF Administrator’s Guide for IRIX® Systems

definition, 31
run_scan_logs.sh task

configuration, 33
definition, 31

run_tape_merge.sh task
configuration, 52
definition, 50

run_tape_report.sh task
configuration, 52
definition, 50

run_tape_stop.sh task
definition, 50

S

select directive
dmvoladm command, 111

select system call
dmdaemon, 78

SELECT_MSP configuration parameter
definition, 41

selection expression
dmvoladm command, 111

set directive
dmcatadm command, 104
dmdadm command, 80
dmvoladm command, 111

Shutdown
DMF, 68
dmlockmgr process, 90, 91

Soft-deleted files
definition, 11, 130
maintenance/recovery, 130

space expression
configuration file

definition, 42
Space management

commands
overview, 14

SPACE_WEIGHT configuration parameter
definition, 41

Sparse tapes

configuration of automated merging, 52
stopping automatically, 52

definition, 8
merging, 101

configuring automated tasks, 51
SPOOL_DIR configuration parameter, 75

definition, 27
dmatmsp and, 94
dmdaemon and, 85

Startup
dmdaemon, 77

STORE_DIRECTORY configuration parameter
dmdskmsp

definition, 66
System startup script

DMF daemon startup, 77

T

Tape activity
configuration of automated task, 52

Tape management
error reports

configuring automated tasks, 51
merging sparse tapes, 101

configuring automated tasks, 51
msp_tasks object

configuration of automated tasks, 52
Tape merging

configuration of automated task, 52
stopping automatically, 52

tape MSP, 101
Tape MSP, 93

CAT database records, 96
configuration parameters

definitions, 46
procedure for configuring, 49

database
recovery, 134
recovery example, 135

directories, 94

168 007–3681–004

Index

dmatread command, 121
dmatsnf command, 122
dmaudit command, 122
dmcatadm command, 103
dmcatadm message format, 137
dmcatadm message interpretation, 139
dmvoladm command, 110
dmvoladm message interpretation, 140
dmvoladm messages, 138
journals, 98
log files, 99
merging tape volumes, 101
setup, 59
VOL database records, 97

Tape reports
configuration of automated task, 52

TAPE_TYPE configuration parameter
dmatmsp

definition, 49
tapesize keyword

dmvoladm command, 114
tar command

file recall, 131
Task

automated maintenance tasks
overview, 22

definition, 7
TASK_GROUPS configuration parameter

daemon object
definition, 29

dmatmsp object
definition, 49

dmdskmsp object
definition, 66

dmftpmsp object
definition, 63

filesystem object
definition, 37

taskgroup object
configuration file

definition, 26
Text field order

dmcatadm command, 109

dmdadm command, 84
dmvoladm command, 120

threshold keyword
dmvoladm command, 114

THRESHOLD parameter
msp_tasks object

configuration, 52
time_expression configuration

daemon maintenance tasks, 33
MSP maintenance tasks, 52

TIMEOUT_FLUSH configuration parameter
dmatmsp

definition, 49
TMF mounting service

device object configuration, 55
TMF_TMMNT_OPTIONS configuration

parameter
dmatmsp

definition, 55
TMP_DIR configuration parameter

definition, 27
Token files

dmlockmgr process, 90
tpcrdm.dat file, 134

definition, 97
tpcrdm.key1.keys file, 134

definition, 97
tpcrdm.key2.keys file, 134

definition, 97
tpvrdm.dat file, 134

definition, 97
tpvrdm.vsn.keys file, 134

definition, 97
Transaction processing, 4
Transparent data migration

definition, 3
Transports

supported, 4
TYPE configuration parameter

base object
definition, 26

daemon object

007–3681–004 169

DMF Administrator’s Guide for IRIX® Systems

definition, 29
device object

definition, 53
filesystem object

definition, 37
msp object

definition, 46
policy object

definition, 39

U

uid expression
configuration file

definition, 42
upage keyword

dmvoladm command, 114
update directive

dmcatadm command, 104
dmdadm command, 80
dmvoladm command, 111

update keyword
dmvoladm command, 114

update record
dmvoladm text field order, 121

updateage keyword
dmdadm command, 82

updatetime keyword
dmdadm command, 82
dmdadm text field order, 85

used keyword
dmvoladm command, 112

User interface
commands, 10

V

V record
dmvoladm text field order, 120

Verification
of configuration, 68

of daemon database integrity
configuration of automated task, 33

verify directive
dmcatadm command, 104
dmvoladm command, 111

VERIFY_POSITION configuration parameter
dmatmsp

definition, 54
version keyword

dmvoladm command, 114
version record

dmvoladm text field order, 121
vista.taf file

dmlockmgr process, 92
VOL database

backup, 133
message format comparison, 138
message interpretation, 140

VOL database records, 93
tape MSP

directories, 97
files, 97

Volume merging
configuration of automated task, 52

stopping automatically, 52
definition, 4
tape MSP, 101

Volume-to-volume merging
tape MSP, 101

VOLUME_LIMIT parameter
msp_tasks object

configuration, 52
vsn keyword

dmcatadm command, 107
vsn record

dmvoladm text field order, 120
vsnlist expression

dmvoladm command, 111

170 007–3681–004

Index

W

Weighting
of files for migration

configuration parameter definition, 41
procedure for configuring, 43

wfage keyword
dmvoladm command, 114

wfdate keyword
dmvoladm command, 114

wfdate record
dmvoladm text field order, 121

when clause
configuration file

definition, 42
WRITE_CHECKSUM configuration parameter

device object
definition, 54

writeage keyword
dmcatadm command, 107

writedata record
dmcatadm text field order, 109

writedate keyword
dmcatadm command, 107

X

xfsdump command, 131
xfsrestore command, 131

Z

ZONE_SIZE configuration parameter
dmatmsp

definition, 54
zoneblockid keyword

dmcatadm command, 107
zonenumber keyword

dmcatadm command, 107
zonepos keyword

dmcatadm command, 107
zoneposition record

dmcatadm text field order, 110
Zones

DMF tape concepts, 95

007–3681–004 171

