
Message Passing Toolkit:
MPI Programmer’s Manual

007–3687–006

CONTRIBUTORS

Written by Julie Boney
Illustrations by Chrystie Danzer
Production by Glen Traefald

COPYRIGHT
©1996, 2002 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIS, and IRIX are registered trademarks and IRIS InSight is a trademark of Silicon Graphics, Inc.

DynaWeb is a trademark of INSO Corporation. Kerberos is a trademark of Massachusetts Institute of Technology. MIPS is a trademark
of MIPS Technologies, Inc. NFS is a trademark of Sun Microsystems, Inc. PostScript is a trademark of Adobe Systems, Inc. TotalView
is a trademark of Bolt Beranek and Newman Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd. X/Open is a registered trademark of X/Open Company, Ltd.

Cover design by Sarah Bolles Design, and Dany Galgani, SGI Technical Publications

New Features

This revision of the Message Passing Toolkit: MPI Programmer’s Manual supports the 1.6
release of the Message Passing Toolkit (MPT) for IRIX and Linux systems. The
following new features are documented in this version of the manual:

• MPI-2 MPI_Spawn functionality

• New environment variables

• New optimization chapter

• New frequently asked questions chapter

007–3687–006 iii

Record of Revision

Version Description

1.0 January 1996
Original Printing. This manual documents the Message Passing
Toolkit implementation of the Message Passing Interface (MPI).

1.1 August 1996
This revision supports the Message Passing Toolkit (MPT) 1.1
release.

1.2 January 1998
This revision supports the Message Passing Toolkit (MPT) 1.2
release for UNICOS, UNICOS/mk, and IRIX systems.

1.3 February 1999
This revision supports the Message Passing Toolkit (MPT) 1.3
release for UNICOS, UNICOS/mk, and IRIX systems.

003 February 2000
This revision supports the Message Passing Toolkit (MPT) 1.4
release for IRIX systems.

004 October 2000
This revision supports the Message Passing Toolkit (MPT) 1.4.0.3
release for IRIX and beta release for Linux systems.

005 March 2001
This revision supports the Message Passing Toolkit (MPT) 1.5
release for IRIX and beta release for Linux systems.

006 May 2002
This revision supports the Message Passing Toolkit (MPT) 1.6
release for IRIX and beta release for Linux systems.

007–3687–006 v

Contents

About This Manual . xv

Related Publications and Other Sources xv

Conventions . xvi

Reader Comments . xvii

1. Overview . 1

MPI Overview . 1

MPI Components . 2

MPI Program Development . 3

2. Building MPI Applications 5

Compiling and Linking IRIX Programs 5

Compiling and Linking Linux Programs 6

3. Using mpirun to Execute Applications 7

Syntax of the mpirun Command 7

Using a File for mpirun Arguments 13

Launching Programs on the Local Host Only 13

Launching a Distributed Program 14

Launching a Program in Spawn Capable Mode on the Local Host 14

4. Thread-Safe MPI . 17

Initialization . 17

Query Functions . 18

Requests . 18

007–3687–006 vii

Contents

Probes . 18

Collectives . 18

Exception Handlers . 19

Signals . 19

Internal Statistics . 19

Finalization . 19

5. Setting Environment Variables 21

Setting MPI Environment Variables 21

Internal Message Buffering in MPI 48

6. MPI Optimization and Tuning 51

Application Optimizations . 51

Optimized Point-to-Point Calls 51

Optimized Collective Calls 53

NUMA Placement . 54

MPI One-Sided Operations 55

Runtime Optimizations . 56

Eliminating Retries . 56

Single Copy Optimization . 57

Traditional Single Copy Optimization and Restrictions 57

Less Restrictive Single Copy Using the XPMEM Driver 58

Single Copy Using the XPMEM Driver and the BTE 58

NUMA Placement . 58

Optimizations for Using MPI on IRIX Clusters 59

Using MPI with OpenMP . 61

Tips for Optimizing . 62

Avoiding Certain MPI Constructs 63

viii 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Reducing Runtime Variability 63

Using MPI Statistics . 64

Using Profiling . 64

Speedshop . 65

perfex . 65

Performance-CoPilot . 65

Additional profiling . 68

7. Frequently Asked Questions 69

What are some things I can try to figure out why mpirun is failing? 69

How do I combine MPI with insert favorite tool here? 70

MPI with dplace . 71

MPI with perfex . 71

MPI with rld . 71

MPI with Totalview . 72

MPI with SHMEM . 72

I am unable to malloc() more than 700-1000 MB when I link with libmpi. 72

My code runs correctly until it reaches MPI_Finalize() and then it hangs. 73

I keep getting error messages about MPI_REQUEST_MAX being too small, no matter how large I
set it. 73

I am not seeing stdout and/or stderr output from my MPI application. 74

How can I get the MPT software to install on my machine? 74

Where can I find more information about SHMEM? 74

The ps(1) command says my memory use (SIZE) is higher than expected. 74

What does MPI: could not run executable mean? 75

I have other MPI questions. Where can I read more about MPI? 75

Index . 77

007–3687–006 ix

Figures

Figure 6-1 Message passing process 53

Figure 6-2 Placement optimization 55

Figure 6-3 mpivis Tool . 66

Figure 6-4 mpimon Tool . 67

007–3687–006 xi

Tables

Table 5-1 MPI Environment Variables 21

Table 5-2 Outline of Improper Dependence on Buffering 49

Table 6-1 Inquiry Order for Available Interconnects 60

007–3687–006 xiii

About This Manual

This publication documents the SGI version 1.6 implementation of the Message
Passing Interface (MPI) supported on SGI MIPS based systems running IRIX release
6.5 or later and as a beta release on Linux systems. MPI is a component of the SGI
Message Passing Toolkit (MPT).

IRIX systems running MPI applications must also be running Array Services software
version 3.1 or later. MPI consists of a library, a profiling library, and commands that
support MPI. The MPT 1.6 release is a software package that supports parallel
programming across a network of computer systems through a technique known as
message passing.

Related Publications and Other Sources
The Message Passing Toolkit: PVM Programmer’s Guide contains additional information
that might be helpful. You can obtain this document or any other SGI documentation
from the SGI Technical Publications Library at http://techpubs.sgi.com.

Material about MPI is available from a variety of other sources. Some of these,
particularly Web pages, include pointers to other resources. Following is a grouped
list of these sources:

The MPI standard:

• As a technical report: University of Tennessee report (reference [24] from Using
MPI: Portable Parallel Programming with the Message-Passing Interface, by Gropp,
Lusk, and Skjellum).

• As online PostScript or hypertext on the Web:

http://www.mpi-forum.org/

• As a journal article in the International Journal of Supercomputer Applications, volume
8, number 3/4, 1994.

• As text through the IRIS InSight library (for customers with access to this tool).

007–3687–006 xv

About This Manual

Book: Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
Gropp, Lusk, and Skjellum, publication TPD–0011.

Newsgroup: comp.parallel.mpi

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names. The following list describes the
identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have man
pages associated with them.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

xvi 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

SGI systems include all Linux systems and all MIPS based systems that run IRIX 6.5
or later.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

007–3687–006 xvii

Chapter 1

Overview

The Message Passing Toolkit (MPT) for IRIX and Linux is a software package that
supports interprocess data exchange for applications that use concurrent, cooperating
processes on a single host or on multiple hosts. Data exchange is done through
message passing, which is the use of library calls to request data delivery from one
process to another or between groups of processes.

The MPT 1.6 package contains the following components and the appropriate
accompanying documentation:

• Message Passing Interface (MPI)

• Logically shared, distributed memory (SHMEM) data-passing routines (IRIX only)

The Message Passing Interface (MPI) is a standard specification for a message passing
interface, allowing portable message passing programs in Fortran and C languages.

This chapter provides an overview of the MPI software that is included in the toolkit,
a description of the basic MPI components, and a list of general steps for developing
an MPI program. Subsequent chapters address the following topics:

• Building MPI applications

• Using mpirun to execute applications

• Thread-safe MPI

• Setting environment variables

• Optimization and tuning

• Frequently asked questions

MPI Overview
MPI is a standard specification for a message passing interface, allowing portable
message passing programs in Fortran and C languages. MPI was created by the
Message Passing Interface Forum (MPIF). MPIF is not sanctioned or supported by any
official standards organization. Its goal was to develop a widely used standard for
writing message passing programs.

007–3687–006 1

1: Overview

SGI supports implementations of MPI that are released as part of the Message Passing
Toolkit on Linux systems and IRIX systems. The MPI standard is available from the
IRIS InSight library (for customers who have access to that tool), and is documented
online at the following address:

http://www.mcs.anl.gov/mpi

The SGI MPT MPI implementation is compliant with the 1.0, 1.1, and 1.2 versions of
the MPI standard specification. In addition, the following features from the MPI-2
standard specification are provided:

• MPI-2 parallel I/O, as described in section 9 of the MPI-2 standard

• MPI-2 one sided communication (put/get model), as described in section 6 of the
MPI-2 standard

• MPI_Comm_spawn and MPI_Comm_spawn_multiple, as described in section 5.3
of the MPI-2 standard (IRIX only)

• MPI_Alloc_mem/MPI_Free_mem, as described in section 4.11 of the MPI-2
standard (IRIX only)

• Transfer handles, as described in section 4.12.4 of the MPI-2 standard

• MPI-2 replacements for deprecated MPI-1 functions, as described in section 4.14.1
of the MPI-2 standard

MPI Components
The MPI library is provided as a dynamic shared object (DSO) (a file with a name
that ends in .so). The basic components that are necessary for using MPI are the
libmpi.so library, the include files, and the mpirun(1) command.

Profiling support is included in the libmpi.so libraries. Profiling support replaces
all MPI_ Xxx prototypes and function names with PMPI_Xxx entry points.

2 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

MPI Program Development
To develop a program that uses MPI, you must perform the following steps:

Procedure 1-1 Steps for MPI program development

1. Add MPI function calls to your application for MPI initiation, communications,
and synchronization. For descriptions of these functions, see the online man
pages or Using MPI: Portable Parallel Programming with the Message-Passing Interface
or the MPI standard specification.

2. Build programs for the systems that you will use, as described in Chapter 2,
"Building MPI Applications", page 5.

3. Execute your program by using the mpirun(1) command (see Chapter 3, "Using
mpirun to Execute Applications", page 7).

Note: For information on how to execute MPI programs across more than one host or
how to execute MPI programs that consist of more than one executable file, see
Chapter 2, "Building MPI Applications", page 5.

007–3687–006 3

Chapter 2

Building MPI Applications

This chapter provides procedures for building MPI applications on IRIX and Linux
systems.

After you have added MPI function calls to your program, as described in Procedure
1-1, step 1, page 3, you can compile and link the IRIX or Linux program, as described
in the following sections.

