
Fortran Language Reference Manual,
Volume 3

Document Number 007–3694–004



St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1993, 1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

The CF90 compiler includes United States software patents 5,247,696, 5,257,372, and 5,361,354.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

IRIS, IRIX, and Silicon Graphics are registered trademarks and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.

MIPS is a registered trademark and MIPSpro is a trademark of MIPS Technologies, Inc. TotalView is a trademark of Bolt Baranek
and Newman Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively to X/Open
Limited. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company
Limited. X/Open is a registered trademarkof X/Open Company Ltd. The X device is a trademark of The Open Group,

Adapted with permission of McGraw-Hill, Inc. from the FORTRAN 90 HANDBOOK, Copyright © 1992 by Walter S. Brainerd,
Jeanne C. Adams, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. All rights reserved. Cray Research, Inc. is solely
responsible for the content of this work.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.



New Features

Fortran Language Reference Manual, Volume 3 007–3694–004

This manual describes the Fortran 95 language as implemented by the CF90 compiler, release 3.2, and the
MIPSpro 7 Fortran 90 compiler, revision 7.3. These compilers supported parts of the Fortran 95 standard in
previous releases. The major changes to this manual reflect that the CF90 and the MIPSpro 7 Fortran 90
compilers now support the entire Fortran 95 standard.

This revision contains the following new features to support the Fortran 95 standard:

• The FORALL statement and construct.

• Pointer initialization.

• Default initialization in a derived type.

• A distinction between positive zero and negative real zero (-0.0) by the SIGN(3I) intrinsic function and
input/output.

• The ELSEWHERE statement can accept a conditional expression as an argument.

• MODULE PROCEDURE statements can be intermixed with interface bodies. The END INTERFACE
statement can repeat the generic identifier.

• User functions can be called from specification expressions.

• The NULL and CPU_TIME intrinsic procedures.

• The CEILING and FLOOR intrinsic procedures now accept [KIND=]kind arguments.

This revision also contains the following feature as an extension to the Fortran 95 standard:

• The FORM=SYSTEM specifier on the OPEN statement

The Fortran 95 standard has declared some Fortran 90 features to be obsolescent or has deleted them. The
CF90 and MIPSpro 7 Fortran 90 compilers, however, have not removed their functionality from the system.
Obsolescent features are described in the Fortran Language Reference Manual, Volume 1 and in the Fortran
Language Reference Manual, Volume 2; both manuals note when a particular feature is catagorized as
obsolescent. All features deleted from the current Fortran standard are described in the Fortran Language
Reference Manual, Volume 3. When the compilers detect a deleted feature, they process the feature and issue
a NON-ANSI message. The deleted features that generate NON-ANSI messages are as follows:

• Real and double precision DO variables

• Branching to an END IF from outside its IF construct

• PAUSE statement



• ASSIGN, assigned GO TO statements, and assigned format specifiers

• H edit descriptor

This revision describes the following feature, which is implemented on IRIX platforms only:

• The VOLATILE statement and attribute



Record of Revision

Version Description

2.0 November 1995
Original Printing. The sections in this manuals previously appeared in the CF90
Fortran Language Reference Manual, revision 1.0, publication SR–3902, and the CF90
Commands and Directives Reference Manual.

3.0 May 1997
This printing supports the Cray Research CF90 3.0 release running on UNICOS and
UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 compiler release 7.2
running on the IRIX operating system. The implementation of features on IRIX
operating system platforms is deferred.

3.0.1 August 1997
This online revision supports the Cray Research CF90 3.0.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2 release, running on the IRIX operating system. Includes minor updates
and corrections to revision 3.0.

3.0.2 March 1998
This online revision supports the Cray Research CF90 3.0.2 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
updates and corrections to revision 3.0.1.

3.1 August 1998
This online revision supports the Cray Research CF90 3.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
updates and corrections to revision 3.0.2.

3.2 January 1999
This revision (007–3694–004) supports the CF90 3.2 release, running on the UNICOS
and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 7.3 release,
running on the IRIX operating system. It includes major updates to revision 3.1.

007–3694–004 i





Contents

Page

About This Manual xiii

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications . . . . . . . . . . xiii

CF90 and MIPSpro 7 Fortran 90 Compiler Messages . . . . . . . . . . . . . xiv

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages . . . . . . . . . . . . . xiv

Related Fortran Publications . . . . . . . . . . . . . . . . . . . . . xv

Related Publications . . . . . . . . . . . . . . . . . . . . . . . xv

Obtaining Publications . . . . . . . . . . . . . . . . . . . . . . . xvi

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

BNF Conventions . . . . . . . . . . . . . . . . . . . . . . . . xix

Reader Comments . . . . . . . . . . . . . . . . . . . . . . . . xx

Fortran Syntax [1] 1

Syntax Form . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Syntax Rules Expressed in BNF . . . . . . . . . . . . . . . . . . . 1

Definition Syntax Symbol: Is . . . . . . . . . . . . . . . . . . . . 2

Alternative Syntax Symbol: Or . . . . . . . . . . . . . . . . . . . 2

Optional Symbol: [ ] . . . . . . . . . . . . . . . . . . . . . . 3

Symbol for Repeated Items: [ ]. . . . . . . . . . . . . . . . . . . . . 3

Syntax Rule Continuation . . . . . . . . . . . . . . . . . . . . . 3

Assumed Syntax Rules . . . . . . . . . . . . . . . . . . . . . . 4

Example BNF Syntax . . . . . . . . . . . . . . . . . . . . . . 4

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 5

Identifying Numbers . . . . . . . . . . . . . . . . . . . . . . 5

Syntax Rules and Constraints . . . . . . . . . . . . . . . . . . . . . 5

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 6

007–3694–004 iii



Fortran Language Reference Manual, Volume 3

Page

Fortran Terms and Concepts . . . . . . . . . . . . . . . . . . . . 6

Characters, Lexical Tokens, and Source Form . . . . . . . . . . . . . . . 10

Intrinsic and Derived Data Types . . . . . . . . . . . . . . . . . . . 13

Data Object Declarations and Specifications . . . . . . . . . . . . . . . 18

Use of Data Objects . . . . . . . . . . . . . . . . . . . . . . . 31

Expressions and Assignment . . . . . . . . . . . . . . . . . . . . 35

Execution Control . . . . . . . . . . . . . . . . . . . . . . . 42

Input/Output (I/O) Statements . . . . . . . . . . . . . . . . . . . 48

I/O Editing . . . . . . . . . . . . . . . . . . . . . . . . . 54

Program Units . . . . . . . . . . . . . . . . . . . . . . . . 57

Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 59

Intrinsic Procedures . . . . . . . . . . . . . . . . . . . . . . . 66

Scope, Association, and Definition . . . . . . . . . . . . . . . . . . 67

Decremental Features [2] 69

Deleted Features . . . . . . . . . . . . . . . . . . . . . . . . 69

PAUSE Statement . . . . . . . . . . . . . . . . . . . . . . . 69

ASSIGN, Assigned GO TO Statements, and Assigned Format Specifiers . . . . . . . 70

Form of the ASSIGN and Assigned GO TO Statements . . . . . . . . . . . 71

Assigned Format Specifiers . . . . . . . . . . . . . . . . . . . . 72

H Edit Descriptor . . . . . . . . . . . . . . . . . . . . . . . 72

Obsolescent Features . . . . . . . . . . . . . . . . . . . . . . . 73

Character Set [3] 77

Extensions and Differences [4] 83

Fortran 95 Standard Differences and Incompatibilities With FORTRAN 77 Implementations . 83

Fortran 95 and the G Edit Descriptor Output Differences . . . . . . . . . . . 83

Fortran 95 and List-directed Output Differences . . . . . . . . . . . . . . 84

Delimited and Undelimited Character Strings in List-directed I/O . . . . . . . . 84

iv 007–3694–004



Contents

Page

List-directed I/O and Floating-point Zero . . . . . . . . . . . . . . . . 84

CF90 extensions to Fortran 95 . . . . . . . . . . . . . . . . . . . . 85

List-directed I/O and Hollerith Constants . . . . . . . . . . . . . . . . 85

Differences in the B, O, and Z Edit Descriptors . . . . . . . . . . . . . . 85

MIPSpro 7 Fortran 90 extensions to Fortran 95 . . . . . . . . . . . . . . . 86

CF90, MIPSpro 7 Fortran 90, and MIPSpro Fortran 77 Differences . . . . . . . . . 86

MIPSpro 7 Fortran 90 and CF90 Compiler Differences . . . . . . . . . . . . 87

Numerical Model Differences . . . . . . . . . . . . . . . . . . . 87

Fortran Statement Differences . . . . . . . . . . . . . . . . . . . 87

Function and Procedure Differences . . . . . . . . . . . . . . . . . 88

Modules Differences . . . . . . . . . . . . . . . . . . . . . . 88

I/O Library Differences . . . . . . . . . . . . . . . . . . . . . 88

Library Function and Procedure Differences . . . . . . . . . . . . . . 89

Math Library Differences . . . . . . . . . . . . . . . . . . . . 89

MIPSpro FORTRAN 77 and MIPSpro 7 Fortran 90 Compiler Differences . . . . . . . 89

Intrinsic Function and Subroutine Differences . . . . . . . . . . . . . . 89

DATA Statement Initialization Differences . . . . . . . . . . . . . . . 90

I/O Record Length Differences . . . . . . . . . . . . . . . . . . 90

Special File Formats Differences . . . . . . . . . . . . . . . . . . 90

MIscellaneous Differences . . . . . . . . . . . . . . . . . . . . 91

Data Representation and Storage [5] 95

Data Representation for UNICOS Systems . . . . . . . . . . . . . . . . . 95

Integer Type . . . . . . . . . . . . . . . . . . . . . . . . . 95

Real Type . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Normalized Floating-point Numbers . . . . . . . . . . . . . . . . . 98

Double-precision Type . . . . . . . . . . . . . . . . . . . . . . 99

Single-precision Complex Type . . . . . . . . . . . . . . . . . . . 99

Double-precision Complex Type . . . . . . . . . . . . . . . . . . . 100

007–3694–004 v



Fortran Language Reference Manual, Volume 3

Page

Character Type . . . . . . . . . . . . . . . . . . . . . . . . 101

Logical Type . . . . . . . . . . . . . . . . . . . . . . . . . 102

Cray Character Pointers . . . . . . . . . . . . . . . . . . . . . 102

Data Representation for IRIX systems . . . . . . . . . . . . . . . . . . 103

Integer Type . . . . . . . . . . . . . . . . . . . . . . . . . 103

KIND=1 . . . . . . . . . . . . . . . . . . . . . . . . . . 103

KIND=2 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

KIND=4 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

KIND=8 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Real Type . . . . . . . . . . . . . . . . . . . . . . . . . . 105

KIND=4 . . . . . . . . . . . . . . . . . . . . . . . . . . 105

KIND=8 . . . . . . . . . . . . . . . . . . . . . . . . . . 107

KIND=16 . . . . . . . . . . . . . . . . . . . . . . . . . 108

Complex Type . . . . . . . . . . . . . . . . . . . . . . . . 109

KIND=4 . . . . . . . . . . . . . . . . . . . . . . . . . . 109

KIND=8 . . . . . . . . . . . . . . . . . . . . . . . . . . 110

KIND=16 . . . . . . . . . . . . . . . . . . . . . . . . . 110

Character Type . . . . . . . . . . . . . . . . . . . . . . . . 112

Logical Type . . . . . . . . . . . . . . . . . . . . . . . . . 112

Cray Character Pointers (Deferred Implementation) . . . . . . . . . . . . . 112

Data Representation for UNICOS/mk Systems . . . . . . . . . . . . . . . 113

Integer Type . . . . . . . . . . . . . . . . . . . . . . . . . 113

KIND=1, KIND=2, or KIND=4 . . . . . . . . . . . . . . . . . . . 113

KIND=8 . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Real Type . . . . . . . . . . . . . . . . . . . . . . . . . . 114

KIND=4 . . . . . . . . . . . . . . . . . . . . . . . . . . 114

KIND=8 . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Complex Type . . . . . . . . . . . . . . . . . . . . . . . . 117

KIND=4 . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vi 007–3694–004



Contents

Page

KIND=8 . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Character Type . . . . . . . . . . . . . . . . . . . . . . . . 119

Logical Type . . . . . . . . . . . . . . . . . . . . . . . . . 119

Cray Character Pointers . . . . . . . . . . . . . . . . . . . . . 120

Data Representation for CRAY T90 Systems That Support IEEE Floating-point Arithmetic . . 120

Integer Type . . . . . . . . . . . . . . . . . . . . . . . . . 120

KIND=1, KIND=2, or KIND=4 . . . . . . . . . . . . . . . . . . . 120

KIND=8 . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Real Type . . . . . . . . . . . . . . . . . . . . . . . . . . 121

KIND=4 and KIND=8 . . . . . . . . . . . . . . . . . . . . . 122

KIND=16 . . . . . . . . . . . . . . . . . . . . . . . . . 122

Complex Type . . . . . . . . . . . . . . . . . . . . . . . . 123

KIND=4 and KIND=8 . . . . . . . . . . . . . . . . . . . . . 123

KIND=16 . . . . . . . . . . . . . . . . . . . . . . . . . 124

Character Type . . . . . . . . . . . . . . . . . . . . . . . . 126

Logical Type . . . . . . . . . . . . . . . . . . . . . . . . . 126

Cray Character Pointers . . . . . . . . . . . . . . . . . . . . . 127

Storage Issues . . . . . . . . . . . . . . . . . . . . . . . . . 127

Storage Units and Sequences . . . . . . . . . . . . . . . . . . . . 128

Static and Stack Storage . . . . . . . . . . . . . . . . . . . . . 130

Dynamic Memory Allocation (UNICOS Systems Only) . . . . . . . . . . . . 132

Changing Your Code: Standard Method . . . . . . . . . . . . . . . . 133

Changing Your Code: Nonstandard Method . . . . . . . . . . . . . . 134

Outmoded Features [6] 137

Hollerith Type . . . . . . . . . . . . . . . . . . . . . . . . . 138

Hollerith Constants . . . . . . . . . . . . . . . . . . . . . . . 138

Hollerith Values . . . . . . . . . . . . . . . . . . . . . . . . 140

Hollerith Relational Expressions . . . . . . . . . . . . . . . . . . . 140

007–3694–004 vii



Fortran Language Reference Manual, Volume 3

Page

Formatted I/O and Internal Files . . . . . . . . . . . . . . . . . . . 141

ENCODE Statement . . . . . . . . . . . . . . . . . . . . . . . 141

DECODE Statement . . . . . . . . . . . . . . . . . . . . . . . 143

Edit Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 145

Asterisk Delimiters . . . . . . . . . . . . . . . . . . . . . . . 145

Negative-valued X Descriptor . . . . . . . . . . . . . . . . . . . . 145

A and R Descriptors for Noncharacter Types . . . . . . . . . . . . . . . 146

Type Declaration with Data Length . . . . . . . . . . . . . . . . . . . 147

DATA Statement Features . . . . . . . . . . . . . . . . . . . . . . 150

IF Statements . . . . . . . . . . . . . . . . . . . . . . . . . 150

Two-branch Arithmetic IF . . . . . . . . . . . . . . . . . . . . . 150

Indirect Logical IF . . . . . . . . . . . . . . . . . . . . . . . 151

TASK COMMON Statement (UNICOS Systems Only) . . . . . . . . . . . . . . 151

Nested Loop Termination . . . . . . . . . . . . . . . . . . . . . . 152

DOUBLE COMPLEX Statement (UNICOS Systems Only) . . . . . . . . . . . . . 152

Bitwise Logical Expressions . . . . . . . . . . . . . . . . . . . . . 153

CF90 Defined Externals [7] 157

Conformance Checks . . . . . . . . . . . . . . . . . . . . . . . 157

Record Length . . . . . . . . . . . . . . . . . . . . . . . . . 157

Glossary 159

Index 169

Figures
Figure 1. Default 64-bit integers . . . . . . . . . . . . . . . . . . . 96

