
Message Passing Toolkit: PVM
Programmer’s Manual

Document Number 007–3686–002

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1996, 1998, 1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in
any form unless permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94043-1389.

PVM (Parallel Virtual Machine) is based on software that was developed by the Oak Ridge National Laboratory, the University of
Tennessee, and Emory University. This work was supported in part by the Applied Mathematical Sciences subprogram of the
Office of Energy research, U.S. Department of Energy, in part by the National Science Foundation, and in part by the State of
Tennessee.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

DEC is a trademark of Digital Equipment Corporation. DynaWeb is a trademark of INSO Corporation. IBM is a trademark of
International Business Machines Corporation. IRIS, IRIX, and Silicon Graphics are registered trademarks and IRIS InSight and the
Silicon Graphics logo are trademarks of Silicon Graphics, Inc. Kerberos is a trademark of Massachusetts Institute of Technology.
MIPS is a trademark of MIPS Technologies, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited. X Window System and the X device are trademarks of The Open Group. XDR is
a product of Sun Microsystems, Inc. X/Open is a registered trademark of X/Open Company Ltd.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Message Passing Toolkit: PVM Programmer’s Manual 007–3686–002

This rewrite of the Message Passing Toolkit: PVM Programmer’s Manual, supports the 1.3 release of the Cray
Message Passing Toolkit and the Message Passing Toolkit for IRIX (MPT). The MPT implementation of PVM
for UNICOS, UNICOS/mk, and IRIX systems contained in this release is based on the Oak Ridge National
Laboratories (ORNL) version 3.3.10.

With MPT release 1.3, support for XPVM has been dropped.

Record of Revision

Version Description

1.0 January 1996
Original Printing.

1.1 August 1996
This revision supports the Message Passing Toolkit (MPT) 1.1 release.

1.2 January 1998
This revision supports the Message Passing Toolkit (MPT) 1.2 release for UNICOS,
UNICOS/mk, and IRIX systems.

1.3 February 1999
This revision supports the Message Passing Toolkit (MPT) 1.3 release for UNICOS,
UNICOS/mk, and IRIX systems.

007–3686–002 i

Contents

Page

About This Manual ix

Related Publications . ix

Other Sources . x

Ordering Publications . x

Conventions . x

Reader Comments . xii

Overview [1] 1

The PVM Package . 1

PVM on Silicon Graphics Systems 2

PVM Terminology and Scenarios 3

PVM Functionality [2] 5

Multiple Computer Systems As a Virtual Machine 5

Applications and Environments . 6

PVM Program Development . 6

Building PVM Executable Files 7

Creating Host Files . 7

Example 1: Simple Host File 8

Example 2: Sample Host File with Host Name Options 11

Specifying Architecture Types . 12

Starting and Stopping the PVM Daemon 12

Running PVM Applications . 13

Using NQS to Run PVM Applications 14

Using the PVM Console . 15

007–3686–002 iii

Message Passing Toolkit: PVM Programmer’s Manual

Page

Starting the Console . 15

Using Console Commands . 16

Troubleshooting PVM . 19

PVM Already Running . 20

pvmd3 Fails to Start on Remote System 20

Permission Denied . 21

Login Incorrect . 21

Version Incorrect . 22

Failure of Spawn . 22

Other Problems . 22

Optimizing Use of PVM . 23

Running PVM on UNICOS Multiprocessor Systems 23

Running PVM in Stand-alone Mode on UNICOS Systems 30

Running PVM on UNICOS/mk Systems 31

Using NQE . 31

Using Load Balancing . 32

Using PVM Direct Routing . 32

Using Large Messages . 33

Avoiding XDR Conversion . 33

Shared Memory PVM Limitations 34

Data Types on UNICOS Systems . 35

Fortran Data Types . 36

64-bit Integer Usage . 36

Data Types on UNICOS/mk Systems 36

16-bit Fortran Data Types . 37

32-bit Fortran Data Types . 37

64-bit Integer Data . 38

Data Types on IRIX Systems . 38

iv 007–3686–002

Contents

Page

Environment Variables . 39

Setting Environment Variables on IRIX Systems 40

Setting Environment Variables on UNICOS, UNICOS/mk, and IRIX Systems 40

UNICOS/mk Implementation [3] 43

Features and Differences . 43

PE Number . 43

Global Group . 43

Obtaining PE Numbers . 44

Number of PEs . 44

PvmDataInPlace Semantics . 44

Using Environment Variables to Change Default Settings 45

Buffer Memory Management . 48

Basic Design . 49

Simple Scenario, Part 1 . 49

Controlling Memory Use . 50

Initial Number of Send Buffers 51

Send Buffer Increment . 51

Send Buffer Initial Size . 52

Send Buffer Increment Size . 52

Total Memory Use . 53

Simple Scenario, Part 2 . 54

Out-of-resource Errors . 55

PvmOutOfResSMP . 56

PvmOutOfResBuf . 57

PvmOutOfResGmems . 58

Distributed Mode . 58

Major Issues . 58

PE Communication . 59

UNICOS/mk Executable Files 59

007–3686–002 v

Message Passing Toolkit: PVM Programmer’s Manual

Page

UNICOS/mk Tasks . 60

Cross-system Dynamic Groups 60

Session Example . 60

Example 3: Parent task spawning a child task 60

System Calls and PVM . 61

Data Conversion . 62

Functions and Subroutines [4] 63

Error Messages . 64

Process Identifiers . 64

PVM Include Files . 64

Basic Operations . 65

Task Control . 66

Option Management . 66

Dynamic System Configuration . 67

Dynamic Task Group Management 67

Data Transmittal . 68

Data Receipt . 69

Barrier Synchronization . 71

Global Operations . 72

Signaling . 73

Error Handling . 73

Appendix A PVM Error Messages 75

Appendix B PVM Man Pages 79

Glossary 83

Index 87

vi 007–3686–002

Contents

Page

Tables
Table 1. Host File Options . 9

Table 2. Console Commands . 17

Table 3. assign Examples . 28

Table 4. UNICOS Extensions for Stand-alone Mode 31

Table 5. Data Types On UNICOS Systems 35

Table 6. Data Types on UNICOS/mk Systems 37

Table 7. N32 ABI Library Data Types on IRIX Systems 38

Table 8. 64 ABI Library Data Types on IRIX Systems 39

Table 9. Environment Variables on IRIX Systems 40

Table 10. Environment Variables on UNICOS, UNICOS/mk, and IRIX Systems 41

Table 11. UNICOS/mk Environment Variables 46

Table 12. Default Settings for Buffer Memory Management 49

Table 13. Out-of-resource Errors 55

Table 14. Basic Operations Functions 65

Table 15. Task Control Functions 66

Table 16. Option Management Functions 67

Table 17. Dynamic System Configuration Functions 67

Table 18. Dynamic Task Group Management Functions 68

Table 19. Data Transmittal Functions 69

Table 20. Data Receipt Functions 71

Table 21. Barrier Synchronization Function 72

Table 22. Global Operations Functions 72

Table 23. Signaling Functions . 73

Table 24. Error Handling Function 73

Table 25. Error Messages Issued by PVM Functions 75

007–3686–002 vii

About This Manual

This publication documents the Cray Message Passing Toolkit and Message
Passing Toolkit for IRIX (MPT) 1.3 implementation of PVM-3 supported on the
following platforms:

• Cray PVP systems running UNICOS release 10.0 or later. The MPT 1.3
release requires a bugfix package to be installed on UNICOS systems
running release 10.0 or later. The bugfix package, MPT12_OS_FIXES, is
available through the getfix utility. It is also available from the anonymous
FTP site ftp.cray.com in directory /pub/mpt/fixes/MPT12_OS_FIXES.

• CRAY T3E systems running UNICOS/mk release 1.5 or later.

• Silicon Graphics MIPS based systems running IRIX release 6.2 or later. IRIX
6.2 systems running PVM require the POSIX patch set and any patches
recommended by the patch set.

This implementation of PVM-3 is based on the public domain PVM product,
version 3.3.10, developed by researchers at the Oak Ridge National Laboratory
(ORNL), the University of Tennessee (UT), and Emory University (EU). It
consists of a PVM library and several commands that support PVM.

Related Publications

The following documents contain additional information that might be helpful:

• Message Passing Toolkit: MPI Programmer’s Manual

• NQE User’s Guide

• NQE Administration

• Application Programmer’s Library Reference Manual

• Installing Programming Environment Products

All of these are Cray publications and can be ordered from Cray. For ordering
information, see “Ordering Publications.”

007–3686–002 ix

Message Passing Toolkit: PVM Programmer’s Manual

Other Sources

Material about PVM is available from the following other sources:

• PVM: Parallel Virtual Machine: A User’s Guide and Tutorial for Networked
Parallel Computing, available at the following URL:

http://www.netlib.org/pvm3/book/pvm-book.html

• Usenet news group at comp.parallel.pvm

• PVM standard, available from the Computer Science and Mathematics
Division of Oak Ridge National Laboratories.

• PVM related web pages from the following PVM home page:

http://www.epm.ornl.gov/pvm

Ordering Publications

The User Publications Catalog describes the availability and content of all Cray
hardware and software documents that are available to customers. Customers
who subscribe to the Cray Inform (CRInform) program can access this
information on the CRInform system.

To order a document, call +1 651 683 5907. Silicon Graphics employees may
send electronic mail to orderdsk@sgi.com (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in
parentheses after man page names. The following
list describes the identifiers:

x 007–3686–002

About This Manual

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and
opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have
man pages associated with them.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

In this manual, references to Cray PVP systems include the following machines:

• CRAY C90 series

• CRAY C90D series

• CRAY EL series (including CRAY Y-MP EL systems)

• CRAY J90 series

• CRAY Y-MP E series

• CRAY Y-MP M90 series

• CRAY T90 series

007–3686–002 xi

Message Passing Toolkit: PVM Programmer’s Manual

Silicon Graphics systems include all MIPS based systems running IRIX 6.2 or
later.

The following operating system terms are used throughout this document.

Term Definition

UNICOS Operating system for all configurations of Cray
PVP systems

UNICOS/mk Operating system for all configurations of
CRAY T3E systems

UNICOS MAX Operating system for all configurations of
CRAY T3D systems

IRIX Operating system for all configurations of MIPS
based systems

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to in Cray Research documentation as the standard shell, is a version of the Korn
shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Cray UNICOS version 10.0 is an X/Open Base 95 branded product.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

xii 007–3686–002

About This Manual

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043–1389

We value your comments and will respond to them promptly.

007–3686–002 xiii

Overview [1]

The Cray Message Passing Toolkit and Message Passing Toolkit for IRIX (MPT)
is a software package that supports interprocess data exchange for applications
that use concurrent, cooperating processes on a single host or on multiple hosts.
Data exchange is done through message passing, which is the use of library calls
to request data delivery from one process to another or between groups of
processes.

The MPT 1.3 package contains the following components and the appropriate
accompanying documentation:

• Parallel Virtual Machine (PVM)

• Message Passing Interface (MPI)

• Logically shared, distributed memory (SHMEM) data-passing routines

The Parallel Virtual Machine (PVM) software was initially developed to enable
a collection of heterogeneous computer systems to be used as a coherent and
flexible concurrent computation resource. Silicon Graphics has taken this initial
implementation and extended it in several ways.

This chapter provides an overview of the PVM software that is included in the
toolkit.

1.1 The PVM Package

This manual contains instructions for building, installing, and using the MPT
implementation of PVM-3. The MPT version of PVM supports IRIX, UNICOS,
and UNICOS/mk systems. It consists of a PVM library and several commands
that support PVM. The most important of these is a user-level daemon that
runs on each computer system in the PVM system.

The MPT version of PVM contains architecture-specific enhancements that
target Cray PVP systems. The PVM library can also function as a stand-alone
library within a single Cray PVP machine. This stand-alone library makes use
of Cray multitasking software, offering enhanced communication performance
by allowing PVM tasks to communicate through memory instead of through
sockets.

007–3686–002 1

Message Passing Toolkit: PVM Programmer’s Manual

For IRIX systems, the MPT version of PVM has enhancements to use POSIX
shared memory, which provides greater flexibility and robustness than did the
previously used IRIX shared arenas.

By default, for UNICOS and UNICOS/mk systems, communication is based on
data transfers over UNIX domain sockets between UNIX processes on the same
system or over TCP sockets between processes on different systems. For IRIX
systems, the default communication is based on TCP sockets between processes
on the same system and between different systems. Transfer speeds are
relatively slow when sockets are used as the mechanism for communication.
The MPT version of PVM also provides alternative mechanisms for
communication, such as memory for communication within a UNICOS system.
The socket communication has been optimized to utilize high-speed network
devices more effectively. The different communication mechanisms are
discussed further in the PVM man pages, and the communication costs (in time,
resources, and so on) associated with the different communication mechanisms
are discussed in Chapter 2, page 5.

PVM has been integrated with the Network Queuing Environment (NQE) so
that you can use PVM within a batch job in isolation from other PVM jobs. On
UNICOS systems you can use NQE load balancing for choosing the virtual
machine and for placing spawned tasks. This is described in more detail in
Chapter 2, page 5. For more information about NQE, see the NQE User’s Guide,
and NQE Administration.

On UNICOS/mk systems, the PVM library can also function as a stand-alone
library within a single executable file. This mode allows you to use PVM to
communicate among PEs within a multiple PE process (that is, a single
executable file). This mode uses shmem calls to communicate between PEs.

1.2 PVM on Silicon Graphics Systems

As described in this manual, Silicon Graphics provides versions of PVM to
support a variety of needs. These versions provide users with a single
subroutine interface for message passing programming; this interface is portable
and a de facto standard. PVM is available from its developers as public domain
software and is being made available as vendor-supported software by Silicon
Graphics and a number of other computer vendors. By using PVM in your
application, you can avoid being locked into a proprietary interface.

PVM is supported on all Silicon Graphics systems. The PVM software system
consists of a library and commands that support PVM. The PVM software

2 007–3686–002

Overview [1]

provided by Silicon Graphics has been developed specifically for each system
on which it runs.

1.3 PVM Terminology and Scenarios

You may choose to use PVM to communicate among processes on a number of
different computer systems. With PVM available on all types of Silicon
Graphics systems and a large number of systems from other vendors, you have
a large number of combinations of systems and clusters of systems available.

However, in the context of Silicon Graphics systems, this large number of
combinations can be grouped into five basic scenarios. Each scenario describes
a particular combination of systems that can be defined by the form and cost of
the underlying communications mechanism used by PVM.

The following terminology is used in describing these scenarios and elsewhere
in this manual:

Term Definition

task The entity that uses PVM for communications.
This entity can be a UNIX process or a Cray
multitasked task.

application A number of tasks running the same program.

process The entity running on the UNICOS,
UNICOS/mk, or IRIX operating system or
another UNIX system.

The following scenarios are listed approximately in order of increasing cost of
communication:

1. Two processes running on a single UNICOS system. (PVM can use either
networking capabilities or memory for communication.)

2. One executable file running on a UNICOS/mk or UNICOS MAX system.
(PVM uses high-performance connections between the tasks on the
processing elements in the partition.) This scenario requires only the
CRAY T3D version of PVM, as part of the Programming Environment, or
Cray MPT version for UNICOS/mk systems in stand-alone mode.

3. One or more executable files running on an IRIX system. (POSIX shared
memory is used between processes.) This scenario requires MPT for IRIX.

007–3686–002 3

Message Passing Toolkit: PVM Programmer’s Manual

4. One process running on a UNICOS, IRIX, or UNICOS/mk system and a
second process running on a second UNICOS, IRIX, or UNICOS/mk
system. (PVM is used across the network between the two systems.)

5. Two processes on separate partitions on a single UNICOS/mk system.
PVM uses the network to communicate between the two partitions. This
scenario requires the MPT version of PVM.

6. One process running on a UNICOS system and another process running on
an associated UNICOS MAX system. (PVM connects across the channel
between the two systems.) This scenario requires the MPT version and the
CRAY T3D version of PVM, available from the Programming Environment.

7. Two processes running on separate partitions on a single UNICOS MAX
system. (PVM uses network communications through an associated
UNICOS system.) This scenario requires the MPT version and the
CRAY T3D version of PVM.

The preceding scenarios represent a range of simple uses of PVM; more
complex scenarios involving combinations of those described can easily be
formed. The following characteristics apply to all PVM scenarios:

• The user building an executable file for use on a Silicon Graphics system
links with a single PVM library, regardless of how PVM is used.

• The same standard library syntax and behavior are supported, regardless of
how PVM is used (although certain releases may support features not
appropriate to other releases).

• The performance of PVM in different basic scenarios differs significantly;
this difference influences the communications strategy that should be used.

4 007–3686–002

PVM Functionality [2]

This chapter describes the Message Passing Toolkit (MPT) implementation of the
Parallel Virtual Machine (PVM) software. The following concepts are discussed:

• Multiple computer systems as a virtual machine

• Applications and environments

• PVM program development

• Data types

• Environment variables

2.1 Multiple Computer Systems As a Virtual Machine

PVM is a software system that enables a collection of heterogeneous computer
systems to be used as a coherent and flexible concurrent computation resource.
The individual systems can be shared-memory or local-memory multiprocessors,
vector supercomputers, specialized graphics engines, or scalar workstations
interconnected by a variety of networks. From the user’s point of view, the
combination of these different systems can be treated as a single virtual machine
when using PVM. The term host refers to one of the member computer systems.

PVM support software executes on each system in a user-configurable pool and
presents a unified, general, and powerful computational environment for
concurrent applications. User programs, written in C or Fortran programming
languages, gain access to PVM in the form of library routines for functions such
as the following:

• Process or task initiation

• Message transmission and reception

• Synchronization through the use of barriers or rendezvous

Optionally, users can control the execution location of specific application
components; the PVM system transparently handles message routing, data
conversion for incompatible architectures, and other tasks that are necessary for
operation in a heterogeneous, networked environment.