Compiling and Linking IRIX Programs
To use the 64-bit MPI library, choose one of the following commands:

CC -64 compute.C -lmpi++ -lmpi

cc -64 compute.c -lmpi

f77 -64 compute.f -lmpi

f90 -64 compute.f -lmpi

To use the 32-bit MPI library, choose one of the following commands:

CC -n32 compute.C -lmpi++ -lmpi

cc -n32 compute.c -lmpi

f77 -n32 compute.f -lmpi

f90 -n32 compute.f -lmpi

If the Fortran 90 compiler version 7.2.1 or later is installed, you can add the
-auto_use option as follows to get compile-time checking of MPI subroutine calls:

f90 -auto_use mpi_interface -64 compute.f -lmpi

f90 -auto_use mpi_interface -n32 compute.f -lmpi

007–3687–006 5

2: Building MPI Applications

Compiling and Linking Linux Programs
The default locations for the include files, the .so files, the .a files, and the
mpi_launch and mpirun commands are pulled in automatically. Once the MPT
RPM is installed as default, the commands to build an MPI-based application using
the .so files are as follows:

To use the 64-bit MPI library on Linux IA64 systems, choose one of the following
commands:

g++ -o myprog myproc.C -lmpi++ -lmpi

gcc -o myprog myprog.c -lmpi

6 007–3687–006

Chapter 3

Using mpirun to Execute Applications

The mpirun(1) command is the primary job launcher for the SGI implementation of
MPI. The mpirun command must be used whenever a user wishes to run an MPI
application on an IRIX or a Linux system. You can run an application on the local
host only (the host from which you issued mpirun) or distribute it to run on any
number of hosts that you specify. Note that several MPI implementations available
today use a job launcher called mpirun and, because this command is not part of the
MPI standard, each implementation’s mpirun command differs in both syntax and
functionality.

Syntax of the mpirun Command
The format of the mpirun command is as follows:

mpirun [global_options] entry [: entry ...]

The global_options operand applies to all MPI executable files on all specified hosts.
The following global options are supported:

Option Description

-a[rray] array_name (IRIX only) Specifies the array to use when launching
an MPI application. By default, Array Services uses the
default array specified in the Array Services
configuration file, arrayd.conf.

-cpr (IRIX systems only.) Allows users to checkpoint or
restart MPI jobs that consist of a single executable file
running on a single system. The absence of any host
names in the mpirun command indicates that a job is
running on a single system. For example, the following
command is valid:

mpirun -cpr -np 2 ./a.out >&1/dev/null

007–3687–006 7

3: Using mpirun to Execute Applications

The following commands are not valid:

mpirun -cpr 2 ./a.out : 3 ./b.out
mpirun -cpr hosta -np 2 ./a.out>out 2>&1 mpirun -cpr hosta -np 2 ./a.out>out 2>&1 </dev/null

The first one is not valid because it consists of more
than one executable file (a.out and b.out). The
second one is not valid because even if submitted from
hosta, it specifies a host name.

For interactive users, the preferred method of
checkpointing the job is by ASH. This ensures that all of
the user’s processes specified in the mpirun command,
plus daemons associated with the job, will be
checkpointed. You can use the array(1) command to
find the ASH of a job. Interactive users should also note
that stdin, stdout, and stderr should not be
connected to the terminal when this option is being
used.

Use of this option requires Array Services 3.1 or later.

The default behavior will allow for jobs to be
checkpointed if the above rules for invoking have been
followed, but using the -cpr option is recommended
because it provides specific error messages instead of
silently disabling.

-d[ir] path_name Specifies the working directory for all hosts. In addition
to normal path names, the following special values are
recognized:

. Translates into the absolute path name of
the user’s current working directory on
the local host. This is the default.

~ Specifies the use of the value of $HOME as
it is defined on each machine. In general,
this value can be different on each
machine.

-f[ile] file_name Specifies a text file that contains mpirun arguments.

8 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

-h[elp] Displays a list of options supported by the mpirun
command.

-p[refix]
prefix_string

Specifies a string to prepend to each line of output from
stderr and stdout for each MPI process. To delimit
lines of text that come from different hosts, output to
stdout must be terminated with a new line character.
If a process’s stdout or stderr streams do not end
with a new line character, there will be no prefix
associated with the output or error streams of that
process from the final new line to the end of the stream.

If the MPI_UNBUFFERED_STDIO environment variable
is set, the prefix string is ignored.

Some strings have special meaning and are translated
as follows:

• %g translates into the global rank of the process
producing the output. This is equivalent to the rank
of the process in MPI_COMM_WORLD when not
running in spawn capable mode. In the latter case,
this translates to the rank of the process within the
universe specified at job launch.

• %G translates into the number of processes in
MPI_COMM_WORLD, or, if running in spawn capable
mode, the value of the MPI_UNIVERSE_SIZE
attribute.

• %h translates into the rank of the host on which the
process is running, relative to the mpirun(1)
command line. This string is not relevant for
processes started via MPI_Comm_spawn or
MPI_Comm_spawn_multiple.

• %H translates into the total number of hosts in the
job. This string is not relevant for processes started
via MPI_Comm_spawn or
MPI_Comm_spawn_multiple.

• %l translates into the rank of the process relative to
other processes running on the same host.

007–3687–006 9

3: Using mpirun to Execute Applications

• %L translates into the total number of processes
running on the host.

• %w translates into the world rank of the process, that
is, its rank in MPI_COMM_WORLD. When not running
in spawn capable mode, this is equivalent to %g.

• %W translates into the total number of processes in
MPI_COMM_WORLD. When not running in spawn
capable mode, this is equivalent to %G.

• %@ translates into the name of the host on which
the process is running.

For examples of the use of these strings, first consider
the following code fragment:

main(int argc, char **argv)

{

MPI_Init(&argc, &argv);

printf("Hello world\n");

MPI_Finalize();

}

Depending on how this code is run, the results of
running the mpirun command will be similar to those
in the following examples:

mpirun -np 2 a.out

Hello world

Hello world

mpirun -prefix ">" -np 2 a.out

>Hello world

>Hello world

mpirun -prefix "%g" 2 a.out

0Hello world

1Hello world

10 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

mpirun -prefix "[%g] " 2 a.out
[0] Hello world

[1] Hello world

mpirun -prefix "<process %g out of %G> " 4 a.out

<process 1 out of 4> Hello world
<process 0 out of 4> Hello world

<process 3 out of 4> Hello world

<process 2 out of 4> Hello world

mpirun -prefix "%@: " hosta,hostb 1 a.out
hosta: Hello world

hostb: Hello world

mpirun -prefix "%@ (%l out of %L) %g: " hosta 2, hostb 3 a.out

hosta (0 out of 2) 0: Hello world
hosta (1 out of 2) 1: Hello world

hostb (0 out of 3) 2: Hello world

hostb (1 out of 3) 3: Hello world

hostb (2 out of 3) 4: Hello world

mpirun -prefix "%@ (%h out of %H): " hosta,hostb,hostc 2 a.out

hosta (0 out of 3): Hello world

hostb (1 out of 3): Hello world

hostc (2 out of 3): Hello world

hosta (0 out of 3): Hello world
hostc (2 out of 3): Hello world

hostb (1 out of 3): Hello world

-up u_size Specifies the value of the MPI_UNIVERSE_SIZE
attribute to be used in supporting MPI_Comm_spawn
and MPI_Comm_spawn_multiple. This field must be
set if either of these functions are to be used by the
application being launched by mpirun. Setting this
field implies the MPI job is being run in spawn capable
mode.

007–3687–006 11

3: Using mpirun to Execute Applications

-v[erbose] Displays comments on what mpirun is doing when
launching the MPI application.

The entry operand describes a host on which to run a program, and the local options
for that host. You can list any number of entries on the mpirun command line.

In the common case (same program, multiple data (SPMD)), in which the same
program runs with identical arguments on each host, usually, you need to specify
only one entry.

Each entry has the following components:

• One or more host names (not needed if you run on the local host)

• Number of processes to start on each host

• Name of an executable program

• Arguments to the executable program (optional)

An entry has the following format:

host_list local_options program program_arguments

The host_list operand is either a single host (machine name) or a comma-separated list
of hosts on which to run an MPI program.

The local_options operand contains information that applies to a specific host list. The
following local options are supported:

Option Description

-f[ile] file_name Specifies a text file that contains mpirun arguments
(same as global_options.) For more details, see "Using a
File for mpirun Arguments".

-np num_proc Specifies the number of processes on which to run.

-nt num_tasks This option behaves the same as -np.

The program program_arguments operand specifies the name of the program that you
are running and its accompanying options.

12 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Using a File for mpirun Arguments
Because the full specification of a complex job can be lengthy, you can enter mpirun
arguments in a file and use the -f option to specify the file on the mpirun command
line, as in the following example:

mpirun -f my_arguments

The arguments file is a text file that contains argument segments. White space is
ignored in the arguments file, so you can include spaces and newline characters for
readability. An arguments file can also contain additional -f options.

Launching Programs on the Local Host Only
For testing and debugging, it is often useful to run an MPI program only on the local
host without distributing it to other systems. To run the application locally, enter
mpirun with the -np argument. Your entry must include the number of processes to
run and the name of the MPI executable file.

The following command starts three instances of the application mtest, to which is
passed an arguments list (arguments are optional).

mpirun -np 3 mtest 1000 "arg2"

You are not required to use a different host in each entry that you specify on the
mpirun(1) command. You can launch a job that has two executable files on the same
host. In the following example, both executable files use shared memory:

mpirun host_a -np 6 a.out : host_a -np 4 b.out

007–3687–006 13

3: Using mpirun to Execute Applications

Launching a Distributed Program
You can use mpirun(1) to launch a program that consists of any number of executable
files and processes and distribute it to any number of hosts. A host is usually a single
machine, or, for IRIX systems, can be any accessible computer running Array Services
software. For available nodes on systems running Array Services software, see the
/usr/lib/array/arrayd.conf file. Array Services is not supported on Linux
systems currently, so an alternate launching mechanism is used.

You can list multiple entries on the mpirun command line. Each entry contains an
MPI executable file and a combination of hosts and process counts for running it.
This gives you the ability to start different executable files on the same or different
hosts as part of the same MPI application.

The following examples show various ways to launch an application that consists of
multiple MPI executable files on multiple hosts.

The following example runs ten instances of the a.out file on host_a:

mpirun host_a -np 10 a.out

When specifying multiple hosts, you can omit the -np or -nt option, listing the
number of processes directly. The following example launches ten instances of fred
on three hosts. fred has two input arguments.

mpirun host_a, host_b, host_c 10 fred arg1 arg2

The following example launches an MPI application on different hosts with different
numbers of processes and executable files, using an array called test:

mpirun -array test host_a 6 a.out : host_b 26 b.out

The following example launches an MPI application on different hosts out of the
same directory on both hosts:

mpirun -d /tmp/mydir host_a 6 a.out : host_b 26 b.out

Launching a Program in Spawn Capable Mode on the Local Host
To use the MPI-2 process creation functions MPI_Comm_spawn or
MPI_Comm_spawn_multiple, the user must specify the universe size by specifying
the -up option on the mpirun command line.

14 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

For example, the following command starts three instances of the MPI application
mtest in a universe of size 10:

mpirun -up 10 -np 3 mtest

Up to 7 more MPI processes can be started by mtest via one of the spawn commands.

Note: This implementation does not support spawn capable mode for MPI jobs
launched via certain batch schedulers, nor does it support a spawn capability for MPI
jobs spanning multiple hosts.

007–3687–006 15

Chapter 4

Thread-Safe MPI

Note: The Linux implementation of MPI is not currently thread-safe.

The SGI implementation of MPI on IRIX systems assumes the use of POSIX threads or
processes (see the pthread_create(3) or the sprocs(2) commands, respectively).
MPI processes can be multithreaded. Each thread associated with a process can issue
MPI calls. However, the rank ID in send or receive calls identifies the process, not the
thread. A thread behaves on behalf of the MPI process. Therefore, any thread
associated with a process can receive a message sent to that process.

Threads are not separately addressable. To support both POSIX threads and processes
(known as sprocs), thread-safe MPI must be run on an IRIX 6.5 system or later.

It is the user’s responsibility to prevent races when threads within the same
application post conflicting communication calls. By using distinct communicators for
each thread, the user can ensure that two threads in the same process do not issue
conflicting communication calls.

All MPI calls on IRIX 6.5 or later systems are thread-safe. This means that two
concurrently running threads can make MPI calls and the outcome will be as if the
calls executed in some order, even if their execution is interleaved.