Figure 2. Fast integer operations with INTEGER(KIND=8), UNICOS systems (except CRAY T90
systems that support IEEE floating-point arithmetic) . . . . . . . . . . . . . 96

Figure 3. Real type . . . . . . . . . . . . . . . . . . . . . . . 96

viii 007–3694–004



Contents

Page

Figure 4. Binary version of 10.0 . . . . . . . . . . . . . . . . . . . 98

Figure 5. Double-precision type . . . . . . . . . . . . . . . . . . . 99

Figure 6. Single-precision complex type . . . . . . . . . . . . . . . . . 100

Figure 7. Double-precision complex type (real portion) . . . . . . . . . . . . 101

Figure 8. Double-precision complex type (imaginary portion) . . . . . . . . . . 101

Figure 9. Character type . . . . . . . . . . . . . . . . . . . . . . 101

Figure 10. 64-bit addressing for UNICOS systems (except CRAY T90 systems) . . . . . 102

Figure 11. 64-bit addressing for CRAY T90 systems . . . . . . . . . . . . . 103

Figure 12. INTEGER(KIND=1) on IRIX systems . . . . . . . . . . . . . . 103

Figure 13. INTEGER(KIND=2) on IRIX systems . . . . . . . . . . . . . . 104

Figure 14. INTEGER(KIND=4) on IRIX systems . . . . . . . . . . . . . . 104

Figure 15. INTEGER(KIND=8) on IRIX systems . . . . . . . . . . . . . . 105

Figure 16. REAL(KIND=4) on IRIX systems . . . . . . . . . . . . . . . . 105

Figure 17. Binary version of 10.0 . . . . . . . . . . . . . . . . . . . 107

Figure 18. REAL(KIND=8) on IRIX systems . . . . . . . . . . . . . . . . 107

Figure 19. REAL(KIND=16) on IRIX systems . . . . . . . . . . . . . . . 108

Figure 20. COMPLEX(KIND=4) on IRIX systems (real portion) . . . . . . . . . . 109

Figure 21. COMPLEX(KIND=4) on IRIX systems (imaginary portion) . . . . . . . . 109

Figure 22. COMPLEX(KIND=8) on IRIX systems (real portion) . . . . . . . . . . 110

Figure 23. COMPLEX(KIND=8) on IRIX systems (imaginary portion) . . . . . . . . 110

Figure 24. COMPLEX(KIND=16) on IRIX systems (real portion) . . . . . . . . . . 111

Figure 25. COMPLEX(KIND=16) on IRIX systems (imaginary portion) . . . . . . . . 111

Figure 26. Character type . . . . . . . . . . . . . . . . . . . . . 112

Figure 27. 32-bit addressing on IRIX systems . . . . . . . . . . . . . . . 113

Figure 28. Integer KIND=1, 2, or 4 on UNICOS/mk systems . . . . . . . . . . 113

Figure 29. INTEGER(KIND=8) on UNICOS/mk systems . . . . . . . . . . . . 114

Figure 30. REAL(KIND=4) on UNICOS/mk systems . . . . . . . . . . . . . 114

007–3694–004 ix



Fortran Language Reference Manual, Volume 3

Page

Figure 31. Binary version of 10.0 . . . . . . . . . . . . . . . . . . . 116

Figure 32. REAL(KIND=8) on UNICOS/mk systems . . . . . . . . . . . . . 116

Figure 33. COMPLEX(KIND=4) on UNICOS/mk systems (real portion) . . . . . . . 117

Figure 34. COMPLEX(KIND=4) on UNICOS/mk systems (imaginary portion) . . . . . 117

Figure 35. COMPLEX(KIND=8) on UNICOS/mk systems (real portion) . . . . . . . 118

Figure 36. COMPLEX(KIND=8) on UNICOS/mk systems (imaginary portion) . . . . . 118

Figure 37. Character type . . . . . . . . . . . . . . . . . . . . . 119

Figure 38. Cray character pointers on UNICOS/mk systems . . . . . . . . . . 120

Figure 39. Integer KIND=1, 2, or 4 on CRAY T90 systems that support IEEE floating-point
arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 40. Default INTEGER(KIND=8) on CRAY T90 systems that support IEEE floating-point
arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 41. Fast operations with INTEGER(KIND=8) on CRAY T90 systems that support IEEE
floating-point arithmetic . . . . . . . . . . . . . . . . . . . . . . 121

Figure 42. Real KIND=4 or 8 on CRAY T90 systems that support IEEE floating-point arithmetic 122

Figure 43. REAL(KIND=16) on CRAY T90 systems that support IEEE floating-point arithmetic 123

Figure 44. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE floating-point
arithmetic (real portion) . . . . . . . . . . . . . . . . . . . . . . 124

Figure 45. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE floating-point
arithmetic (imaginary portion) . . . . . . . . . . . . . . . . . . . . 124

Figure 46. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE floating-point
arithmetic (real portion) . . . . . . . . . . . . . . . . . . . . . . 125

Figure 47. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE floating-point
arithmetic (imaginary portion) . . . . . . . . . . . . . . . . . . . . 125

Figure 48. Character type . . . . . . . . . . . . . . . . . . . . . 126

Figure 49. Cray character pointer for CRAY T90 systems that support IEEE floating-point
arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 50. Memory use under UNICOS . . . . . . . . . . . . . . . . . 133

Tables
Table 1. Syntax metalanguage abbreviations . . . . . . . . . . . . . . . . 2

Table 2. Summary of string edit descriptors . . . . . . . . . . . . . . . . 73

x 007–3694–004



Contents

Page

Table 3. Character set . . . . . . . . . . . . . . . . . . . . . . 77

Table 4. Outmoded features and preferred alternatives . . . . . . . . . . . . 137

Table 5. Data length (UNICOS systems) . . . . . . . . . . . . . . . . . 148

Table 6. Data length (UNICOS/mk systems) . . . . . . . . . . . . . . . 149

Table 7. Data length (IRIX systems) . . . . . . . . . . . . . . . . . . 149

Table 8. Standard alternatives to CF90 double-complex functions . . . . . . . . . 153

Table 9. Standard alternatives to CF90 and MIPSpro 7 Fortran 90 bitwise functions . . . 154

Table 10. Data types in bitwise logical operations . . . . . . . . . . . . . . 155

007–3694–004 xi





About This Manual

This manual describes the Fortran language as implemented by the CF90
compiler, revision 3.2, and by the MIPSpro 7 Fortran 90 compiler, revision 7.3.
The CF90 and MIPSpro 7 Fortran 90 compilers implement the Fortran standard.

The CF90 and MIPSpro 7 Fortran 90 compilers run on UNICOS, UNICOS/mk,
and IRIX operating systems. Specific hardware and operating system support
information is as follows:

• The CF90 compiler runs under UNICOS 10.0, or later, on CRAY SV1,
CRAY C90, CRAY J90, and CRAY T90 systems.

• The CF90 compiler runs under UNICOS/mk 2.0.3, or later, on CRAY T3E
systems.

• The MIPSpro 7 Fortran 90 compiler runs under IRIX 6.2, or later, on Cray
and Silicon Graphics systems.

The CF90 and MIPSpro 7 Fortran 90 compilers were developed to support the
Fortran standard adopted by the American National Standards Institute (ANSI)
and the International Standards Organization (ISO). This standard, commonly
referred to in this manual as the Fortran standard, is ISO/IEC 1539–1:1997.
Because the Fortran standard is, generally, a superset of previous standards, the
CF90 and MIPSpro 7 Fortran 90 compilers will compile code written to previous
standards.

Note: The Fortran 95 standard is a revision to the Fortran 90 standard. The
standards organizations continue to interpret the Fortran standard for Silicon
Graphics and for other vendors. To maintain conformance to the Fortran
standard, Silicon Graphics may need to change the behavior of certain CF90
and MIPSpro 7 Fortran 90 compiler features in future releases based upon the
outcomes of interpretations to the standard.

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications

This manual is one of a set of manuals that describes the CF90 and the MIPSpro
7 Fortran 90 compilers. The complete set of CF90 and MIPSpro 7 Fortran 90
compiler manuals is as follows:

• Intrinsic Procedures Reference Manual.

007–3694–004 xiii



Fortran Language Reference Manual, Volume 3

• Fortran Language Reference Manual, Volume 1. Chapters 1 through 8
correspond to sections 1 through 8 of the Fortran standard.

• Fortran Language Reference Manual, Volume 2. Chapters 1 through 6 of this
manual correspond to sections 9 through 14 of the Fortran standard.

• Fortran Language Reference Manual, Volume 3. This manual contains CF90 and
MIPSpro 7 Fortran 90 compiler information that supplements the Fortran
standard. The standard is the complete, official description of the language.
This manual also contains the complete Fortran syntax in Backus-Naur form
(BNF).

The following publications contain information specific to the CF90 compiler:

• CF90 Ready Reference

• CF90 Commands and Directives Reference Manual

• CF90 Co-array Programming Manual

The following publication contains information specific to the MIPSpro 7
Fortran 90 compiler:

• MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

CF90 and MIPSpro 7 Fortran 90 Compiler Messages

You can obtain CF90 and MIPSpro 7 Fortran 90 compiler message explanations
by using the online explain(1) command.

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages

In addition to printed and online prose documentation, several online man
pages describe aspects of the CF90 and MIPSpro 7 Fortran 90 compilers. Man
pages exist for the library routines, the intrinsic procedures, and several
programming environment tools.

You can print copies of online man pages by using the pipe symbol with the
man(1), col(1), and lpr(1) commands. In the following example, these
commands are used to print a copy of the explain(1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands,
routines, system calls, or other topics, and provides details of their usage

xiv 007–3694–004



About This Manual

(command syntax, routine parameters, system call arguments, and so on). If
more than one topic appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry names are linked
to these primary names. For example, egrep is a secondary entry on the page
with a primary entry name of grep. To access egrep online, you can type man
grep or man egrep. Both commands display the grep man page to your
terminal.

Related Fortran Publications

The following commercially available reference books are among those that you
can consult for more information on the history of Fortran and the Fortran
language itself:

• Adams, J. C., W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener.
Fortran 95 Handbook : Complete ISO/ANSI Reference. MIT Press, 1997. ISBN
0262510960.

• Chapman, S. Fortran 90/95 for Scientists and Engineers. McGraw Hill Text,
1998. ISBN 0070119384.

• Chapman, S. Introduction to Fortran 90/95. McGraw Hill Text, 1998. ISBN
0070119694.

• Counihan, M. Fortran 95 : Including Fortran 90, Details of High Performance
Fortran (HPF), and the Fortran Module for Variable-Length Character Strings.
UCL Press, 1997. ISBN 1857283678.

• Gehrke, W. Fortran 95 Language Guide. Springer Verlag, 1996. ISBN
3540760628.

• International Standards Organization. ISO/IEC 1539–1:1997, Information
technology — Programming languages — Fortran. 1997.

• Metcalf, M. and J. Reid. Fortran 90/95 Explained. Oxford University Press,
1996. ISBN 0198518889.

Related Publications

Certain other publications from Silicon Graphics may also interest you.

On UNICOS and UNICOS/mk systems, the following documents contain
information that may be useful when using the CF90 compiler:

007–3694–004 xv



Fortran Language Reference Manual, Volume 3

• Segment Loader (SEGLDR) and ld Reference Manual

• UNICOS User Commands Reference Manual

• UNICOS Performance Utilities Reference Manual

• Scientific Libraries Reference Manual

• Introducing the Program Browser

• Application Programmer’s Library Reference Manual

• Guide to Parallel Vector Applications

• Introducing the Cray TotalView Debugger

• Introducing the MPP Apprentice Tool

• Application Programmer’s I/O Guide

• Optimizing Code on Cray PVP Systems

• Compiler Information File (CIF) Reference Manual

On IRIX systems, the following documents contain information that may be
useful when using the MIPSpro 7 Fortran 90 compiler:

• MIPSpro Compiling and Performance Tuning Guide

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro 64-Bit Porting and Transition Guide

• MIPSpro Assembly Language Programmer’s Guide

Obtaining Publications

The User Publications Catalog describes the availability and content of all Cray
hardware and software documents that are available to customers. Customers
who subscribe to the Cray Inform (CRInform) program can access this
information on the CRInform system.

To order a document, call +1 651 683 5907. Silicon Graphics employees may
send electronic mail to orderdsk@sgi.com (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

xvi 007–3694–004



About This Manual

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[ ] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

DEL or DELETED The DEL or DELETED notation indicates that the
feature being described has been deleted from the
Fortran standard. The CF90 and MIPSpro 7
Fortran 90 compilers support these features, but
the compilers issue a message when a deleted
feature is encountered.

EXT or EXTENSION The EXT or EXTENSION notation indicates that
the feature being described is an extension to the
Fortran standard. The CF90 and MIPSpro 7
Fortran 90 compilers issue a message when
extensions are encountered.

OBS or OBSOLESCENT The OBS or OBSOLESCENT notation indicates
that the feature being described is considered to
be obsolete in the Fortran standard. The CF90
and MIPSpro 7 Fortran 90 compilers support
these features, but the compilers issue a message
when an obsolescent feature is encountered.

007–3694–004 xvii



Fortran Language Reference Manual, Volume 3

xyz_list When _list is part of a syntax description, it
means that several items may be specified. For
example, xyz_list can be expanded to mean
xyz [, xyz] ....

scalar_ When scalar_ is the first item in a syntax
description, it indicates that the item is a scalar,
not an array, value.

_name When _name is part of a syntax definition, it
indicates that the item is a name with no
qualification. For example, the item must not
have a subscript list, so ARRAY is a name, but
ARRAY(I) is not.

(Rnnnn) Indicates that the Fortran 90 standard has rules
regarding the characteristic of the language being
discussed. All rules are numbered, and the
numbered list appears in the Fortran Language
Reference Manual, Volume 3. The numbering of the
rules in the Fortran Language Reference Manual,
Volume 3 matches the numbering of the rules in
the standard. The forms of the rules in the Fortran
Language Reference Manual, Volume 3 and the BNF
syntax class terms that are used may differ from
the rules and terms used in the standard.

POINTER The term POINTER refers to the Fortran POINTER
attribute.

Cray pointer The term Cray pointer refers to the Cray pointer
data type extension.

Fortran
Fortran standard

These terms refer to the current Fortran standard,
which is the Fortran 95 standard. For situations
when it might otherwise be confusing, a specific

xviii 007–3694–004



About This Manual

standard is mentioned along with its numeric
identifier (FORTRAN 77, Fortran 90, Fortran 95).

BNF Conventions

This section describes some of the commonly used Backus-Naur Form (BNF)
conventions.