007–3686–002 5

Message Passing Toolkit: PVM Programmer’s Manual

2.2 Applications and Environments

PVM is ideally suited for concurrent applications composed of many
interrelated subalgorithms, although performance is good even for traditional
parallel applications. PVM is particularly effective for heterogeneous
applications that exploit specific strengths of individual systems on a network.
As a loosely coupled, concurrent supercomputing environment, PVM is a viable
scientific computing platform.

PVM has been used for molecular dynamics simulations, superconductivity
studies, distributed fractal computations, matrix algorithms, and as the basis for
teaching concurrent programming.

2.3 PVM Program Development

To develop a program that uses PVM, you must perform the following steps:

1. Add PVM function calls to your application for process initiation,
communications, and synchronization. For syntax descriptions of these
functions, see Chapter 4, page 63.

2. Build executable files for the systems that you will use, as described in
Section 2.3.1, page 7.

3. Create a host file to define the virtual machine, as described in Section 2.3.2,
page 7.

4. If your program is in distributed mode, execute the PVM daemon and your
application in one of the following ways:

• As described in Section 2.3.4, page 12, for the PVM daemon, and as
described in Section 2.3.5, page 13, for your application

• As an NQS job, as described in Section 2.3.6, page 14

• Through the PVM console by using the console spawn command, as
described in Table 2, page 17

5. If your application is in stand-alone mode, execute it as described in Section
2.3.9.2, page 30, or Chapter 3, page 43.

6. Troubleshoot the application, if necessary. For information on PVM
troubleshooting, see Section 2.3.8, page 19.

7. Optimize the application as described in Section 2.3.9, page 23.

6 007–3686–002

PVM Functionality [2]

2.3.1 Building PVM Executable Files

After you have added PVM function calls, a simple UNICOS PVM code can be
linked as follows:

cc -o compute -lpvm3 compute.o

This command links the compute.o object code with the PVM library and
creates an executable file named compute.

For IRIX systems, if you begin with the source file, you must specify the -I
(include) option and the Application Binary Interface (ABI) of the application
development library (N32 or 64 ABIs), as follows:

cc -I /usr/array/PVM/include -64 -o compute compute.c -lpvm3

For IRIX systems, if you begin with an object file, the code can be linked as
follows:

cc -64 -o compute compute.o -lpvm3

If you have the optional IRIX mpt module loaded, use the following command:

cc -64 -o compute compute.c -lpvm3

After the code is linked, you can install the executable files on the Silicon
Graphics systems you will be using. If you specified the ep option in the host
file for a system, install the file in the specified directory. Otherwise, install it in
the following directory:

$HOME/pvm3/bin/$PVM_ARCH

2.3.2 Creating Host Files

Each system in the PVM virtual machine must have a separate entry in the host
file. Lines that begin with a hash symbol (#), possibly preceded by white space,
are ignored.

If you do not want PVM to start a host immediately, but you might start it later
by using the pvm_addhosts(3) function or the PVM console add command,
you do not need to include the host in the host file. However, if you need to set
any of the options described in Table 1, page 9, you should include the
specified system in the host file, preceded by the ampersand (&) character.

007–3686–002 7

Message Passing Toolkit: PVM Programmer’s Manual

A simple host file can be created automatically on UNICOS systems if NQE load
balancing is available. Start the PVM daemon with the following command:

pvmd3 -h &

This command starts the PVM daemon in the background and tells it that
automatic host file selection should be used. On UNICOS systems, the PVM
daemon queries the load balancing server for available hosts and includes all
available hosts in your virtual machine. Available hosts are determined by the
PVM policy in NQE or by a policy specified in the PVM_POLICY environment
variable. Hosts can be excluded based on many different resources. For more
information on NQE policies, see NQE Administration. If a host file is also
specified, PVM uses the options specified in the host file. A host specified in
the host file will be included in the virtual machine only if that host is
available, as determined by the NQE policy.

Example 1, is an example of a host file that contains the names of systems,
which is the basic information necessary in a host file.

Example 1: Simple Host File

my first host file

thud

fred

wilma
gust.cray.com

rain

You should verify that no system is listed more than once, and that the system
on which the master pvmd3(1) daemon will run (the master host) is included in
the host file (see Section 2.3.4, page 12, for information on starting the pvmd3
daemon). Automatic host file selection always includes the host running the
master pvmd3(1) daemon.

The $PVM_ROOT and $PVM_ARCH environment variables are set for you
automatically when you load the mpt module to access the Message Passing
Toolkit software. To customize your environment, you can specify the options
listed in Table 1, after any system name in the host file.

8 007–3686–002

PVM Functionality [2]

Table 1. Host File Options

Option Description

bx= dpath Specifies the debugger path. You can also set this path by using the
PVM_DEBUGGER environment variable. The default debugger path is
$PVM_ROOT/lib/debugger.

dx= loc Specifies a location for pvmd3 other than the default,
$PVM_ROOT/lib/$PVM_ARCH/pvmd3. This option is useful in debugging
new versions of PVM. The loc variable may be a simple file name, an
absolute path name, or a path relative to the user’s home directory on the
remote system.

The pvmd3 daemon is installed in $PVM_ROOT/lib/$PVM_ARCH/pvmd3
when the MPT version is installed on Silicon Graphics systems.

ep= paths Specifies a series of paths to search for application tasks. A percent sign (%)
in the path expands to the architecture of the remote system. Multiple paths
are separated by a colon (:). By default, PVM looks for application tasks in
the following directories:
$HOME/pvm3/bin/$PVM_ARCH:$PVM_ROOT/bin/$PVM_ARCH

ip= network_name Specifies the network name to be used for communication. The default is
determined by the network routing, as shown by the netstat -i command.
You can use this option to specify HIPPI or another specific device.

lo= userid Specifies an alternative login name for the system. The default is the login
name on the master system.

so=ms Causes the master pvmd3 daemon to request that you manually start a
pvmd3 daemon on a slave system when the rsh(1) and rexec(1) network
services are disabled but IP connectivity exists. The default is no request.
You cannot start the master system from the PVM console or background
when you specify this option. (This option is rarely used.)

so=pw Causes PVM to prompt for a password on the remote system. This option is
useful when you have a different login name and password on a remote
system. The master host prompts you for your password, as in the following
example:

Password(honk.cs.utk.edu:manchek):

Type your password for the remote system. The startup will then continue
as normal. You cannot start the master host from the PVM console or
background when you specify this option.

007–3686–002 9

Message Passing Toolkit: PVM Programmer’s Manual

Option Description

sp= value Specifies the relative computational speed of this system compared to other
systems in the configuration. value is an integer in the range 1 through
1,000,000. The default is 1000. (This option currently has no effect on PVM
operation.)

wd= path Specifies the path name of a working directory in which all spawned tasks
on the host will execute. The default is $HOME.

A dollar sign ($) in an option introduces an environment variable name, for
example, $PVM_ARCH. Each PVM daemon expands names from environment
variables.

The simple host file in Example 1, page 8, works well if both of the following
conditions are met:

• You have a login with the same name on all of the systems in your host file.

• The local system is listed in the .rhosts file on each of the remote systems.

To supply an alternative login name for the thud system, add the lo option to
its host file entry, as follows:

thud lo=NAME

To be queried for your password on a system named cyclone, add so=pw to
its host file entry, as follows:

cyclone so=pw

To specify the path of the daemon executable file for a system named sun114,
add the dx option, as follows:

sun114 dx=/usr/fred/pvm3/lib/Sun/pvmd3

Note: By default, the MPT version of pvmd3 is installed in
$PVM_ROOT/lib/$PVM_ARCH/pvmd3 on Silicon Graphics systems, where
$PVM_ROOT and $PVM_ARCH are set for you automatically when you load
the mpt module.

The string specified in the previous example is passed to a shell so that variable
expansion works. Following is another example that uses variable expansion:

sun114 dx=bin/$MYBIN/pvmd3

10 007–3686–002

PVM Functionality [2]

You can change the default value of any option for all hosts in a host file by
specifying them on a line with an asterisk (*) in the host field, as in the
following example:

thud.cs.utk.edu

gust.cray.com

sun114 dx=/tmp/pvmd3

* lo=afriend so=pw

The preceding example sets the default login name (on remote systems) to
afriend and queries for a password on each system. Defaults set in this way
are effective forward from the location at which they occur in the host file.
They can be changed with another * line.

You can override the location of executable files by adding the ep option to
your host file entries, as in the following example:

ep=$HOME/pvm3/bin

Unlike the dx option, which names the daemon file, the ep option names a
directory.

Example 2 shows a more complex host file in which host names are followed
by options.

Example 2: Sample Host File with Host Name Options

host file for testing on various platforms

default to my executable

* dx=pvm/SUN4/pvmd3
fonebone

refuge

sigi.cs dx=pvm/PMAX/pvmd3

reset default for other systems

* dx=$PVM_ROOT/lib/$PVM_ARCH/pvmd3
do not start this system, but define ep in case we add it later

& rain.cray.com ep=$(HOME)/bin ip=rain-hippi

borrowed accts, "guest", don’t trust fonebone

* lo=guest so=pw

sn666.jrandom.com ep=$(HOME)/bin

cubie.misc.edu ep=pvm/IPSC/pvmd3

007–3686–002 11

Message Passing Toolkit: PVM Programmer’s Manual

2.3.3 Specifying Architecture Types

Before you run a PVM executable file on an IRIX system, you must specify the
architecture type by setting the PVM_ARCH environment variable. Four
architecture types are supported for IRIX systems. With the software installed
in the default locations, you must also set the PVM_ROOT environment variable
to /usr/array/PVM and the PATH environment variable to
$PVM_ROOT/lib/$PVM_ARCH. The following C shell example shows the
setting of all three variables:

setenv PVM_ARCH SGIMP64

setenv PVM_ROOT /usr/array/PVM
setenv PATH ${PATH}:${PVM_ROOT}/lib/$PVM_ARCH

The architecture types shown in the following list are arranged in an
approximate order of lowest to highest performance types:

Architecture type Description

SGI32 N32 ABI/MIPS III version using sockets

SGI32mips4 N32 ABI/MIPS IV version using sockets

SGIMP64mips3 64 ABI/MIPS III version using POSIX shared
memory and sockets

SGIMP64 64 ABI/MIPS IV version using POSIX shared
memory and sockets

2.3.4 Starting and Stopping the PVM Daemon

After you have written a host file, you can start up the master pvmd3(1)
daemon by passing it the host file as an argument. You must specify the
appropriate path for pvmd3(1). On a Silicon Graphics system, for example, you
can enter one of the following:

pvmd3 hostfile &

or

pvm [hostfile]

If you do not specify a host file when starting the PVM console, the PVM
daemon found in the default location will be started on the local machine.

The ampersand (&) in the first line tells the operating system to run pvmd3(1) in
the background, which is what you will normally want to do.

12 007–3686–002

PVM Functionality [2]

You should not run pvmd3(1) in the background if you have to enter passwords
for any of the slave systems (that is, if you included the so=pw option for one
or more systems). In this case, run pvmd3(1) in the foreground and then stop it
(by pressing CONTROL-Z) and put it in the background (by entering bg at the
prompt) after all systems have started up.

To shut off PVM, enter halt at a PVM console prompt. For detailed
information on using console prompts, see Section 2.3.7.2, page 16.

If the master pvmd3(1) daemon has trouble starting a slave pvmd3(1) daemon
on a system, the error message written to the PVM log file from the master
pvmd3(1) may indicate the problem.

2.3.5 Running PVM Applications

When the pvmd3(1) daemon is running successfully, you can start your
application. PVM provides the following methods of starting applications:

• Start the application from the shell command line.

With this method, you start the application as any command or application
would be started. For example, if the application is named a.out, enter the
following command at the shell command line prompt:

./a.out

• Start the application from the PVM console by using the spawn command.

With this method, you first start the console. After the pvm> prompt has
appeared, enter the spawn command followed by the application name or
path, as needed. For example, to run an application named cannon, enter
the following command at the console command line prompt:

spawn cannon

You can obtain help for the spawn command by typing help spawn at the
console command line prompt.

Once the application has started, it displays standard output and standard error
information for the initial task, but not for the other tasks in the application.
PVM captures this output information and sends it to the master daemon. The
daemon, in turn, prefaces each line with a PVM task identifier that identifies its
source, and writes it to the PVM log file.

The log file can contain very useful information about the virtual machine and
its tasks. By default, the log file contains output from the PVM daemon,

007–3686–002 13

Message Passing Toolkit: PVM Programmer’s Manual

including error messages and output from tasks. Optionally, the log file can
contain debugging output from the daemon.

When PVM is run without NQS, the log file is located in /tmp. When PVM is
run without NQE on UNICOS and UNICOS/mk systems, the log file is located
in /tmp/pvml.uid, where uid is the user ID. The IRIX implementation allows
overlapping PVM virtual machines. Therefore, more than one PVM daemon
started by the same user can run on the same host. The log file is located in
/tmp/pvml.uid.vmid, where uid is the user ID and vmid is the virtual machine
ID. By default, is 0, but if the PVM_VMID (formerly PVMJID) environment
variable is set, vmid will equal the numeric value of PVM_VMID.

When PVM is run using NQS on UNICOS and UNICOS/mk systems, the name
of the log file is $TMPDIR/pvml.uid. $TMPDIR is a temporary directory created
for the NQS job. You can examine this file at any time, but remember that each
task buffers the output written to standard output independently (unless you
flush the output after each write request), and so the sequence of output from
two different tasks may vary.

Instead of having the data written to the PVM log file, you can request that
output be sent as a PVM message to another task’s output device. For more
information, see the PvmOutputTid and PvmOutputCode options on the
pvm_setopt(3) man page.

You can also redirect output by using options on the console spawn command
(see Table 2, page 17) or by using the pvm_catchout(3) function. For more
information about running your program in stand-alone mode, see Section
2.3.9.2, page 30, or Chapter 3, page 43.

2.3.6 Using NQS to Run PVM Applications

On UNICOS, UNICOS/mk, and IRIX systems, PVM applications can be run as
part of an NQS job script. Each NQS job has its own PVM daemon; therefore,
the PVM daemon must be started within the NQS job script. This is different
from interactive use, in which one daemon is run per user per system. Any
application run as part of the same NQS job script uses the same PVM daemon.
Slave daemons that run on UNICOS and UNICOS/mk systems will also run
one daemon per NQS job. IRIX users can achieve similar functionality as
UNICOS and UNICOS/mk users by using the PVM_VMID environment variable.
Using PVM_VMID allows more than one daemon to run per user per system.

In UNICOS and UNICOS/mk implementations, a special environment variable
is checked for a batch (NQE) environment. If a batch environment exists, these
implementations place the PVM log and daemon (pvmd socket) files in a special

14 007–3686–002

PVM Functionality [2]

temporary directory. In IRIX implementations, a single user running multiple
NQE jobs on a single host should set the PVM_VMID environment variable for
each batch job.

PVM processes spawned by the daemon inherit the limits of the NQS job. This
allows a user to run multiple NQS jobs that use PVM, each with limits of the
NQS job being run. Previous versions of PVM used the same daemon for
multiple NQS jobs.

The following example is an NQS job script to run the application foo:

module load mpt

pvmd3 hostfile & # Start the daemon

sleep 60 # Wait for startup
foo # Run application

pvm << EOF # Start console to halt pvm

halt

EOF

2.3.7 Using the PVM Console

Using the PVM console is an alternative to using the pvmd3(1) command to
start the daemon and execute your application. The pvm(1) command starts the
console, which can be started and stopped multiple times on any of the systems
on which PVM is running.

2.3.7.1 Starting the Console

Start the PVM console by using the following command line:

pvm [hostfile]

When the console is started, it checks to see if a PVM daemon is running. If so,
it simply attaches itself to the daemon and can be used to monitor ongoing
PVM processes as shown:

% pvm

pvmd already running
pvm>

If the daemon is not started, the pvm(1) command tries to start one, but the
command must first find the daemon. (Currently, the pvm(1) command does not

007–3686–002 15

Message Passing Toolkit: PVM Programmer’s Manual

examine the hostfile argument, if provided, but simply passes its name to the
daemon. Therefore, the pvm command cannot use information from this file.)

The logic used by the pvm command to start the daemon is as follows:

1. The command tries to execute $HOME/pvm3/lib/pvmd on all systems.
$HOME/pvm3/lib/pvmd must be an executable file that is one of the
following:

• A shell script that starts up the PVM daemon, perhaps by using a host
file. If you use this option, you may find it useful to have the script do
other preparatory or related work.

• A symbolic link to the PVM daemon. The following example shows
how you can set up a link on Silicon Graphics systems:

% mkdir ~/pvm3

% mkdir ~/pvm3/lib

% ln -s $PVM_ROOT/lib/$PVM_ARCH/pvmd3 ~/pvm3/lib/pvmd

2. On Silicon Graphics systems, if pvmd3(1) is not found or cannot be
executed, the pvm(1) command explicitly tries to start
$PVM_ROOT/lib/$PVM_ARCH/pvmd3. This special processing is not
performed on other systems.

a. If a daemon is started, you see the following:

% pvm

pvm>

b. If a daemon is not started, you see the following:

% pvm

libpvm [pid-1]: Console: Can’t start pvmd

%

2.3.7.2 Using Console Commands

When you enter the pvm(1) command, the console responds with a prompt and
accepts the commands described in Table 2.