If you block an MPI call, only the calling thread is blocked, allowing another thread
to execute, if available. The calling thread is blocked until the event on which it waits
occurs. Once the blocked communication is enabled and can proceed, the call
completes and the thread is marked runnable within a finite time. A blocked thread
does not prevent progress of other runnable threads on the same process, and does
not prevent them from executing MPI calls.

Initialization
To initialize MPI for a program that will run in a multithreaded environment, the user
must call the MPI-2 function, MPI_Init_thread(). In addition to initializing MPI
in the same way as MPI_Init(3) does, MPI_Init_thread() also initializes the
thread environment.

You can create threads before MPI is initialized, but before MPI_Init_thread() is
called, the only MPI call these threads can execute is MPI_Initialized(3).

007–3687–006 17

4: Thread-Safe MPI

Only one thread can call MPI_Init_thread(). This thread becomes the main
thread. Since only one thread calls MPI_Init_thread(), threads must be able to
inherit initialization. With the SGI implementation of thread-safe MPI, for proper MPI
initialization of the thread environment, a thread library must be loaded before the
call to MPI_Init_thread(). This means that dlopen(3c) cannot be used to open a
thread library after the call to MPI_Init_thread().

Query Functions
The MPI-2 query function, MPI_Query_thread(), is available to query the current
level of thread support. The MPI-2 function, MPI_Is_thread_main(), can be used
to find out whether a thread is the main thread. The main thread is the thread that
called MPI_Init_thread().

Requests
More than one thread cannot work on the same request. A program in which two
threads block, waiting on the same request is erroneous. Similarly, the same request
cannot appear in the array of requests of two concurrent
MPI_Wait{any|some|all} calls. In MPI, a request can be completed only once.
Any combination of wait or test that violates this rule is erroneous.

Probes
A receive call that uses source and tag values returned by a preceding call to
MPI_Probe(3) or MPI_Iprobe(3) will receive the message matched by the probe call
only if there was no other matching receive call after the probe and before that
receive. In a multithreaded environment, it is the user’s responsibility to use suitable
mutual exclusion logic to enforce this condition. You can enforce this condition by
making sure that each communicator is used by only one thread on each process.

Collectives
Matching collective calls on a communicator, window, or file handle is performed
according to the order in which the calls are issued in each process. If concurrent
threads issue such calls on the communicator, window, or file handle, it is the user’s

18 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

responsibility to use interthread synchronization to ensure that the calls are correctly
ordered.

Exception Handlers
An exception handler does not necessarily execute in the context of the thread that
made the exception-raising MPI call. The exception handler can be executed by a
thread that is distinct from the thread that will return the error code.

Signals
If a thread that executes an MPI call is cancelled by another thread, or if a thread
catches a signal while executing an MPI call, the outcome is undefined. When not
executing MPI calls, a thread associated with an MPI process can terminate and can
catch signals or be cancelled by another thread.

Internal Statistics
The SGI internal statistics diagnostics are not thread-safe.

Finalization
The call to MPI_Finalize(3) occurs on the same thread that initialized MPI (also
known as the main thread). It is the user’s responsibility to ensure that the call occurs
only after all the processes’ threads have completed their MPI calls and have no
pending communications or I/O operations.

007–3687–006 19

Chapter 5

Setting Environment Variables

This chapter describes the variables that specify the environment under which your
MPI programs will run. Environment variables have default values if not explicitly
set. You can change some variables to achieve particular performance objectives;
others are required values for standard-compliant programs.

Setting MPI Environment Variables
Table 5-1, page 21 describes the MPI environment variables you can set for your
programs. Unless otherwise specified, these variables are available for both Linux and
IRIX systems.

Table 5-1 MPI Environment Variables

Variable Description Default

MPI_ARRAY
(IRIX systems only)

Sets an alternative array name to
be used for communicating with
Array Services when a job is
being launched.

Default name set in the
arrayd.conf file.

MPI_BAR_COUNTER
(IRIX systems only)

Specifies the use of a simple
counter barrier algorithm within
the MPI_Barrier(3) and
MPI_Win_fence(3) functions.

Not enabled if job contains more
than 64 PEs.

007–3687–006 21

5: Setting Environment Variables

Variable Description Default

MPI_BAR_DISSEM Specifies the use of the alternate
barrier algorithm, the
dissemination/butterfly, within
the MPI_Barrier(3) and
MPI_Win_fence(3) functions.
This alternate algorithm provides
better performance on jobs with
larger PE counts. The
MPI_BAR_DISSEM option is
recommended for jobs with PE
counts of 64 or greater.

Disabled if job contains less than
64 PEs; otherwise, enabled.

MPI_BUFFER_MAX
(IRIX systems only)

Specifies a minimum message
size, in bytes, for which the
message will be considered a
candidate for single-copy transfer.
Currently, this mechanism is
available only for communication
between MPI processes on the
same host. The sender data must
reside in either the symmetric
data, symmetric heap, or global
heap. The MPI data type on the
send side must also be a
contiguous type.

Not enabled.

If the XPMEM driver is enabled (
for single host jobs, see
MPI_XPMEM_ON and for multihost
jobs, see MPI_USE_XPMEM), MPI
allows single-copy transfers for
basic predefined MPI data types
from any sender data location,
including the stack and private
heap. The XPMEM driver also
allows single-copy transfers
across partitions.

22 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

If cross mapping of data segments
is enabled at job startup, data in
common blocks will reside in the
symmetric data segment. On
systems running IRIX 6.5.2 or
later, this feature is enabled by
default. You can employ the
symmetric heap by using the
shmalloc (shpalloc) functions
in LIBSMA.

Testing of this feature has
indicated that mMost MPI
applications benefit more from
buffering of medium-sized
messages than from buffering of
large messages, even though
buffering of medium-sized
messages requires an extra copy
of data. However, highly
synchronized applications that
perform large message transfers
can benefit from the single-copy
pathway.

MPI_BUFS_PER_HOST Determines the number of shared
message buffers (16 Kbytes each)
that MPI is to allocate for each
host. These buffers are used to
send large messages.

16 pages (each page is 16 Kbytes)

MPI_BUFS_PER_PROC Determines the number of private
message buffers (16 Kbytes each)
that MPI is to allocate for each
process. These buffers are used to
send large messages.

16 pages (each page is 16 Kbytes)

007–3687–006 23

5: Setting Environment Variables

Variable Description Default

MPI_BYPASS_CRC
(IRIX systems only)

Adds a checksum to each large
message sent via HIPPI bypass. If
the checksum does not match the
data received, the job is
terminated. Use of this
environment variable might
degrade performance.

Not set

MPI_BYPASS_DEV_SELECTION
(IRIX systems only)

Specifies the algorithm MPI is to
use for sending messages over
multiple HIPPI adapters. Set this
variable to one of the following
values:

• 0 - Static device selection. In
this case, a process is assigned
a HIPPI device to use for
communication with processes
on another host. The process
uses only this HIPPI device to
communicate with another
host. This algorithm has been
observed to be effective when
interhost communication
patterns are dominated by
large messages (significantly
more than 16K bytes).

1

24 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

• 1 - Dynamic device selection.
In this case, a process can
select from any of the devices
available for communication
between any given pair of
hosts. The first device that is
not being used by another
process is selected. This
algorithm has been found to
work best for applications in
which multiple processes are
trying to send medium-sized
messages (16K or fewer bytes)
between processes on different
hosts. Large messages (more
than 16K bytes) are split into
chunks of 16K bytes. Different
chunks can be sent over
different HIPPI devices.

• 2 - Round robin device
selection. In this case, each
process sends successive
messages over a different
HIPPI 800 device.

MPI_BYPASS_DEVS
(IRIX systems only)

Sets the order for opening HIPPI
adapters. The list of devices does
not need to be space-delimited
(0123 is also valid).

0 1 2 3

An array node usually has at least
one HIPPI adapter, the interface
to the HIPPI network. The HIPPI
bypass is a lower software layer
that interfaces directly to this
adapter. The bypass sends MPI
control and data messages that
are 16 or fewer Kbytes.

007–3687–006 25

5: Setting Environment Variables

Variable Description Default

When you know that a system
has multiple HIPPI adapters, you
can use the MPI_BYPASS_ DEVS
variable to specify the adapter
that a program opens first. You
can use this variable to ensure
that multiple MPI programs
distribute their traffic across the
available adapters. If you prefer
not to use the HIPPI bypass, you
can turn it off by setting the
MPI_BYPASS_OFF variable.

When a HIPPI adapter reaches its
maximum capacity of four MPI
programs, it is not available to
additional MPI programs. If all
HIPPI adapters are busy, MPI
sends internode messages by
using TCP over the adapter
instead of the bypass.

MPI_BYPASS_SINGLE
(IRIX systems only)

Allows MPI messages to be sent
over multiple HIPPI connections
if multiple connections are
available. The HIPPI OS bypass
multiboard feature is enabled by
default. This environment
variable disables it. When you set
this variable, MPI operates as it
did in previous releases, with use
of a single HIPPI adapter
connection, if available.

26 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_BYPASS_VERBOSE
(IRIX systems only)

Allows additional MPI
initialization information to be
printed in the standard output
stream. This information contains
details about the HIPPI OS bypass
connections and the HIPPI
adapters that are detected on each
of the hosts.

MPI_CHECK_ARGS Enables checking of MPI function
arguments. Segmentation faults
might occur if bad arguments are
passed to MPI, so this is useful
for debugging purposes. Using
argument checking adds several
microseconds to latency.

Not enabled.

MPI_COMM_MAX Sets the maximum number of
communicators that can be used
in an MPI program. Use this
variable to increase internal
default limits. (May be required
by standard-compliant programs.)

256

007–3687–006 27

5: Setting Environment Variables

Variable Description Default

MPI_DIR Sets the working directory on a
host. When an mpirun command
is issued, the Array Services
daemon on the local or distributed
node responds by creating a user
session and starting the required
MPI processes. The user ID for
the session is that of the user who
invokes mpirun, so this user
must be listed in the .rhosts file
on the corresponding nodes. By
default, the working directory for
the session is the user’s $HOME
directory on each node. You can
direct all nodes to a different
directory (an NFS directory that is
available to all nodes, for
example) by setting the MPI_DIR
variable to a different directory.

$HOME on the node. If using -np
or -nt, the default is the current
directory.

MPI_DPLACE_INTEROP_OFF
(IRIX systems only)

Disables an MPI/dplace
interoperability feature available
beginning with IRIX 6.5.13. By
setting this variable, you can
obtain the behavior of MPI with
dplace on older releases of IRIX.

Not enabled.

MPI_DSM_CPULIST
(IRIX systems only)

Specifies a list of CPUs on which
to run an MPI application. To
ensure that processes are linked to
CPUs, this variable should be
used in conjunction with the
MPI_DSM_MUSTRUN variable.

Not enabled.

28 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_DSM_MUSTRUN
(IRIX systems only)

Enforces memory locality for MPI
processes. Use of this feature
ensures that each MPI process
obtains a CPU and physical
memory on the node to which it
was originally assigned. This
variable improves program
performance on IRIX systems
running release 6.5.7 and earlier,
when running a program on a
quiet system. With later IRIX
releases, under certain
circumstances, you do not need to
set this variable. Internally, this
feature directs the library to use
the process_cpulink(3)
function instead of
process_mldlink(3) to control
memory placement.
You should not use
MPI_DSM_MUSTRUN when the job
is submitted to Miser (see
miser_submit(1)) because this
might cause the program to hang.

Not enabled.

MPI_DSM_OFF
(IRIX systems only)

Turns off nonuniform memory
access (NUMA) optimization in
the MPI library.