Terms such as goto_stmt are called variable entries, nonterminal symbols, or simply,
nonterminals. The metalanguage term goto_stmt, for example, represents the
GO TO statement, as follows:

goto_stmt is GOTO label

The syntax rule defines goto_stmt to be GO TO label, which describes the format
of the GO TO statement. The description of the GO TO statement is incomplete
until the definition of label is given. label is also a nonterminal symbol. A
further search for label will result in a specification of label and thereby provide
the complete statement definition. A terminal part of a syntax rule is one that
does not need further definition. For example, GO TO is a terminal keyword
and is a required part of the statement form. The complete BNF list appears in
the Fortran Language Reference Manual, Volume 3.

The following abbreviations are commonly used in naming nonterminal
keywords:

Abbreviation Term

arg argument

attr attribute

char character

decl declaration

def definition

desc descriptor

expr expression

int integer

op operator

007–3694–004 xix



Fortran Language Reference Manual, Volume 3

spec specifier or specification

stmt statement

The term is separates the syntax class name from its definition. The term or
indicates an alternative definition for the syntactic class being defined. The
following example shows that add_op, the add operator, may be either a plus
sign (+) or a minus sign (-):

add_op is +

or -

Indentation indicates syntax continuation. If a rule does not fit on one line, the
second line is indented. This is shown in the following example:

dimension_stmt is DIMENSION [ :: ] array_name (array_spec)
[, array_name (array_spec)] ...

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

xx 007–3694–004



About This Manual

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043–1389

We value your comments and will respond to them promptly.

007–3694–004 xxi





Fortran Syntax [1]

This chapter contains a complete description of the Fortran syntax. Section 1.1
describes the format of the syntax. Section 1.2, page 5, contains the complete
syntax and constraints as they appear in the Fortran standard. A high-level
summary of the syntax appears in the Fortran Language Reference Manual, Volume
1.

1.1 Syntax Form

The syntax of Fortran programs is described using a variant of the Backus-Naur
Form (BNF).

1.1.1 Syntax Rules Expressed in BNF

The BNF syntax rules are expressed as a definition. The metalanguage class
being defined is first, followed by the symbol is, and finally the syntax
definition, as in the following example:

goto_stmt is GO TO label

The term goto_stmt represents the GO TO statement; such terms are called
nonterminal symbols or simply nonterminals. The syntax rule defines goto_stmt as
GO TO label, which describes the form of the GO TO statement. The description
of the GO TO statement is not complete until the definition of label is specified;
label is also a nonterminal symbol. A further search for label in the BNF will
result in a specification of label and thereby provide the complete statement
definition. A terminal part of a syntax rule does not need further definition. For
example, GO TO is a terminal and is a required part of the statement form.

In many cases, you can derive information about the metalanguage class from
part of the descriptive term. The part can be a complete word, such as _list, or
a common abbreviation. Some abbreviations used consistently in metalanguage
classes are listed in Table 1, page 2.

007–3694–004 1



Fortran Language Reference Manual, Volume 3

Table 1. Syntax metalanguage abbreviations

Abbreviation Term

arg Argument

attr Attribute

char Character

decl Declaration

def Definition

desc Descriptor

expr Expression

int Integer

op Operator

spec Specifier or specification

stmt Statement

For example, all class definitions that end with _stmt might be used to generate
a complete list of the statements in Fortran.

1.1.2 Definition Syntax Symbol: Is

As the following example shows, the symbol is separates the syntax class name
from its definition:

goto_stmt is GO TO label

power_op is **

1.1.3 Alternative Syntax Symbol: Or

The symbol or indicates an alternative definition for the syntactic class being
defined. The following example shows that add_op, the add operator, can be
either plus or minus.

2 007–3694–004



Fortran Syntax [1]

add_op is +

or -

1.1.4 Optional Symbol: [ ]

Some syntactic definitions contain optional items, which are enclosed in
brackets. The term sign is optional in the following example:

signed_int_literal_constant is [ sign ] int_literal_constant

The fact that sign is optional indicates, for example, that both 75 and +75 are
signed_int_literal_constants.

1.1.5 Symbol for Repeated Items: [ ] . . .

Enclosing an item in brackets followed by an ellipsis indicates that the item can
occur 0 or more times. In the following example, the term digit is repeated as
many times as required to define the int_literal_constant:

int_literal_constant is digit [ digit ] ...

For example, there are five digits in the integer literal constant 94024.

1.1.6 Syntax Rule Continuation

If a rule does not fit on one line, the convention is to indent the second line of
the syntax. This is shown in the following example:

allocatable_stmt is ALLOCATABLE [ :: ]
array_name [( deferred_shape_spec_list )]
[, array_name [( deferred_shape_spec_list )]]...

007–3694–004 3



Fortran Language Reference Manual, Volume 3

1.1.7 Assumed Syntax Rules

In order to minimize the number of syntax rules and still convey an appropriate
meaning, some portions of the BNF metaterms have assumed meanings. In the
following example, xyz represents any BNF phrase:

xyz_list means xyz [, xyz] ...

xyz_name is a name

scalar_xyz is an xyz that is a scalar

1.1.8 Example BNF Syntax

Consider the following example:

read_stmt is READ ( io_control_spec_list ) [ input_item_list ]

or READ format [, input_item_list ]

format is default_char_expr

or label

or *

or scalar_default_int_variable

In this example, there are two alternatives to the READ statement. The first uses
an input/output (I/O) control specification list; the second is a formatted READ
statement where the unit is processor dependent. Both alternatives have an
optional input item list, indicated by [ ]. The syntax class format (a
nonterminal) is further defined as either a default character expression
containing the format specifications, or a statement label referring to a separate
FORMAT statement that contains the format specifications, or an asterisk (*)
indicating that the READ statement is list-directed, or a scalar default integer
variable whose value specifies the label of a FORMAT statement. In the standard,
the last alternative is printed in a smaller font because it is an obsolescent
feature that may be removed in a later revision of the standard, including the
next revision; this convention is not used in this manual.

4 007–3694–004



Fortran Syntax [1]

There are other nonterminal symbols in the description of the READ statement
and further BNF rules need to be examined to determine the complete
description of the READ statement.

1.1.9 Constraints

The BNF forms do not provide a complete description of the syntax; additional
constraints are described with text. The BNF rules and the constraints both
describe the syntax of Fortran. Constraints are restrictions to the syntax rules
that limit the form of the statement described. If present, constraints appear
following a syntax rule.

1.1.10 Identifying Numbers

In the text of the standard, each BNF rule is given an identifying number, R201
for example. The numbering of the rules in the following subsections matches
the numbering of the rules in the standard.

BNF rules are also used to describe extensions. In the following BNF
description, for example, "EXT" in the leftmost column indicates that the CF90
and MIPSpro 7 Fortran 90 compilers also allow unit_name to be used as an
io_unit:

R901 io_unit is external_file_unit

or *

or internal_file_unit

EXT or unit_name

1.2 Syntax Rules and Constraints

Each of the following sections contains the syntax rules and constraints from a
section of the Fortran standard. The following sections use an underscore,
rather than a hyphen, as a separator; this differs from the Fortran standard. The
rules in the following sections have been amended to include BNF for the CF90
and MIPSpro 7 Fortran 90 compiler extensions to the Fortran standard, but the
constraints have not been modified to reflect the extensions.

007–3694–004 5



Fortran Language Reference Manual, Volume 3

1.2.1 Introduction

There are no syntax rules described in section 1, "Introduction," of the
Fortran 95 standard.

1.2.2 Fortran Terms and Concepts

The following syntax rules are described in section 2, "Fortran terms and
concepts," of the Fortran 95 standard.

R201 executable_program is program_unit [ program_unit ] ...

R202 program_unit is main_program

or external_subprogram

or module

or block_data

R1101 main_program is [ program_stmt ]
[ specification_part ]
[ execution_part ]
[ internal_subprogram_part ]
end_program_stmt

Constraint: An execution_part must not contain an end_function_stmt,
end_program_stmt, or end_subroutine_stmt.

R203 external_subprogram is function_subprogram

or subroutine_subprogram

R1215 function_subprogram is function_stmt
[ specification_part ]
[ execution_part ]
[ internal_subprogram_part ]
end_function_stmt

6 007–3694–004



Fortran Syntax [1]

R1219 subroutine_subprogram is subroutine_stmt
[ specification_part ]
[ execution_part ]
[ internal_subprogram_part ]
end_subroutine_stmt

R1104 module is module_stmt
[ specification_part ]
[ module_subprogram_part ]
end_module_stmt

R1112 block_data is block_data_stmt
[ specification_part ]
end_block_data_stmt

R204 specification_part is [ use_stmt ] ...

[ implicit_part ]
[ declaration_construct ] ...

R205 implicit_part is [ implicit_part_stmt ] ...

implicit_stmt

R206 implicit_part_stmt is implicit_stmt

or parameter_stmt

or format_stmt

or entry_stmt

R207 declaration_construct is derived_type_def

or interface_block

or type_declaration_stmt

or specification_stmt

or parameter_stmt

or format_stmt

or entry_stmt

or stmt_function_stmt

R208 execution_part is executable_construct
[ execution_part_construct ] ...

R209 execution_part_construct is executable_construct

or format_stmt

007–3694–004 7



Fortran Language Reference Manual, Volume 3

or data_stmt

or entry_stmt

R210 internal_subprogram_part is contains_stmt
internal_subprogram
[ internal_subprogram ]...

R211 internal_subprogram is function_subprogram

or subroutine_subprogram

R212 module_subprogram_part is contains_stmt
module_subprogram
[ module_subprogram ] ...

R213 module_subprogram is function_subprogram

or subroutine_subprogram

R214 specification_stmt is access_stmt

or allocatable_stmt

EXT or automatic_stmt

or common_stmt

or data_stmt

or dimension_stmt

or equivalence_stmt

or external_stmt

or intent_stmt

or intrinsic_stmt

or namelist_stmt

or optional_stmt

or pointer_stmt

or save_stmt

or target_stmt

EXT or volatile_stmt

R215 executable_construct is action_stmt

or case_construct

8 007–3694–004



Fortran Syntax [1]

or do_construct

or if_construct

or forall_construct

or where_construct

R216 action_stmt is allocate_stmt

OBS or arithmetic_if_stmt

EXT or assign_stmt

EXT or assigned_goto_stmt

or assignment_stmt

or backspace_stmt

EXT or buffer_in_stmt

EXT or buffer_out_stmt

or call_stmt

or close_stmt

OBS or computed_goto_stmt

or continue_stmt

or cycle_stmt

or deallocate_stmt

or endfile_stmt

or end_function_stmt

or end_program_stmt

or end_subroutine_stmt

or exit_stmt

or forall_stmt

or goto_stmt

or if_stmt

or inquire_stmt

or nullify_stmt

or open_stmt

007–3694–004 9



Fortran Language Reference Manual, Volume 3

EXT or pause_stmt

or pointer_assignment_stmt

or print_stmt

or read_stmt

or return_stmt

or rewind_stmt

or stop_stmt

or where_stmt

or write_stmt

1.2.3 Characters, Lexical Tokens, and Source Form

The following syntax rules are described in section 3, "Characters, lexical
tokens, and source form," of the Fortran 95 standard.

R301 character is alphanumeric_character

or special_character

R302 alphanumeric_character is letter

or digit

or underscore

EXT or currency_symbol

EXT or at_sign

Note: The MIPSpro 7 Fortran 90 compiler does not support the at_sign (@).

R303 underscore is _

EXT currency_symbol is $

EXT at_sign is @

R304 name is letter [ alphanumeric_character ] ...

10 007–3694–004



Fortran Syntax [1]

Constraint: The maximum length of a name is 31 characters.

R305 constant is literal_constant

or named_constant

R306 literal_constant is int_literal_constant

or real_literal_constant

or complex_literal_constant

or logical_literal_constant

or char_literal_constant

or boz_literal_constant

R307 named_constant is name

R308 int_constant is constant

Constraint: int_constant must be of type integer.

R309 char_constant is constant

Constraint: char_constant must be of type character.

R310 intrinsic_operator is power_op

or mult_op

or add_op

or concat_op

or rel_op

or not_op

or and_op

or or_op

or equiv_op

007–3694–004 11



Fortran Language Reference Manual, Volume 3

R708 power_op is **

R709 mult_op is *

or /

R710 add_op is +

or -

R712 concat_op is //

R714 rel_op is .EQ.

or .NE.

or .LT.

or .LE.

or .GT.

or .GE.

EXT or .LG.

or ==

or /=

or <

or <=

or >

or >=

EXT or <>

R719 not_op is .NOT.

EXT or .N.

R720 and_op is .AND.

EXT or .A.

R721 or_op is .OR.

EXT or .O.

R722 equiv_op is .EQV.

or .NEQV.

EXT exclusive_disjunct_op is .XOR.

12 007–3694–004



Fortran Syntax [1]

EXT or .X.

R311 defined_operator is defined_unary_op

or defined_binary_op

or extended_intrinsic

R704 defined_unary_op is . letter [ letter ] ... .

R724 defined_binary_op is . letter [ letter ] ... .

R312 extended_intrinsic_op is intrinsic_operator

Constraint: A defined_unary_op and a defined_binary_op must not contain more
than 31 letters and must not be the same as any intrinsic_operator or
logical_literal_constant.

R313 label is digit [ digit [ digit [ digit [ digit ]]]]

Constraint: At least one digit in a label must be nonzero.

1.2.4 Intrinsic and Derived Data Types

The following syntax rules are described in section 4, "Intrinsic and derived
data types," of the Fortran 95 standard.

R401 signed_digit_string is [ sign ] digit_string

R402 digit_string is digit [ digit ] ...

R403 signed_int_literal_constant is [ sign ] int_literal_constant

R404 int_literal_constant is digit_string [ _ kind_param ]

R405 kind_param is digit_string

or scalar_int_constant_name

Constraint: The value of kind_param must be nonnegative.

Constraint: The value of kind_param must specify a representation method that
exists on the processor.

007–3694–004 13



Fortran Language Reference Manual, Volume 3

R406 sign is +

or -

R407 boz_literal_constant is binary_constant

or octal_constant

or hex_constant

Constraint: A boz_literal_constant may appear only in a DATA statement.

R408 binary_constant is B ’ digit [ digit ] ... ’

or B " digit [ digit ] ... "

Constraint: digit must have one of the values 0 or 1.

R409 octal_constant is O ’ digit [ digit ] ... ’

or O " digit [ digit ] ... "

Constraint: digit must have one of the values 0 through 7.

R410 hex_constant is Z ’ hex_digit [ hex_digit ]... ’

or Z " hex_digit [ hex_digit ] ... "

R411 hex_digit is digit

or A

or B

or C

or D

or E

or F

R412 signed_real_literal_constant is [ sign ] real_literal_constant

14 007–3694–004



Fortran Syntax [1]

R413 real_literal_constant is significand [ exponent_letter exponent ] [ _ kind_param ]

or digit_string exponent_letter exponent [ _ kind_param ]

R414 significand is digit_string . [ digit_string ]

or . digit_string

R415 exponent_letter is E

or D

EXT or Q

R416 exponent is signed_digit_string

Constraint: If both kind_param and exponent_letter are present, exponent_letter
must be E.

Constraint: The value of kind_param must specify an approximation method
that exists on the processor.

R417 complex_literal_constant is ( real_part , imag_part )

R418 real_part is signed_int_literal_constant

or signed_real_literal_constant

R419 imag_part is signed_int_literal_constant

or signed_real_literal_constant

R420 char_literal_constant is [ kind_param _ ] ’ [ ASCII_char ] ... ’

or [ kind_param _ ] " [ ASCII_char ] ... "

Constraint: The value of kind_param must specify a representation method that
exists on the processor.