16 007–3686–002

PVM Functionality [2]

Table 2. Console Commands

Command Description

add hostnames Adds systems to the virtual machine.

alias[name command [args]] Defines or lists console command aliases.

conf Lists the PVM system configuration. Fields in the output from
conf are as follows:

HOST Host name

DTID PVM daemon task identifier

ARCH PVM system name (architecture)

SPEED Relative speed of this system

delete hostnames Deletes systems from the virtual machine. PVM processes that
are still running on these systems are lost.

echo [args] Echoes arguments.

halt Kills all PVM processes and shuts down PVM; all daemons
exit. This is the best way to exit the console if you are done
using PVM. See quit.

help [command] Provides minimal information about the console commands. If
you enter help followed by a command name, a brief
description of the syntax is displayed.

id Prints the pvm_tid task identifier of the console. (The console
is simply another PVM task.)

jobs [-l] Displays a list of running jobs. The -l option provides more
detailed output.

kill [-c]taskids Kills a PVM user process. The -c option indicates that
children of the task IDs should also be killed.

mstat hostnames Gives status for each system listed.

ps [-a] [-h host] [-n host] [-l][-x] Gives a listing of current processes and their status. The
following options are available:

-a All systems (default is local)

-h host Task ID of the system (with no blanks)

-n host System name (with no blanks)

007–3686–002 17

Message Passing Toolkit: PVM Programmer’s Manual

Command Description

This example illustrates -n host usage:

ps -ngust

This command requests the status of a
system named gust.

-l Shows long output

-x Shows console task

ps output includes the following fields:

HOST System executing the process

A.OUT Executable name (if known to PVM)

TID Task identifier

PTID Parent’s task identifier (-l only)

PID Task process identifier (-l only)

FLAG Process status. Can be one or more of the
following:

a Task is waiting for authorization.

c Task is connected to pvmd.

o Task connection is being closed.

H Host starter task is identified.

R Resource manager task is
identified.

T Task starter task is identified.

pstat tid Displays the status of the specified PVM process.

quit (or EOF) Exits the console, but leaves the daemons and processes
running. See halt.

reset Resets the virtual machine. Causes a SIGKILL signal to be
sent to every running process. All message queues are cleared.
The pvmd daemons are left in an idle state.

setenv [name [value]] Displays or sets environment variables.

sig num task Sends a signal to specified tasks.

18 007–3686–002

PVM Functionality [2]

Command Description

spawn [options]file Starts a PVM application for the specified file. Options are as
follows:

- count Number of tasks (default is 1)

- host Spawn on host

- arch Spawn on hosts of arch

-? Enables debugging

-> Redirects output of job to console

-> file Redirects output of job to file

->> file Appends output of job to file

If NQE load balancing is available, the spawn command
places tasks based on the load balancer, but within the
restrictions specified on the spawn command. In the following
example, the spawn command spawns four instances of
a.out on the system named gust.

pvm> spawn -4 -gust a.out

trace [names] Sets or displays a trace event mask. The names argument
refers to names defined in the PVM include file,
$PVM_ROOT/include/pvmtev.h. Alternatives are as
follows:

trace [+] names

trace [-] names

trace [+] *

trace [+] *

unalias name Undefines the specified command alias.

version Displays the libpvm version.

2.3.8 Troubleshooting PVM

This section describes common problems encountered when using PVM and
provides suggested solutions. There are several kinds of problems that can keep
pvmd3(1) from building a virtual machine. The most common are permission
problems.

007–3686–002 19

Message Passing Toolkit: PVM Programmer’s Manual

If you do not specify the pw option for a particular system, your .rhosts file
on that system must contain the name of the host from which you start the
master pvmd. Otherwise, you will get a message like one of the following
(although you may not get the entire message):

pvmd3@hostname: Permission denied

pvmd3@hostname: Login incorrect

To get the entire error message, enter the following command at a shell prompt:

rsh hostname daemon

On UNICOS and UNICOS/mk systems, you need to use remsh(1) rather than
rsh(1) because the name rsh is used for a restricted shell, not for the remote
shell command. The remsh command is not available on IRIX systems. daemon
is the location of the PVM daemon (for example, /tmp/pvm/pvmd3 or
$PVM_ROOT/lib/$PVM_ARCH/pvmd3).

Look at the output of the command and consult whichever of the following
sections most closely applies.

2.3.8.1 PVM Already Running

When you start the pvmd3(1) daemon, you may receive a message that PVM is
already running because a file exists in /tmp. If no pvmd3(1) is running, it is
likely that the last time you used PVM you did not terminate pvmd3(1) by
using the console halt command, or the previous execution of the pvmd3
daemon terminated abnormally, leaving the files in /tmp. Remove the file
named in the message and start pvmd3(1) again.

NQS jobs on UNICOS or UNICOS/mk systems place this file in the $TMPDIR
directory, which is automatically deleted at the end of the job. Slave daemons
of NQS jobs on these systems also use $TMPDIR, which is set by the login
process. IRIX systems use /tmp. Messages about slave daemon startup failures
are placed in the PVM log file.

2.3.8.2 pvmd3 Fails to Start on Remote System

If you use a shell (such as .kshrc) that does not automatically execute a
startup script that sets $PVM_ROOT on added hosts, you can set the PVM_DPATH
environment variable to the full or relative path of the pvmd startup script, or
include the dx option in the host file to specify the path to the startup script.
The pvmd startup script automatically sets $PVM_ROOT on the remote host.

20 007–3686–002

PVM Functionality [2]

The following command shows how to set the PVM_DPATH environment
variable:

setenv PVM_DPATH $PVM_ROOT/lib/pvmd

The following command shows how to specify the pvmd startup script in the
host file:

dx=/opt/ctl/mpt/mpt/pvm3/lib/pvmd

Note: The dx option in the host file overrides the PVM_DPATH environment
variable, and $PVM_ROOT is not acknowledged for dx, so the dx path must
be a full pathname.

2.3.8.3 Permission Denied

If you get a message denying you permission, it probably means that your
.rhosts file on the remote system does not include your local system name.
Add a line like the following to your .rhosts file on the remote system:

local-host-name your-local-user-name

Sometimes a system has more than one name, and the remote system may think
your local system has a name that is different from the one that you have
specified. To determine the name of your local system on the remote system,
execute telnet(1) or rlogin(1) to get to the remote system and enter the
following UNIX command:

% who am i

Look at the last column of the output of this command, which contains the first
16 characters of what the remote system (the one to which you connected)
thinks is the name of your local system (the one on which you entered
telnet(1) or rlogin(1)). Make sure you put that system name (the full name,
not just the first 16 characters) in your .rhosts file on the remote system.
Your /etc/hosts file should contain the full name. If you do not have this
file, see your system administrator for the name. Some older systems require
that you spell the name exactly the same, including the case; newer systems
accept the name in either uppercase or lowercase.

2.3.8.4 Login Incorrect

If you get a message saying your login is incorrect, there is probably no account
on the remote system that has the same login name as your login name on the

007–3686–002 21

Message Passing Toolkit: PVM Programmer’s Manual

local system. In this case, you need to add a lo= username option to your PVM
host file.

2.3.8.5 Version Incorrect

If you get a message about a version mismatch, it indicates that the versions of
PVM on the two systems were built from different PVM releases. You may be
building with an old library, accessing an old PVM version built from the
public domain version, or having some similar problem. Ensure that the
versions of PVM on the two systems are compatible.

As a general rule, releases of the public domain implementation of PVM with
the same second digit in the version number (for example, 3.2.0 and 3.2.6) will
interoperate. Changes that result in incompatibility are held until a major
version change (for example, from version 3.2 to version 3.3). For compatibility,
you might need to upgrade one of your versions of PVM.

2.3.8.6 Failure of Spawn

A common application problem is the failure of a pvm_spawn () request. The
PVM console command tickle 6 4 enables tracing of spawn requests. The
complete executable path is printed in the PVM log file.

2.3.8.7 Other Problems

If you get any other messages, ensure that your .cshrc file on the remote
system is not printing something out when you log in or is not trying to set your
terminal characteristics (usually by using the stty(1) or tset(1) commands).

If you want to print from your .cshrc file when you log in, put the relevant
commands in an if statement in your .cshrc file, as in the following example:

if ({ tty -s } && $?prompt) then

example of printing something when you log in

echo terminal type is $TERM

example of setting terminal attributes

stty erase ’^?’ kill ’^u’ intr ’^c’ echo endif

This statement ensures that printing occurs only when you log in from a
terminal (and when you are not running a csh(1) command script).

22 007–3686–002

PVM Functionality [2]

2.3.9 Optimizing Use of PVM

Several PVM functions are particularly useful when developing applications
that involve UNICOS and UNICOS/mk systems. This section discusses some
techniques that can help improve performance. As is true with programming in
general, optimization with PVM involves trade-offs. Generally, the trade-off
involves reducing generality in favor of better performance. Adding some of
the optimizations discussed in the following sections will improve performance
but will make the application harder to move to different PVM virtual machines
or other systems.

2.3.9.1 Running PVM on UNICOS Multiprocessor Systems

When multiple PVM processes run on a UNICOS multiprocessor system, the
processes use sockets, by default, to communicate. The UNICOS operating
system recognizes that the transfer is local and uses a faster path, but the
overhead is still quite significant. If the PVM processes are executing different
executable files, this is probably your only choice.

In some applications, the PVM processes each execute the same executable file,
with the work sent out by a master process. If these processes are not
communicating with each other (perhaps they are communicating only with the
master), this kind of general approach may work well. But if the processes need
to communicate with one another, your overall performance will decrease when
sockets are used for communication.

A shared memory implementation of the MPT version of PVM is offered to
provide better performance for applications in which PVM processes need to
communicate with each other. The shared memory implementation of PVM
uses macrotasking so that communication between spawned processes can be
done through memory instead of sockets. This implementation is available on
UNICOS systems. Memory provides a mechanism for communicating between
PVM processes on UNICOS systems that is faster than other mechanisms that
involve the operating system. Because current UNICOS systems do not have
hardware for System V shared memory support, this implementation of PVM
uses the Cray multitasking software to imitate a shared memory system.

Two modes of execution are available with the shared memory implementation
of PVM. In addition to the standard mode of operation, you can run the shared
memory implementation of PVM in a stand-alone mode of operation that
requires no PVM daemon or console. This mode provides the best performance
for applications that consist of a single executable file and that execute within a
single UNICOS machine. Stand-alone mode closely resembles the current PVM
mode of operation on the UNICOS/mk system. Because PVM task management

007–3686–002 23

Message Passing Toolkit: PVM Programmer’s Manual

from outside the application itself is unnecessary, you can run an application by
simply typing a.out. If an application follows the master/slave model
(consisting of multiple executable files), it might be desirable to convert the
application to run within a single executable file to get the best performance.

Modules were used to install the toolkit on your system. To access the shared
memory implementation of PVM, the mpt module must be loaded.

To modify a PVM program to make use of shared memory, perform the
following steps:

1. Convert all global and static data to TASKCOMMON data.

In the public domain version of PVM, all data is assumed to be private to
each PVM task. Communication between tasks is done by sending
messages. However, in a multitasking environment, all members of the
multitasking group can access all global or static data because they share
one user address space.

To preserve the behavior of the public domain version of PVM as much as
possible, all global or static data that can be modified during the course of
execution of a program must be treated as data local to each task. This is
done by placing the data in TASKCOMMON blocks. TASKCOMMON storage is
a mechanism that is used in multitasked programs to provide a separate
copy of data for each member of the multitasking group. TASKCOMMON data
is still globally accessible across functions within a multitasked task, but it
is private to that task.

Fortran examples of global or static data that must be placed in
TASKCOMMON storage are data that resides in COMMON blocks and data that
appears in DATA or SAVE statements. In C, you must place all data that is
declared static (either locally or globally) or data declared at a global level
(outside of any function) in TASKCOMMON.

Because changing your program so that all global and static data is private
is both tedious and makes a program less portable, you can use
compile-time command line options to do the conversions. Most global and
static data can be converted automatically to TASKCOMMON data by using
the following command-line options:

• For C programs:

cc -h taskprivate

24 007–3686–002

PVM Functionality [2]

• For Fortran programs:

f90 -a taskcommon

Note: Software included in the 1.0 release of the Message Passing Toolkit
is designed to be used with the Cray Programming Environment. When
building an application that uses the shared memory version of PVM,
you must be using the Programming Environment 3.0 release or later.
Before you can access the Programming Environment, the PrgEnv
module must be loaded. For more information on using modules, see
Installing Programming Environment Products, or, if the Programming
Environment has already been installed on your system, see the online
ASCII file /opt/ctl/doc/README.

When you are placing data in TASKCOMMON storage, there may be cases in
which the compiler cannot do the conversion because of insufficient
information. The compiler notes these cases by issuing a warning during
compilation. For such cases, you must convert the data by hand. Most of
the time, these cases are related to initialization that involves Fortran DATA
or SAVE statements or C initialized static variables, and you might need to
change only how or when the data is initialized for it to be placed in
TASKCOMMON.

The following is an example of a case that the compiler cannot handle:

int a;
int b = &a

If variable a resides in TASKCOMMON, its address will not be known until
run time; therefore, the compiling system cannot initialize it. In this case,
the initialization must be handled within the user program.

007–3686–002 25

Message Passing Toolkit: PVM Programmer’s Manual

2. Use one of the following methods to request shared-memory PVM process
initiation.

• Stand-alone mode:

Add a call to the start_pes () function at the beginning of the PVM
program.

This function is provided as a general process initiation function that can
be used to start processes for shared memory (SHMEM) data-passing
applications and PVM message passing applications that run in the
stand-alone mode of operation. The start_pes function starts tasks the
first time it is called and is not operational on subsequent calls.
start_pes () has one argument, npes. This argument specifies the
total number of tasks with which to run the program. If npes is 0, the
function starts a number of tasks indicated by an environment variable
called NPES. This environment variable allows more flexibility because
the number of PEs to use on the application can be changed at run time.

• Standard mode:

Add a PvmMtSpawn flag to a call to the pvm_spawn () function.

This flag specifies that spawned PVM processes are to be started in a
new multitasked group. This is convenient in master-slave applications
in which one master starts multiple slaves, and the slaves are set up for
fast communication because they are threads in a multitasked group
instead of separate user processes. The spawning process uses the
fork(2) and exec(2) system calls to spawn the slave executable file in
the master/slave model, and then uses the macrotasking TSKSTART(3F)
routine to spawn further slave processes, creating a multitasking group
for the slave executable file.

3. Use the cc(1) or f90(1) commands to build your shared memory PVM
program, as in the following examples:

C programs:

cc -htaskprivate -D_MULTIP_ -L$MPTDIR/lib/multi -I$PVM_ROOT/include file.c

For C programs, the -D and -L options are needed to access the reentrant
version of libc that is required to provide safe access to libc routines in a
multitasking environment. When the mpt module is loaded, the module
software sets $MPTDIR automatically and points to the default MPT
software library. To make compiling in C easier, the environment variable
$LIBCM is also set automatically when the mpt module is loaded. You can

26 007–3686–002

PVM Functionality [2]

use $LIBCM with the cc(1) command to request the reentrant version of
libc. $LIBCM is set to the following value:

-D_MULTIP_ -L$MPTDIR/lib/multi

The following example uses $LIBCM:

cc -htaskprivate $LIBCM -I$PVM_ROOT/include file.c

Fortran programs:

f90 -ataskcommon -I $PVM_ROOT/include file.f

4. Select private I/O if private Fortran file unit numbers are desired.

Note: Automatic TASKCOMMON conversion and private I/O are available
in the Programming Environment release 3.0 or later.

In a multitasking environment, Fortran unit numbers are, by default, shared
by all members of the multitasking group. This behavior forces all files to
be shared among PVM tasks that were spawned using multitasking.
Allowing PVM tasks to share files can be useful, but this behavior is
different from that of the public domain version of PVM. The user can
request that files be private to each PVM task by specifying the private I/O
option on the assign(1) command. The examples in Table 3, page 28,
request private I/O.

007–3686–002 27

Message Passing Toolkit: PVM Programmer’s Manual

Table 3. assign Examples

Example Description

assign -P private u:10 Specifies that unit 10 should be private to
any PVM task that opens it.

assign -P private p:% Specifies that all named Fortran units
should be private to any PVM task that
opens them. This includes all units
connected to regular files and excludes
units such as 5 and 6, which are
connected to stdin, stdout, or stderr
by default.

assign -P global u:0
assign -P global u:5
assign -P global u:6
assign -P global u:100
assign -P global u:101
assign -P global u:102

This set of assign commands can be
used in conjunction with assign -P
private g:all to retain units
connected by default to stdin, stdout,
and stderr as global units. A unit
connected to these standard files cannot
be a private unit.

For more information on private I/O functionality on UNICOS systems, see
the assign(1) man page.

5. Use one of the following methods to run the application:

• Stand-alone mode PVM applications

To run an application that uses the shared memory version of PVM in
the stand-alone mode of operation, simply type a.out. If you have
included a call to start_pes () with 0 as the number of PEs to
initiate, the NPES environment variable must be set before execution.
Because PVM applications that run using the stand-alone mode of
operation are of fixed size and composition, the support of some PVM
functions is not appropriate.

The following functions are not supported in stand-alone mode:

pvm_addhosts ()

pvm_catchout ()

pvm_delhosts ()

pvm_getfds ()

28 007–3686–002

PVM Functionality [2]

pvm_hostsync ()

pvm_kill ()

pvm_mstat ()

pvm_notify ()

pvm_reg_hoster ()

pvm_reg_tasker ()

pvm_sendsig ()

pvm_spawn ()

pvm_tidtohost ()

These functions are permitted in programs but return a PvmNotImpl
status.

• Standard mode (master/slave) PVM applications:

A master/slave application that uses the shared memory implementation
of PVM is run as it is with the public domain version of PVM.

The master task and the PVM daemon are not multitasked and will
communicate with the multitasked slave PVM tasks by means of
sockets. The slave PVM tasks that were spawned by the master program
are multitasked and can communicate with each other through memory.
By default, all PVM tasks communicate with the daemon and other
nonmultitasked PVM tasks by using sockets. Note, however, that
UNICOS limits the number of open files per application and the number
of open sockets in the system. Socket communication is very slow,
especially compared to the speed of communication between
multitasked PVM tasks. Because much of socket communication is
single-threaded, the performance cost goes up as more PVM tasks try to
communicate at the same time.