Not enabled.

007–3687–006 29

5: Setting Environment Variables

Variable Description Default

MPI_DSM_PLACEMENT
(IRIX systems only)

Specifies the default placement
policy to be used for the stack
and data segments of an MPI
process. Set this variable to one of
the following values:

• firsttouch - With this
policy, IRIX attempts to satisfy
requests for new memory
pages for stack, data, and heap
memory on the node where
the requesting process is
currently scheduled.

fixed

• fixed - With this policy, IRIX
attempts to satisfy requests for
new memory pages for stack,
data, and heap memory on the
node associated with the
memory locality domain (mld)
with which an MPI process
was linked at job startup. This
is the default policy for MPI
processes.

• roundrobin - With this
policy, IRIX attempts to satisfy
requests for new memory
pages in a round robin fashion
across all of the nodes
associated with the MPI job. It
is generally not recommended
to use this setting.

30 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

• threadroundrobin - This
policy is intended for use with
hybrid MPI/OpenMP
applications only. With this
policy, IRIX attempts to satisfy
requests for new memory
pages for the MPI process
stack, data, and heap memory
in a roundrobin fashion across
the nodes allocated to its
OpenMP threads. This
placement option might be
helpful for large
OpenMP/MPI process ratios.
For non-OpenMP applications,
this value is ignored.

MPI_DSM_PPM
(IRIX systems only)

Sets the number of MPI processes
per memory locality domain
(mld). For Origin 2000 systems,
values of 1 or 2 are allowed. For
Origin 3000 systems, values of 1,
2, or 4 are allowed.

Origin 2000 systems, 2; Origin
3000 systems, 4.

MPI_DSM_TOPOLOGY (IRIX
systems only)

Specifies the shape of the set of
hardware nodes on which the PE
memories are allocated. Set this
variable to one of the following
values:

• cube — A group of memory
nodes that form a perfect
hypercube. The number of
processes per host must be a
power of 2. If a perfect
hypercube is unavailable, a
less restrictive placement is
used.

Not enabled.

007–3687–006 31

5: Setting Environment Variables

Variable Description Default

• cube_fixed — A group of
memory nodes that form a
perfect hypercube. The
number of processes per host
must be a power of 2. If a
perfect hypercube is
unavailable, the placement
will fail, disabling NUMA
placement.

• cpucluster — Any group of
memory nodes. The operating
system attempts to place the
group numbers close to one
another, taking into account
nodes with disabled
processors. (Default for IRIX
6.5.11 and higher).

• free — Any group of
memory nodes. The operating
system attempts to place the
group numbers close to one
another. (Default for IRIX
6.5.10 and earlier releases).

MPI_DSM_VERBOSE
(IRIX systems only)

Instructs mpirun to print
information about process
placement for jobs running on
NUMA systems.

Not enabled.

MPI_DSM_VERIFY
(IRIX systems only)

Instructs mpirun to run some
diagnostic checks on proper
memory placement of MPI data
structures at job startup. If errors
are found, a diagnostic message is
printed to stderr.

Not enabled.

32 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_GM_DEVS
(IRIX systems only)

Sets the order for opening
GM(Myrinet) adapters. The list of
devices does not need to be
space-delimited (0321 is valid).
The syntax is the same as for the
MPI_BYPASS_DEVS environment
variable. In this release, a
maximum of 8 adapters are
supported on a single host.

MPI will use all available
GM(Myrinet) devices.

MPI_GM_VERBOSE Allows some diagnostic
information concerning
messaging between processes
using GM (Myrinet) to be
displayed on stderr.

Not enabled.

MPI_GROUP_MAX Sets the maximum number of
groups that can be used in an
MPI program. Use this variable to
increase internal default limits.
(May be required by
standard-compliant programs.)

256

MPI_GSN_DEVS
(IRIX 6.5.9 systems or

later)

Sets the order for opening GSN
adapters. The list of devices does
not need to be quoted or
space-delimited (0123 is valid).

MPI will use all available GSN
devices.

MPI_GSN_VERBOSE
(IRIX 6.5.9 systems or

later)

Allows additional MPI
initialization information to be
printed in the standard output
stream. This information contains
details about the GSN (ST
protocol) OS bypass connections
and the GSN adapters that are
detected on each of the hosts.

Not enabled.

007–3687–006 33

5: Setting Environment Variables

Variable Description Default

MPI_MSG_RETRIES Specifies the number of times the
MPI library attempts to get a
message header, if none are
available. Each MPI message that
is sent requires an initial message
header. If one is not available
after the specified number of
attempts, the job will abort.

500

Note that this variable no longer
applies to processes on the same
host, or when using the GM
(Myrinet) protocol. In these cases,
message headers are allocated
dynamically on an as-needed
basis.

MPI_MSGS_MAX Controls the total number of
message headers that can be
allocated. This allocation applies
to messages exchanged between
processes on a single host, or
between processes on different
hosts when using the
GM (Myrinet) OS bypass
protocol. Note that the initial
allocation of memory for message
headers is 128 Kbytes.

Allow up to 64 Mbytes to be
allocated for message headers. If
you set this variable, specify the
maximum number of message
headers.

34 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_MSGS_PER_HOST Sets the number of message
headers to allocate for MPI
messages on each MPI host. Space
for messages that are destined for
a process on a different host is
allocated as shared memory on
the host on which the sending
processes are located. MPI locks
these pages in memory. Use this
variable to allocate buffer space
for interhost messages.

!
Caution: If you set the memory
pool for interhost packets to a
large value, you can cause
allocation of so much locked
memory that total system
performance is degraded.

1024

The previous description does not
apply to processes that use the
GM (Myrinet) OS bypass protocol.
In this case, message headers are
allocated dynamically as needed.
See the MPI_MSGS_MAX variable
description.

007–3687–006 35

5: Setting Environment Variables

Variable Description Default

MPI_MSGS_PER_PROC This variable is effectively
obsolete. Message headers are
now allocated on an as-needed
basis for messaging either
between processes on the same
host, or between processes on
different hosts when using the
GM (Myrinet) OS bypass
protocol. You can use the new
MPI_MSGS_MAX variable to
control the total number of
message headers that can be
allocated.

1024

MPI_OPENMP_INTEROP
(IRIX systems only)

Setting this variable modifies the
placement of MPI processes to
better accomodate the OpenMP
threads associated with each
process.

Note: This option is available
only on Origin 300 and Origin
3000 servers.

Not enabled

MPI_REQUEST_MAX Sets the maximum number of
simultaneous nonblocking sends
and receives that can be active at
one time. Use this variable to
increase internal default limits.
(May be required by
standard-compliant programs.)

16384

MPI_SHARED_VERBOSE Allows some diagnostic
information concerning
messaging within a host to be
displayed on stderr.

Not enabled.

36 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_SLAVE_DEBUG_ATTACH Specifies the MPI process to be
debugged. If you set
MPI_SLAVE_DEBUG_ATTACH to
N, the MPI process with rank N
prints a message during program
startup, describing how to attach
to it from another window using
the dbx debugger on IRIX or the
gdb debugger on Linux. You
must attach the debugger to
process N within ten seconds of
the printing of the message.

Not enabled.

MPI_STATIC_NO_MAP
(IRIX systems only)

Disables cross mapping of static
memory between MPI processes.
This variable can be set to reduce
the significant MPI job startup
and shutdown time that can be
observed for jobs involving more
than 512 processors on a single
IRIX host. Note that setting this
shell variable disables certain
internal MPI optimizations and
also restricts the use of MPI-2
one-sided functions. For more
information, see the MPI_Win
man page.

Not enabled.

007–3687–006 37

5: Setting Environment Variables

Variable Description Default

MPI_STATS Enables printing of MPI internal
statistics. Each MPI process prints
statistics about the amount of
data sent with MPI calls during
the MPI_Finalize process. Data
is sent to stderr. To prefix the
statistics messages with the MPI
rank, use the -p option on the
mpirun command.

Note: Because the
statistics-collection code is not
thread-safe, this variable should
not be set if the program uses
threads.

Not enabled.

MPI_TYPE_DEPTH Sets the maximum number of
nesting levels for derived data
types. (May be required by
standard-compliant programs.)
This variable limits the maximum
depth of derived data types that
an application can create. MPI
logs error messages if the limit
specified by MPI_TYPE_DEPTH is
exceeded.

8 levels

MPI_TYPE_MAX Sets the maximum number of
derived data types that can be
used in an MPI program. Use this
variable to increase internal
default limits. (May be required
by standard-compliant programs.)

1024

38 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

MPI_UNBUFFERED_STDIO Normally, mpirun line-buffers
output received from the MPI
processes on both the stdout
and stderr standard IO streams.
This prevents lines of text from
different processes from possibly
being merged into one line, and
allows use of the mpirun
-prefix option.

1024

Of course, there is a limit to the
amount of buffer space that
mpirun has available (currently,
about 8,100 characters can appear
between new line characters per
stream per process). If more
characters are emitted before a
new line character, the MPI
program aborts with an error
message.

Setting the
MPI_UNBUFFERED_STDIO
environment variable disables this
buffering. This is useful, for
example, when a program’s rank
0 emits a series of periods over
time to indicate progress of the
program. With buffering, the
entire line of periods will be
output only when the new line
character is seen. Without
buffering, each period will be
immediately displayed as soon as
mpirun receives it from the MPI
program. (Note that the MPI
program still needs to call
fflush(3) or FLUSH(101) to
flush the stdout buffer from the
application code.)

007–3687–006 39

5: Setting Environment Variables

Variable Description Default

Additionally, setting
MPI_UNBUFFERED_STDIO allows
an MPI program that emits very
long output lines to execute
correctly.

Note that if
MPI_UNBUFFERED_STDIO is set,
the mpirun -prefix option is
ignored.

MPI_USE_GSN (IRIX 6.5.12
systems or later)

Requires the MPI library to use
the GSN (ST protocol) OS bypass
driver as the interconnect when
running across multiple hosts or
running with multiple binaries. If
a GSN connection cannot be
established among all hosts in the
MPI job, the job is terminated.

Not set

GSN imposes a limit of one MPI
process using GSN per CPU on a
system. For example, on a
128-CPU system, you can run
multiple MPI jobs, as long as the
total number of MPI processes
using the GSN bypass does not
exceed 128.

40 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

Once the maximum allowed MPI
processes using GSN is reached,
subsequent MPI jobs return an
error to the user output, as the
following example:

MPI: Could not connect all

processes to GSN adapters.

The maximum number of GSN

adapter connections per
system is normally equal

to the number of CPUs on

the system.

If there are a few CPUs still
available, but not enough to
satisfy the entire MPI job, the
error will still be issued and the
MPI job terminated.

MPI_USE_GM (IRIX
systems only)

Requires the MPI library to use
the Myrinet(GM) OS bypass
driver as the interconnect when
running across multiple hosts or
running with multiple binaries. If
a GM connection cannot be
established among all hosts in the
MPI job, the job is terminated.

Not set

MPI_USE_HIPPI (IRIX
systems only)

Requires the MPI library to use
the HiPPI 800 OS bypass driver as
the interconnect when running
across multiple hosts or running
with multiple binaries. If a HiPPI
connection cannot be established
among all hosts in the MPI job,
the job is terminated.

Not set

007–3687–006 41

5: Setting Environment Variables

Variable Description Default

MPI_USE_TCP Requires the MPI library to use
the TCP/IP driver as the
interconnect when running across
multiple hosts or running with
multiple binaries.