R421 logical_literal_constant is .TRUE. [ _ kind_param ]

or .FALSE. [ _ kind_param ]

Constraint: The value of kind_param must specify a representation method that
exists on the processor.

007–3694–004 15



Fortran Language Reference Manual, Volume 3

R422 derived_type_def is derived_type_stmt
[ private_sequence_stmt ] ...
component_def_stmt
[ component_def_stmt ] ...

end_type_stmt

R423 derived_type_stmt is TYPE [ [, access_spec ] :: ] type_name

R424 private_sequence_stmt is PRIVATE

or SEQUENCE

Constraint: The same private_sequence_stmt must not appear more than once in
a given derived_type_def.

Constraint: If SEQUENCE is present, all derived types specified in component
definitions must be sequence types.

Constraint: An access_spec or a PRIVATE statement within the definition is
permitted only if the type definition is within the specification part of a module.

Constraint: A derived type type_name must not be the same as the name of any
intrinsic type nor the same as any other accessible derived type type_name.

R425 component_def_stmt is type_spec [ [, component_attr_spec_list ] :: ] component_decl_list

R426 component_attr_spec is POINTER

or DIMENSION (component_array_spec)

R427 component_array_spec is explicit_shape_spec_list

or deferred_shape_spec_list

Constraint: If a component of a derived type is of a type declared to be private,
either the derived type definition must contain the PRIVATE statement or the
derived type must be private.

Constraint: No component_attr_spec can appear more than once in a given
component_def_stmt.

Constraint: If the POINTER attribute is not specified for a component, a
type_spec in the component_def_stmt must specify an intrinsic type or a
previously defined derived type.

16 007–3694–004



Fortran Syntax [1]

Constraint: If the POINTER attribute is specified for a component, a type_spec in
the component_def_stmt must specify an intrinsic type or any accessible derived
type including the type being defined.

Constraint: If the POINTER attribute is not specified, each component_array_spec
must be an explicit_shape_spec_list.

Constraint: If the POINTER attribute is specified, each component_array_spec
must be a deferred_shape_spec_list.

R428 component_decl is component_name [ (component_array_spec) ] [ * char_length ]
component_initialization

R429 component_initialization is = initialization_expr

or => NULL()

Constraint: The * char_length option is permitted only if the type specified is
character.

Constraint: The character length specified by a char_length in a component_decl
or the char_selector in a type_spec must be a constant specification expression.

Constraint: Each bound in the explicit_shape_spec must be a constant
specification expression.

Constraint: If component_initialization appears, a double colon separator (::)
must appear before the component_decl_list.

Constraint: If => appears in component_initialization, the POINTER attribute must
appear in the component_attr_spec_list. If = appears in component_initialization,
the POINTER attribute must not appear in the component_attr_spec_list.

R430 end_type_stmt is END TYPE [ type_name ]

Constraint: If END TYPE is followed by a type_name, the type_name must be the
same as that in the corresponding derived_type_stmt.

007–3694–004 17



Fortran Language Reference Manual, Volume 3

R431 structure_constructor is type_name ( expr_list )

R432 array_constructor is (/ ac_value_list /)

R433 ac_value is expr

or ac_implied_do

R434 ac_implied_do is ( ac_value_list , ac_implied_do_control )

R435 ac_implied_do_control is ac_do_variable = scalar_int_expr, scalar_int_expr [, scalar_int_expr]

R436 ac_do_variable is scalar_int_variable

Constraint: ac_do_variable must be a named variable.

Constraint: Each ac_value expression in the array_constructor must have the
same type and kind type parameters.

1.2.5 Data Object Declarations and Specifications

The following syntax rules are described in section 5, "Data object declarations
and specifications," of the Fortran 95 standard.

R501 type_declaration_stmt is type_spec [ [, attr_spec ] ... :: ] entity_decl_list

R502 type_spec is INTEGER [ kind_selector ]

EXT or INTEGER* length_value

or REAL [ kind_selector ]

EXT or REAL* length_value

or DOUBLE PRECISION

EXT or DOUBLE PRECISION* length_value

or COMPLEX [ kind_selector ]

EXT or COMPLEX* length_value

or CHARACTER [ char_selector ]

or LOGICAL [ kind_selector ]

EXT or LOGICAL* length_value

or TYPE ( type_name )

18 007–3694–004



Fortran Syntax [1]

EXT or POINTER ( pointer_name, pointee_name [( array_spec )] )

[, (pointer_name, pointee_name [( array_spec )] )] ...

R503 attr_spec is PARAMETER

or access_spec

or ALLOCATABLE

EXT or AUTOMATIC

or DIMENSION ( array_spec )

or EXTERNAL

or INTENT ( intent_spec )

or INTRINSIC

or OPTIONAL

or POINTER

or SAVE

or TARGET

EXT or VOLATILE

R504 entity_decl is object_name [( array_spec )] [ * char_length ] [ = initialization_expr ]

or function_name [ * char_length ]

R505 initialization is = initialization_expr

or => NULL()

R506 kind_selector is ([ KIND = ] scalar_int_initialization_expr )

Constraint: The same attr_spec must not appear more than once in a given
type_declaration_stmt.

Constraint: The function_name must be the name of an external function, an
intrinsic function, a function dummy procedure, or a statement function.

Constraint: The initialization_expr must appear if the statement contains a
PARAMETER attribute.

Constraint: If initialization_expr appears, a double colon separator (::) must
appear before the entity_decl_list.

Constraint: The initialization_expr must not appear if object_name is a dummy
argument, a function result, or an object in a named common block unless the

007–3694–004 19



Fortran Language Reference Manual, Volume 3

type declaration is in a block data program unit, an object in blank common, an
allocatable array, an external name, an intrinsic name, or an automatic object.

Constraint: The *char_length option is permitted only if the type specified is
character.

Constraint: The ALLOCATABLE attribute may be used only when declaring an
array that is not a dummy argument or a function result.

Constraint: An array declared with a POINTER or an ALLOCATABLE attribute
must be specified with an array_spec that is a deferred_shape_spec_list.

Constraint: An array_spec for an object_name that is a function result that does
not have the POINTER attribute must be an explicit_shape_spec_list.

Constraint: An array_spec for an object_name that is a function result that has the
POINTER attribute must be a deferred_shape_spec_list.

Constraint: If the POINTER attribute is specified, the TARGET, INTENT,
EXTERNAL, or INTRINSIC attribute must not be specified.

Constraint: If the TARGET attribute is specified, the POINTER, EXTERNAL,
INTRINSIC, or PARAMETER attribute must not be specified.

Constraint: The PARAMETER attribute must not be specified for dummy
arguments, pointers, allocatable arrays, functions, or objects in a common block.

Constraint: The INTENT and OPTIONAL attributes may be specified only for
dummy arguments.

Constraint: An entity must not have the PUBLIC attribute if its type has the
PRIVATE attribute.

Constraint: The SAVE attribute must not be specified for an object that is in a
common block, a dummy argument, a procedure, a function result, an
automatic data object, or an object with the PARAMETER attribute.

Constraint: An entity must not have the EXTERNAL attribute if it has the
INTRINSIC attribute.

Constraint: An entity in an entity_decl_list must not have the EXTERNAL or
INTRINSIC attribute specified unless it is a function.

Constraint: If => appears in initialization, the object must have the POINTER
attribute. If = appears in initialization, the object must not have the POINTER
attribute.

20 007–3694–004



Fortran Syntax [1]

Constraint: An array must not have both the ALLOCATABLE attribute and the
POINTER attribute.

Constraint: An entity must not be given explicitly any attribute more than once
in a scoping unit.

Constraint: The value of scalar_int_initialization_expr must be nonnegative and
must specify a representation method that exists on the processor.

R507 char_selector is length_selector

or ( LEN = char_len_param_value, KIND = scalar_int_initialization_expr )

or ( char_len_param_value, [ KIND = ] scalar_int_initialization_expr )

or ( KIND = scalar_int_initialization_expr
[, LEN = char_len_param_value ])

R508 length_selector is ([ LEN = ] char_len_param_value )

OBS or * char_length [ , ]

R509 char_length is ( char_len_param_value )

or scalar_int_literal_constant

Obsolescent Constraint: The optional comma in a length_selector is permitted
only in a type_spec in a type_declaration_stmt.

Obsolescent Constraint: The optional comma in a length_selector is permitted
only if no double colon separator appears in the type_declaration_stmt.

Constraint: The value of scalar_int_initialization_expr must be nonnegative and
must specify a representation method that exists on the processor.

Constraint: The scalar_int_literal_constant must not include a kind_param.

R510 char_len_param_value is specification_expr

or *

Obsolescent Constraint: A function name must not be declared with a
*char_len_param_value unless it is the name of an external function or the name
of a dummy function.

007–3694–004 21



Fortran Language Reference Manual, Volume 3

Constraint: A function name declared with a *char_len_param_value must not be
array-valued, pointer-valued, pure, or recursive.

R511 access_spec is PUBLIC

or PRIVATE

Constraint: An access_spec attribute may appear only in the specification part of
a module.

R512 intent_spec is IN

or OUT

or INOUT

Constraint: The INTENT attribute must not be specified for a dummy argument
that is a dummy procedure or a dummy pointer.

Constraint: A dummy argument with the INTENT(IN) attribute, or a subobject
of such a dummy argument, must not appear as any of the following:

• The variable of an assignment_stmt

• The pointer_object of a pointer_assignment_stmt

• A DO-variable or implied DO-variable

• An input_item in a read_stmt

• A variable_name in a namelist_stmt if the name_list_group_name appears in an
NML= specifier in a read_stmt

• An internal_file_unit in a write_stmt

• An IOSTAT= or SIZE= specifier in an I/O statement

• A definable variable in an INQUIRE statement

• A stat_variable or allocate_object in an allocate_stmt or a deallocate_stmt

• An actual argument in a reference to a procedure with an explicit interface
when the associated dummy argument has the INTENT(OUT) or
INTENT(INOUT) attribute

22 007–3694–004



Fortran Syntax [1]

R513 array_spec is explicit_shape_spec_list

or assumed_shape_spec_list

or deferred_shape_spec_list

or assumed_size_spec

Constraint: The maximum rank is seven.

R514 explicit_shape_spec is [ lower_bound : ] upper_bound

R515 lower_bound is specification_expr

R516 upper_bound is specification_expr

Constraint: An explicit-shape array whose bounds depend on the values of
nonconstant expressions must be a dummy argument, a function result, or an
automatic array of a procedure.

R517 assumed_shape_spec is [ lower_bound ] :

R518 deferred_shape_spec is :

R519 assumed_size_spec is [ explicit_shape_spec_list, ] [ lower_bound : ] *

Constraint: The function name of an array-valued function must not be
declared as an assumed-size array.

Constraint: An assumed-size array with INTENT(OUT) must not be of a type
for which default initialization is specified.

R520 intent_stmt is INTENT ( intent_spec ) [ :: ] dummy_arg_name_list

Constraint: An intent_stmt may appear only in the specification_part of a
subprogram or an interface body.

007–3694–004 23



Fortran Language Reference Manual, Volume 3

Constraint: dummy_arg_name must not be the name of a dummy procedure or a
dummy pointer.

R521 optional_stmt is OPTIONAL [ :: ] dummy_arg_name_list

Constraint: An optional_stmt can occur only in the specification_part of a
subprogram or an interface body.

R522 access_stmt is access_spec [ [ :: ] access_id_list ]

R523 access_id is use_name

or generic_spec

Constraint: An access_stmt can appear only in the specification_part of a module.
Only one accessibility statement with an omitted access_id_list is permitted in
the specification_part of a module.

Constraint: Each use_name must be the name of a named variable, procedure,
derived type, named constant, or namelist group.

Constraint: A module procedure that has a dummy argument or function result
of a type that has PRIVATE accessibility must have PRIVATE accessibility and
must not have a generic identifier that has PUBLIC accessibility.

R524 save_stmt is SAVE [ [ :: ] saved_entity_list ]

R525 saved_entity is object_name

or / common_block_name /

Constraint: An object_name must not be the name of an object in a common
block, a dummy argument name, a procedure name, a function result name, an
automatic data object name, or the name of an object with the PARAMETER
attribute.

Constraint: If a SAVE statement with an omitted saved entity list occurs in a
scoping unit, no other explicit occurrence of the SAVE attribute or SAVE
statement is permitted in the same scoping unit.

24 007–3694–004



Fortran Syntax [1]

R526 dimension_stmt is DIMENSION [ :: ] array_name(array_spec)
[, array_name(array_spec)] ...

R527 allocatable_stmt is ALLOCATABLE [ :: ] array_name [(deferred_shape_spec_list)]
[, array_name [(deferred_shape_spec_list)] ] ...

Constraint: The array_name must not be a dummy argument or function result.

Constraint: If the DIMENSION attribute for an array_name is specified elsewhere
in the scoping unit, the array_spec must be a deferred_shape_spec_list.

R528 pointer_stmt is POINTER [ :: ] object_name [ (deferred_shape_spec_list) ]
[, object_name [ (deferred_shape_spec_list) ] ] ...

Constraint: The INTENT attribute must not be specified for an object_name.

Constraint: If the DIMENSION attribute for an object_name is specified elsewhere
in the scoping unit, the array_spec must be a deferred_shape_spec_list.

Constraint: The PARAMETER attribute must not be specified for an object_name.

R529 target_stmt is TARGET [ :: ] object_name [ (array_spec) ]
[, object_name [ (array_spec) ] ] ...

Constraint: The PARAMETER attribute must not be specified for an object_name.

R532 data_stmt is DATA data_stmt_set [ [ , ] data_stmt_set ] ...

R533 data_stmt_set is data_stmt_object_list / data_stmt_value_list /
[ [ , ] data_stmt_object_list / data_stmt_value_list / ] ...

R534 data_stmt_object is variable

or data_implied_do

007–3694–004 25



Fortran Language Reference Manual, Volume 3

R535 data_implied_do is ( data_i_do_object_list,
data_i_do_variable = scalar_int_expr,
scalar_int_expr [ , scalar_int_expr ] )

R536 data_i_do_object is array_element

or scalar_structure_component

or data_implied_do

R538 data_stmt_value is [ data_stmt_repeat * ] data_stmt_constant

R539 data_stmt_repeat is scalar_int_constant

or scalar_int_constant_subobject

R540 data_stmt_constant is scalar_constant

or scalar_constant_subobject

or signed_int_literal_constant

or signed_real_literal_constant

or structure_constructor

or NULL()

or boz_literal_constant

EXT or typeless_constant

A data_i_do_variable must be a named variable.

Constraint: The array_element must not have a constant parent.

Constraint: The scalar_structure_component must not have a constant parent.

Constraint: In a scalar_int_constant_subobject that is a data_stmt_repeat, any
subscript must be an initialization expression.

Constraint: In a scalar_constant_subobject that is a data_stmt_constant, any
subscript, substring starting point, or substring ending point must be an
initialization expression.

Constraint: If a DATA statement constant value is a named constant or a
structure constructor, the named constant or derived type must have been
declared previously in the scoping unit or made accessible by USE or host
association.

26 007–3694–004



Fortran Syntax [1]

R537 data_i_do_variable is scalar_int_variable

Constraint: data_i_do_variable must be a named variable.

Constraint: The DATA statement repeat factor must be positive or zero. If the
DATA statement repeat factor is a named constant, it must have been declared
previously in the scoping unit or made accessible by use association or host
association.