For these reasons, it might be desirable to change a program so that only
PE (processing element) 0 or a selected number of PEs communicate with
other executable files like the master or the PVM daemon. To change the
default communication behavior to decrease the number of socket
connections made on the system, use the PVM_PE_LIST environment
variable to specify which PEs should communicate through sockets. The
PVM_PE_LIST environment variable specifies which processing elements
can communicate with the PVM daemon. You can obtain the PE number

007–3686–002 29

Message Passing Toolkit: PVM Programmer’s Manual

for a task or process by calling the pvm_get_PE () or my_pe ()
functions. Set the environment variable as in the following examples:

For csh(1):

setenv PVM_PE_LIST 0, 4, 8, 12

or

setenv PVM_PE_LIST all

(default)

For ksh(1):

export PVM_PE_LIST=all

(default)

Note: The default behavior of the PVM_PE_LIST environment
variable in the UNICOS implementation is different from that on
UNICOS/mk systems. In the UNICOS/mk implementation of PVM,
by default, only PE 0 can communicate with the PVM daemon in
heterogeneous programs.

You should also consider using Autotasking instead of message passing
whenever your application is run on a UNICOS system. The communications
overhead for Autotasking is orders of magnitude less than that for sockets, even
on the same system, so you might be better off having only one fully
autotasked PVM process on the UNICOS system. In many cases, you might be
able to achieve this simply by invoking the appropriate compiler options and
sending a larger file of input data to the PVM process on the UNICOS system.

2.3.9.2 Running PVM in Stand-alone Mode on UNICOS Systems

The PVM stand-alone mode of operation allows you to run UNICOS/mk
applications on UNICOS systems. Not all UNICOS/mk applications are
appropriate to run on UNICOS systems (because of size limitations, for
example), but for those that are appropriate, several extensions have been
added to facilitate porting.

Table 4 lists and describes the UNICOS extensions that are supported in
stand-alone mode. When the term PE is used in this table, it refers to PVM
processes or tasks that were spawned by using multitasking. For more
information on the functions described in Table 4, see the appropriate man
pages.

30 007–3686–002

PVM Functionality [2]

Table 4. UNICOS Extensions for Stand-alone Mode

Extension Description

pvm_get_PE () A function that returns the PE number associated with a pvm_tid task
identifier.

barrier () An optimized barrier function that can be used to create a barrier between
multitasked PEs.

_my_pe () A function that returns the PE number of the PVM task and calls the task
(similar to the intrinsic function available on UNICOS/mk systems). This
function is documented in the my_pe(3) man page.

Global group A predefined group that consists of all members of the multitasking group.
This can be used with communication and synchronization between
multitasked PEs. The variable PVMALL is declared in the fpvm3.h function, as
it is for UNICOS/mk PVM applications. The concept of a predefined global
group also exists on UNICOS/mk systems.

_num_pes () A function that returns the total number of PEs in the program (similar to the
function available on UNICOS/mk systems). This function is documented in
the num_pes(3) man page.

PE number A PE number. Most existing UNICOS/mk PVM applications are written to use
PE numbers to identify tasks for communication. To aid in porting
UNICOS/mk applications to a UNICOS system, PE numbers can be used in
place of pvm_tid task identifiers in many of the PVM functions. Functions
that support PE numbers document this in their man pages.

2.3.9.3 Running PVM on UNICOS/mk Systems

The UNICOS/mk implementation of PVM can be used in stand-alone or
distributed mode. In stand-alone mode, PVM is used only to communicate
among processing elements (PEs) within the same partition. In this mode, the
PVM daemon is not required; you can simply execute your program. For more
information on using PVM in stand-alone mode, see Chapter 3, page 43. For
more information on using PVM in distributed mode, see Section 3.5, page 58.

2.3.9.4 Using NQE

PVM applications can be run simultaneously. In previous releases, the same
PVM daemon was used for all applications. If PVM applications are run as an
NQS job, each application uses a unique PVM daemon. This can eliminate

007–3686–002 31

Message Passing Toolkit: PVM Programmer’s Manual

resource conflicts caused by both applications requesting PVM services.
Because the daemon is part of the NQS job, resource limits associated with a job
apply to processes spawned by the PVM daemon.

A site administrator can configure a batch job queue for PVM jobs. This enables
the checking of resources on multiple nodes before a job is initiated.

2.3.9.5 Using Load Balancing

PVM supports load balancing for pvm_spawn () calls on UNICOS systems.
Support for this feature is deferred on UNICOS/mk and IRIX systems. PVM
has been modified to request ratings of the eligible hosts. This feature is
available only with NQE, but PVM does not have to be run as an NQS job to
use this feature.

A pvm_spawn () call proceeds through the logic of checking user-specified
parameters, such as architecture. After a list of hosts has been identified, the
load balancing server is asked to rate these hosts by evaluating a policy. Tasks
are then placed, using a procedure based on a percentage of the total host
ratings instead of a round-robin procedure. If the current host receives a large
rating, all tasks can be started on that host. This allows hosts to be specified in
the host file but not used if their current system load is large or a better host is
available.

Specifying the -h option on the pvmd3(1) command when starting the PVM
daemon causes the load balancing server to be used to create the virtual
machine. If a host file is specified, the options are read. The NQE load
balancing server is queried for a list of available hosts. The hosts specified in
the host file but not marked as available are not used. Hosts not specified in the
host file are added with default options. If no host file is specified, all of the
available hosts are used with default options.

Automatic creation of the virtual machine allows the user to submit a PVM job
without configuring the machine.

2.3.9.6 Using PVM Direct Routing

If two PVM processes are going to be doing any significant amount of
communication, you should probably use PVM direct routing. With a normal
transfer, a message goes from one PVM user process, to the PVM daemon on
the local system, to the PVM daemon on the remote system, and finally to the
PVM user process on the remote system. With direct routing, a message goes
directly from one PVM task to the other. A significant performance gain is

32 007–3686–002

PVM Functionality [2]

possible, and the gain increases for larger messages. For more information on
setting the associated PVM option, see the pvm_setopt(3) man page.

2.3.9.7 Using Large Messages

Socket communication in PVM uses a default maximum packet size of 32
Kbytes. When sending large messages, you can increase bandwidth
significantly by using the pvm_setopt () call to set PvmFragSize. Although
underlying services might have lower limits, PVM’s upper limit for
PvmFragSize is 1 Mbyte. On UNICOS systems, you can change the TCP
window shift size by using the pvm_setopt () call to set PvmWinShift.
Valid values for PvmWinShift are between 1 and 16. Values above 4 show
marginal performance improvement. This can increase the amount of data in
transmission.

2.3.9.8 Avoiding XDR Conversion

By default, PVM automatically performs eXternal Data Representation (XDR)
conversion when transferring data. This very powerful feature adds to the
utility of PVM. Unfortunately, this feature has an adverse effect on performance,
because the conversion method is very slow and inefficient.

In many applications, you can work around this limitation by using one of the
following techniques:

• Using PvmDataRaw

• Transferring bytes of data

• Performing data conversion in the application (user-controlled conversion)

• Running PVM in stand-alone mode (see Section 2.3.9.2, page 30)

2.3.9.8.1 Specifying the PvmDataRaw Value

The pvm_initsend(3) function takes an argument that specifies how data
should be encoded. Specifying the PvmDataRaw value indicates that no data
conversion should take place. When the pvm_send(3) call is made, PVM
verifies that the two systems share a common data format and aborts the
transfer of the message if they do not.

When appropriate, this technique is the best one to use. However, it is useful
only when the two processes are running on systems with the same data format.

007–3686–002 33

Message Passing Toolkit: PVM Programmer’s Manual

2.3.9.8.2 Byte Transfer

When data is transferred as bytes, no data conversion occurs. The
pvm_pkbyte(3) and pvm_upkbyte(3) functions bypass data conversion because
byte data is defined to be untyped. However, you must pass byte counts rather
than element counts. As a result, this technique is more prone to programming
error than the other two described in this section, especially for Fortran codes.

This technique is useful when the two processes are running on systems with
the same data formats or the data format is one that does not require
sophisticated conversions (such as packed integer data).

2.3.9.8.3 User-controlled Conversion

The most complex technique is user-controlled conversion; that is, performing
data conversion in the application. UNICOS libraries offer a number of very
high-performance data conversion functions that convert between Silicon
Graphics formats and IEEE, IBM, DEC, and other formats.

For example, one process (perhaps a workstation) could use pvm_pkbyte(3) to
pack the data; the receiving process (the Silicon Graphics system) could use
pvm_upkbyte(3) to unpack the data and then call the appropriate function to
convert it.

User-controlled conversion requires programmer care to ensure that the two
processes know the format of the data blocks, and it also requires byte counts
rather than element counts.

This technique is useful when the transfer is occurring between a Silicon
Graphics system and another system for which data conversion functions are
available. (For descriptions of conversion functions, see the Application
Programmer’s Library Reference Manual.)

2.3.10 Shared Memory PVM Limitations

Note: Information in this section is for UNICOS systems only.

Emulating a shared memory environment with the use of Cray multitasking
software might provide unexpected program behavior. The goal is to preserve
the original behavior as much possible. However, it is not efficient or
productive to preserve completely the original PVM behavior in a multitasked
environment. The intent is to document possible changes in behavior. For
example, changes in behavior might occur with the use of signals; therefore, it is
not recommended that signals be used with the shared memory version of PVM.

34 007–3686–002

PVM Functionality [2]

PvmDataDefault and PvmDataRaw packing are equivalent in the shared
memory implementation of PVM. In stand-alone mode, data conversion is not
necessary because the executable file never communicates outside of the
UNICOS machine. Because the shared memory implementation of PVM
running in standard mode does not handle data conversion, multitasked
executable files currently can communicate only between UNICOS machines of
the same architecture type. Communication to other architectures can still be
achieved, however, through the master or nonmultitasked executable files that
comprise the program.

The shared memory implementation of PVM supports the running of only 32
PVM tasks within a multitasking group. Running with more than the number
of physical CPUs available on the UNICOS system will begin to degrade
performance because PVM tasks must share CPU resources.

2.4 Data Types on UNICOS Systems

This discussion of how PVM data types are implemented assumes that you are
familiar with the functions used to pack and unpack data. For more information
about these functions, see Section 4.9, page 68, and Section 4.10, page 69.

Data type support is different for each system. Systems that support both 32-bit
and 64-bit data types map easily into the PVM data types.

Table 5, page 35, presents basic information about data types on UNICOS
systems.

Table 5. Data Types On UNICOS Systems

Data characteristics C functions Fortran names

8 bits, not typed pvm_pkbyte BYTE1

64 bits, signed integer pvm_pklong,
pvm_pkint,
pvm_pkshort

INTEGER4

64 bits, unsigned integer pvm_pkulong,
pvm_pkuint,
pvm_pkushort

Not applicable

64 bits, floating-point pvm_pkdouble,
pvm_pkfloat

REAL8

007–3686–002 35

Message Passing Toolkit: PVM Programmer’s Manual

Data characteristics C functions Fortran names

Two 64 bits, floating-point pvm_pkdcplx,
pvm_pkcplx

COMPLEX16

Null-terminated character
string

pvm_pkstr Not applicable

Fortran character constant or
variable

Not applicable STRING

2.4.1 Fortran Data Types

Table 5 does not contain some Fortran type names, such as INTEGER2, REAL4,
and COMPLEX8. These map to INTEGER4, REAL8, and COMPLEX16,
respectively. To avoid confusion and to ease porting to other systems, you
should use these only with the greatest of care.

2.4.2 64-bit Integer Usage

The Cray MPT implementation of PVM for UNICOS systems does not support
the INTEGER8 specification. On UNICOS systems, you must specify INTEGER4
for UNICOS integers.

When PvmDataDefault packing is used, XDR converts data into a common
format. XDR retains only 32 bits of precision for integer data; therefore, packing
64-bit integers results in a loss of the upper 32 bits of precision.

If you want all 64 bits of accuracy, use PvmDataRaw packing or specify
untyped byte packing for PvmDataDefault.

2.5 Data Types on UNICOS/mk Systems

This section describes how PVM data types are implemented on UNICOS/mk
systems. This discussion assumes that you are familiar with the functions used
to pack and unpack data; for more information, see Section 4.9, page 68, and
Section 4.10, page 69.

Table 6 presents basic information about data types available on UNICOS/mk
systems.

36 007–3686–002

PVM Functionality [2]

Table 6. Data Types on UNICOS/mk Systems

Data characteristics C functions Fortran names

8 bits, not typed pvm_*pkbyte BYTE1

64 bits, signed integer pvm_*pklong,
pvm_*pkint

INTEGER8

64 bits, unsigned integer pvm_*pkulong,
pvm_*pkuint

Not applicable

32 bits, signed integer pvm_*pkshort INTEGER4

32 bits, unsigned integer pvm_*pkushort Not applicable

64 bits, floating-point pvm_*pkdouble REAL8

32 bits, floating-point pvm_*pkfloat REAL4

(Two) 64 bits, floating-point pvm_*pkdcplx COMPLEX16

(Two) 32 bits, floating-point pvm_*pkcplx COMPLEX8

Null-terminated character
string

pvm_*pkstr Not applicable

Fortran character constant or
variable

Not applicable STRING

2.5.1 16-bit Fortran Data Types

The Fortran name INTEGER2 is implemented and maps into the same data
characteristics as INTEGER4. Use of 16-bit data types is not recommended
because the UNICOS/mk system does not support these data types.

2.5.2 32-bit Fortran Data Types

On the UNICOS/mk system, PVM supports 32-bit Fortran data types. This
support is implemented in PVM regardless of whether your Fortran compiler
supports 32-bit data types. If you are not using such a compiler and specify one
of these data types (INTEGER4, REAL4, or COMPLEX8), you will get incorrect
results.

007–3686–002 37

Message Passing Toolkit: PVM Programmer’s Manual

2.5.3 64-bit Integer Data

In the UNICOS and public domain versions of PVM, data conversion of
integers is limited to 32 bits of accuracy. The UNICOS/mk version handles
64-bit integers in a manner that is compatible and interoperable with the
network version. If you pack 64-bit integers into a PvmDataDefault block,
only the low-order 32 bits of each value are packed. PVM checks the high-order
32 bits of each value; if they contain significant data, the pack call sends a
PvmLostPrecision error. (This checking can be turned off; see
PVM_CHECKING in Table 11, page 46.)

If you want 64 bits of accuracy, you can use PvmDataRaw packing or specify
untyped byte packing for PvmDataDefault.

2.6 Data Types on IRIX Systems

This section describes how PVM data types are implemented on IRIX systems.
This discussion assumes that you are familiar with the functions used to pack
and unpack data; for more information, see Section 4.9, page 68, and Section
4.10, page 69.

Table 7 and Table 8 present basic information about data types on IRIX systems.

Table 7. N32 ABI Library Data Types on IRIX Systems

Data characteristics C functions Fortran names

8 bits, not typed pvm_pkbyte BYTE1

16 bits, signed integer pvm_pkshort INTEGER2

32 bits, signed integer pvm_pkint,
pvm_pklong

INTEGER4

16 bits, unsigned integer pvm_pkushort Not applicable

32 bits, unsigned integer pvm_pkuint,
pvm_pkulong

Not applicable

32 bits, floating-point pvm_pkfloat, REAL4

64 bits, floating-point pvm_pkdouble REAL8

Two 32 bits, floating-point pvm_pkcplx COMPLEX8

Two 64 bits, floating-point pvm_pkdcplx COMPLEX16

38 007–3686–002

PVM Functionality [2]

Data characteristics C functions Fortran names

Null-terminated character
string

pvm_pkstr Not applicable

Fortran character constant or
variable

Not applicable STRING

Table 8. 64 ABI Library Data Types on IRIX Systems

Data characteristics C functions Fortran names

8 bits, not typed pvm_pkbyte BYTE1

16 bits, signed integer pvm_pkshort INTEGER2

32 bits, signed integer pvm_pkint INTEGER4

64 bits, signed integer pvm_pklong Not applicable

16 bits, unsigned integer pvm_pkushort Not applicable

32 bits, unsigned integer pvm_pkuint Not applicable

64 bits, unsigned integer pvm_pkulong Not applicable

32 bits, floating-point pvm_pkfloat, REAL4

64 bits, floating-point pvm_pkdouble REAL8

Two 32 bits, floating-point pvm_pkcplx COMPLEX8

Two 64 bits, floating-point pvm_pkdcplx COMPLEX16

Null-terminated character
string

pvm_pkstr Not applicable

Fortran character constant or
variable

Not applicable STRING

2.7 Environment Variables

To customize your PVM environment, you can use the environment variables
described in this section. The variables are grouped into variables supported on
IRIX systems only and variables supported on UNICOS, UNICOS/mk, and
IRIX systems. Chapter 3, page 43, describes the environment variables that are
supported by UNICOS/mk systems only.

007–3686–002 39

Message Passing Toolkit: PVM Programmer’s Manual

2.7.1 Setting Environment Variables on IRIX Systems

This section provides a table of environment variables you can set for IRIX
systems only.

Table 9. Environment Variables on IRIX Systems

Variable Description Default

PVM_SHMEM_DIR Directory location of the POSIX shared memory files. /usr/tmp
(Only valid for
SGIMP64 and
SGIMP64mips3
architecture
types)

PVMBUFSIZE Specifies the size of the shared memory buffer for each
task and daemon.

1 Mbyte

PVM_VMID Sets the virtual machine identification (VMID) number
for the host. This environment variable allows a host
to be included in more than one virtual machine by
using one pvmd3 command per virtual machine per
host. The virtual machine number is appended to the
file name of the PVM log and daemon socket files, so
that they appear as pvml.uid.vmid and pvmd.uid.vmid.
The previous name of this variable is PVMJID. This
name is supported in the MPT 1.3 release, but will not
be supported in subsequent releases.

0

Note: This environment variable prevents IRIX PVM
from interoperating with any implementation other
than Silicon Graphics IRIX PVM implementations.

2.7.2 Setting Environment Variables on UNICOS, UNICOS/mk, and IRIX Systems

This section provides a table of environment variables you can set for UNICOS,
UNICOS/mk, and IRIX systems.