Not set

MPI_USE_XPMEM (IRIX
6.5.13 systems or later)

Requires the MPI library to use
the XPMEM driver as the
interconnect when running across
multiple hosts or running with
multiple binaries. This driver
allows MPI processes running on
one partition to communicate
with MPI processes on a different
partition via the NUMAlink
network. The NUMAlink network
is powered by block transfer
engines (BTEs). BTE data
transfers do not require processor
resources.

Not set

The XPMEM (cross partition)
device driver is available only on
Origin 3000 and Origin 300
systems running IRIX 6.5.13 or
greater.

Note: Due to possible MPI
program hangs, you should not
run MPI across partitions using
the XPMEM driver on IRIX
versions 6.5.13, 6.5.14, or 6.5.15.
This problem has been resolved in
IRIX version 6.5.16.

42 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

If all of the the hosts specified on
the mpirun command do not
reside in the same partitioned
system, you can select one
additional interconnect via the
MPI_USE variables. MPI
communication between
partitions will go through the
XPMEM driver, and
communication between
non-partitioned hosts will go
through the second interconnect.

MPI_XPMEM_ON Enables the XPMEM single-copy
enhancements for processes
residing on the same host.

Not set

The XPMEM enhancements allow
single-copy transfers for basic
predefined MPI data types from
any sender data location,
including the stack and private
heap. Without enabling XPMEM,
single-copy is allowed only from
data residing in the symmetric
data, symmetric heap, or global
heap.

Both the MPI_XPMEM_ON and
MPI_BUFFER_MAX variables must
be set to enable these
enhancements. Both are disabled
by default.

007–3687–006 43

5: Setting Environment Variables

Variable Description Default

If the following additional
conditions are met, the block
transfer engine (BTE) is invoked
instead of bcopy, to provide
increased bandwidth:

• Send and receive buffers are
cache-aligned.

• Amount of data to transfer is
greater than or equal to the
MPI_XPMEM_THRESHOLD
value.

Note: The XPMEM driver does
not support checkpoint/restart at
this time. If you enable these
XPMEM enhancements, you will
not be able to checkpoint and
restart your MPI job.

The XPMEM single-copy
enhancements require an Origin
3000 and Origin 300 servers
running IRIX release 6.5.15 or
greater.

MPI_XPMEM_THRESHOLD Specifies a minimum message
size, in bytes, for which
single-copy messages between
processes residing on the same
host will be transferred via the
BTE, instead of bcopy. The
following conditions must exist
before the BTE transfer is invoked:

• Single-copy mode is enabled
(MPI_BUFFER_MAX).

8192

44 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

• XPMEM single-copy
enhancements are enabled
(MPI_XPMEM_ON).

• Send and receive buffers are
cache-aligned.

• Amount of data to transfer is
greater than or equal to the
MPI_XPMEM_THRESHOLD
value.

The XPMEM enhancements allow
single-copy transfers for basic
MPI types from any sender data
location, including the stack and
private heap. Without enabling
XPMEM, single-copy is allowed
only from data residing in the
symmetric data, symmetric heap,
or global heap.

Both the MPI_XPMEM_THRESHOLD
and MPI_BUFFER_MAX variables
must be set to enable these
enhancements. Both are disabled
by default.

If the following additional
conditions are met, the block
transfer engine (BTE) is invoked
instead of bcopy, to provide
increased bandwidth:

• Send and receive buffers are
cache-aligned.

• Amount of data to transfer is
greater than or equal to the
MPI_XPMEM_THRESHOLD
value.

007–3687–006 45

5: Setting Environment Variables

Variable Description Default

In addition to enabling these
single-copy enhancements, the
MPI_XPMEM_THRESHOLD
environment variable can be used
to specify a minimum message
size, in bytes, for which the
message will be transferred via
the BTE, provided the above
conditions are met. If a value is
not provided, a default of 8192
bytes will be used.

Note: The XPMEM driver does
not support checkpoint/restart at
this time. If you enable these
XPMEM enhancements, you will
not be able to checkpoint and
restart your MPI job.

The XPMEM single-copy
enhancements require Origin 3000
and Origin 300 servers running
IRIX release 6.5.15 or greater.

MPI_XPMEM_VERBOSE Setting this variable allows
additional MPI diagnostic
information to be printed in the
standard output stream. This
information contains details about
the XPMEM connections.

Not enabled

46 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Variable Description Default

PAGESIZE_DATA
(IRIX systems only)

Specifies the desired page size in
kilobytes for program data areas.
On Origin series systems,
supported values include 16, 64,
256, 1024, and 4096. Specified
values must be integer.

Note: Setting MPI_DSM_OFF
disables the ability to set the data
pagesize via this shell variable.

Not enabled

PAGESIZE_STACK
(IRIX systems only)

Specifies the desired page size in
kilobytes for program stack areas.
On Origin series systems,
supported values include 16, 64,
256, 1024, and 4096. Specified
values must be integer.

Note: Setting MPI_DSM_OFF
disables the ability to set the data
pagesize via this shell variable.

Not enabled

SMA_GLOBAL_ALLOC
(IRIX systems only)

Activates the LIBSMA based
global heap facility. This variable
is used by 64–bit MPI applications
for certain internal optimizations,
and is used as support for the
MPI_Alloc_mem function. For
additional details, see the
intro_shmem(3) man page.

Not enabled

SMA_GLOBAL_HEAP_SIZE
(IRIX systems only)

For 64 bit applications, specifies
the per processes size of the
LIBSMA global heap in bytes.

33,554,432 bytes

007–3687–006 47

5: Setting Environment Variables

Internal Message Buffering in MPI
An MPI implementation can copy data that is being sent to another process into an
internal temporary buffer so that the MPI library can return from the MPI function,
giving execution control back to the user. However, according to the MPI standard,
you should not assume that there is any message buffering between processes
because the MPI standard does not mandate a buffering strategy. Some
implementations choose to buffer user data internally, while other implementations
block in the MPI routine until the data can be sent. These different buffering
strategies have performance and convenience implications.

Most MPI implementations do use buffering for performance reasons and some
programs depend on it. Table 5-2, page 49 illustrates a simple sequence of MPI
operations that cannot work unless messages are buffered. If sent messages were not
buffered, each process would hang in the initial MPI_Send call, waiting for an
MPI_Recv call to take the message. Because most MPI implementations do buffer
messages to some degree, a program like this does not usually hang. The MPI_Send
calls return after putting the messages into buffer space, and the MPI_Recv calls get
the messages. Nevertheless, program logic like this is not valid by the MPI standard.

The SGI implementation of MPI uses buffering under most circumstances. Short
messages of 64 or fewer bytes are always buffered. On IRIX systems, longer messages
are buffered unless the message to be sent resides in either a common block, the
symmetric heap, or global shared heap and the sending and receiving processes
reside on the same host. The MPI data type on the send side must also be a
contiguous type. The message size must be greater than the size setting for
MPI_BUFFER_MAX (see Table 5-1, page 21). If the XPMEM driver is enabled (for
single host jobs, see MPI_XPMEM_ON and for multihost jobs, see MPI_USE_XPMEM),
MPI allows single-copy transfers for basic MPI types from any sender data location,
including the stack and private heap. The XPMEM driver also allows single-copy
transfers across partitions. Under these circumstances, the receiver copies the data
directly into its receive message area without buffering. Obviously, MPI applications
with code segments equivalent to that shown in Table 5-2, page 49 will almost
certainly deadlock if this bufferless pathway is available.

Note: This feature is not currently available on Linux systems.

48 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Table 5-2 Outline of Improper Dependence on Buffering

Process 1 Process 2

MPI_Send(2,....) MPI_Send(1,....)

MPI_Recv(2,....) MPI_Recv(1,....)

007–3687–006 49

Chapter 6

MPI Optimization and Tuning

This chapter provides information for maximizing the performance of the SGI MPI
library. This information includes automatic or default optimizations, optimizations
that the user can perform through the use of environment variables, optimizations for
using MPI on IRIX clusters, and some general tips and tools for optimization.

Application Optimizations
The optimizations described in this section are performed by the MPI library
automatically without changes from the user. For these optimizations to be effective,
you must use the suggested MPI functions.

Optimized Point-to-Point Calls

The MPI library has been optimized to achieve low latency and high bandwidth for
programs that use MPI_Send/MPI_Recv or MPI_Isend/MPI_Irecv point-to-point
message passing. MPI_Rsend is treated the same as MPI_Send in this
implementation. In addition, these point-to-point calls have been optimized for a high
repeat rate. This allows applications that exchange data with the other processors to
handle the requests at the same time without unnecessary waiting.

The diagram in Figure 6-1, page 53 shows what happens within the library when a
message is sent from one process to another. In this example, a medium sized
message (between 64 and 16384 bytes) is passed from one process to another on the
same IRIX or Linux host. The numbers on the arrows indicate the order in which the
following steps occur.

Procedure 6-1 Message passing process

1. The sender aquires a shared memory buffer and copies the src data into that
buffer.

2. The sender performs a fetch and add operation of the fetchop variable that
controls the receiver’s message queue. The value obtained from this operation
indicates the slot in which a message header can be placed in the receiver’s
queue. The message header contains MPI related data, such as tag,
communicator, location of data, and so on. The sender then copies the message
header into the receiver’s queue.

007–3687–006 51

6: MPI Optimization and Tuning

3. The receiver, which is polling on its message queue, finds the message header and
copies the message header out of the message queue.

4. The receiver copies the data from the shared memory buffer into the dst buffer
specified by the application.

5. The receiver performs a fetch and add operation of the fetchop variable that
controls the sender’s message queue. The receiver then copies a message header
to the sender’s message queue, which acknowledges (ACK) that the message has
been received.

6. The sender receives the ACK and marks the shared memory buffer and other
internal data structures for reuse.

Short messages (64 bytes or less) are further optimized but do not need to use the
shared memory buffers because the data actually fits in the message header itself.

The MPI_Send/MPI_Recv are blocking calls and are not required to be buffered.
This is important for single copy optimization, described in "Single Copy
Optimization", page 57.

52 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Figure 6-1 Message passing process

Optimized Collective Calls

The MPI collective calls are frequently layered on top of the point-to-point primitive
calls. For small process counts, this can be reasonably effective. However, for higher
process counts (32 processes or more) or for clusters, this approach can become less
efficient. For this reason, the MPI library has optimized a number of the collective
operations to make use of shared memory.

The MPI_Alltoall collective has been optimized to make use of symmetric data
and the global heap. When the NAS FT parallel benchmark comparing two different
versions of the SGI MPI library was run, the optimized MPI_Alltoall operation
was almost an order of magnitude faster on high process counts than the
nonoptimized buffered point-to-point MPI_Alltoall.

007–3687–006 53

6: MPI Optimization and Tuning

The MPI_Barrier call makes use of the fetchop barrier method for
MPI_COMM_WORLD and similar communicators. Because it is the primary mechanism
for synchronization, the barrier collective operation is critical for MPI-2 one-sided
applications and SHMEM programs. The MPI library uses a tree or dissemination
barrier mechanism for programs with 64 or more MPI processes. This implementation
uses multiple fetch operations to minimize contention for HUB caches as well as to
confine uncached loads to individual nodes to reduce traffic on the NUMA links.

Both the MPI_Alltoall collective and the MPI_Barriercall are also optimized for
clusters. In addition, the MPI_Bcast and MPI_Allreduce collectives are optimized
for clusters.

NUMA Placement

The MPI library takes advantage of NUMA placement functions that are available
from IRIX. When running on IRIX 6.5.11 and later releases, the default topology
(MPI_DSM_TOPOLOGY) is cpucluster. This allows IRIX to place the memories for
that processor on any group of memory nodes of the hardware. IRIX attempts to
place the group numbers close to one another, taking into account nodes with
disabled processors.

If the user is running within a cpuset, only those CPUs and memory nodes specified
within that cpuset are used.