Constraint: In a scalar_int_constant_subobject that is a data_stmt_repeat, any
subscript must be an initialization expression.

Constraint: In a scalar_constant_subobject that is a data_stmt_constant, any
subscript, substring starting point, or substring ending point must be an
initialization expression.

Constraint: If a data_stmt_constant is a structure_constructor, each component
must be an initialization expression.

Constraint: In a variable that is a data_stmt_object, any subscript, section
subscript, substring starting point, and substring ending point must be an
initialization expression.

Constraint: A variable whose name or designator is included in a
data_stmt_object_list or a data_i_do_object_list must not be: a dummy argument;
made accessible by use association or host association; in a named common
block unless the DATA statement is in a block data program unit; in a blank
common block, a function name, a function result name, an automatic object, or
an allocatable array.

Constraint: In an array_element or a scalar_structure_component that is a
data_i_do_object, any subscript must be an expression whose primaries are either
constants, subobjects of constants, or DO variables of the containing
data_implied_do elements, and each operation must be intrinsic.

Constraint: A scalar_int_expr of a data_implied_do must involve as primaries only
constants, subobjects of constants, or DO variables of the containing
data_implied_dos, and each operation must be intrinsic.

Constraint: The scalar_structure_component must contain at least one part_ref that
contains a subscript_list.

007–3694–004 27



Fortran Language Reference Manual, Volume 3

EXT typeless_constant is octal_typeless_constant

or hexadecimal_typeless_constant

or binary_typeless_constant

EXT octal_typeless_constant is digit [ digit ] ... B

or O" digit [ digit ] ... "

or O’ digit [ digit ] ... ’

or " digit [ digit ] ... "O

or ’ digit [ digit ] ... ’O

EXT hexadecimal_typeless_constant is X’ hex_digit [ hex_digit ] ... ’

or X" hex_digit [ hex_digit ] ... "

or ’ hex_digit [ hex_digit ] ... ’X

or " hex_digit [ hex_digit ] ... "X

or Z’ hex_digit [ hex_digit ] ... ’

or Z" hex_digit [ hex_digit ] ... "

EXT binary_typeless_constant is B’ bin_digit [ bin_digit ] ... ’

or B" bin_digit [ bin_digit ] ... "

The following notes pertain to the definitions for typeless_constant,
octal_typeless_constant, hexadecimal_typeless_constant, and binary_typeless_constant:

• digit must have one of the values 0 through 7 in octal_typeless_constant

• digit must have a value of 0 or 1 in binary_typeless_constant

• The B, O, X, and Z characters can be in uppercase or lowercase.

R530 parameter_stmt is PARAMETER ( named_constant_def_list )

R531 named_constant_def is named_constant = initialization_expr

R541 implicit_stmt is IMPLICIT implicit_spec_list

or IMPLICIT NONE

EXT or IMPLICIT UNDEFINED

28 007–3694–004



Fortran Syntax [1]

R542 implicit_spec is type_spec ( letter_spec_list )

R543 letter_spec is letter [ - letter ]

Constraint: If IMPLICIT NONE is specified in a scoping unit, it must precede
any PARAMETER statements that appear in the scoping unit and there must be
no other IMPLICIT statements in the scoping unit.

Constraint: If the minus and second letter appear, the second letter must follow
the first letter alphabetically.

R544 namelist_stmt is NAMELIST / namelist_group_name / namelist_group_object_list [ [ , ]
/ namelist_group_name / namelist_group_object_list ] ...

R545 namelist_group_object is variable_name

Constraint: A namelist_group_object must not be an array dummy argument with
a nonconstant bound, a variable with nonconstant character length, an
automatic object, a pointer, a variable of a type that has an ultimate component
that is a pointer, or an allocatable array.

Constraint: If a namelist_group_name has the PUBLIC attribute, no item in the
namelist_group_object_list can have the PRIVATE attribute or have private
components.

Constraint: The namelist_group_name must not be a name made accessible by
USE association.

R546 equivalence_stmt is EQUIVALENCE equivalence_set_list

R547 equivalence_set is (equivalence_object, equivalence_object_list)

R548 equivalence_object is variable_name

or array_element

or substring

Constraint: An equivalence_object must not be a dummy argument, a pointer, an
allocatable array, an object of a nonsequence derived type or of a sequence
derived type containing a pointer at any level of component selection, an

007–3694–004 29



Fortran Language Reference Manual, Volume 3

automatic object, a function name, an entry name, a result name, a named
constant, a structure component, or a subobject of any of the preceding objects.

Constraint: An equivalence_object must not have the TARGET attribute.

Constraint: Each subscript or substring range expression in an equivalence_object
must be an integer initialization expression.

Constraint: If an equivalence_object is of type default integer, default real,
double-precision real, default complex, default logical, or numeric sequence
type, all of the objects in the equivalence set must be of these types.

Constraint: If an equivalence_object is of type default character or character
sequence type, all of the objects in the equivalence set must be of these types.

Constraint: If an equivalence_object is of a derived type that is not a numeric
sequence or character sequence type, all of the objects in the equivalence set
must be of the same type.

Constraint: If an equivalence_object is of an intrinsic type other than default
integer, default real, double-precision real, default complex, default logical, or
default character, all of the objects in the equivalence set must be of the same
type with the same kind type parameter value.

Constraint: The name of an equivalence_object must not be a name made
accessible by USE association.

Constraint: A substring must not have length zero.

R549 common_stmt is COMMON [ / [ common_block_name ] / ] common_block_object_list
[ [ , ] / [ common_block_name ] / common_block_object_list ] ...

R550 common_block_object is variable_name [ (explicit_shape_spec_list) ]

Constraint: Only one appearance of a given variable_name is permitted in all
common_block_object_lists within a scoping unit.

Constraint: A common_block_object must not be a dummy argument, an
allocatable array, an automatic object, a function name, an entry name, or a
result name.

Constraint: Each bound in the explicit_shape_spec must be a constant
specification expression.

30 007–3694–004



Fortran Syntax [1]

Constraint: If a common_block_object is of a derived type, it must be a sequence
type with no default initialization.

Constraint: If a variable_name appears with an explicit_shape_spec_list, it must not
have the POINTER attribute.

Constraint: A variable name must not be a name made accessible by USE
association.

1.2.6 Use of Data Objects

The following syntax rules are described in section 6, "Use of data objects," of
the Fortran 95 standard.

R601 variable is scalar_variable_name

or array_variable_name

or subobject

Constraint: array_variable_name must be the name of a data object that is an
array.

Constraint: array_variable_name must not have the PARAMETER attribute.

Constraint: scalar_variable_name must not have the PARAMETER attribute.

Constraint: subobject must not be a subobject designator (for example, a
substring) whose parent is a constant.

R602 subobject is array_element

or array_section

or structure_component

or substring

R603 logical_variable is variable

Constraint: logical_variable must be of type logical.

007–3694–004 31



Fortran Language Reference Manual, Volume 3

R604 default_logical_variable is variable

Constraint: default_logical_variable must be of type default logical.

R605 char_variable is variable

Constraint: char_variable must be of type character.

R606 default_char_variable is variable

Constraint: default_char_variable must be of type default character.

R607 int_variable is variable

Constraint: int_variable must be of type integer.

R608 default_int_variable is variable

Constraint: default_int_variable must be of type default integer.

R609 substring is parent_string ( substring_range )

R610 parent_string is scalar_variable_name

or array_element

or scalar_structure_component

or scalar_constant

R611 substring_range is [ scalar_int_expr ] : [ scalar_int_expr ]

Constraint: parent_string must be of type character.

32 007–3694–004



Fortran Syntax [1]

R612 data_ref is part_ref [ % part_ref ] ...

R613 part_ref is part_name [ (section_subscript_list) ]

Constraint: In a data_ref, each part_name except the rightmost must be of
derived type.

Constraint: In a data_ref, each part_name except the leftmost must be the name
of a component of the derived type definition of the type of the preceding
part_name.

Constraint: In a part_ref containing a section_subscript_list, the number of
section_subscripts must equal the rank of part_name.

Constraint: In a data_ref, there must not be more than one part_ref with nonzero
rank. A part_name to the right of a part_ref with nonzero rank must not have the
POINTER attribute.

R614 structure_component is data_ref

Constraint: In a structure_component, there must be more than one part_ref and
the rightmost part_ref must be of the form part_name.

R615 array_element is data_ref

Constraint: In an array_element, every part_ref must have rank zero and the last
part_ref must contain a subscript_list.

R616 array_section is data_ref [ (substring_range) ]

Constraint: In an array_section, exactly one part_ref must have nonzero rank, and
either the final part_ref has a section_subscript_list with nonzero rank or another
part_ref must have nonzero rank.

Constraint: In an array_section with a substring_range, the rightmost part_name
must be of type character.

007–3694–004 33



Fortran Language Reference Manual, Volume 3

R617 subscript is scalar_int_exp

R618 section_subscript is subscript

or subscript_triplet

or vector_subscript

R619 subscript_triplet is [ subscript ] : [ subscript ] [ : stride ]

R620 stride is scalar_int_expr

R621 vector_subscript is int_expr

Constraint: A vector_subscript must be an integer array expression of rank one.

Constraint: The second subscript must not be omitted from a subscript_triplet in
the last dimension of an assumed-size array.

R622 allocate_stmt is ALLOCATE (allocation_list [, STAT = stat_variable ] )

R623 stat_variable is scalar_int_variable

R624 allocation is allocate_object [ (allocate_shape_spec_list) ]

R625 allocate_object is variable_name

or structure_component

R626 allocate_shape_spec is [ allocate_lower_bound : ] allocate_upper_bound

R627 allocate_lower_bound is scalar_int_expr

R628 allocate_upper_bound is scalar_int_expr

Constraint: Each allocate_object must be a pointer or an allocatable array.

Constraint: The number of allocate_shape_specs in an allocate_shape_spec_list must
be the same as the rank of the pointer or allocatable array.

R629 nullify_stmt is NULLIFY ( pointer_object_list )

R630 pointer_object is variable_name

or structure_component

Constraint: Each pointer_object must have the POINTER attribute.

34 007–3694–004



Fortran Syntax [1]

R631 deallocate_stmt is DEALLOCATE ( allocate_object_list [, STAT = stat_variable ] )

Constraint: Each allocate_object must be a pointer or an allocatable array.

1.2.7 Expressions and Assignment

The following syntax rules are described in section 7, "Expressions and
assignment," of the Fortran 95 standard.

Note: The language of the Fortran 95 standard is presented in this subsection
in its original form. Chapter 7 of the Fortran Language Reference Manual,
Volume 1, however, sometimes uses terms that are different from those found
in the standard. The terminology was changed to improve clarity. The
following list shows the terms used in this compiler manual set and the
equivalent term used in the Fortran 95 standard.

Standard Silicon Graphics term

level_1_expr defined_unary_expr

defined_unary_op defined_operator

mult_operand exponentiation_expr

power_op **

add_operand multiplication_expr

mult_op * or /

level_2_expr summation_expr

add_op + or -

level_3_expr concatenation_expr

concat_op //

level_4_expr comparison_expr

rel_op rel_op

and_operand not_expr

not_op .NOT.

007–3694–004 35



Fortran Language Reference Manual, Volume 3

or_operand conjunct_expr

and_op .AND.

or_op .OR.

equiv_operand inclusive_disjunct_expr

level_5_expr equivalence_expr

mask_expr logical_expr

R701 primary is constant

or constant_subobject

or variable

or array_constructor

or structure_constructor

or function_reference

or ( expr )

R702 constant_subobject is subobject

Constraint: subobject must be a subobject designator whose parent is a constant.
A variable that is a primary must not be an assumed-size array.

R703 level_1_expr is [ defined_unary_op ] primary

R704 defined_unary_op is . letter [ letter ] ... .

Constraint: A defined_unary_op must not contain more than 31 letters and must
not be the same as any intrinsic_operator or logical_literal_constant.

R705 mult_operand is level_1_expr [ power_op mult_operand ]

R706 add_operand is [ add_operand mult_op ] mult_operand

R707 level_2_expr is [ [ level_2_expr ] add_op ] add_operand

36 007–3694–004



Fortran Syntax [1]

R708 power_op is **

R709 mult_op is *

or /

R710 add_op is +

or -

R711 level_3_expr is [ level_3_expr concat_op ] level_2_expr

R712 concat_op is //

R713 level_4_expr is [ level_3_expr rel_op ] level_3_expr

R714 rel_op is .EQ.

or .NE.

or .LT.

or .LE.

or .GT.

or .GE.

EXT or .LG.

or ==

or /=

or <

or <=

or >

or >=

EXT or <>

R715 and_operand is [ not_op ] level_4_expr

R716 or_operand is [ or_operand and_op ] and_operand

R717 equiv_operand is [ equiv_operand or_op ] or_operand

R718 level_5_expr is [ level_5_expr equiv_op ] equiv_operand

R719 not_op is .NOT.

R720 and_op is .AND.

R721 or_op is .OR.

007–3694–004 37



Fortran Language Reference Manual, Volume 3

R722 equiv_op is .EQV.

or .NEQV.

R723 expr is [ expr defined_binary_op ] level_5_expr

R724 defined_binary_op is . letter [ letter ] ... .

Constraint: A defined_binary_op must not contain more than 31 letters and must
not be the same as any intrinsic_operator or logical_literal_constant.

R725 logical_expr is expr

Constraint: logical_expr must be type logical.

R726 char_expr is expr

Constraint: char_expr must be type character.

R727 default_char_expr is expr

Constraint: default_char_expr must be of type default character.

R728 int_expr is expr

Constraint: int_expr must be type integer.

R729 numeric_expr is expr

Constraint: numeric_expr must be of type integer, real, or complex.

38 007–3694–004



Fortran Syntax [1]

R730 initialization_expr is expr

Constraint: An initialization_expr must be an initialization expression.

R731 char_initialization_expr is char_expr

Constraint: A char_initialization_expr must be an initialization expression.

R732 int_initialization_expr is int_expr

Constraint: An int_initialization_expr must be an initialization expression.

R733 logical_initialization_expr is logical_expr

Constraint: A logical_initialization_expr must be an initialization expression.

R734 specification_expr is scalar_int_expr

Constraint: The scalar_int_expr must be a restricted expression.

R735 assignment_stmt is variable = expr

Constraint: A variable in an assignment_stmt must not be an assumed-size array.

R736 pointer_assignment_stmt is pointer_object => target

R737 target is variable

or expr

Constraint: The pointer_object must have the POINTER attribute.

007–3694–004 39



Fortran Language Reference Manual, Volume 3

Constraint: The variable must have the TARGET attribute or be a subobject of an
object with the TARGET attribute, or it must have the POINTER attribute.

Constraint: The target must be of the same type, kind type parameters, and
rank as the pointer.

Constraint: The target must not be an array section with a vector subscript.

Constraint: The expr must deliver a pointer result.

R738 where_stmt is WHERE ( mask_expr ) where_assignment_stmt

R739 where_construct is where_construct_stmt
[ where_body_construct ] ...

[ masked_elsewhere_stmt
[ where_body_construct ] ...] ...

[ elsewhere_stmt
[ where_body_construct ] ...

] end_where_stmt

R740 where_construct_stmt is [ where_construct_name: ]WHERE ( mask_expr )

R741 where_construct_stmt is where_assignment_stmt

or where_stmt

or where_construct

R742 where_assignment_stmt is assignment_stmt

R743 mask_expr is logical_expr

R742 masked_elsewhere_stmt is ELSEWHERE (mask_expr) [ where_construct_name ]

R745 elsewhere_stmt is ELSEWHERE [ where_construct_name ]

R746 end_where_stmt is END WHERE [ where_construct_name ]

Constraint: A where_assignment_stmt that is a defined assignment must be
elemental.