40 007–3686–002

PVM Functionality [2]

Table 10. Environment Variables on UNICOS, UNICOS/mk, and IRIX Systems

Variable Description Default

PVM_ROOT Specifies the path where PVM libraries and
system programs are installed. For PVM to
function, this variable must be set on each
PVM system.

Set automatically
when you load the
mpt module to access
the Message Passing
Toolkit software

PVM_EXPORT Names the environment variables that a
parent task exports to its children by using
the pvm_spawn(3) function. Multiple names
must be separated by a colon.

None

PVM_DEBUGGER Specifies the debugger script to use when
pvm_spawn(3) is called with PvmTaskDebug
set.

$PVM_ROOT/lib/debugger

PVM_DPATH Specifies the path of the pvmd3(1) command
or the startup script.
If you use a shell (such as .kshrc) that does
not automatically execute a startup script
that sets PVM_ROOT on added hosts, you can
set PVM_DPATH to the full or relative path of
the pvmd startup script, such as
$PVM_ROOT/lib/pvmd. This startup script
automatically sets PVM_ROOT.

$PVM_ROOT/lib/pvmd.
You can override this
setting by using the
dx= loc option in the
host file.

PVM_POLICY Specifies the NQE policy used for load
balancing. For more information on
specifying policies, see NQE Administration.

Note: Support for this environment
variable is deferred on UNICOS/mk and
IRIX systems.

PVM

007–3686–002 41

Message Passing Toolkit: PVM Programmer’s Manual

Variable Description Default

NLB_SERVER Specifies the location of the NQE load
balancer. This host is known as the master
server. Your system administrator might have
this set automatically in the nqeinfo file. If
NQE load balancing is enabled on your
system, it is used automatically by PVM. To
disable NQE load balancing for PVM
applications, set the NLB_SERVER
environment variable to 0. For more
information, see the NQE User’s Guide.

Note: Support for this environment
variable is deferred on UNICOS/mk and
IRIX systems.

Value in the nqeinfo
file

PVM_RSH Specifies that an alternative remote shell
command, such as krsh (a Kerberos version
of rsh), can be selected. PVM_RSH can
specify the full path or relative path to the
alternative remote command.

IRIX:
If using Array Services,
/usr/sbin/arshell.
If not using Array
Services,
/usr/bsd/rsh.
UNICOS or
UNICOS/mk:
/usr/ucb/remsh.

PVM_SLAVE_STARTUP_TIMEOUT Specifies the length of time that the master
daemon will wait for a slave daemon to make
contact after the slave daemon is started.

60 seconds

42 007–3686–002

UNICOS/mk Implementation [3]

This chapter describes aspects of PVM that are specific to UNICOS/mk
systems. On a UNICOS/mk system, which contains up to 2048 processing
elements (PEs), some subset of this number of PEs is assigned to a job running
on the system. Those PEs are collectively known as a partition.

The UNICOS/mk implementation of PVM can be used in either or both of the
following modes:

• Stand-alone mode, in which PVM is used for communication (PE-to-PE)
within the partition.

• Distributed mode, in which PVM is used to communicate outside the partition.

There is one PVM library that is part of the MPT product environments for the
UNICOS/mk system. When the UNICOS/mk executable file is initiated, it
determines whether it is being used in distributed mode and performs the
proper setup. If it determines that it is not being used in distributed mode,
certain PVM functions are not available and return errors if called.

3.1 Features and Differences

This section summarizes special features that can be found in the UNICOS/mk
version of PVM and notes differences between it and the other versions. These
features are also documented in the applicable PVM man pages.

3.1.1 PE Number

Most existing UNICOS/mk applications and algorithms are written to use PE
numbers for communication. Standard PVM notation used only the concept of
a PVM task identifier (pvm_tid, whose internal representation is subject to
change). To simplify programming, the UNICOS/mk version lets you use PE
numbers in place of pvm_tids in many of the PVM functions. An extra
function, pvm_get_PE(3), returns the PE number associated with a pvm_tid.

3.1.2 Global Group

PVM supports the concept of dynamic groups, in which tasks can join and leave
groups at any time. The barrier and broadcast functions use these groups for
collective synchronization and communications. On a UNICOS/mk system, a

007–3686–002 43

Message Passing Toolkit: PVM Programmer’s Manual

static, well-defined group consisting of all the tasks (or PEs) in the partition is
referred to as the global group. To simplify programming, PVM has essentially
predefined this group by permitting a null name (or, in C, a null char pointer)
to be used to refer to this global group. (The Fortran PVM include file,
fpvm3.h, contains a declaration of a null character variable, PVMALL.) PVM
uses some key optimizations to carry out barriers and broadcasts for the global
group.

3.1.3 Obtaining PE Numbers

UNICOS/mk applications can use PVM calls to obtain their own PE number.
From C these calls are as follows:

my_pe = pvm_get_PE (pvm_mytid());

From Fortran the calls are as follows:

CALL PVMFMYTID (MYTID)

CALL PVMFGETPE (MYTID,MYPE)

3.1.4 Number of PEs

UNICOS/mk applications can use PVM calls to obtain the number of PEs in the
partition. From C this is as follows:

n_pes = pvm_gsize(0);

From Fortran the call is as follows:

CALL PVMFGSIZE (PVMALL, NPES)

The variable PVMALL is declared in fpvm3.h.

3.1.5 PvmDataInPlace Semantics

The UNICOS/mk version of PVM treats data buffers packed using
PvmDataInPlace encoding differently than the network version does. In the
UNICOS/mk version, such data must not be reused until the data has been
unpacked by the receiving PE. You are responsible for any additional
synchronization or communication required to ensure this coordination.

44 007–3686–002

UNICOS/mk Implementation [3]

3.2 Using Environment Variables to Change Default Settings

You can control a number of features and settings in PVM. The default behavior
and settings of PVM may not be suitable for all or part of some applications,
and you may wish to change them. In general, you can set options in two ways:

• Many options can be set by using the pvm_setopt(3) function. This
function allows an option to be set for a specific PE or to be changed
dynamically during execution of an application. For example, if the
pvm_parent(3) function is called to see if the application is being used in
distributed mode, the following code sequence ensures that a return code of
PvmNoParent, which is considered an error, does not cause the program to
abort or print out an error message:

oldvalue = pvm_setopt (PvmAutoErr, 0);

parent_id = pvm_parent ();

(void) pvm_setopt (PvmAutoErr, oldvalue);

• Many options can be set by using the UNICOS/mk environment variables
without changing source code. These take effect with PVM initialization and
apply to the application as a whole.

While many options can be set by using either mechanism, some can only be
set using one mechanism or the other. This section describes those that you can
set by using UNICOS/mk environment variables. Table 11, page 46, lists the
UNICOS/mk environment variables. For more information about the
pvm_setopt(3) function, use the man(1) command to view the man page online.

When setting an environment variable, you must ensure that it is available for
the UNICOS/mk executable file. If you are using the UNICOS/mk version in
stand-alone mode, this means that the environment variable must be set before
the executable file is run:

% setenv PVM_TRACE 7

% ./t3e.out

If you are using PVM in distributed mode, the PVM daemon starts the
UNICOS/mk executable file. Therefore, you must set the environment variable
before the daemon is started, as follows:

% setenv PVM_TRACE 7

% pvmd3 hostfile

007–3686–002 45

Message Passing Toolkit: PVM Programmer’s Manual

Remember, it is the UNICOS/mk daemon, not the task that calls
pvm_spawn(3), that starts the UNICOS/mk executable file.

The PVM_ROOT environment variable specifies the path at which PVM libraries
and system programs are installed. For PVM to function, this variable must be
set on each PVM system. On UNICOS/mk systems, $PVM_ROOT is set for you
automatically when you load the mpt module to access the MPT software.

Table 11. UNICOS/mk Environment Variables

Variable Description Default

PVM_AUTO_ERR Sets the PVM error-handling value, which is equivalent to
the PvmAutoErr option in pvm_setopt(3).

1 (error reporting on)

Setting this value with PVM_AUTO_ERR lets you do so
without changing your source.

PVM_CHECKING Certain common PVM operations run the risk of losing
data. By default, PVM performs a check to avoid this
problem. While the cost of this check is not prohibitive, it
can have an impact on performance, and might be
unnecessary for your application. The PVM_CHECKING
environment variable lets you control whether the check
is performed. This control is at a very gross level: either
the check is performed throughout the entire program or
it is not performed at all.

1 (Check is performed)

When PvmDataDefault encoding is used for packing
64-bit integer data, only the low-order 32 bits are packed.
By default, PVM checks whether any of the truncated
high-order bits contained significant data and generates
an error (PvmLostPrecision) if they did.

If you set PVM_CHECKING to 0, this check is not
performed. If you set PVM_CHECKING to 1 (the default
setting), the check is performed.

PVM_DATA_BUFFERS Sets the initial and incremental number of send buffers.
For more information on send buffers, see Section 3.3,
page 48.

Initial: 0 blocks;
incremental: 1 block

46 007–3686–002

UNICOS/mk Implementation [3]

Variable Description Default

PVM_DATA_MAX Sets the integer number of the maximum number of bytes
in an initial message. The specified value must be a
multiple of 8.
When a message is sent with PVM, the library sends a
header and a relatively small amount of data in an initial
message. The default size for this data is 4096 bytes.
Messages that contain more than this amount of data
must transfer the data later in a second, slower transfer.
By increasing the amount of data that can be transferred
with the initial message, you can reduce communications
overhead.

4096 (The default
value is in the
description)

The value of PVM_DATA_MAX represents memory that is
taken up by internal message pools and allocated for each
message structure active in the system (whether or not
the memory is actually used for a given message). The
larger the value, the more memory that is used by PVM
and unavailable to the application. The smaller the value,
the more messages that will require a second transfer.

PVM_DATA_MAX has a particularly significant impact on
the performance of messages broadcast to multiple tasks,
due to the way these are implemented on the
UNICOS/mk system. If a broadcast is used in a
time-critical portion of code, you may want to verify that
PVM_DATA_MAX is at least as large as the message being
broadcast.

PVM_MAXGTIDS Changes the maximum number of tasks that can join a
group. For information about the out-of-resources error,
PvmOutOfResGmems, see Section 3.4.3, page 58.

sysconf(_SC_CRAY_NPES)
(Number of PEs in
application)

PVM_MAX_PACK Sets the initial and incremental data block sizes. For
information about setting this variable, see Section 3.3.3.3,
page 52, and Section 3.3.3.4, page 52.

Initial: 4096 bytes;
incremental: 4096
bytes

PVM_PE_LIST Lists the virtual PE numbers within a partition that can
communicate with the daemon. Either a
comma-separated list of virtual PE numbers or all can
be specified. If all is used, all PEs in a partition can
communicate with the daemon.

Only PE 0
communicates with
the daemon.

007–3686–002 47

Message Passing Toolkit: PVM Programmer’s Manual

Variable Description Default

PVM_RETRY_COUNT Sets the number of times that PVM retries sending a
message to another PE before giving up and returning a
PvmOutOfResSMP error. For more information, see
Section 3.4.1, page 56.

500

PVM_SM_POOL When PVM is started up, it allocates a pool of shared
memory for use in message passing. This pool represents
space used to buffer message headers and small messages
while the receiving PE is doing computations or I/O.
Each entry or message uses PVM_DATA_MAX plus 32 bytes
of memory.

The larger of the
following values:

• Two times the
number of PEs

• 10

The PVM_SM_POOL environment variable sets the integer
number for the number of messages in the pool for each
PE.

For information about the out-of-resources error,
PvmOutOfResSMP, see Section 3.4.1, page 56.

PVM_TOTAL_PACK Establishes the upper limit on memory allocated for send
buffer data blocks. For information about setting this
variable, see Section 3.3.3.5, page 53.

999,999,999

PVM_TRACE Sets a mask of trace options, equivalent to the
PvmTraceOpts options in pvm_setopt(3). Using
PVM_TRACE to set these options lets you do so without
changing the source.

All tracing is off.

This environment variable controls only the collection of
trace data, not its output. The pvm_disptrace(3)
function is used to display trace data.

3.3 Buffer Memory Management

When PvmDataDefault and PvmDataRaw encoding is used, PVM allocates
and uses blocks of memory on the sending PE. (These blocks are referred to as
send buffers.) By default, this allocation and usage is transparent to your
application; that is, you should not have to do anything special. However, if
your application is trying to optimize its use of memory, you may need to
understand how PVM uses memory, and you may want to control PVM
memory usage. This section discusses these topics.

48 007–3686–002

UNICOS/mk Implementation [3]

3.3.1 Basic Design

The design of buffer memory is based on the following:

• By default, all send buffer space is dynamically allocated in the following
manner:

– Memory is allocated only if needed.

– Only the amount of memory needed is allocated.

– Portions of memory are freed once they are no longer needed.

• By using environment variables, you can control initial allocation of send
buffers.

• By using environment variables or pvm_setopt(3) calls, you can change the
amount of additional memory allocated for each send buffer, and control or
prohibit incremental memory units when even more memory is required.

• You can specify a total limit on the amount of memory allocated at any one
time for the send buffers.

Send buffers are never freed by PVM. Once allocated and used, they are kept
for later use. However, any incremental memory allocated for a send buffer is
freed as soon as it is no longer needed.

3.3.2 Simple Scenario, Part 1

The scenario in Table 12 shows PVM memory use, using the default settings.

Table 12. Default Settings for Buffer Memory Management

User call PVM action
Memory use in bytes
(sending PE)

pvm_initsend (PvmDataRaw); Allocates send buffer. 4096

pvm_pkbyte (...32...); Copies data. (4064 bytes are free.) 4096

pvm_pkbyte (...32000...); Copies 4064 bytes. Allocates 32000
– 4064 = 27936 bytes. Copies
remaining data.

32,032

007–3686–002 49

Message Passing Toolkit: PVM Programmer’s Manual

User call PVM action
Memory use in bytes
(sending PE)

pvm_pkbyte (...32...); Allocates 4096 bytes. Copies data.
(4064 bytes are free.)

36,128

pvm_pkbyte (...40...); Copies data. (4024 bytes are free.) 36,128

pvm_send (...); Sends message. 36,128

pvm_recv (...); Receives message. 36,128

Final pvm_upkbyte by receiving PE for
message or pvm_recv call for next message

Frees incremental data blocks.
Returns buffer to free list.

4096

This scenario shows how PVM allocates memory for send buffers. Although
36,128 bytes were allocated, only 32,104 were actually used. The 4096 bytes
allocated in the second incremental allocation were used for only 72 bytes.

3.3.3 Controlling Memory Use

The following parameters are available for controlling send buffer memory use:

• Initial number of send buffers

• Send buffer increment

• Send buffer initial size

• Send buffer increment size

• Total memory use

You can set all five parameters by using environment variables, which take
effect at PVM initialization time. Four of the five can also be set by calling
pvm_setopt(3), which changes the settings dynamically at run-time. (The fifth
parameter, initial number of send buffers, affects an initialization time function,
and so a run time change would have no effect.) You can call the
pvm_getopt(3) function to obtain the current settings for all five parameters.

Only three environment variables are needed to set the five parameters because
two of these variables let you set either one or two parameters at once.

By using an environment variable, you set the value for all PEs at once. By
calling pvm_setopt(3), you can set different values for different PEs, or you
can change a value during the execution of the program. You can, of course,

50 007–3686–002

UNICOS/mk Implementation [3]

combine the two mechanisms by using the environment variables to set the
default values and pvm_setopt(3) to change specific cases.

The following sections discuss how you can use and set these parameters.

3.3.3.1 Initial Number of Send Buffers

During initialization time, PVM allocates an initial number of send buffers. The
default is 0; that is, no send buffers are allocated initially. In this case, as soon
as you call the pvm_initsend(3) function with the PvmDataDefault or
PvmDataRaw option, a new send buffer is dynamically allocated. This requires
library calls and possibly an operating system call, and thus is expensive in
time. Alternatively, you can initially allocate some send buffers, perhaps
enough to avoid having to dynamically allocate any additional buffers.

To set the initial number of send buffers, enter the PVM_DATA_BUFFERS
environment variable as follows:

setenv PVM_DATA_BUFFERS <number>

In the following example, the PVM_DATA_BUFFERS setting tells PVM to initially
allocate 10 send buffers:

setenv PVM_DATA_BUFFERS 10

The pvm_setopt(3) function does not support this parameter. You can call
pvm_getopt(3) with the PvmDataBuffers option to find out the value of
PVM_DATA_BUFFERS.

3.3.3.2 Send Buffer Increment

Whenever PVM dynamically allocates a new send buffer, it makes library calls
to allocate memory for a specified number of send buffers. The default is 1; that
is, PVM allocates enough memory for a single new send buffer. This process is
expensive in time because PVM must make another set of library calls to
allocate more memory each time a new buffer is needed.

You can amortize the cost of the library calls by using the send buffer increment
parameter. This parameter setting tells PVM to allocate enough memory for a
specified number of additional buffers each time it needs to allocate memory
for a single one.

This parameter can also tell PVM not to allocate additional memory for send
buffers. By setting the initial number of send buffers to some number and
setting the increment to 0, you can fix the number of send buffers allocated by

007–3686–002 51

Message Passing Toolkit: PVM Programmer’s Manual

PVM. In this case, if PVM runs out of send buffers, your application receives a
PvmOutOfResBuf error.

The send buffer increment is the second option on the PVM_DATA_BUFFERS
environment variable. To set this parameter, enter PVM_DATA_BUFFERS as
follows:

setenv PVM_DATA_BUFFERS number+increment

In the following example, the PVM_DATA_BUFFERS setting tells PVM to initially
allocate 10 send buffers and to allocate 4 more at a time if more buffers are
needed, up to a total of PVM_TOTAL_PACK:

setenv PVM_DATA_BUFFERS 10+4

You can use the PvmDataBuffersIncr option with pvm_setopt(3) to change
the setting dynamically. You can also use this option with pvm_getopt(3) to
see the send buffer’s increment setting.