In addition, MPI does NUMA placement optimization of key internal data structures
to ensure it has good locality with respect to each CPU and does not create any
unnecessary bottlenecks on specific memory nodes.

The oview command from Performance-CoPilot was used to generate Figure 6-2,
page 55, which shows the placement of a 32 processor MPI job run on an 512 PE
Origin 3000. Notice that the jobs (white bars) were placed on eight memory nodes
near one another.

54 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Figure 6-2 Placement optimization

MPI One-Sided Operations

Users who wish to get SHMEM like performance but write their code using a more
portable interface can use the MPI-2 remote memory operations commonly called
MPI one-sided. These interfaces are optimized and in fact use the SHMEM library to
achieve very low latency and very high bandwidth.

007–3687–006 55

6: MPI Optimization and Tuning

Runtime Optimizations
You can tune the MPI library for performance by using environment variables
described in the MPI man page. This section describes some of the common runtime
optimizations.

Eliminating Retries

The MPI statistic counters (-stats option or MPI_STATS environment variable) can
be used to tune the runtime environment of an MPI application. These counters are
always accumulating statistics, so turning them on simply displays them.

One of these statistics is the number of retries. A retry indicates that the library spent
time waiting for shared memory buffers to be made available before sending a
message. The number of buffers can be increased to eliminate retries by adjusting the
corresponding MPI environment variable. The most common ones that may need to
be increased are MPI_BUFS_PER_PROC and MPI_BUFS_PER_HOST.

The following partial -stats output shows that 5672 retries were attempted for PER
PROC data buffers for rank 3. In this case, the user should increase the
MPI_BUFS_PER_PROC environment variable.

mpirun -stats -prefix "%g:" -np 8 a.out

...

3: *** Dumping MPI internal resource statistics...

3:

3: 0 retries allocating mpi PER_PROC headers for collective calls

3: 0 retries allocating mpi PER_HOST headers for collective calls
3: 0 retries allocating mpi PER_PROC headers for point-to-point calls

3: 0 retries allocating mpi PER_HOST headers for point-to-point calls

3: 0 retries allocating mpi PER_PROC buffers for collective calls

3: 0 retries allocating mpi PER_HOST buffers for collective calls

3: 5672 retries allocating mpi PER_PROC buffers for point-to-point calls

3: 0 retries allocating mpi PER_HOST buffers for point-to-point calls
3: 0 send requests using shared memory for collective calls

3: 6357 send requests using shared memory for point-to-point calls

3: 0 data buffers sent via shared memory for collective calls

3: 2304 data buffers sent via shared memory for point-to-point calls

3: 0 bytes sent using single copy for collective calls
3: 0 bytes sent using single copy for point-to-point calls

3: 0 message headers sent via shared memory for collective calls

56 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

3: 6357 message headers sent via shared memory for point-to-point calls
3: 0 bytes sent via shared memory for collective calls

3: 15756000 bytes sent via shared memory for point-to-point calls

...

Single Copy Optimization

One of the most significant optimizations for bandwidth sensitive applications that
has been made in the MPI library has been single copy optimization. This section
describes three types of single copy optimization. Each one of these utilize the fact
that the library is not required to buffer the data. For this reason some nonstandard
MPI codes that require buffering for their MPI_Send/MPI_Recv calls may experience
program hangs. This is why this optimization is not enabled by default.

The MPI data type on the send side must also be a contiguous type.

Since single copy optimization does not use the shared memory data buffers, enabling
it eliminates the problem described in "Eliminating Retries", page 56 concerning
retries caused by too few per process data buffers (MPI_BUFS_PER_PROC).

For jobs that are run across a cluster, the messages sent between processes within a
host use single copy optimization, if enabled.

Single copy transfers for point-to-point as well as collective operations are listed in
the -stats output. Checking those statistics when attempting to use this
optimization can be very helpful to determine if single copy was used.

Traditional Single Copy Optimization and Restrictions

The traditional approach requires that users make sure the senders data resided in
globally accessible memory and that they set the MPI_BUFFER_MAX environment
variable. This optimization uses special cross-mapping of memory from the SHMEM
library and thus is available only for ABI 64.

Globally accessible memory includes common block or static memory and memory
allocated with the Fortran 90 allocate statement (with the SMA_GLOBAL_ALLOC
environment variable set). In addition, applications linked against the SHMEM
library may also access the LIBSMA symmetric heap via the shpalloc or shmalloc
functions.

Setting the MPI_BUFFER_MAX variable to any value will enable this optimization.
However, you should use a value near 2000 because this optimization for messages of

007–3687–006 57

6: MPI Optimization and Tuning

smaller size will often not yield better performance and sometimes may decrease
performance slightly.

For a simple bandwidth test involving two MPI processors and large message lengths,
the traditional single copy showed about 60% improvement in MB/sec.

Less Restrictive Single Copy Using the XPMEM Driver

One MPI library feature takes advantage of a special IRIX device driver known as
XPMEM (cross partition) that allows the operating system to make a very fast copy
between two processes within the same host or across partitions. This feature requires
IRIX 6.5.15 or greater. The XPMEM driver has been used by the MPI library to
enhance single copy optimization (within a host) to eliminate some of the restrictions
with only a slight (less that 5 percent) performance cost over the more restrictive
traditional single copy optimization. You can enable this optimization if you set the
MPI_XPMEM_ON and the MPI_BUFFER_MAX environment variables. The library tries
to use the traditional single copy before trying to use this form of single copy. Using
the XPMEM form of single copy is less restrictive in that the sender’s data is not
required to be globally accessible and it is available for ABI N32 as well as ABI 64.
Also, this optimization can be used to transfer data between two different executable
files on the same host or two different executable files across IRIX partitions.

Single Copy Using the XPMEM Driver and the BTE

In certain conditions, the XPMEM driver can take advantage of the block transfer
engine (BTE) to provide increased bandwidth. In addition to having
MPI_BUFFER_MAX and MPI_XPMEM_ON set, the send and receive buffers must be
cache-aligned and the amount of data to transfer must be greater than or equal to
MPI_XPMEM_THRESHOLD. The default value for MPI_XPMEM_THRESHOLD is 8192.

For the same bandwidth test mentioned in " Traditional Single Copy Optimization
and Restrictions ", page 57, using the BTE showed more than a two-fold improvement
in MB/sec over the traditional single copy.

NUMA Placement

Occasionally, it is useful to control NUMA placement. The dplace command can be
very effective but sometimes difficult to use. Using cpusets can be effective in
controlling NUMA placement, but to set up cpusets, you need to have root access.

58 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

The MPI library has introduced several environment variables to allow dplace and
cpuset functionality when running on a quiet system. You can assign your MPI ranks
to specific CPUs by using the MPI_DSM_CPULIST environment variable. You can use
the MPI_DSM_VERBOSE environment variable to determine what CPUs and memory
nodes were used, and which sysAD bus was used.

If you have a memory bound code that uses the memory of nodes in which the CPUs
are idle, it might make sense to assign fewer CPUs per node to the application. You
can do this by using the MPI_DSM_PPM environment variable. Note that the
MPI_DSM_MUSTRUN environment variable must be set to ensure the MPI processes
are pinned to the processors specified in the MPI_DSM_CPULIST.

If you are experiencing frequent TLB misses, you can increase the PAGESIZE_DATA
environment variable. It is best to increase it slowly because setting it too high could
cause even worse performance. Using the perfex or ssrun tools can help determine if
TLB misses are excessive.

Optimizations for Using MPI on IRIX Clusters
When you are running an MPI application across a cluster of IRIX hosts, there are
additional runtime environment settings and configurations that you can consider
when trying to improve application performance.

IRIX hosts can be clustered using a variety of high performance interconnects. Origin
300 and Origin 3000 series servers can be clustered as partitioned systems using the
XPMEM interconnect. Other high performance interconnects include GSN and
Myrinet. The older HIPPI 800 interconnect technology is also supported by the SGI
MPI implementation. If none of these interconnects is available, MPI relies on TCP/IP
to handle MPI traffic between hosts.

When launched as a distributed application, MPI probes for these interconnects at job
startup. Launching a distributed application is described in Chapter 3, "Using mpirun
to Execute Applications", page 7. When a high performance interconnect is detected,
MPI attempts to use this interconnect if it is available on every host being used by the
MPI job. If the interconnect is not available for use on every host, the library attempts
to use the next slower interconnect until this connectivity requirement is met. Table
6-1, page 60, specifies the order in which MPI probes for available interconnects.

007–3687–006 59

6: MPI Optimization and Tuning

Table 6-1 Inquiry Order for Available Interconnects

Interconnect
Default Order of
Selection Environment Variable to Require Use

Environment
Variable for
Specifying Device
Selection

XPMEM* 1 MPI_USE_XPMEM NA

GSN 2 MPI_USE_GSN MPI_GSN_DEVS

Myrinet(GM)* 3 MPI_USE_GM MPI_GM_DEVS

HIPPI 800 4 MPI_USE_HIPPI MPI_BYPASS_DEVS

TCP/IP 5 MPI_USE_TCP NA

*These interconnects are available only on Origin 300 and Origin 3000 series
computers.

The third column of Table 6-1, page 60 also indicates the environment variable you
can set to pick a particular interconnect other than the default. For example, suppose
you want to run an MPI job on a cluster supporting both GSN and HIPPI
interconnects. By default, the MPI job would try to run over the GSN interconnect. If
for some reason, you wanted to use the HIPPI 800 interconnect, you would set the
MPI_USE_HIPPI shell variable before launching the job. This would cause the MPI
library to attempt to run the job using the HIPPI interconnect. The job will fail if the
HIPPI interconnect cannot be used.

The XPMEM interconnect is exceptional in that it does not require that all hosts in the
MPI job need to be reachable via the XPMEM device. Message traffic between hosts
not reachable via XPMEM will go over the next fastest interconnect. Also, when you
specify a particular interconnect to use, you can set the MPI_USE_XPMEM variable in
addition to one of the other four choices.

In general, to insure the best performance of the application, you should allow MPI to
pick the fastest available interconnect.

In addition to the choice of interconnect, you should know that multihost jobs use
different buffers from those used by jobs run on a single host. In the SGI
implementation of MPI, all of the previously mentioned interconnects rely on the
’per host’ buffers to deliver long messages. The default setting for the number of
buffers per host might be too low for many applications. You can determine whether
this setting is too low by using the MPI statistics described earlier in this section. In

60 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

particular, the ’retries allocating mpi PER_HOST’ metric should be examined.
High retry counts indicate that the MPI_BUFS_PER_HOST shell variable should be
increased. For example, when using Myrinet(GM), it has been observed that 256 or
512 are good settings for the MPI_BUFS_PER_HOST shell variable.

When considering these MPI statistics, GSN and HIPPI 800 users should also examine
the ’retries allocating mpi PER_HOST headers’ counters. It might be
necessary to increase the MPI_MSGS_PER_HOST shell variable in cases in which this
metric indicates high numbers of retries. Myrinet(GM) does not use this resource.

When using GSN, Myrinet, or HIPPI 800 high performance networks, MPI attempts
to use all available adapters (cards) available on each host in the job. You can modify
this behavior by specifying specific adpter(s) to use. The fourth column of Table 6-1,
page 60 indicates the shell variable to use for a given network. For details on syntax,
see the MPI man page. Users of HIPPI 800 networks have additional control over the
way in which MPI uses multiple adapters via the MPI_BYPASS_DEV_SELECTION
variable. For details on the use of this environment variable, see the MPI man page.

When using the TCP/IP interconnect, unless specified otherwise, MPI uses the default
IP adpater for each host. To use a non-default adapter, the adapterr-specific host
name can be used on the mpirun command line.