Constraint: If the where_construct_stmt is identified by a where_construct_name,
the corresponding end_where_stmt must specify the same where_construct_name.
If the where_construct_stmt is not identified by a where_construct_name, the
corresponding end_where_stmt must not specify a where_construct_name. If an
elsewhere_stmt or a masked_elsewhere_stmt is identified by a where_construct_name,

40 007–3694–004



Fortran Syntax [1]

the corresponding where_construct_stmt must specify the same
where_construct_name.

R747 forall_construct is forall_construct_stmt
[ forall_body_construct ] ...

end_forall_stmt

R748 forall_construct_stmt is [ forall_construct_name: ]FORALL forall_header

R749 forall_header is (forall_triplet_spec_list [, scalar_mask_expr ])

R750 forall_triplet_spec is index_name = subscript : subscript [: stride ]

R617 subscript is scalar_int_expr

R603 stride is scalar_int_expr

R751 forall_body_construct is forall_assignment_stmt

R751 forall_body_construct is forall_assignment_stmt

or where_stmt

or where_construct

or forall_construct

or forall_stmt

R752 forall_assignment_stmt is assignment_stmt

or pointer_assignment_stmt

R753 end_forall_stmt is END FORALL [ forall_construct_name ]

Constraint: If the forall_construct_stmt has a forall_construct_name, the
end_forall_stmt must have the same forall_construct_name. If the end_forall_stmt
has a forall_construct_name, the forall_construct_stmt must have the same
forall_construct_name.

Constraint: The scalar_mask_expr must be scalar and of type logical.

Constraint: Any procedure referenced in the scalar_mask_expr, including one
referenced by a defined operation, must be a pure procedure.

Constraint: The index_name must be a named scalar variable of type integer.

Constraint: A subscript or stride in a forall_triplet_spec must not contain a
reference to any index_name in the forall_triplet_spec_list in which it appears.

007–3694–004 41



Fortran Language Reference Manual, Volume 3

Constraint: A statement in a forall_body_construct must not define an index_name
of the forall_construct.

Constraint: Any procedure referenced in a forall_body_construct, including one
referenced by a defined operation or assignment, must be a pure procedure.

Constraint: A forall_body_construct must not be a branch target.

R754 forall_stmt is FORALL forall_header forall_assignment_stmt

1.2.8 Execution Control

The following syntax rules are described in section 8, "Execution control," of the
Fortran 95 standard.

R801 block is [ execution_part_construct ] ...

R802 if_construct is if_then_stmt
block

[ else_if_stmt
block ] ...

[ else_stmt
block ]

end_if_stmt

R803 if_then_stmt is [ if_construct_name : ] IF ( scalar_logical_expr ) THEN

R804 else_if_stmt is ELSE IF ( scalar_logical_expr )

THEN [ if_construct_name ]

R805 else_stmt is ELSE [ if_construct_name ]

R806 end_if_stmt is END IF [ if_construct_name ]

Constraint: If the if_then_stmt of an if_construct is identified by an
if_construct_name, the corresponding end_if_stmt must specify the same
if_construct_name. If the if_then_stmt of an if_construct is not identified by an
if_construct_name, the corresponding end_if_stmt must not specify an
if_construct_name. If an else_if_stmt or else_stmt is identified by an
if_construct_name, the corresponding if_then_stmt must specify the same
if_construct_name.

42 007–3694–004



Fortran Syntax [1]

R807 if_stmt is IF (scalar_logical_expr) action_stmt

Constraint: The action_stmt in the if_stmt must not be an if_stmt,
end_program_stmt, end_function_stmt, or end_subroutine_stmt.

R808 case_construct is select_case_stmt
[ case_stmt

block ] ...

end_select_stmt

R809 select_case_stmt is [ case_construct_name ] : SELECT CASE ( case_expr )

R810 case_stmt is CASE case_selector [ case_construct_name ]

R811 end_select_stmt is END SELECT [ case_construct_name ]

Constraint: If the select_case_stmt of a case_construct is identified by a
case_construct_name, the corresponding end_select_stmt must specify the same
case_construct_name. If the select_case_stmt of a case_construct is not identified by
a case_construct_name, the corresponding end_select_stmt must not specify a
case_construct_name. If a case_stmt is identified by a case_construct_name, the
corresponding select_case_stmt must specify the same case_construct_name.

R812 case_expr is scalar_int_expr

or scalar_char_expr

or scalar_logical_expr

R813 case_selector is ( case_value_range_list )

or DEFAULT

Constraint: No more than one of the selectors of one of the CASE statements
may be DEFAULT.

007–3694–004 43



Fortran Language Reference Manual, Volume 3

R814 case_value_range is case_value

or case_value :

or : case_value

or case_value : case_value

R815 case_value is scalar_int_initialization_expr

or scalar_char_initialization_expr

or scalar_logical_initialization_expr

Constraint: For a given case_construct, each case_value must be of the same type
as case_expr. For character type, length differences are allowed, but the kind
type parameters must be the same.

Constraint: A case_value_range using a colon must not be used if case_expr is of
type logical.

Constraint: For a given case_construct, the case_value_ranges must not overlap;
that is, there must be no possible value of the case_expr that matches more than
one case_value_range.

R816 do_construct is block_do_construct

or nonblock_do_construct

R817 block_do_construct is do_stmt
do_block
end_do

R818 do_stmt is label_do_stmt

or nonlabel_do_stmt

R819 label_do_stmt is [ do_construct_name : ] DO label [ loop_control ]

R820 nonlabel_do_stmt is [ do_construct_name : ] DO [ loop_control ]

R821 loop_control is [ , ] do_variable = scalar_int_expr,

or scalar_int_expr [, scalar_int_expr ]

[ , ] WHILE ( scalar_logical_expr )

R822 do_variable is scalar_int_variable

44 007–3694–004



Fortran Syntax [1]

Constraint: The do_variable must be a named scalar variable of type integer,
default real, or double-precision real. The Fortran standard does not allow for
do_variables of type default real or double-precision real.

Constraint: Each scalar_numeric_expr in loop_control must be of type integer,
default real, or double-precision real. The Fortran standard does not allow for
do_variables of type default real or double-precision real.

R823 do_block is block

R824 end_do is end_do_stmt

or continue_stmt

R825 end_do_stmt is END DO [ do_construct_name ]

Constraint: If the do_stmt of a block_do_construct is identified by a
do_construct_name, the corresponding end_do must be an end_do_stmt specifying
the same do_construct_name. If the do_stmt of a block_do_construct is not
identified by a do_construct_name, the corresponding end_do must not specify a
do_construct_name.

Constraint: If the do_stmt is a nonlabel_do_stmt, the corresponding end_do must
be an end_do_stmt.

Constraint: If the do_stmt is a label_do_stmt, the corresponding end_do must be
identified with the same label.

OBS nonblock_do_construct is action_term_do_construct

or outer_shared_do_construct

OBS action_term_do_construct is label_do_stmt
do_body
do_term_action_stmt

OBS do_body is [ execution_part_construct ] ...

OBS do_term_action_stmt is action_stmt

Obsolescent Constraint: A do_term_action_stmt must not be a continue_stmt, a
goto_stmt, a return_stmt, a stop_stmt, an exit_stmt, a cycle_stmt, an

007–3694–004 45



Fortran Language Reference Manual, Volume 3

end_function_stmt, an end_subroutine_stmt, an end_program_stmt, or an
arithmetic_if_stmt.

Obsolescent Constraint: The do_term_action_stmt must be identified with a label
and the corresponding label_do_stmt must refer to the same label.

OBS outer_shared_do_construct is label_do_stmt
do_body
shared_term_do_construct

OBS shared_term_do_construct is outer_shared_do_construct

or inner_shared_do_construct

OBS inner_shared_do_construct is label_do_stmt
do_body
do_term_shared_stmt

OBS do_term_shared_stmt is action_stmt

Obsolescent Constraint: A do_term_shared_stmt must not be a goto_stmt, a
return_stmt, a stop_stmt, an exit_stmt, a cycle_stmt, an end_function_stmt, an
end_subroutine_stmt, an end_program_stmt, or an arithmetic_if_stmt.

Obsolescent Constraint: The do_term_shared_stmt must be identified with a label,
and all of the label_do_stmts of the shared_term_do_construct must refer to the
same label.

R834 cycle_stmt is CYCLE [ do_construct_name ]

Constraint: If a cycle_stmt refers to a do_construct_name, it must be within the
range of that do_construct; otherwise, it must be within the range of at least one
do_construct.

R835 exit_stmt is EXIT [ do_construct_name ]

Constraint: If an exit_stmt refers to a do_construct_name, it must be within the
range of that do_construct; otherwise, it must be within the range of at least one
do_construct.

46 007–3694–004



Fortran Syntax [1]

R836 goto_stmt is GO TO label

Constraint: The label must be the statement label of a branch target statement
that appears in the same scoping unit as the goto_stmt.

OBS computed_goto_stmt is GO TO ( label_list ) [ , ] scalar_int_expr

Obsolescent Constraint: Each label in label_list must be the statement label of a
branch target statement that appears in the same scoping unit as the
computed_goto_stmt.

EXT assign_stmt is ASSIGN label TO scalar_int_variable

Extension Constraint: The label must be the statement label of a branch target
statement or format_stmt that appears in the same scoping unit as the
assign_stmt.

Extension Constraint: scalar_int_variable must be named and of type default
integer.

EXT assigned_goto_stmt is GO TO scalar_int_variable [ [ , ] (label_list) ]

Extension Constraint: Each label in label_list must be the statement label of a
branch target statement that appears in the same scoping unit as the
assigned_goto_stmt.

Extension Constraint: scalar_int_variable must be named and of type default
integer.

OBS arithmetic_if_stmt is IF ( scalar_numeric_expr ) label, label, label

007–3694–004 47



Fortran Language Reference Manual, Volume 3

Obsolescent Constraint: Each label must be the label of a branch target
statement that appears in the same scoping unit as the arithmetic_if_stmt.

Obsolescent Constraint: The scalar_numeric_expr must not be of type complex.

R839 continue_stmt is CONTINUE

R840 stop_stmt is STOP [ stop_code ]

R841 stop_code is scalar_char_constant

EXT or digit [ digit [ digit [digit [ digit ]]]]

Constraint: scalar_char_constant must be of type default character.

EXT pause_stmt is PAUSE [ stop_code ]

1.2.9 Input/Output (I/O) Statements

The following syntax rules are described in section 9, "Input/Output
statements," of the Fortran 95 standard.

R901 io_unit is external_file_unit

or *

or internal_file_unit

EXT or unit_name

R902 external_file_unit is scalar_int_expr

R903 internal_file_unit is default_char_variable

Constraint: The default_char_variable must not be an array section with a vector
subscript.

48 007–3694–004



Fortran Syntax [1]

R904 open_stmt is OPEN ( connect_spec_list )

R905 connect_spec is [ UNIT = ] external_file_unit

or IOSTAT = scalar_default_int_variable

or ERR = label

or FILE = file_name_expr

or STATUS = scalar_char_expr

or ACCESS = scalar_char_expr

or FORM = scalar_char_expr

or RECL = scalar_int_expr

or BLANK = scalar_char_expr

or POSITION = scalar_char_expr

or ACTION = scalar_char_expr

or DELIM = scalar_char_expr

or PAD = scalar_char_expr

R906 file_name_expr is scalar_char_expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier,
the unit specifier must be the first item in the connect_spec_list.

Constraint: Each specifier must not appear more than once in a given open_stmt;
an external_file_unit must be specified.

Constraint: The label used in the ERR= specifier must be the statement label of a
branch target statement that appears in the same scoping unit as the OPEN
statement.

R907 close_stmt is CLOSE ( close_spec_list )

R908 close_spec is [ UNIT = ] external_file_unit

or IOSTAT = scalar_default_int_variable

or ERR = label

or STATUS = scalar_char_expr

007–3694–004 49



Fortran Language Reference Manual, Volume 3

Constraint: If the optional characters UNIT= are omitted from the unit specifier,
the unit specifier must be the first item in the close_spec_list.

Constraint: Each specifier must not appear more than once in a given close_stmt;
an external_file_unit must be specified.

Constraint: The label used in the ERR= specifier must be the statement label of
a branch target statement that appears in the same scoping unit as the CLOSE
statement.

R909 read_stmt is READ ( io_control_spec_list ) [ input_item_list ]

EXT or READ format [ , input_item_list ]

R910 write_stmt is WRITE ( io_control_spec_list ) [ output_item_list ]

EXT or WRITE format [ , output_item_list ]

R911 print_stmt is PRINT format [ , output_item_list ]

R912 io_control_spec is [ UNIT = ] io_unit

or [ FMT = ] format

or [ NML = ] namelist_group_name

or REC = scalar_int_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

or END = label

or ADVANCE = scalar_default_char_expr

or SIZE = scalar_default_int_variable

or EOR = label

Constraint: An io_control_spec_list must contain exactly one io_unit and may
contain at most one of each of the other specifiers.

Constraint: An END=, EOR=, or SIZE= specifier must not appear in a write_stmt.

Constraint: The label in the ERR=, EOR=, or END= specifier must be the
statement label of a branch target statement that appears in the same scoping
unit as the data transfer statement.

50 007–3694–004



Fortran Syntax [1]

Constraint: A namelist_group_name must not be present if an input_item_list or
an output_item_list is present in the data transfer statement.

Constraint: An io_control_spec_list must not contain both a format and a
namelist_group_name.

Constraint: If the optional characters UNIT= are omitted from the unit specifier,
the unit specifier must be the first item in the control information list.

Constraint: If the optional characters FMT= are omitted from the format specifier,
the format specifier must be the second item in the control information list and
the first item must be the unit specifier without the optional characters UNIT=.

Constraint: If the optional characters NML= are omitted from the namelist
specifier, the namelist specifier must be the second item in the control
information list and the first item must be the unit specifier without the
optional characters UNIT=.

Constraint: If the unit specifier specifies an internal file, the io_control_spec_list
must not contain a REC= specifier or a namelist_group_name.

Constraint: If the REC= specifier is present, an END= specifier must not appear,
a namelist_group_name must not appear, and the format, if any, must not be an
asterisk specifying list_directed I/O.

Constraint: An ADVANCE= specifier may be present only in a formatted
sequential I/O statement with explicit format specification whose control
information list does not contain an internal file unit specifier.

Constraint: If an EOR= specifier is present, an ADVANCE= specifier also must
appear.

Constraint: If a SIZE= specifier is present, an ADVANCE= specifier must also
appear.

R913 format is default_char_expr

or label

or *

EXT or scalar_default_int_variable

Constraint: The label must be the label of a FORMAT statement that appears in
the same scoping unit as the statement containing the format specifier.

007–3694–004 51



Fortran Language Reference Manual, Volume 3

R914 input_item is variable

or io_implied_do

R915 output_item is expr

or io_implied_do

R916 io_implied_do is ( io_implied_do_object_list, io_implied_do_control )

R917 io_implied_do_object is input_item

or output_item

R918 io_implied_do_control is do_variable = scalar_int_expr,
scalar_int_expr [, scalar_int_expr ]

Constraint: A variable that is an input_item must not be an assumed-size array.