3.3.3.3 Send Buffer Initial Size

Each send buffer contains an initial block of memory for use in packing data.
The default is 4096 bytes. If more is needed, PVM makes library calls to allocate
an additional block. If less is needed, the difference is wasted. If you know that
most messages in your code are of a specific size, you can set this parameter to
that size to avoid wasting memory or allocating additional blocks.

To set the send buffer initial size, enter the PVM_MAX_PACK environment
variable as follows:

setenv PVM_MAX_PACK initial

In the following example, the PVM_MAX_PACK setting tells PVM to initially
allocate 16,384 bytes of memory for each send buffer:

setenv PVM_MAX_PACK 16384

You can use the PvmMaxPack option with pvm_setopt(3) to change the setting
dynamically. You can also use this option with pvm_getopt(3) to see the send
buffer initial size.

3.3.3.4 Send Buffer Increment Size

When PVM dynamically allocates an additional block of memory, it uses a
minimum allocation size. The default is 4096 bytes. If PVM needs less than this

52 007–3686–002

UNICOS/mk Implementation [3]

amount of memory, it allocates the minimum size. If PVM needs more than this
minimum size, it allocates what it needs.

The send buffer increment size parameter enables you to avoid multiple
allocations of blocks that are only a few words in length. For example, if most
of your messages fit within 4096 bytes, but you have one large message that
requires a total of 164,096 bytes, you could set this parameter to 160,000 bytes.

This parameter can also be set to 0 to tell PVM that it must not allocate
additional memory blocks. In this case, if the data fails to fit into the initial
block, PVM returns a PvmTooMuchData error to your application.

The send buffer increment size is the second option on the PVM_MAX_PACK
environment variable. To set this parameter, enter PVM_MAX_PACK as follows:

setenv PVM_MAX_PACK initial+increment

In the following example, the PVM_MAX_PACK setting tells PVM to initially
allocate 4096 bytes of memory for each send buffer, but, if more is needed, to
allocate a block no smaller than 160,000 bytes:

setenv PVM_MAX_PACK 4096+160000

You can use the PvmMaxPack option with pvm_setopt(3) to change the setting
dynamically. You can also use this option with pvm_getopt(3) to see the send
buffer increment size.

3.3.3.5 Total Memory Use

PVM tracks the amount of memory allocated for data blocks, both initial and
incremental blocks. There is no set default; you are limited only by the
available memory in the PE.

The total memory use parameter establishes a limit for the amount of memory
allocated. If PVM exceeds this limit, it returns a PvmMemLimit error to your
application.

This parameter does not reflect total memory usage by PVM, but only the data
block allocation associated with send buffers. For many applications, this is the
predominant source for PVM memory usage.

To set the total memory use parameter, enter the PVM_TOTAL_PACK
environment variable as follows:

setenv PVM_TOTAL_PACK limit

007–3686–002 53

Message Passing Toolkit: PVM Programmer’s Manual

In the following example, the PVM_TOTAL_PACK setting tells PVM to use no
more than 1,048,576 bytes of memory at any time for send buffer data blocks:

setenv PVM_TOTAL_PACK 1048576

You can use the PvmTotalPack option with pvm_setopt(3) to change the
setting dynamically. You can also use this option with pvm_getopt(3) to see
total memory use. To see how much memory is remaining from the current
limit, use the PvmTotalPackLeft option with pvm_getopt(3).

3.3.4 Simple Scenario, Part 2

In the original scenario (Section 3.3.2, page 49), 36,128 bytes of buffer memory
were allocated, but only 32,104 were actually used. Memory use could be made
most efficient by using PvmDataInPlace encoding, which avoids PVM buffer
allocation altogether. But this change may require some additional
synchronization within the program, and thus it may not be desirable.

Next in order of simplicity, you could move the large pvm_pkbyte(3) call (with
32,000 bytes) to the end. Consequently, the three small packs would go into the
initial 4096 bytes, and just enough bytes would be allocated for the large
pvm_pkbyte(3) call.

Instead (or in addition), the following PVM_MAX_PACK settings could be
considered to more efficiently manage memory:

setenv PVM_MAX_PACK 32104

This setting ensures that all the memory needed is allocated with the send
buffer. If all message traffic looked like this, this would be most efficient. By
setting PVM_MAX_PACK to 32104+0, you could verify that no message exceeded
this limit.

setenv PVM_MAX_PACK 4096+28008

This setting ensures that the first incremental memory allocation is sufficient for
the remaining packs. If most messages fit into 4096 bytes, and the rest fit into
32,104 bytes, this setting limits normal memory use while avoiding unnecessary
malloc(3) or free(3) calls for the large messages.

This scenario shows only the memory allocation for a single message. A real
application has many messages of different sizes; therefore, while
PVM_MAX_PACK settings might help this one message, they might have adverse
effects on others.

54 007–3686–002

UNICOS/mk Implementation [3]

If only one PE is sending a large message, another approach is to change the
source code so that this PE calls pvm_setopt(3) once with PvmMaxPack and
perhaps again with PvmMaxPackIncr, each set to the values indicated in the
previous setenv commands, prior to packing and sending the large message.
For example, you could call pvm_setopt with PVM_MAX_PACK set equal to
32,104, or you could call pvm_setopt with PVM_MAX_PACK set equal to 40 and
call pvm_setopt with PvmMaxPackIncr set equal to 28,008.

3.4 Out-of-resource Errors

When running a PVM application on UNICOS/mk systems, you may receive
out-of-resource errors. Receiving one of these errors, shown in Table 13, means
that you have encountered a fixed limit within the PVM implementation.

Table 13. Out-of-resource Errors

Error Fixed limit

PvmOutOfResSMP A shared memory pool of messages used in sends

PvmOutOfResBuf A preallocated set of data buffers used by pvm_initsend(3),
pvm_recv(3), and related functions

PvmOutOfResGmems A maximum number of tasks that can join a group

These limits are fixed for various reasons, but you can raise each of them.
However, you should be careful about doing so for two reasons:

• Raising a limit causes PVM to allocate more memory, and this memory is
not available for your application to use.

• Your application may not be using PVM efficiently. Making a simple code
change may eliminate the error and also give you better performance.

Two of the out-of-resource conditions (PvmOutofResSMP and
PvmOutofResBuf) might occur only occasionally, due to unusual timing
circumstances. Instead of wasting memory to handle these unlikely situations,
consider writing your application to accept these errors if they occur and to
retry the action that caused the error until the action succeeds. For example, the
following code fragment retries a send until it succeeds:

10 CONTINUE

CALL PVMFSEND (OTHERPE, TAG, INFO)

007–3686–002 55

Message Passing Toolkit: PVM Programmer’s Manual

IF (INFO.EQ. PVMOUTOFRESSMP) GOTO 10

IF (INFO.LT.0) CALL ABORT()

Out-of-resource errors often appear when you are increasing the number of
processors being used or the size of the problem being solved. Several options
are available for dealing with the limits you encounter. The following sections
briefly discuss each limit, describe how to raise it, and identify ways to use
PVM more efficiently.

3.4.1 PvmOutOfResSMP

A pool of memory is allocated in each PE to receive messages from other PEs.
When a message is sent, the sending PE uses part of the pool on the receiving
PE for the message. At the beginning of various PVM functions, a receiving PE
checks for any messages in this pool and clears them out. If too many PEs try
to send messages before a PE can clear out the pool, the pool becomes
exhausted, and subsequent sends may fail with the PvmOutOfResSMP error.

By default, sends that detect this condition enter a retry loop, in which they
delay briefly and then recheck the pool. This loop is performed
PVM_RETRY_COUNT times (default is 500), and the PvmOutOfResSMP error is
issued at the end of this count. You can adjust this limit up or down as
described in Table 11, page 46. Many applications will find that increasing this
count is sufficient to get by the error.

You can also adjust the number of entries in the pool. The default limit is twice
the number of PEs or 10, whichever is larger. You can raise or lower this limit by
using the PVM_SM_POOL environment variable, described in Table 11, page 46.

If you are hitting the pool entry limit, you may want to see if the receiving PE
can be changed to call pvm_recv(3) or pvm_nrecv(3) sooner. This problem can
occur if all PEs are broadcasting to each other and then trying to receive the
results. By interspersing the broadcasts with the receives, you may avoid
having to raise the limit.

You may also hit the pool entry limit if many messages are being sent to a PE
that is busy doing some computation, waiting for I/O, or doing something else
that keeps it from entering PVM. Increasing the limit allows such operations to
proceed asynchronously; changing the code to operate more synchronously is
another option.

56 007–3686–002

UNICOS/mk Implementation [3]

3.4.2 PvmOutOfResBuf

The PvmOutOfResBuf error occurs only if you have set the send buffer
increment parameter to 0 (see Section 3.3.3.2, page 51, for information on setting
this parameter), indicating that you want a fixed number of send buffers.
Getting the error indicates that you underestimated the number of buffers that
you needed.

A send buffer cannot be reused until the data in it has been copied to the
receiving PE. If the data is smaller than the size of a short message
(PVM_DATA_MAX, which has a default of 4096 bytes), this copy occurs on the
pvm_send(3) call. For larger amounts of data, this copy does not occur until
the receiving PE has unpacked that data.

Make sure you are using buffers efficiently. Sometimes users convert code to
use PVM, and the code appears as follows:

for (... several PEs ...) {

pvm_initsend (PvmDataRaw);

pvm_pkbyte (addr, size,...);
pvm_send (...);

}

Here, the same data is being sent to each PE. However, a single packed buffer
can be used by multiple sends:

pvm_initsend (PvmDataRaw);

pvm_pkbyte (addr, size, ...);

for (... several PEs ...) {

pvm_send (...);

}

Or the single packed buffer can be used by a more efficient broadcast or
multicast such as the following example:

pvm_initsend (PvmDataRaw);

pvm_pkbyte (addr, size, ...);
pvm_mcast (...);

In both cases, a single send buffer is used. The data it contains is not freed until
all of the receiving PEs have responded, which may take a while; however,
your use of buffers and memory will be reduced. Also, your program will run
faster due to the reduced number of function calls.

007–3686–002 57

Message Passing Toolkit: PVM Programmer’s Manual

3.4.3 PvmOutOfResGmems

PVM allows groups to consist of as many PEs as you specify, up to the total
number of PEs in the partition. This is a general feature, but for large numbers
of PEs it can waste memory. This is especially true if your groups are small
relative to the number of PEs.

You can reduce the limit, and thus save memory, in either of two ways:

• Set the environment variable PVM_MAXGTIDS.

• Call pvm_setopt(3) with the PvmMaxgtids option (if this is done, the
function must be called on each PE before any groups are formed).

Remember that the UNICOS/mk version of PVM defines aglobal group,
consisting of all PEs in the partition. If you have code in which each PE is
joining a global group with your own name (perhaps code ported from a
network version of PVM), you should consider using the predefined global
group on the UNICOS/mk system. This will simplify your code, and you will
get better performance when using barriers across the group or broadcasts to
the group.

3.5 Distributed Mode

The following sections discuss several issues specific to the distributed mode of
the UNICOS/mk version. Using this mode requires that you use the PVM
daemon. If you are not familiar with the use of the PVM daemon, you may
want to read Section 2.3, page 6, before reading this section.

The following discussion assumes that the application you are running is using
two partitions in the UNICOS/mk system. This assumption is made only for
the sake of simplicity; your application can use other Silicon Graphics systems,
or other systems connected to your network. Most of the same issues still apply.

3.5.1 Major Issues

The following sections discuss several key issues related to the distributed
mode. The issues are as follows:

• PE communication

• UNICOS/mk executable files

• UNICOS/mk tasks

58 007–3686–002

UNICOS/mk Implementation [3]

• Cross-system dynamic groups

3.5.1.1 PE Communication

The PVM daemon runs on the UNICOS/mk system. A PE on the UNICOS/mk
system communicates with the daemon and with PVM tasks outside its own
partition. In theory, any PE can do so. But UNICOS limits the number of open
files per application and the number of open sockets in the system. So, if a
UNICOS/mk application running on a large number of PEs were to set up
communications for each PE, it may hit either or both of these limits.

Socket communications are very slow, especially compared to the speed of
communications between PEs. Because much of socket communication is
single-threaded in the PVM daemon, the performance cost goes up as more PEs
try to communicate at the same time.

For these reasons, by default, only PE 0 establishes communications with the
daemon, and you should consider using PVM in this manner. However, you
can specify additional PEs by setting the PVM_PE_LIST environment variable,
as follows:

setenv PVM_PE_LIST 0,4,8,12
setenv PVM_PE_LIST all

This environment variable must be set for both the PVM daemon pvmd3(1) and
the application to read, and both must read the same value.

Note: At present, PE 0 always establishes communications with the daemon,
even if PE 0 is not specified in PVM_PE_LIST. It is suggested that
PVM_PE_LIST specify PE 0, if it is being used, to ensure future compatibility.
It is possible that future releases may introduce other mechanisms for
controlling access to the daemon.

3.5.1.2 UNICOS/mk Executable Files

When you build your UNICOS/mk executable file, you can optionally fix the
number of PEs at load time. For such executable files, the pvm_spawn(3) count
parameter simply specifies the size of the tids array, and must be at least as
large as the PE count.

If you do not fix the number of PEs (for example, by using the -Xm option with
cld(1)), you have a malleable executable file. For these, the pvm_spawn count
parameter specifies the number of PEs that you want for the executable file.

007–3686–002 59

Message Passing Toolkit: PVM Programmer’s Manual

When pvm_spawn returns successfully, it returns a count value that specifies
the number of PEs that were started. The tids array is set with either of two
values in each entry:

• For PEs that can communicate with the daemon, the associated entry
contains a pvm_tid value.

• For PEs that cannot communicate with the daemon, the associated entry
contains the integer value 1, which is not a valid pvm_tid value.

3.5.1.3 UNICOS/mk Tasks

During startup, the UNICOS/mk program checks to determine if the PVM
daemon is running. If it is not, the program assumes it is in stand-alone mode.

3.5.1.4 Cross-system Dynamic Groups

You cannot form a dynamic group consisting of tasks from the UNICOS/mk
system and another system. You cannot form a dynamic group consisting of
tasks from more than one partition within a UNICOS/mk system. You must
view group handling on each system and partition as being completely
independent. If the UNICOS/mk tasks form a group called MYGROUP, and the
tasks in the network also join a group called MYGROUP, the two groups are
completely independent. A broadcast from a UNICOS/mk task to MYGROUP
sends messages only within that partition; no messages will go outside the
partition.

Note: In future releases, this limitation might be removed. Therefore, you
should not build your application assuming that the two groups are
independent; in a later release, they might form a single, combined group.

3.5.2 Session Example

You can use programs and commands a number of different ways to run a
distributed application involving the UNICOS/mk system. The following
example shows one way.

Example 3: Parent task spawning a child task

Assume that the parent task runs on a single PE in the UNICOS/mk system
and uses PVM. The key line of interest is the call to pvm_spawn(3). There are
several options for making this call. The following is a typical call:

count = pvm_spawn("mpp.a.out", 0, PvmTaskArch, "CRAY", nproc, tids);

60 007–3686–002

UNICOS/mk Implementation [3]

In the example, a variable, nproc, specifies the size of the tids array. If the
executable file (mpp.a.out) is built with a fixed PE count, nproc must be larger
than or equal to the PE count, and count returns the PE count. If the executable
file is built as a malleable executable file (that is, the number of PEs is not fixed),
nproc is the number of PEs to request, and count returns the same number.

By specifying that the task should run on a Cray system, the code assumes that
any Cray system in the virtual machine is acceptable. If not, PvmTaskHost
should be specified instead of PvmTaskArch.

There is little out of the ordinary in the parent task. It must be careful not to
use entries in the pvm_tid array that are set to a value of 1. It can communicate
with any other PE assigned to the executable file.

The child task on the UNICOS/mk system does not look very different from
one written to run in stand-alone mode. You must be careful to use pvm_tid,
instead of PE numbers, when referring to the parent task. You must also be
careful that only those PEs that can communicate with the daemon try to do so.
You can deal with both of these constraints by calling pvm_parent(3). If this
function returns a pvm_tid, that identifier can be used for communication. If the
function returns the PvmNoParent error, that PE cannot communicate with the
outside world. Section 2.3, page 6, describes how to start the PVM daemon and
your parent task.

3.5.3 System Calls and PVM

In distributed mode, PVM uses sockets for communication. Read and write
system calls actually transmit control and data across the sockets. Further, a
given PVM task may have several sockets open at once: one to its local daemon
and, optionally, one or more to specific tasks with which it is communicating.

The following facts have important implications regarding performance:

• System calls perform the I/O.

• There is a maximum size applied to data in a socket when it is transmitted
or received; the system divides up requests larger than this maximum.

• With multiple open sockets, it is necessary to use yet another call,
select(2), to look for incoming data or to determine if data can be output.

By default, in distributed mode, only PE 0 communicates with the PVM
daemon, but additional PEs can also be permitted to communicate (for more
information, see Section 3.5.1.1, page 59). If you are interested in performance,
think very carefully before using more than one PE to make PVM calls outside

007–3686–002 61

Message Passing Toolkit: PVM Programmer’s Manual

the UNICOS/mk partition. This guideline applies regardless of the other
options discussed in this chapter.

Because distributed mode is so dependent upon system calls, you should not
use it for sending small, frequent messages.

3.5.4 Data Conversion

If you are using PVM to communicate between a UNICOS/mk system and a
UNICOS system with Cray floating-point hardware, and you specify
PvmDataDefault when calling pvm_initsend(3), PVM converts the data
between IEEE and Cray formats for all forms of typed data. This is not done
very efficiently on the UNICOS end.

You can perform data conversion efficiently on the UNICOS system, however,
by using the data conversion functions available in the UNICOS Fortran
libraries (see the Application Programmer’s Library Reference Manual). If you are
using PVM to transfer the data, pack and unpack it with the byte options
(pvm_pkbyte(3), pvm_upkbyte(3), or the Fortran BYTE1 option) and then call
CRAY2IEG(3) or IEG2CRAY(3), as appropriate. If you are using file I/O, call
CRAY2IEG or IEG2CRAY, as appropriate, on the data you are about to write
from the UNICOS system or have just read from the UNICOS/mk system.