Using MPI with OpenMP
Hybrid MPI/OpenMP applications might require special memory placement features
to operate efficiently on cc-NUMA Origin servers. A preliminary method for realizing
this memory placement is available. The basic idea is to space out the MPI processes
to accomodate the OpenMP threads associated with each MPI process. In addition,
assuming a particular ordering of library init code (see the DSO(5) man page),
procedures are employed to insure that the OpenMP threads remain close to the
parent MPI process. This type of placement has been found to improve the
performance of some hybrid applications significantly when more than four OpenMP
threads are used by each MPI process.

To take partial advantage of this placement option, the following requirements must
be met:

• The user must set the MPI_OPENMP_INTEROP shell variable when running the
application.

• The user must use a MIPSpro compiler and the -mp option to compile the
application. This placement option is not available with other compilers.

007–3687–006 61

6: MPI Optimization and Tuning

• To take full advantage of this placement option, the user must be able to link the
application such that the libmpi.so init code is run before the libmp.so
init code. This is done by linking the MPI/OpenMP application as follows:

cc -64 -mp compute_mp.c -lmp -lmpi

f77 -64 -mp compute_mp.f -lmp -lmpi

f90 -64 -mp compute_mp.f -lmp -lmpi

CC -64 -mp compute_mp.C -lmp -lmpi++ -lmpi

This linkage order insures that the libmpi.so init runs procedures for restricting
the placement of OpenMP threads before the libmp.so init is run. Note that this
is not the default linkage if only the -mp option is specified on the link line.

You can use an additional memory placement feature for hybrid MPI/OpenMP
applications by using the MPI_DSM_PLACEMENT shell variable. Specification of a
threadroundrobin policy results in the parent MPI process stack, data, and heap
memory segments being spread across the nodes on which the child OpenMP threads
are running. For more information, see Chapter 5, "Setting Environment Variables",
page 21.

MPI reserves nodes for this hybrid placement model based on the number of MPI
processes and the number of OpenMP threads per process, rounded up to the nearest
multiple of 4. For example, if 6 OpenMP threads per MPI process are going to be
used for a 4 MPI process job, MPI will request a placement for 32 (4 X 8) CPUs on the
host machine. You should take this into account when requesting resources in a batch
environment or when using cpusets. In this implementation, it is assumed that all
MPI processes start with the same number of OpenMP threads, as specified by the
OMP_NUM_THREADS or equivalent shell variable at job startup.

Note: This placement is not recommended when setting _DSM_PPM to a non-default
value (for more information, see pe_environ(5)). Also, if you are using
MPI_DSM_MUSTRUN, it is important to also set _DSM_MUSTRUN to properly schedule
the OpenMP threads.

Tips for Optimizing
Most techniques and tools for optimizing serial codes apply to message passing codes
as well. Speedshop (ssrun) and perfex are tools that work well. The following tips for
optimizing are described in this section:

62 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

• MPI constructs to avoid

• How to reproduce timings

• How to use MPI statistics

• A summary of the profiling tools available and how to get started using them

Avoiding Certain MPI Constructs

This section describes certain MPI constructs to avoid in performance critical sections
of your application.

• The MPI library has been enhanced to optimize certain point-to-point and
collective calls. Calls that have not been optimized and should be avoided in
critical areas of an application are MPI_Bsend, MPI_Ssend, and MPI_Issend.

The MPI_Bsend call is a buffered send and essentially doubles the amount of data
to be copied by the sending process.

The MPI_Ssend and MPI_Issend are synchronous sends that do not begin
sending the message until they have received an acknowledgment (ACK) from the
destination process that it is ready to receive the message. This significantly
increases latency, especially for short messages (less than 64 bytes).

• While MPI_Pack and MPI_Unpack are useful for porting PVM codes to MPI, they
essentially double the amount of data to be copied by both the sender and the
receiver. It is best to avoid the use of these functions by either restructuring your
data or using MPI derived data types.

• The use of wild cards (MPI_ANY_SOURCE, MPI_ANY_TAG) involves searching
multiple queues for messages. While this is not significant for small process
counts, for large process counts the cost increases quickly.

Reducing Runtime Variability

One of the most common problems with optimizing message passing codes is
achieving reproducible timings from run to run. Use the following tips to reduce
runtime variability:

• Do not oversubscribe the system. In other words, do not request more CPUs than
are available and do not request more memory than is available. Oversubscribing

007–3687–006 63

6: MPI Optimization and Tuning

causes the system to wait unnecessarily for resources to become available and
leads to variations in the results and less than optimal performance.

• Use cpusets to divide the host’s CPUs and memory between applications or use
the MPI_DSM_CPULIST environment variable on quiet systems to control NUMA
placement.

• Use a batch scheduler like LSF from Platform Computing or PBSpro from Veridian,
which can help avoid oversubscribing the system and poor NUMA placement.

Using MPI Statistics

To turn on the displaying of MPI internal statistics, use the MPI_STATS environment
variable or the -stats option on the mpirun command. MPI internal statistics are
always being gathered, so displaying them simply lets you see them during
MPI_Finalize. These statistics can be very useful in optimizing codes in the
following ways:

• To determine if there are enough internal buffers and if processes are waiting
(retries) to aquire them

• To determine if single copy optimization is being used for point-to-point or
collective calls

Using Profiling

In addition to the MPI statistics, users can get additional performance information
from several SGI or third party tools, or they can write their own wrappers. For long
running codes or codes that use hundreds of processors, the trace data generated
from MPI performance tools can be enormous. This causes the programs to run more
slowly, but even more problematic is that the tools to analyze the data are often
overwhelmed by the amount of data.

A better approach is to use a general purpose profiling tool to locate the problem area
and then to turn on and off the tracing just around those areas of your code. With
this approach the display tools can better handle the amount of data that is generated.
Two third party tools that you can use in this way are Vampir from Pallas
(www.pallas.com) and Jumpshot, which is part of the MPICH distribution.

Two of the most common SGI profiling tools are Speedshop and perfex. The
following sections describe how to invoke Speedshop and perfex for typical profiling

64 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

of MPI codes. Performance-CoPilot (PCP) tools and tips for writing your own tools
are also included.

Speedshop

You can use Speedshop as a general purpose profiling tool or specific profiling tool
for MPI potential bottlenecks. It has an advantage over many of the other profiling
tools because it can map information to functions and even line numbers in the user
source program. The examples listed below are in order from most general purpose
to the most specific. You can use the -ranks option to limit the data files generated
to only a few ranks.

General format:

mpirun -np 4 ssrun [ssrun_options] a.out

Examples:

mpirun -np 32 ssrun -pcsamp a.out # general purpose, low cost

mpirun -np 32 ssrun -usertime a.out # general purpose, butterfly view
mpirun -np 32 ssrun -bbcounts a.out # most accurate, most cost, butterfly view

mpirun -np 32 ssrun -mpi a.out # traces MPI calls

mpirun -np 32 ssrun -tlb_hwctime a.out # profiles TLB misses

perfex

You can use perfex to obtain information concerning the hardware performance
monitors.

General format:

mpirun -np 4 perfex -mp [perfex_options] -o file a.out

Example:

mpirun -np 4 perfex -mp -e 23 -o file a.out # profiles TLB misses

Performance-CoPilot

In addition to the tools described in the preceding sections, you can also use the MPI
Agent for Performance-CoPilot (PCP) to profile your application. The two additional
PCP tools specifically designed for MPI are mpivis and mpimon. These tools do not
use trace files and can be used live or can be logged for later replay. For more

007–3687–006 65

6: MPI Optimization and Tuning

information about configuring and using these tools, see the PCP tutorial in
/var/pcp/Tutorial/mpi.html. Following are examples of the mpivis and
mpimon tools.

Figure 6-3 mpivis Tool

66 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Figure 6-4 mpimon Tool

007–3687–006 67

6: MPI Optimization and Tuning

Additional profiling

You can write your own profiling by using the MPI-1 standard PMPI_* calls. In
addition, either within your own profiling library or within the application itself you
can use the MPI_Wtime function call to time specific calls or sections of your code.

The following example is actual output for a single rank of a program that was run
on 128 processors using a user-created profiling library that performs call counts and
timings of common MPI calls. Notice that for this rank most of the MPI time is being
spent in MPI_Waitall and MPI_allreduce.

Total job time 2.203333e+02 sec

Total MPI processes 128
Wtime resolution is 8.000000e-07 sec

activity on process rank 0

comm_rank calls 1 time 8.800002e-06

get_count calls 0 time 0.000000e+00
ibsend calls 0 time 0.000000e+00

probe calls 0 time 0.000000e+00

recv calls 0 time 0.00000e+00 avg datacnt 0 waits 0 wait time 0.00000e+00

irecv calls 22039 time 9.76185e-01 datacnt 23474032 avg datacnt 1065

send calls 0 time 0.000000e+00

ssend calls 0 time 0.000000e+00
isend calls 22039 time 2.950286e+00

wait calls 0 time 0.00000e+00 avg datacnt 0

waitall calls 11045 time 7.73805e+01 # of Reqs 44078 avg datacnt 137944

barrier calls 680 time 5.133110e+00

alltoall calls 0 time 0.0e+00 avg datacnt 0
alltoallv calls 0 time 0.000000e+00

reduce calls 0 time 0.000000e+00

allreduce calls 4658 time 2.072872e+01

bcast calls 680 time 6.915840e-02

gather calls 0 time 0.000000e+00
gatherv calls 0 time 0.000000e+00

scatter calls 0 time 0.000000e+00

scatterv calls 0 time 0.000000e+00

activity on process rank 1

...

68 007–3687–006

Chapter 7

Frequently Asked Questions

This chapter provides answers to frequently asked questions about MPI.

What are some things I can try to figure out why mpirun is failing?
Here are some things to investigate:

• Look at the last few lines in /var/adm/SYSLOG for any suspicious errors or
warnings. For example, if your application tries to pull in a library that it cannot
find, a message should appear here.

• Be sure that you did not misspell the name of your application.

• To find rld/dynamic link errors, try to run your program without mpirun. You
will get the “mpirun must be used to launch all MPI applications"
message, along with any rld link errors that might not be displayed when the
program is started with mpirun.

• Be sure that you are setting your remote directory properly. By default, mpirun
attempts to place your processes on all machines into the directory that has the
same name as $PWD. This should be the common case, but sometimes different
functionality is required. For more information, see the section on $MPI_DIR
and/or the -dir option in the mpirun man page.

• If you are using a relative pathname for your application, be sure that it appears
in $PATH. In particular, mpirun will not look in ’.’ for your application unless ’.’
appears in $PATH.

• Run /usr/etc/ascheck to verify that your array is configured correctly.

• Be sure that you can execute rsh (or arshell) to all of the hosts that you are
trying to use without entering a password. This means that either
/etc/hosts.equiv or ~/.rhosts must be modified to include the names of
every host in the MPI job. Note that using the -np syntax (i.e. no hostnames) is
equivalent to typing localhost, so a localhost entry will also be needed in one of
the above two files.

• If you are using an mpt module to load MPI, try loading it directly from within
your .cshrcfile instead of from the shell. If you are also loading a MIPSpro
module, be sure to load it after the mpt module.

007–3687–006 69

7: Frequently Asked Questions

• Use the -verbose option to verify that you are running the version of MPI that
you think you are running.

• Be very careful when setting MPI environment variables from within your
.cshrc or .login files, because these will override any settings that you might
later set from within your shell (due to the fact that MPI creates the equivalent of
a fresh login session for every job). The safe way to set things up is to test for the
existence of $MPI_ENVIRONMENT in your scripts and set the other MPI
environment variables only if it is undefined.