Constraint: The DO variable must be a named scalar of type integer.

Constraint: In an input_item_list, an io_implied_do_object must be an input_item.
In an output_item_list, an io_implied_do_object must be an output_item.

EXT buffer_in_stmt is BUFFER IN (io_unit, mode) (start_loc, end_loc)

EXT buffer_out_stmt is BUFFER OUT (io_unit, mode) (start_loc, end_loc)

EXT io_unit is external_file_unit

or file_name_expr

EXT mode is scalar_integer_expr

EXT start_loc is variable

EXT end_loc is variable

In the preceding definition, the variable specified for start_loc and end_loc cannot
be of a derived type if you are performing implicit data conversion. The data
items between start_loc and end_loc must be of the same type and same kind
type.

52 007–3694–004



Fortran Syntax [1]

R919 backspace_stmt is BACKSPACE external_file_unit

or BACKSPACE ( position_spec_list )

R920 endfile_stmt is ENDFILE external_file_unit

or ENDFILE ( position_spec_list )

R921 rewind_stmt is REWIND external_file_unit

or REWIND ( position_spec_list )

R922 position_spec is [ UNIT = ] external_file_unit

or IOSTAT = scalar_default_int_variable

or ERR = label

Constraint: The label in the ERR= specifier must be the statement label of a
branch target statement that appears in the same scoping unit as the file
positioning statement.

Constraint: If the optional characters UNIT= are omitted from the unit specifier;
the unit specifier must be the first item in the position_spec_list.

Constraint: A position_spec_list must contain exactly one external_file_unit and
may contain at most one of each of the other specifiers.

R923 inquire_stmt is INQUIRE ( inquire_spec_list )

or INQUIRE ( IOLENGTH = scalar_default_int_variable ) output_item_list

R924 inquire_spec is [ UNIT = ] external_file_unit

or FILE = file_name_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

or EXIST = scalar_default_logical_variable

or OPENED = scalar_default_logical_variable

or NUMBER = scalar_default_int_variable

or NAMED = scalar_default_logical_variable

or NAME = scalar_default_ char_variable

or ACCESS = scalar_default_char_variable

007–3694–004 53



Fortran Language Reference Manual, Volume 3

or SEQUENTIAL = scalar_default_char_variable

or DIRECT = scalar_default_char_variable

or FORM = scalar_default_char_variable

or FORMATTED = scalar_default_char_variable

or UNFORMATTED = scalar_default_char_variable

or RECL = scalar_default_int_variable

or NEXTREC = scalar_default_int_variable

or BLANK = scalar_default_char_variable

or POSITION = scalar_default_char_variable

or ACTION = scalar_default_char_variable

or READ = scalar_default_char_variable

or WRITE = scalar_default_char_variable

or READWRITE = scalar_default_char_variable

or DELIM = scalar_default_char_variable

or PAD = scalar_default_char_variable

Constraint: An inquire_spec_list must contain one FILE= specifier or one UNIT=
specifier, but not both, and at most one of each of the other specifiers.

Constraint: In the inquire by unit form of the INQUIRE statement, if the
optional characters UNIT= are omitted from the unit specifier, the unit specifier
must be the first item in the inquire_spec_list.

1.2.10 I/O Editing

The following syntax rules are described in section 10, "Input/Output editing,"
of the Fortran 95 standard.

R1001 format_stmt is FORMAT format_specification

R1002 format_specification is ( [ format_item_list ] )

Constraint: The format_stmt must be labeled.

54 007–3694–004



Fortran Syntax [1]

Constraint: The comma used to separate format_items in a format_item_list may
be omitted as follows:

• Between a P edit descriptor and an immediately following F, E, EN, ES, D, or
G edit descriptor

• Before a slash edit descriptor when the optional repeat specification is not
present

• After a slash edit descriptor

• Before or after a colon edit descriptor

R1003 format_item is [ r ] data_edit_desc

or control_edit_desc

or char_string_edit_desc

or [ r ] ( format_item_list )

R1004 r is int_literal_constant

Constraint: r must be positive.

Constraint: r must not have kind parameter specified for it.

R1005 data_edit_desc is I w [ . m ]

or B w [ . m ]

or O w [ . m ]

or Z w [ . m ]

or F w . d

or E w . d [ E e ]

or EN w . d [ E e ]

or ES w . d [ E e ]

or G w . d [ E e ]

or L w

007–3694–004 55



Fortran Language Reference Manual, Volume 3

or A [ w ]

or D w . d

EXT or D w . d E e

EXT or R w

EXT or Q

R1006 w is int_literal_constant

R1007 m is int_literal_constant

R1008 d is int_literal_constant

R1009 e is int_literal_constant

Constraint: e must be positive.

Constraint: w must be zero or positive for the I, B, O, Z, and F edit descriptors.
w must be positive for all other edit descriptors.

Constraint: w, m, d, and e must not have kind parameters specified for them.

R1010 control_edit_desc is position_edit_desc

or [ r ] /

or :

or sign_edit_desc

or k P

or blank_interp_edit_desc

R1011 k is signed_int_literal_constant

Constraint: k must not have a kind parameter specified for it.

R1012 position_edit_desc is T n

or TL n

or TR n

or n X

56 007–3694–004



Fortran Syntax [1]

EXT or \

EXT or $

R1013 n is int_literal_constant

Constraint: n must be positive.

Constraint: n must not have a kind parameter specified for it.

R1014 sign_edit_desc is S

or SP

or SS

R1015 blank_interp_edit_desc is BN

or BZ

R1016 char_string_edit_desc is char_literal_constant

EXT or c H rep_char [ rep_char ] ...

EXT c is int_literal_constant

Constraint: The char_literal_constant must not have a kind parameter specified
for it.

1.2.11 Program Units

The following syntax rules are described in section 11, "Program units," of the
Fortran 95 standard.

R1101 main_program is [ program_stmt ]
[ specification_part ]
[ execution_part ]
[ internal_subprogram_part ]
end_program_stmt

R1102 program_stmt is PROGRAM program_name [ (args) ]

EXT args is Any character in the CF90 character

007–3694–004 57



Fortran Language Reference Manual, Volume 3

set. The CF90 compiler ignores any

args specified after program_name.

R1103 end_program_stmt is END [ PROGRAM [ program_name ] ]

Constraint: In a main_program, the execution_part must not contain a RETURN
statement or an ENTRY statement.

Constraint: The program_name may be included in the end_program_stmt only if
the optional program_stmt is used and, if included, must be identical to the
program_name specified in the program_stmt.

Constraint: An automatic object must not appear in the specification_part of a
main program.

R1104 module is module_stmt
[ specification_part ]
[ module_subprogram_part ]
end_module_stmt

R1105 module_stmt is MODULE module_name

R1106 end_module_stmt is END [ MODULE [ module_name ] ]

Constraint: If the module_name is specified in the end_module_stmt, it must be
identical to the module_name specified in the module_stmt.

Constraint: A module specification_part must not contain a stmt_function_stmt, an
entry_stmt, or a format_stmt.

Constraint: An automatic object must not appear in the specification_part of a
module.

Constraint: If an object of a type for which component_initialization is specified
appears in the specification_part of a module and does not have the
ALLOCATABLE or POINTER attribute, the object must have the SAVE attribute.

R1107 use_stmt is USE module_name [, rename_list ]

or USE module_name, ONLY : [ only_list ]

R1108 rename is local_name => use_name

58 007–3694–004



Fortran Syntax [1]

R1109 only is generic_spec

or only_use_name

or only_rename

R1110 only_use_name is use_name

R1111 only_rename is local_name => use_name

Constraint: Each generic_spec must be a public entity in the module.

Constraint: Each use_name must be the name of a public entity in the module.

R1112 block_data is block_data_stmt
[ specification_part ]
end_block_data_stmt

R1113 block_data_stmt is BLOCK DATA [ block_data_name ]

R1114 end_block_data_stmt is END [ BLOCK DATA [ block_data_name ] ]

Constraint: The block_data_name may be included in the end_block_data_stmt only
if it was provided in the block_data_stmt and, if included, must be identical to
the block_data_name in the block_data_stmt.

Constraint: A block_data specification_part may contain only USE statements, type
declaration statements, IMPLICIT statements, PARAMETER statements,
derived-type definitions, and the following specification statements: COMMON,
DATA, DIMENSION, EQUIVALENCE, INTRINSIC, POINTER, SAVE, and TARGET.

Constraint: A type declaration statement in a block_data specification_part must
not contain ALLOCATABLE, EXTERNAL, INTENT, OPTIONAL, PRIVATE, or
PUBLIC attribute specifiers.

1.2.12 Procedures

The following syntax rules are described in section 12, "Procedures," of the
Fortran 95 standard.

007–3694–004 59



Fortran Language Reference Manual, Volume 3

R1201 interface_block is interface_stmt
[ interface_specification ] ...
end_interface_stmt

R1202 interface_specification is interface_body

or module_procedure_stmt

R1203 interface_stmt is INTERFACE [ generic_spec ]

R1204 end_interface_stmt is END INTERFACE [ generic_spec ]

R1204 interface_body is function_stmt

[ specification_part ]

end_function_stmt

or subroutine_stmt

[ specification_part ]

end_subroutine_stmt

R1206 module_procedure_stmt is MODULE PROCEDURE procedure_name_list

R1207 generic_spec is generic_name

or OPERATOR ( defined_operator )

or ASSIGNMENT ( = )

Constraint: An interface body of a pure procedure must specify the intents of all
dummy procedures except pointer, alternate return, and procedure arguments.

Constraint: An interface_body must not contain an entry_stmt, data_stmt,
format_stmt, or stmt_function_stmt.

Constraint: The MODULE PROCEDURE statement is allowed only if the
interface_block has a generic_spec and is in a scoping unit where each
procedure_name is accessible as a module procedure.

Constraint: An interface_block in a subprogram must not contain an
interface_body for a procedure defined by that subprogram.

Constraint: A procedure_name in a module_procedure_stmt must not be one that
previously had been established to be associated with the generic_spec of the
interface_block in which it appears, either by a previous appearance in an
interface_block or by use or host association.

60 007–3694–004



Fortran Syntax [1]

Constraint: The generic_spec can be included in the end_interface_stmt only if it
was provided in the interface_stmt. If included, it must be identical to the
generic_spec in the interface_stmt.

R1208 external_stmt is EXTERNAL [::] external_name_list

R1209 intrinsic_stmt is INTRINSIC [::] intrinsic_procedure_name_list

Constraint: Each intrinsic_procedure_name must be the name of an intrinsic
procedure.

R1210 function_reference is function_name ([ actual_arg_spec_list ])

Constraint: The actual_arg_spec_list for a function reference must not contain an
alt_return_spec.

R1211 call_stmt is CALL subroutine_name [([ actual_arg_spec_list ])]

R1212 actual_arg_spec is [ keyword = ] actual_arg

R1213 keyword is dummy_arg_name

R1214 actual_arg is expr

or variable

or procedure_name

OBS or alt_return_spec

R1215 alt_return_spec is * label

Constraint: The keyword = must not appear if the interface of the procedure is
implicit in the scoping unit.

Constraint: The keyword = may be omitted from an actual_arg_spec only if the
keyword = has been omitted from each preceding actual_arg_spec in the
argument list.

Constraint: Each keyword must be the name of a dummy argument in the
explicit interface of the procedure.

007–3694–004 61



Fortran Language Reference Manual, Volume 3

Constraint: A procedure_name actual_arg must not be the name of an internal
procedure or of a statement function and must not be the generic name of a
procedure.

Constraint: The label used in the alt_return_spec must be the statement label of a
branch target statement that appears in the same scoping unit as the call_stmt.

Constraint: A nonintrinsic elemental procedure must not be used as an actual
argument.

Constraint: In a reference to a pure procedure, a procedure_name actual_arg must
be the name of a pure procedure.

R1216 function_subprogram is function_stmt
[ specification_part ]
[ execution_part ]
[ internal_subprogram_part ]
end_function_stmt

R1217 function_stmt is [ prefix ] FUNCTION function_name
( [ dummy_arg_name_list ] )

[ RESULT ( result_name )]

Constraint: If RESULT is specified, the function_name must not appear in any
specification statement in the scoping unit of the function subprogram.

Constraint: A prefix must contain at most one of each prefix_spec.

Constraint: If ELEMENTAL is present, RECURSIVE must not be present.

R1218 prefix is prefix_spec [ prefix_spec ] ...

R1219 prefix_spec is type_spec

or RECURSIVE

or PURE

or ELEMENTAL

R1220 end_function_stmt is END [ FUNCTION [ function_name ] ]

62 007–3694–004



Fortran Syntax [1]

Constraint: If RESULT is specified, result_name must not be the same as
function_name.

Constraint: FUNCTION must be present on the end_function_stmt of an internal
or module function.

Constraint: An internal function subprogram must not contain an ENTRY
statement.

Constraint: An internal function subprogram must not contain an
internal_subprogram_part.

Constraint: If a function_name is present on the end_function_stmt, it must be
identical to the function_name specified in the function_stmt.

R1221 subroutine_subprogram is subroutine_stmt
[ specification_part ]
[ execution_part ]
[ internal_subprogram_part ]
end_subroutine_stmt

R1222 subroutine_stmt is [ prefix ] SUBROUTINE subroutine_name [( [ dummy_arg_list ] )]

R1223 dummy_arg is dummy_arg_name

or *

R1224 end_subroutine_stmt is END [ SUBROUTINE [ subroutine_name ]]

Constraint: The prefix of a subroutine_stmt must not contain a type_spec.

Constraint: SUBROUTINE must be present on the end_subroutine_stmt of an
internal or module subroutine.

Constraint: An internal subroutine must not contain an ENTRY statement.

Constraint: An internal subroutine must not contain an internal_subprogram_part.

Constraint: If a subroutine_name is present on the end_subroutine_stmt, it must be
identical to the subroutine_name specified in the subroutine_stmt.

R1225 entry_stmt is ENTRY entry_name [( [ dummy_arg_list ] ) [ RESULT ( result_name )] ]

007–3694–004 63



Fortran Language Reference Manual, Volume 3

Constraint: If RESULT is specified, the entry_name must not appear in any
specification statement in the scoping unit of the function program.

Constraint: An entry_stmt may appear only in an external_subprogram or
module_subprogram. An entry_stmt must not appear within an
executable_construct.

Constraint: RESULT may be present only if the entry_stmt is contained in a
function subprogram.

Constraint: Within the subprogram containing the entry_stmt, the entry_name
must not appear as a dummy argument in the FUNCTION or SUBROUTINE
statement or in another ENTRY statement and it must not appear in an
EXTERNAL or INTRINSIC statement.

Constraint: A dummy_arg can be an alternate return indicator only if the ENTRY
statement is in a subroutine subprogram.

Constraint: If RESULT is specified, result_name must not be the same as
entry_name.

R1226 return_stmt is RETURN

OBS or RETURN [ scalar_int_expr ]

Constraint: The return_stmt must be in the scoping unit of a function or
subroutine subprogram.

Obsolescent Constraint: The scalar_int_expr is allowed only in the scoping unit
of a subroutine subprogram.