If you are using file I/O, an easier option is to use a Fortran I/O feature that
automatically converts data as it is read or written. These techniques are
described in the Application Programmer’s I/O Guide.

62 007–3686–002

Functions and Subroutines [4]

This chapter provides general information about PVM error messages and
include files, and briefly describes tasks and associated functions.

You can use the C and Fortran interfaces to the PVM library functions to
perform the following kinds of tasks:

• Basic operations (see Section 4.4, page 65)

• Task control (see Section 4.5, page 66)

• Option management (see Section 4.6, page 66)

• Dynamic system configuration (see Section 4.7, page 67)

• Dynamic task group management (see Section 4.8, page 67)

• Data transmittal (see Section 4.9, page 68)

• Data receipt (see Section 4.10, page 69)

• Barrier synchronization (see Section 4.11, page 71)

• Global operations (see Section 4.12, page 72)

• Signaling (see Section 4.13, page 73)

• Error handling (see Section 4.14, page 73)

This chapter briefly describes these tasks. The functions associated with each
task are listed in a table. In each table, the functions are grouped as they are
described on the man pages, and the groups are listed in the order you usually
use them to perform the tasks.

In most cases, each logical PVM function is represented by a C function and a
Fortran subroutine. For more information about a specific function or
subroutine, use the man(1) command to view the associated man page online.
To simplify references, this discussion refers to C functions, C++ functions, and
Fortran subroutines as functions unless individual differences require
documentation.

When the C interfaces specify char * as a data type, the Fortran interfaces
generally permit specification of Fortran character variables or constants.
However, these Fortran values are processed as C strings; therefore, a null

007–3686–002 63

Message Passing Toolkit: PVM Programmer’s Manual

character in the middle of the character sequence, which is valid in Fortran,
terminates the string.

4.1 Error Messages

For a complete list of the PVM error messages and the value associated with
each, see Appendix A, page 75. In general, PVM functions return PvmOk (0) or
a negative number for errors. Some functions return positive values with other
meanings or have special return codes. Error checks should be coded as less
than 0, rather than not equal to 0.

You can control the actions that PVM takes when it detects an error. The default
is to print an ASCII message and return an error code to the caller. For more
information, see the pvm_setopt(3) man page for a description of the
PvmAutoErr option.

4.2 Process Identifiers

All processes that enroll in PVM are represented by an integer task identifier, a
pvm_tid. Because pvm_tid values must be unique across the entire virtual
machine, they are supplied by PVM and are not chosen by the user. The
following routines return pvm_tid values:

pvm_bufinfo(3)

pvm_gettid(3)

pvm_mytid(3)

pvm_parent(3)

pvm_spawn(3)

4.3 PVM Include Files

PVM include files for the MPT release are installed in the
$PVM_ROOT/include directory. If the mpt module has been loaded, this
include file directory will be searched before any standard include directories.

For better portability, you can refer to PVM include files in your source and
specify the include file directory on the compiler command line, as follows:

64 007–3686–002

Functions and Subroutines [4]

From C:

#include <pvm3.h>

cc -I $PVM_ROOT/include

From Fortran:

include "fpvm3.h"

f90 -I $PVM_ROOT/include

Note: PVM include files may exist in the /usr/include directory if your
site has also installed the Cray network version of PVM. Be careful not to use
those files by mistake.

4.4 Basic Operations

You can perform basic PVM operations by using the functions in Table 14.
Some of the functions are standard PVM shared memory implementation
features for UNICOS/mk systems, but represent an implementation extension
for UNICOS systems. These are marked “UNICOS extension.”

Table 14. Basic Operations Functions

C and C++ function Fortran subroutine Description

_my_pe MY_PE Returns the PE number of the PVM task
that calls it (UNICOS extension)

_num_pes NUM_PES Returns the total number of PEs (or PVM
tasks) in the program (UNICOS
extension)

pvm_freezegroup PVMFFREEZEGROUP Freezes dynamic group membership and
caches information locally

pvm_get_PE PVMFGETPE Converts a task ID into a PE number
(UNICOS extension)

pvm_hostsync PVMFHOSTSYNC Gets the time-of-day clock from the PVM
host

pvm_mytid PVMFMYTID Returns the pvm_tid of the calling task

007–3686–002 65

Message Passing Toolkit: PVM Programmer’s Manual

C and C++ function Fortran subroutine Description

pvm_parent PVMFPARENT Returns the pvm_tid for the task that
spawned the calling task

pvm_tidtohost PVMFTIDTOHOST Returns the pvm_tid for the PVM
daemon task

4.5 Task Control

You can control PVM process creation and termination by using the task control
functions in Table 15.

Table 15. Task Control Functions

C and C++ function Fortran subroutine Description

pvm_catchout PVMFCATCHOUT Catches output from child tasks

pvm_exit PVMFEXIT Exits PVM

pvm_halt PVMFHALT Shuts down the entire PVM system

pvm_kill PVMFKILL Terminates a PVM task

pvm_pstat PVMFPSTAT Determines if a PVM task is executing

pvm_reg_hoster (Not applicable) Registers a task as the PVM host starter

pvm_reg_tasker (Not applicable) Registers a task as the PVM task starter

pvm_spawn PVMFSPAWN Starts a new PVM task

4.6 Option Management

You can control PVM options by using the functions in Table 16.

66 007–3686–002

Functions and Subroutines [4]

Table 16. Option Management Functions

C and C++ function Fortran subroutine Description

pvm_setopt PVMFSETOPT Sets a PVM option

pvm_getopt PVMFGETOPT Returns the current value of a PVM
option

4.7 Dynamic System Configuration

The dynamic system configuration functions, described in Table 17, allow PVM
to be dynamically configured by the application. Systems may be added or
removed from the virtual machine, and information can be obtained about a
particular system or about the virtual machine as a whole.

Table 17. Dynamic System Configuration Functions

C and C++ function Fortran subroutine Description

pvm_addhosts
pvm_delhosts

PVMFADDHOST
PVMFDELHOST

Adds or deletes one or more systems

pvm_config PVMFCONFIG Returns the configuration of the virtual
machine

pvm_mstat PVMFMSTAT Returns the status of the specified
system

pvm_tasks PVMFTASKS Returns information about tasks

4.8 Dynamic Task Group Management

A PVM application can form dynamic groups of tasks during its execution.
Usually, these groups are established to simplify multicasting (the broadcast of
data to a number of tasks) and barrier synchronization. Tasks can join and
leave groups as desired.

A group is identified by a character string that is assigned by the user. All tasks
that want to join a group must specify the same character string.

007–3686–002 67

Message Passing Toolkit: PVM Programmer’s Manual

Dynamically joining and leaving a group must be done with care.
Synchronization problems can arise if, for example, one task is joining a group
at the same time another task is broadcasting a message to the group.
Participating tasks should synchronize at a barrier before trying to use a group.

Dynamic task group management functions are described in Table 18.

Table 18. Dynamic Task Group Management Functions

C and C++ function Fortran subroutine Description

pvm_getinst PVMFGETINST Returns the instance number of a task

pvm_gettid PVMFGETTID Returns the pvm_tid for a task

pvm_gsize PVMFGSIZE Returns the number of tasks in a group

pvm_joingroup
pvm_lvgroup

PVMFJOINGROUP
PVMFLVGROUP

Joins or leaves a dynamic group

4.9 Data Transmittal

There are two methods in PVM for sending messages. The simpler method,
which involves the use of the pvm_psend(3) function, lets you make a single
call to transmit a contiguous block of data to another PVM task.

The more complex method involves three steps:

1. Initializing a send buffer

2. Packing one or more blocks of data into the buffer

3. Transmitting the buffer to one or more tasks

The second method is more powerful and flexible than the first, but runs more
slowly. Messages can be sent to a particular task, can be broadcast to all
members of a group, can be broadcast to all tasks, or can be multicast to a list
of tasks.

You can use the data transmittal functions in Table 19, to transmit data.

68 007–3686–002

Functions and Subroutines [4]

Table 19. Data Transmittal Functions

C and C++ function Fortran subroutine Description

pvm_bcast PVMFBCAST Broadcasts a message to all tasks in a
group.

pvm_getsbuf PVMFGETSBUF Returns the buffer identifier of the
current send buffer.

pvm_initsend PVMFINITSEND Initializes a send buffer.

pvm_mcast PVMFMCAST Broadcasts a message to all tasks in an
array.

pvm_mkbuf
pvm_freebuf

PVMFMKBUF
PVMFFREEBUF

Creates send buffers or releases buffers.

pvm_psend PVMFPSEND Packs and sends data in one call.

pvm_pkint
pvm_pkshort
pvm_pklong
pvm_pkuint
pvm_pkushort
pvm_pkulong
pvm_pkfloat
pvm_pkdouble
pvm_pkcplx
pvm_pkdcplx
pvm_pkbyte
pvm_pkstr
pvm_packf

PVMFPACK Inserts data values into the send buffer.
See pvm_pk(3).

pvm_send PVMFSEND Sends a message to a single task.

pvm_setsbuf PVMFSETSBUF Specifies a new buffer as the current
send buffer.

4.10 Data Receipt

There are two methods in PVM for receiving messages. The simpler method,
which involves the use of the pvm_precv(3) function, lets you make a single
call to receive a message and store its data into a contiguous block of data. This

007–3686–002 69

Message Passing Toolkit: PVM Programmer’s Manual

is a blocking receive; the calling task does not return until an appropriate
message arrives.

The more complex method involves two steps:

1. Receiving a message. (You can choose either a blocking or a nonblocking
form of receive.)

2. Unpacking one or more blocks of data from the message.

Both methods allow you to choose the message to receive. You can choose to
receive a message of any of the following types:

• A message with a specific message tag sent by a specific PVM task

• Any message sent by a specific PVM task

• A message with a specific message tag sent by any PVM task

• Any message at all

In addition, PVM provides an optional capability that lets you select a message
based on any criteria (including the contents of the message itself). To use this
feature, you must write a comparison function (in C) and call pvm_recvf(3) or
pvm_trecv(3). PVM then calls this comparison function on each subsequent
pvm_recv(3) or pvm_nrecv(3) call to identify the message that should be
selected.

After a message has been received, the data is available in an internal receive
buffer, and additional functions must be called to transfer (and convert) this
data into user buffers. Any combination and number of calls to the unpacking
functions may be made to move this data into user memory, but it is
recommended that the sequence of unpacking calls match the sequence of
packing calls that built up the data for the message. It may be possible to use a
different sequence, but you should be aware that this depends on
undocumented, underlying data packing and transfer mechanisms. (This is
particularly dangerous if you use pvm_pkstr(3) or if you use pvm_pkbyte(3)
with a byte count that is not a multiple of 8. Also, if you ever anticipate using
this code on another system or across heterogeneous systems, you should avoid
using a different sequence.)

The data receipt functions are described in Table 20.

70 007–3686–002

Functions and Subroutines [4]

Table 20. Data Receipt Functions

C and C++ function Fortran subroutine Description

pvm_bufinfo PVMFBUFINFO Returns information about a message.

pvm_freebuf PVMFFREEBUF Releases receive buffers. See
pvm_mkbuf(3).

pvm_getrbuf PVMFGETRBUF Returns the buffer identifier of the
current receive buffer.

pvm_precv PVMFPRECV Receives a message directly into a buffer.

pvm_recv
pvm_nrecv
pvm_probe

PVMFRECV
PVMFNRECV
PVMFPROBE

Receives a message or probes for a
message.

pvm_recvf (Not applicable) Supplies a user-written comparison
function.

pvm_setrbuf PVMFSETRBUF Specifies a new buffer as the current
receive buffer.

pvm_trecv PVMFTRECV Receives a message with a time-out.

pvm_upkint
pvm_upkshort
pvm_upklong
pvm_upkuint
pvm_upkushort
pvm_upkulong
pvm_upkfloat
pvm_upkdouble
pvm_upkcplx
pvm_upkdcplx
pvm_upkbyte
pvm_upkstr
pvm_unpackf

PVMFUNPACK Extracts values from received messages.
See pvm_upk(3).

4.11 Barrier Synchronization

The pvm_barrier(3) function described in Table 21 lets PVM tasks explicitly
synchronize with one another. Calling this function causes the task to block
(wait) until a specified number of tasks in a group have called the function.

007–3686–002 71

Message Passing Toolkit: PVM Programmer’s Manual

When this occurs, all waiting tasks are unblocked. The calling task must be a
member of the group, and the count argument must be the same for all tasks
that use the same barrier.

The barrier(3) function described in Table 21 lets multitasked PVM tasks
explicitly synchronize with one another. This function is useful when PVM is
being used in stand-alone mode for global synchronization between all
multitasked PVM tasks.

Table 21. Barrier Synchronization Function

C and C++ function Fortran subroutine Description

barrier BARRIER Creates a barrier to synchronize
multitasked PVM tasks (UNICOS/mk
and UNICOS PVM shared memory
implementation extension)

pvm_barrier PVMFBARRIER Creates a barrier to synchronize tasks

4.12 Global Operations

The functions in Table 22 allow the tasks in a group to participate in a global
operation. All tasks in the group must call the same function at the same time.

The pvm_reduce(3) function supports sum, product, max, and min operations,
as well as user-defined operations.

Table 22. Global Operations Functions

C and C++ function Fortran subroutine Description

pvm_gather PVMFGATHER Gathers data from group members into
an array

pvm_reduce PVMFREDUCE Performs a reduction operation across a
group

pvm_scatter PVMFSCATTER Sends a section of an array to each
member of the group

72 007–3686–002

Functions and Subroutines [4]

4.13 Signaling

The functions in Table 23 support sending signals of different kinds to PVM
tasks.

Table 23. Signaling Functions

C and C++ function Fortran subroutine Description

pvm_notify PVMFNOTIFY Notifies tasks of specific events

pvm_sendsig PVMFSENDSIG Sends a signal to a task

4.14 Error Handling

The function in Table 24 provides simple help for handling PVM-generated
errors.

Table 24. Error Handling Function

C and C++ function Fortran subroutine Description

pvm_perror PVMFPERROR Outputs a PVM error message

For more information on controlling PVM behavior, see the pvm_setopt(3)
man page.

007–3686–002 73

PVM Error Messages [A]

Table 25 lists the errors detected by PVM. These error message descriptions
include the following information:

• Text of the error message written to standard error by PVM functions

• Numeric value of the error returned by PVM functions

• Symbol name for each error, as defined within the PVM include files

• Additional information about the error

Be cautious in your use of the numeric values, because the values assigned to
the symbols may change at any time and without any notice.

Errors with numeric values of –100 and below are Silicon Graphics extensions.

Table 25. Error Messages Issued by PVM Functions

Error text Value Symbol Additional information

0 PvmOk

–1 Reserved

Bad parameter –2 PvmBadParam A bad parameter was passed to the
function.

Count mismatch –3 PvmMismatch The count parameter does not match
the count used in peer tasks.

Value too large –4 PvmOverflow A value is too large to be packed or
unpacked.

End of buffer –5 PvmNoData The end of a message buffer was
reached while trying to unpack data.

No such host –6 PvmNoHost There is no host in the virtual machine
with the specified name, or the name
could not be resolved to an address.

No such file –7 PvmNoFile The specified executable file does not
exist.

–8 Reserved

007–3686–002 75

Message Passing Toolkit: PVM Programmer’s Manual

Error text Value Symbol Additional information

–9 Reserved

Malloc failed –10 PvmNoMem malloc failed to get memory for
libpvm.

–11 Reserved

Can’t decode
message

–12 PvmBadMsg The received message has a data
format native to another machine,
which cannot be decoded by libpvm.

–13 Reserved

System error –14 PvmSysErr libpvm could not contact a pvmd
daemon on the local host, or the
pvmd failed during an operation.

No current buffer –15 PvmNoBuf There is no current message buffer to
pack or unpack.

No such buffer –16 PvmNoSuchBuf There is no message buffer with the
specified buffer handle.

Null group name –17 PvmNullGroup A null group name was passed to a
function.

Already in group –18 PvmDupGroup The task is already a member of the
group it attempted to join.

No such group –19 PvmNoGroup The specified group does not exist.

Not in group –20 PvmNotInGroup The specified group has no such
member task.

No such instance –21 PvmNoInst The specified group has no member
with this instance.

Host failed –22 PvmHostFail A foreign host in the virtual machine
failed during the requested operation.

No parent task –23 PvmNoParent This task has no parent task.

Not implemented –24 PvmNotImpl This libpvm function or option is not
implemented.

Pvmd system error –25 PvmDSysErr An internal mechanism in the pvmd
daemon failed during the requested
operation.

76 007–3686–002

PVM Error Messages [A]

Error text Value Symbol Additional information

Version mismatch –26 PvmBadVersion Two PVM components (a pvmd
daemon and a task, two pvmd
daemons, or two tasks) have
incompatible protocol versions and
cannot interoperate.

Out of resources –27 PvmOutofRes The requested operation could not be
completed due to lack of resources.

Duplicate host –28 PvmDupHost An attempt was made to add the
same host to a virtual machine more
than once, or to add a host already a
member of another virtual machine
owned by the same user.

Can’t start pvmd –29 PvmCantStart A pvmd daemon could not be started
on the local host, or a slave pvmd
daemon could not be started on a
remote host.

Already in progress –30 PvmAlready The requested operation requires
exclusive access, and another
operation was already in progress.

No such task –31 PvmNoTask No task exists with the given TID.

No such entry –32 PvmNoEntry The class server has no entry
matching the lookup request.

Duplicate entry –33 PvmDupEntry The class server already has an entry
matching the insert request.

Name too long –100 PvmTooLong

Async transfers
still active

–101 PvmStillActive

Precision lost on
default pack

–102 PvmLostPrecision

Out of buffers –103 PvmOutOfResBuf The requested operation could not be
completed due to lack of data buffer
resources.

Out of shared
memory pool

–104 PvmOutOfResSMP The requested operation could not be
completed due to lack of SMP
resources.