• If you are running under a Kerberos environment, you may be in for a wild ride
because currently, mpirun is unable to pass tokens. For example, in some cases, if
you use telnet to connect to a host and then try to run mpirun on that host, it
fails. But if you instead use rsh to connect to the host, mpirun succeeds. (This
might be because telnet is kerberized but rsh is not.) At any rate, if you are
running under such conditions, you will definitely want to talk to the local
administrators about the proper way to launch MPI jobs.

How do I combine MPI with insert favorite tool here?
In general, the rule to follow is to run mpirun on your tool and then the tool on your
application. Do not try to run the tool on mpirun. Also, because of the way that
mpirun sets up stdio, seeing the output from your tool might require a bit of effort.
The most ideal case is when the tool directly supports an option to redirect its output
to a file. In general, this is the recommended way to mix tools with mpirun. Of
course, not all tools (for example, dplace) support such an option. However, it is
usually possible to make it work by wrapping a shell script around the tool and
having the script do the redirection, as in the following example:

> cat myscript

#!/bin/sh

setenv MPI_DSM_OFF

dplace -verbose a.out 2> outfile

> mpirun -np 4 myscript
hello world from process 0

hello world from process 1

hello world from process 2

hello world from process 3

> cat outfile
there are now 1 threads

Setting up policies and initial thread.

70 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

Migration is off.
Data placement policy is PlacementDefault.

Creating data PM.

Data pagesize is 16k.

Setting data PM.

Creating stack PM.
Stack pagesize is 16k.

Stack placement policy is PlacementDefault.

Setting stack PM.

there are now 2 threads

there are now 3 threads

there are now 4 threads
there are now 5 threads

MPI with dplace

setenv MPI_DSM_OFF
mpirun -np 4 dplace -place file a.out

Starting with IRIX 6.5.13, MPI interoperates with dplace so that MPI cc-NUMA
functionality is not actually turned off. This might change the performance
characteristics of MPI with previous releases of IRIX and dplace. To disable this
interaction, the user needs to set the MPI_DPLACE_INTEROP_OFF shell variable.

MPI with perfex

mpirun -np 4 perfex -mp -o file a.out

The -o option to perfex became available only in IRIX 6.5, so on systems released
earlier than IRIX 6.5, you must use a shell script as described previously. However, a
shell script allows you to view only the summary for the entire job; individual
statistics for each process are possible only via the -o option.

MPI with rld

setenv _RLDN32_PATH /usr/lib32/rld.debug

setenv _RLD_ARGS "-log outfile -trace"

mpirun -np 4 a.out

007–3687–006 71

7: Frequently Asked Questions

You can create more than one output file, depending on whether you are running out
of your home directory and whether you use a relative pathname for the file. The
first file will be created in the same directory from which you are running your
application, and will contain information that applies to your job. The second file will
be created in your home directory and will contain (uninteresting) information about
the login shell that mpirun created to run your job. If both directories are the same,
the entries from both are merged into a single file.

MPI with Totalview

totalview mpirun -a -np 4 a.out

In this special case, you must run the tool on mpirun and not the other way around.
Note also that Totalview uses the -a option and therefore, it must always appear as
the first option of the mpirun command.

Note that Totalview is not expected to operate with MPI processes started via the
MPI_Comm_spawn or MPI_Comm_spawn_multiple functions.

MPI with SHMEM

It is easy to mix SHMEM and MPI message passing in the same program. Start with
an MPI program that calls MPI_Init and MPI_Finalize. When you add SHMEM
calls, the PE numbers are equal to the MPI rank numbers in MPI_COMM_WORLD. Do
not call start_pes() in a mixed MPI and SHMEM program. For more information,
see the shmem(3) man page.

I am unable to malloc() more than 700-1000 MB when I link with libmpi.
On IRIX systems released before IRIX 6.5, there are no so_locations entries for the
MPI libraries. The way to fix this is to requickstart all versions of libmpi as follows:

cd /usr/lib32/mips3
rqs32 -force_requickstart -load_address 0x2000000 ./libmpi.so

cd /usr/lib32/mips4

rqs32 -force_requickstart -load_address 0x2000000 ./libmpi.so

cd /usr/lib64/mips3

rqs64 -force_requickstart -load_address 0x2000000 ./libmpi.so
cd /usr/lib64/mips4

72 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

rqs64 -force_requickstart -load_address 0x2000000 ./libmpi.so

Note that this code requires root access.

My code runs correctly until it reaches MPI_Finalize() and then it hangs.
This is almost always caused by send or recv requests that are either unmatched or
not completed. An unmatched request is any blocking send for which a
corresponding recv is never posted. An incomplete request is any nonblocking send
or recv request that was never freed by a call to MPI_Test(), MPI_Wait(), or
MPI_Request_free().

Common examples are applications that call MPI_Isend() and then use internal
means to determine when it is safe to reuse the send buffer. These applications never
call MPI_Wait(). You can fix such codes easily by inserting a call to
MPI_Request_free() immediately after all such isend operations, or by adding a
call to MPI_Wait() at a later place in the code, prior to the point at which the send
buffer must be reused.

I keep getting error messages about MPI_REQUEST_MAX being too small,
no matter how large I set it.

There are two types of cases in which the MPI library reports an error concerning
MPI_REQUEST_MAX. The error reported by the MPI library distinguishes these.

If the error message states

MPI has run out of unexpected request entries; the current allocation level is: XX

the program is sending so many unexpected large messages (greater than 64 bytes) to
a process that internal limits in the MPI library have been exceeded. The options here
are to increase the number of allowable requests via the MPI_REQUEST_MAX shell
variable, or to modify the application.

If the error message states

*** MPI has run out of request entries

*** The current allocation level is:

*** MPI_REQUEST_MAX = XXXXX

007–3687–006 73

7: Frequently Asked Questions

you might have an application problem. You almost certainly are calling
MPI_Isend() or MPI_Irecv() and not completing or freeing your request objects.
You need to use MPI_Request_free(), as described in the previous section.

I am not seeing stdout and/or stderr output from my MPI application.
Beginning with our MPT 1.2/MPI 3.1 release, all stdout and stderr is
line-buffered, which means that mpirun does not print any partial lines of output.
This sometimes causes problems for codes that prompt the user for input parameters
but do not end their prompts with a newline character. The only solution for this is to
append a newline character to each prompt.

Beginning with MPT 1.5.2, you can set the MPI_UNBUFFERED_STDIO environment
variable to disable line-buffering. For more information, see the MPI(1) and
mpirun(1) man pages.

How can I get the MPT software to install on my machine?
Message-Passing Toolkit software releases can be obtained at the SGI Software
Download page at

http://www.sgi.com/products/evaluation/

Where can I find more information about SHMEM?
See the intro_shmem(3)man page.

The ps(1) command says my memory use (SIZE) is higher than expected.
At MPI job start-up, MPI calls libsma to cross-map all user static memory on all MPI
processes to provide optimization opportunities. The result is large virtual memory
usage. The ps(1) command’s SIZE statistic is telling you the amount of virtual
address space being used, not the amount of memory being consumed. Even if all of
the pages that you could reference were faulted in, most of the virtual address regions
point to multiply-mapped (shared) data regions, and even in that case, actual
per-process memory usage would be far lower than that indicated by SIZE.

74 007–3687–006

Message Passing Toolkit: MPI Programmer’s Manual

What does MPI: could not run executable mean?
This message means that something happened while mpirun was trying to launch
your application, which caused it to fail before all of the MPI processes were able to
handshake with it.

With Array Services 3.2 or later and MPT 1.3 or later, many scenarios that generated
this error message are now improved to be more descriptive.

Prior to Array Services 3.2, no diagnostic information was directly available. This was
due to the highly decoupled interface between mpirun and arrayd.

mpirun directs arrayd to launch a master process on each host and listens on a
socket for those masters to connect back to it. Since the masters are children of
arrayd, arrayd traps SIGCHLD and passes that signal back to mpirun whenever
one of the masters terminates. If mpirun receives a signal before it has established
connections with every host in the job, it knows that something has gone wrong.

I have other MPI questions. Where can I read more about MPI?
The MPI(1) and mpirun(1) man pages are good places to start. Also see the MPI
standards at http://www.mpi-forum.org/docs/docs.html.

007–3687–006 75

Index

B

building MPI applications, 5

D

distributed programs, 14

E

environment variable setting, 21

F

frequently asked questions, 69

I

internal message buffering, 48

M

MPI
components, 2
overview, 1

mpirun
argument file, 13
command, 7
for distributed programs, 14
for local host, 13

MPT
components, 1

overview, 1

O

Optimizations
application, 51
collective calls, 53
constructs to avoid, 63
eliminating retries, 56
less restrictive single-copy, 58
low latency, high bandwidth, 51
NUMA placement, application, 54
NUMA placement, runtime, 58
one-sided operations, 55
point-to-point calls, 51
profiling, 68
reducing runtime variability, 63
runtime, 56
single-copy, 57
single-copy with XPMEM driver/BTE, 58
tips, 62
traditional single-copy, 57
using MPI statistics, 64
using PCP, 65
using perfex, 65
using profiling, 64
using Speedshop, 65

P

program development, 3
program segments, 14

007–3687–006 77

Index

S

sprocs, 17

T

threads
collectives, 18
exception handlers, 19

finalization, 19
initialization, 17
internal statistics, 19
probes, 18
query functions, 18
requests, 18
signals, 19
thread-safe systems, 17

troubleshooting, 69

78 007–3687–006

	New Features
	Table of Contents
	List of Figures
	List of Tables

	About This Manual
	Related Publications and Other Sources
	Conventions
	Reader Comments

	1. Overview
	MPI Overview
	MPI Components
	MPI Program Development

	2. Building MPI Applications
	Compiling and Linking IRIX Programs
	Compiling and Linking Linux Programs

	3. Using mpirun to Execute Applications
	Syntax of the mpirun Command
	Using a File for mpirun Arguments
	Launching Programs on the Local Host Only
	Launching a Distributed Program
	Launching a Program in Spawn Capable Mode on the Local Host

	4. Thread-Safe MPI
	Initialization
	Query Functions
	Requests
	Probes
	Collectives
	Exception Handlers
	Signals
	Internal Statistics
	Finalization

	5. Setting Environment Variables
	Setting MPI Environment Variables
	Internal Message Buffering in MPI

	6. MPI Optimization and Tuning
	Application Optimizations
	Optimized Point-to-Point Calls
	Optimized Collective Calls
	NUMA Placement
	MPI One-Sided Operations

	Runtime Optimizations
	Eliminating Retries
	Single Copy Optimization
	NUMA Placement

	Optimizations for Using MPI on IRIX Clusters
	Using MPI with OpenMP
	Tips for Optimizing
	Avoiding Certain MPI Constructs
	Reducing Runtime Variability
	Using MPI Statistics
	Using Profiling

	7. Frequently Asked Questions
	What are some things Ican try to figure out why mpirun is failing?
	How do Icombine MPI with insert favorite tool here?
	MPI with dplace
	MPI with perfex
	MPI with rld
	MPI with Totalview
	MPI with SHMEM

	Iam unable to malloc() more than 700-1000 MB when Ilink with libmpi.
	My code runs correctly until it reaches MPI_Finalize() and then it hangs.
	Ikeep getting error messages about MPI_REQUEST_MAX being too small, no matter how large Iset it.
	Iam not seeing stdout and/or stderr output from my MPI application.
	How can Iget the MPT software to install on my machine?
	Where can Ifind more information about SHMEM?
	The ps(1) command says my memory use (SIZE) is higher than expected.
	What does MPI: could not run executable mean?
	Ihave other MPI questions. Where can Iread more about MPI?

	Index