007–3686–002 77

Message Passing Toolkit: PVM Programmer’s Manual

Error text Value Symbol Additional information

Too many group
members

–105 PvmOutOfResGmems The requested operation could not be
completed due to lack of resources.

Too much data
packed

–106 PvmTooMuchData

Hit PVM_TOTAL_PACK
limit

–107 PvmMemLimit

Cannot communicate –200 PvmNoCom A multitasked task cannot
communicate with the PVM daemon.

78 007–3686–002

PVM Man Pages [B]

The following list shows the online PVM man pages, which document the
specified commands and functions (arranged alphabetically).

man1 pages:

• pvm_intro(1)

• pvm(1)

• pvmd3(1)

man3 pages:

• pvm_addhosts(3)

• pvm_barrier(3)

• pvm_bcast(3)

• pvm_bufinfo(3)

• pvm_catchout(3)

• pvm_channels(3)

• pvm_config(3)

• pvm_disptrace(3)

• pvm_exit(3)

• pvm_freezegroup(3)

• pvm_gather(3)

• pvm_getfds(3)

• pvm_get_PE(3)

• pvm_getinst(3)

• pvm_getrbuf(3)

• pvm_getsbuf(3)

• pvm_gettid(3)

007–3686–002 79

Message Passing Toolkit: PVM Programmer’s Manual

• pvm_gsize(3)

• pvm_halt(3)

• pvm_hostsync(3)

• pvm_initsend(3)

• pvm_joingroup(3)

• pvm_kill(3)

• pvm_mcast(3)

• pvm_mkbuf(3)

• pvm_mstat(3)

• pvm_mytid(3)

• pvm_notify(3)

• pvm_parent(3)

• pvm_perror(3)

• pvm_pk(3)

• pvm_precv(3)

• pvm_psend(3)

• pvm_pstat(3)

• pvm_recv(3)

• pvm_recvf(3)

• pvm_reduce(3)

• pvm_reg_hoster(3)

• pvm_reg_tasker(3)

• pvm_scatter(3)

• pvm_send(3)

• pvm_sendsig(3)

• pvm_setopt(3)

80 007–3686–002

PVM Man Pages [B]

• pvm_setrbuf(3)

• pvm_setsbuf(3)

• pvm_spawn(3)

• pvm_tasks(3)

• pvm_tidtohost(3)

• pvm_trecv(3)

• pvm_upk(3)

007–3686–002 81

Glossary

asynchronous

An asynchronous operation or function proceeds in parallel with its initiator.
The initiator must check later to see if the operation or function has completed.

blocking

A blocking function is one that does not return until the function is complete.

broadcast

To send messages to multiple tasks. Often, a broadcast is used in the sense of
sending to all tasks, whereas multicast is used in the sense of sending to an
arbitrary set of tasks.

cplx

A data item consisting of two successive float types.

dcplx

A data item consisting of two successive double types.

dynamic groups

Groups in which tasks can join and leave groups at any time.

EU

Emory University.

global groups

A group consisting of all the tasks (or PEs) in the MPP partition.

message passing

A parallel programming style in which explicit messages (containing a
user-defined, integer message type and data) are sent between tasks.

007–3686–002 83

Message Passing Toolkit: PVM Programmer’s Manual

multicast

To send messages to multiple tasks. See also broadcast.

nonblocking

A nonblocking function is one that returns immediately.

NQE

Network Queuing Environment.

ORNL

Oak Ridge National Laboratory.

partition

A collection of PEs that are assigned to a job running on Cray MPP systems.

PE

Processing element.

probe

A message passing concept in which a check is made to see if a message is
available, though the message is not actually received at that time.

PVM

Parallel Virtual Machine.

PVM console

A user-level command that lets you monitor and control your PVM system.
The console is run with the command pvm.

PVM daemon

A user-level process that controls and manages PVM activity on a given host
machine. The daemon is run with the command pvmd3.

84 007–3686–002

Glossary

pvm_tid
The name used in this manual to refer to a PVM task identifier, which is used
to reference a specific PVM task.

RPC

Remote Procedure Call.

SIMD

Single instruction, multiple data.

SPMD

Same program, multiple data.

Stand-alone mode

PVM is used for communication between tasks within a single executable file
with no PVM daemon present. On Cray PVP machines, this mode uses the
Cray multitasking function to provide memory as a PVM task communication
mechanism, which offers enhanced communication.

stride

The spacing between elements.

synchronous

A synchronous operation or function does not return control to its initiator until
it has completed the requested operation or function.

task

An independent, parallel process.

task identifier

A 32-bit integer uniquely identifying a PVM task.

UDP

User datagram protocol.

007–3686–002 85

Message Passing Toolkit: PVM Programmer’s Manual

UT

University of Tennessee.

XDR

eXternal Data Representation.

86 007–3686–002

Index

A

add command, 7, 17
alias command, 17
Alternative login name, 9, 10
Ampersand use, 7, 12
Applications

output, 14
PVM, 6
running, 13, 28
terminology, 3

Architecture types, 12
assign command, 27
Asynchronous operation, 83
Autotasking, 30

B

barrier function, 72
BARRIER subroutine, 72
Barrier synchronization functions, 71
Basic operations functions, 65
Blocking function, 83
Broadcasting messages, 83
Buffer memory

control, 50
design, 49
management, 48
memory use, 49, 54

Byte transfer, 34

C

C and C++ functions, 63
Communication, 2
Computational speed, 10
conf command, 17

Console
commands, 16
starting, 15
usage, 15

cplx item, 83
csh command, 22
.cshrc file, 22
Customizing environment, 8

D

Daemon starting, stopping, 12
Data

block size, 47
conversion, 34
receipt functions, 69
transmittal functions, 68

Data types
Fortran, 36
on IRIX systems, 38
on UNICOS systems, 35
on UNICOS/mk systems, 36

Data-losing check, 46
dcplx item, 83
Debugger path, 9
delete command, 17
Direct routing, 32
Distributed mode

building executable files, 59
data conversion, 62
definition, 43
determining, 60
dynamic groups, 60
major issues, 58
PE communication, 59
session example, 60
system calls, 61

007–3686–002 87

Message Passing Toolkit: PVM Programmer’s Manual

Dollar sign use, 10
Dynamic

groups, 43, 60, 83
system configuration functions, 67
task management functions, 67

E

echo command, 17
Environment variable setting

IRIX systems, 40
UNICOS and IRIX systems, 40

Environment variables, 39
for stand-alone mode, 45
NLB_SERVER, 42
PVM_AUTO_ERR, 46
PVM_CHECKING, 46
PVM_DATA_BUFFERS, 46, 52
PVM_DATA_MAX, 47
PVM_DEBUGGER, 41
PVM_DPATH, 41
PVM_EXPORT, 41
PVM_MAX_PACK, 47, 52
PVM_MAXGTIDS, 47
PVM_PE_LIST, 47
PVM_POLICY, 41
PVM_RETRY_COUNT, 48
PVM_ROOT, 41
PVM_RSH, 42
PVM_SHMEM_DIR, 40
PVM_SLAVE_STARTUP_TIMEOUT, 42
PVM_SM_POOL, 48
PVM_TOTAL_PACK, 48
PVM_TRACE, 48
PVM_VMID, 40
PVMBUFSIZE, 40
to change defaults, 45

Error handling
functions, 73
variable, 46

Errors
messages, 13, 75

out-of-resource, 55
PVM messages, 64
PvmLostPrecision, 38
PvmMemLimit, 53
PvmOutOfResBuf, 57
PvmOutOfResGmems, 58
PvmOutOfResSMP, 56
PvmTooMuchData , 53

Executable file building, 7

F

Files
pvm3/lib/pvmd, 41
$PVM_ROOT/lib/debugger, 41
$PVM_ROOT/lib/pvmd, 41
/tmp/pvmd.uid, 14

Fixed limits, 55
Fortran data types, 36
Fortran subroutines, 63
Functions, 36, 54

barrier synchronization, 71
basic operations, 65
data receipt, 69
data transmittal, 68
dynamic system configuration, 67
error handling, 73
global operations, 72
_my_pe, 65
nonblocking, 84
_num_pes, 65
option management, 66
PVM task descriptions, 63
pvm_disptrace, 48
pvm_get_PE, 43, 44
pvm_getopt, 50
pvm_gsize, 44
pvm_initsend, 51
pvm_nrecv, 56
pvm_parent, 45
pvm_recv, 56

88 007–3686–002

Index

pvm_send, 57
pvm_setopt, 45
pvm_spawn, 46
return codes, 64
signaling, 73
task control, 66

G

Global groups, 58, 83
Global operation functions, 72
Group definitions, 43, 58

H

halt command, 13, 17, 20
help command, 17
Host file

example, 8, 11
format, 7
options, 8
sample, 8

I

id command, 17
Incorrect login, 21
Incorrect version, 22

J

jobs command, 17

K

kill command, 17

L

Library
PVM, 1
stand-alone, 1

Load balancing, NQE, 8
Login incorrect, 21
Login name, 9, 10

M

Master host, 8
Memory upper limit, 48
Message

error, 75
passing, 83
sending retries, 48
size, 47

MPT components, 1
MPT overview, 1
mstat command, 17
Multicasting, 67, 84
Multiprocessor systems, 23
MY_PE subroutine, 65
_my_pe function, 65

N

Network name, 9
NLB_SERVER environment variable, 42
Nonblocking function, 84
NQE

integrated with PVM, 2
load balancing, 8
policy, 8

NQS for PVM applications, 14
NUM_PES subroutine, 65
_num_pes function, 65

007–3686–002 89

Message Passing Toolkit: PVM Programmer’s Manual

O

Optimizing PVM usage, 23
Option management, 66
Out-of-resource errors, 55

P

Packing functions, 36
Passwords, 9, 10, 13
Paths, 9
PE

list, 47
numbers, 44

Permission problems, 19
Policy, 8
Private files, 27
Probe concept, 84
Process

definition, 3
identifiers, 64

Program
development, 6
output, 14

ps command, 17
pstat command, 18
PVM

applications, 5, 6
as a virtual machine, 5
building executable files, 7
detected errors, 64
direct routing, 32
error messages, 75
functionality, 5
host, 5
include files, 64
IRIX system data types, 38
library, 1
man page list, 79
optimizing use of, 23
overview, 1
policy, 8

program development, 6
running applications, 28
running as an NQE job, 31
running in stand-alone mode on UNICOS

systems, 30
running on UNICOS/mk systems, 31
shared memory limitations, 34
shared memory modifications, 24
shared memory process initiation, 26
socket communication, 33
system calls, 61
task descriptions, 63
task identifier, 43
terminology and scenarios, 3
troubleshooting, 19
UNICOS system data types, 35
UNICOS/mk system data types, 36
using load balancing, 32
versions, 2
XDR conversion, 33

PVM applications, 13
pvm command, 15
pvm3/lib/pvmd file, 41
pvm_addhosts function, 7, 67
pvm_barrier function, 72
pvm_bcast function, 69
pvm_bufinfo function, 64, 71
pvm_catchout function, 14, 66
pvm_config function, 67
PVM_DATA_BUFFERS environment variable, 52
PVM_DEBUGGER environment variable, 41
pvm_delhosts function, 67
pvm_disptrace function, 48
PVM_DPATH environment variable, 41
pvm_exit function, 66
PVM_EXPORT environment variable, 41
pvm_freebuf function, 69, 71
pvm_freezegroup function, 65
pvm_gather function, 72
pvm_get_PE function, 43, 44, 65
pvm_getinst function, 68
pvm_getopt function, 50, 67

90 007–3686–002

Index

pvm_getrbuf function, 71
pvm_getsbuf function, 69
pvm_gettid function, 64, 68
pvm_gsize function, 44, 68
pvm_halt function, 66
pvm_hostsync function, 65
pvm_initsend function, 33, 51, 69
pvm_joingroup function, 68
pvm_kill function, 66
pvm_lvgroup function, 68
PVM_MAX_PACK environment variable, 52
pvm_mcast function, 69
pvm_mkbuf function, 69
pvm_mstat function, 67
pvm_mytid function, 64, 65
pvm_notify function, 73
pvm_nrecv function, 56
pvm_parent function, 45, 64, 66
pvm_perror function, 73
pvm_pk functions, 34, 36
pvm_pkbyte function, 54
pvm_pkint function, 69
pvm_pklong function, 69
pvm_pkshort function, 69
pvm_pkuint function, 69
pvm_pkushort function, 69
PVM_POLICY environment variable, 41
pvm_precv function, 71
pvm_psend function, 69
pvm_pstat function, 66
pvm_recv function, 56, 71
pvm_recvf function, 71
pvm_reduce function, 72
pvm_req_hoster function, 66
pvm_req_tasker function, 66
PVM_ROOT environment variable, 41
$PVM_ROOT/lib/debugger file, 41
$PVM_ROOT/lib/pvmd file, 41
PVM_RSH environment variable, 42
pvm_scatter function, 72
pvm_send function, 33, 57, 69
pvm_sendsig function, 73
pvm_setopt function, 14, 32, 45, 67

pvm_setrbuf function, 71
pvm_setsbuf function, 69
PVM_SHMEM_DIR environment variable, 40
PVM_SLAVE_STARTUP_TIMEOUT

environment variable, 42
pvm_spawn command, 32
pvm_spawn failure, 22
pvm_spawn function, 46, 64, 66
pvm_tasks function, 67
pvm_tids, 64

definition, 43
pvm_tidtohost function, 66
pvm_trecv function, 71
pvm_upk functions, 34
pvm_upkint function, 71
PVM_VMID environment variable, 40
PVMBUFSIZE environment variable, 40
pvmd3 command, 32
pvmd3 location, 9, 10, 12
PvmDataBuffers option, 51
PvmDataBuffersIncr option, 52
PvmDataDefault encoding, 38, 48
PvmDataInPlace

encoding, 44
PvmDataInPlace encoding, 54
PvmDataRaw encoding, 33, 38, 48
PVMFADDHOST subroutine, 67
PVMFBARRIER subroutine, 72
PVMFBCAST subroutine, 69
PVMFBUFINFO subroutine, 71
PVMFCATCHOUT subroutine, 66
PVMFCONFIG subroutine, 67
PVMFEXIT subroutine, 66
PVMFFREEBUF subroutine, 71
PVMFFREEZEGROUP subroutine, 65
PVMFGATHER subroutine, 72
PVMFGETINST subroutine, 68
PVMFGETOPT subroutine, 67
PVMFGETPE subroutine, 65
PVMFGETRBUF subroutine, 71
PVMFGETSBUF subroutine, 69
PVMFGETTID subroutine, 68

007–3686–002 91

Message Passing Toolkit: PVM Programmer’s Manual

PVMFGSIZE subroutine, 68
PVMFHALT subroutine, 66
PVMFHOSTSYNC subroutine, 65
PVMFINITSEND subroutine, 69
PVMFJOINGROUP subroutine, 68
PVMFKILL subroutine, 66
PVMFMCAST subroutine, 69
PVMFMKBUF subroutine, 69
PVMFMSTAT subroutine, 67
PVMFMYTID subroutine, 65
PVMFNOTIFY subroutine, 73
PVMFPACK subroutine, 69
PVMFPARENT subroutine, 66
PVMFPERROR subroutine, 73
PVMFPRECV subroutine, 71
PVMFPSEND subroutine, 69
PVMFPSTAT subroutine, 66
PVMFRECV subroutine, 71
PVMFREDUCE subroutine, 72
PVMFSCATTER subroutine, 72
PVMFSEND subroutine, 69
PVMFSENDSIG subroutine, 73
PVMFSETOPT subroutine, 67
PVMFSETRBUF subroutine, 71
PVMFSETSBUF subroutine, 69
PVMFSPAWN subroutine, 66
PVMFTASKS subroutine, 67
PVMFTIDTOHOST subroutine, 66
PVMFTRECV subroutine, 71
PVMFUNPACK subroutine, 71
PvmLostPrecision error, 38
PvmMaxPack option, 52, 53, 55
PvmMaxPackIncr option, 55
PvmMemLimit error, 53
PvmOutOfResBuf error, 51
PvmOutOfResGmems errors, 58
PvmOutOfResSMP errors, 56
PvmOutputCode option, 14
PvmOutputTid option, 14
PvmTooMuchData error, 53
PvmTotalPack option, 54
PvmTraceOpts option, 48

Q

quit command, 18

R

Remote systems
passwords, 13
permission, 21
start failure, 20
start-up, 9

remsh command, 20
reset command, 18
Return codes, 64
rexec command, 9
.rhosts file, 20, 21
rlogin command, 21
rsh command, 9, 20

S

Send buffers
definition, 48
increment, 51, 52
initial number, 51
initial size, 52
setting number of, 46
total memory use, 53

setenv command, 18
Shared memory pool, 48
sig command, 18
Signaling functions, 73
SIMD mode, 85
Socket

communication, 33
use, 61

spawn command, 14, 19
SPMD mode, 85
Stand-alone library, 1
Stand-alone mode

92 007–3686–002

Index

definition, 43
determining, 60
extensions, 30
functions not supported, 28
setting environment variables, 45

Starting the daemon, 12
Stopping the daemon, 12
Stride, 85
stty command, 22
Synchronization, 71

T

Task
control functions, 66
definition, 3
groups, 67
identifier, 85
limit in group, 47

TASKCOMMON storage, 24
telnet command, 21
tickle comand, 22
/tmp/pvmd.uid file, 14
trace command, 19
Trace option mask, 48
Transfer speeds, 2
Troubleshooting, 19
tset command, 22

U

unalias command, 19

UNICOS/mk version
distributed mode, 45
special features, 43
stand-alone mode, 43, 45

Unpacking functions, 36
User-controlled conversion, 34
User-defined operations, 72

V

Version
distributed mode, 43
incorrect, 22

version command, 19
Virtual machine

automatic creation, 32
description, 5

W

who am i command, 21
Working directory, 10

X

XDR conversion, 33

007–3686–002 93

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3686-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