R1227 contains_stmt is CONTAINS

R1228 stmt_function_stmt is function_name ([ dummy_arg_name_list ]) = scalar_expr

Obsolescent Constraint: The primaries of the scalar_expr must be constants
(literal and named), references to variables, references to functions and function
dummy procedures, and intrinsic operations. If scalar_expr contains a reference
to a function or function dummy procedure, the reference must not require an
explicit interface; the function must not require an explicit interface unless it is
an intrinsic; the function must not be a transformational intrinsic; and the result

64 007–3694–004



Fortran Syntax [1]

must be scalar. If an argument to a function or a function dummy procedure is
array valued, it must be an array name. If a reference to a statement function
appears in scalar_expr, its definition must have been provided earlier in the
scoping unit and must not be the name of the statement function being defined.

Obsolescent Constraint: Named constants in scalar_expr must have been
declared earlier in the scoping unit or made accessible by USE or host
association. If array elements appear in scalar_expr, the parent array must not
have been declared as an array earlier in the scoping unit or made accessible by
USE or host association.

Obsolescent Constraint: If a dummy_arg_name, variable, function reference, or
dummy function reference is typed by the implicit typing rules, its appearance
in any subsequent type declaration statement must confirm this implied type
and the values of any implied type parameters.

Constraint: The function_name and each dummy_arg_name must be specified,
explicitly or implicitly, to be scalar data objects.

Constraint: A given dummy_arg_name may appear only once in any
dummy_arg_name_list.

Constraint: Each scalar variable reference in scalar_expr may be either a
reference to a dummy argument of the statement function or a reference to a
variable local to the same scoping unit as the statement function statement.

Constraint: The specification_part of a pure function subprogram must specify
that all dummy arguments have INTENT(IN) except procedure arguments and
arguments with the POINTER attribute.

Constraint: The specification_part of a pure subroutine subprogram must specify
the intents of all dummy arguments except procedure arguments, alternate
return indicators, and arguments with the POINTER attribute. Note that
alternate return indicators are obsolete.

Constraint: A local variable declared in the specification_part or
internal_subprogram_part of a pure subprogram must not have the SAVE attribute.

Constraint: The specification_part of a pure subprogram must specify that all
dummy arguments that are procedure arguments are pure.

Constraint: If a procedure that is neither an intrinsic procedure nor a statement
function is used in a context that requires it to be pure, its interface must be
explicit in the scope of that use. The interface must specify that the procedure is
pure. Note that statement functions are obsolete.

007–3694–004 65



Fortran Language Reference Manual, Volume 3

Constraint: All internal subprograms in a pure subprogram must be pure.

Constraint: In a pure subprogram, any variable that is in common or is
accessed by host or USE association, is a dummy argument to a pure function,
is a dummy argument with INTENT(IN) to a pure subroutine, or an object that
is storage associated with any such variable, must not be used in the following
contexts:

• As the variable of an assignment_stmt

• As a DO variable or implied DO variable

• As an input_item in a read_stmt from an internal file

• As an internal_file_unit in a write_stmt

• As an IOSTAT= specifier in an input or output statement with an internal file

• As the pointer_object of a pointer_assignment_stmt

• As the target of a pointer_assignment_stmt

• As the expr of an assignment_stmt in which the variable is of a derived type if
the derived type has a pointer component at any level of component
selection

• As an allocate_object or stat_variable in an allocate_stmt or deallocate_stmt, or as
a pointer_object in a nullify_stmt

• As an actual argument associated with a dummy argument with
INTENT(OUT) or INTENT(INOUT) or with the POINTER attribute

Constraint: Any procedure referenced in a pure subprogram, including one
referenced via a defined operation or assignment, must be pure.

Constraint: A pure subprogram must not contain a print_stmt, open_stmt,
close_stmt, backspace_stmt, endfile_stmt, rewind_stmt, or inquire_stmt.

Constraint: A pure subprogram must not contain a read_stmt or write_stmt with
an io_unit that is an external_file_unit or an asterisk (*).

Constraint: A pure subprogram must not contain a stop_stmt.

1.2.13 Intrinsic Procedures

There are no syntax rules described in section 13, "Intrinsic procedures," of the
Fortran 95 standard.

66 007–3694–004



Fortran Syntax [1]

1.2.14 Scope, Association, and Definition

There are no syntax rules described in section 14, "Scope, association, and
definition," of the Fortran 95 standard.

007–3694–004 67





Decremental Features [2]

This chapter describes Fortran features that have been deleted or declared
obsolescent in the current (Fortran 95) standard. The CF90 and MIPSpro 7
Fortran 90 compilers continue to support these features as extensions to the
standard. The CF90 and MIPSpro 7 Fortran 90 compilers can generate messages
when the deleted or obsolescent features are detected; to enable these messages,
specify one of the following on the f90(1) command line: -ansi and
-fullwarn (on IRIX systems) or -e n (on UNICOS or UNICOS/mk systems).
For more information on these options, see the f90(1) man page.

2.1 Deleted Features

This section describes features that the Fortran 95 standard declares to be
deleted from the Fortran language. These features had been included in
previous revisions of the Fortran standard. The CF90 and MIPSpro 7 Fortran 90
compilers include these features as extensions. The deleted features are as
follows:

• Real and double-precision DO variables. The preferred alternative is integer.

• The ability to branch to an END IF statement from outside its block. The
preferred alternative is to branch to the statement following the END IF.

• The PAUSE statement. For more information on this, see Section 2.1.1, page
69.

• The ASSIGN statement, assigned GO TO statements, and assigned format
specifiers. For more information on this, see Section 2.1.2, page 70.

• The H edit descriptor. For more information on this, see Section 2.1.3, page
72.

2.1.1 PAUSE Statement

Execution of a PAUSE statement requires operator or system-specific
intervention to resume execution. In most cases, the same functionality can be
achieved as effectively and in a more portable way with the use of an
appropriate READ statement that awaits some input data.

The execution of the PAUSE statement suspends the execution of a program.
This is now redundant, because a WRITE statement can be used to send a

007–3694–004 69



Fortran Language Reference Manual, Volume 3

message to any device, and a READ statement can be used to wait for and
receive a message from the same device.

The PAUSE statement is defined as follows:

EXT pause_stmt is PAUSE [ stop_code ]

The character constant or list of digits identifying the PAUSE statement is called
the stop_code because it follows the same rules as those for the STOP statement’s
stop code. The stop code is accessible following program suspension. The CF90
and MIPSpro 7 Fortran 90 compilers send the stop_code to the standard error file
(stderr). The following are examples of PAUSE statements:

PAUSE

PAUSE ’Wait #823’
PAUSE 100

2.1.2 ASSIGN, Assigned GO TO Statements, and Assigned Format Specifiers

The ASSIGN statement assigns a statement label to an integer variable. During
program execution, the variable can be assigned labels of branch target
statements, providing a dynamic branching capability in a program. The
unsatisfactory property of these statements is that the integer variable name can
be used to hold both a label and an ordinary integer value, leading to errors
that can be hard to discover and programs that can be difficult to read.

A frequent use of the ASSIGN statement and assigned GO TO statement is to
simulate internal procedures, using the ASSIGN statement to record the return
point after a reusable block of code has completed. The internal procedure
mechanism of Fortran now provides this capability.

A second use of the ASSIGN statement is to simulate dynamic format
specifications by assigning labels corresponding to different format statements
to an integer variable and using this variable in I/O statements as a format
specifier. This use can be accomplished in a clearer way by using character
strings as format specifications. Thus, it is no longer necessary to use either the
ASSIGN statement or the assigned GO TO statement.

Execution of an ASSIGN statement causes the variable in the statement to
become defined with a statement label value.

70 007–3694–004



Decremental Features [2]

When a numeric storage unit becomes defined, all associated numeric storage
units of the same type become defined. Variables associated with the variable in
an ASSIGN statement, however, become undefined as integers when the
ASSIGN statement is executed. When an entity of double-precision real type
becomes defined, all totally associated entities of double-precision real type
become defined.

Execution of an ASSIGN statement causes the variable in the statement to
become undefined as an integer. Variables that are associated with the variable
also become undefined.

2.1.2.1 Form of the ASSIGN and Assigned GO TO Statements

Execution of an ASSIGN statement assigns a label to an integer variable.
Subsequently, this value can be used by an assigned GO TO statement or by an
I/O statement to reference a FORMAT statement. The ASSIGN statement is
defined as follows:

EXT assign_stmt is ASSIGN label TO scalar_int_variable

The term default integer type in this section means that the integer variable must
occupy a full word in order to be able to hold the address of the statement label.
On CRAY T3E systems, programs that contain an ASSIGN statement and are
compiled with -i 32 or -s default32 must ensure that the scalar_int_variable
is declared as INTEGER(KIND=8). This ensures that it occupies a full word.

The variable must be a named variable of default integer type. It must not be
an array element, an integer component of a structure, or an object of
nondefault integer type.

The label must be the label of a branch target statement or the label of a
FORMAT statement in the same scoping unit as the ASSIGN statement.

When defined with an integer value, the integer variable cannot be used as a
label.

When assigned a label, the integer variable cannot be used as anything other
than a label.

When the integer variable is used in an assigned GO TO statement, it must be
assigned a label.

007–3694–004 71



Fortran Language Reference Manual, Volume 3

As the following example shows, the variable can be redefined during program
execution with either another label or an integer value:

ASSIGN 100 TO K

Execution of the assigned GO TO statement causes a transfer of control to the
branch target statement with the label that had previously been assigned to the
integer variable.

The assigned GO TO statement is defined as follows:

EXT assigned_goto_stmt is GO TO scalar_int_variable [ [ , ] (label_list) ]

The variable must be a named variable of default integer type. That is, it must
not be an array element, a component of a structure, or an object of nondefault
integer type.

The variable must be assigned the label of a branch target statement in the
same scoping unit as the assigned GO TO statement.

If a label list appears, such as in the following examples, the variable must have
been assigned a label value that is in the list:

GO TO K
GO TO K (10, 20, 100)

The ASSIGN statement also allows the label of a FORMAT statement to be
dynamically assigned to an integer variable, which can later be used as a format
specifier in READ, WRITE, or PRINT statements. This hinders readability, permits
inconsistent usage of the integer variable, and can be an obscure source of error.

This functionality is available through character variables, arrays, and constants.

2.1.2.2 Assigned Format Specifiers

When an I/O statement containing the integer variable as a format specifier is
executed, the integer variable can be defined with the label of a FORMAT
specifier.

2.1.3 H Edit Descriptor

This edit descriptor can be a source of error because the number of characters
following the descriptor can be miscounted easily. The same functionality is

72 007–3694–004



Decremental Features [2]

available using the character constant edit descriptor, for which no count is
required.

The following information pertains to the H edit descriptor:

Table 2. Summary of string edit descriptors

Descriptor Description

H Transfer of text character to output record

’text’ Transfer of a character literal constant to output record

"text" Transfer of a character literal constant to output record

For more information on edit descriptors, see the Fortran Language Reference
Manual, Volume 2.

2.2 Obsolescent Features

The obsolescent features are those features of previous Fortran standards that
are considered by the Fortran 95 standard to be redundant. The Fortran 95
standard states that these features are obsolescent and provides preferred
alternatives.

The obsolescent features and their preferred alternatives are as follows:

• Arithmetic IF. The preferred alternative is the IF statement or IF construct.
For more information on the arithmetic IF, see the Fortran Language
Reference Manual, Volume 1.

• Shared DO termination and termination on a statement other than END DO
or CONTINUE statements. The preferred alternative is an END DO or a
CONTINUE statement for each DO statement. For more information on this
DO termination, see the Fortran Language Reference Manual, Volume 1.

• Alternate return. An alternate return introduces labels into an argument list
to allow the called procedure to direct the execution of the caller upon
return. The preferred alternative is to use a return code that is used in a
CASE construct on return. This avoids an irregularity in the syntax and
semantics of argument association. Consider the following statement:

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)

007–3694–004 73



Fortran Language Reference Manual, Volume 3

The preceding statement can be replaced by the following code:

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)
SELECT CASE (RETURN_CODE)

CASE (1)

...

CASE (2)

...
CASE (3)

...

CASE DEFAULT

...

END SELECT

For more information on alternate returns, see Fortran Language Reference
Manual, Volume 2.

• Computed GO TO statement. The preferred alternative is the CASE
construct, which is a generalized, easier to use, and more efficient means of
expressing the same computation. For more information on the computed
GO TO statement, see the Fortran Language Reference Manual, Volume 1.

• Statement functions. These are subject to a number of nonintuitive
restrictions and are a potential source of error because their syntax is easily
confused with that of an assignment statement. The preferred alternative is
the internal function, which is a more generalized form of the statement
function that competely superseded the statement function construct. For
more information on statement functions, see the Fortran Language Reference
Manual, Volume 1.

• DATA statements among executables. The statement ordering rules of
previous Fortran standards allowed DATA statements to appear anywhere in
a program unit after the specification statements. The ability to position
DATA statements amongst executable statements is rarely used and is a
potential source of error. For more information on the DATA statement, see
the Fortran Language Reference Manual, Volume 1.

• Assumed character length functions. Assumed character length for functions
is an irregularity in the language because the typical Fortran philosophy is
that the attributes of a function result depend only on the actual arguments
of the invocation and on any data accessible by the function through host or
USE association. Some uses of this facility can be replaced with an automatic
character length function in which the length of the function result is
declared in a specification expression. Other uses can be replaced by the use

74 007–3694–004



Decremental Features [2]

of a subroutine with arguments that correspond to the function result and
the function arguments.

Note that dummy arguments of a function can be assumed character length.
For more information on assumed character length functions, see the Fortran
Language Reference Manual, Volume 2.

• Fixed source form. Fixed source form was designed when the principal
machine-readable input medium for new programs was punched cards.
Now that new and amended programs are typically entered at a keyboard
with a screen display terminal, it is unnecessary overhead and is potentially
error-prone to have to locate positions 6, 7, or 72 on a line. Free form source
was designed expressly for this more modern technology. It is a simple
matter to convert from fixed form to free form. For more information on
fixed source form, see the Fortran Language Reference Manual, Volume 1.

• CHARACTER* form of CHARACTER declaration. The CHARACTER*length form
of specifying character declarations is redundant. For more information on
the CHARACTER* form, see the Fortran Language Reference Manual, Volume 1.

007–3694–004 75





Character Set [3]

The ASCII character set contains the control and graphic characters shown in
the following table. Numbers, letters, and special characters in the character set
are identified by the letter "C" in the Notes column. All other characters are
members of the auxiliary character set. The letter "A" identifies the characters
that belong to the Fortran character set as defined by the standard. Letters in
parentheses following the descriptions in the Description column indicate the
following control character usage:

• "CC" stands for Communication Control

• "FE" stands for Format Effector

• "IS" stands for Information Separator

Table 3. Character set

Character Octal Decimal Hex Notes Description

NUL 000 000 00 Null

SOH 001 001 01 Start of heading (CC)

STX 002 002 02 Start of text (CC)

ETX 003 003 03 End of text (CC)

EOT 004 004 04 End of transmission (CC)

ENQ 005 005 05 Enquiry (CC)

ACK 006 006 06 Acknowledge (CC)

BEL 007 007 07 Bell (audible signal)

BS 010 008 08 Backspace (FE)

HT 011 009 09 C Horizontal tabulation (FE)

LF 012 010 0A Line feed (FE)

VT 013 011 0B Vertical tabulation (FE)

FF 014 012 0C Form feed (FE)

CR 015 013 0D Carriage return (FE)

007–3694–004 77



Fortran Language Reference Manual, Volume 3

Character Octal Decimal Hex Notes Description

SO 016 014 0E Shift out

SI 017 015 0F Shift in

DLE 020 016 10 Data link escape (CC)

DC1 021 017 11 Device control 1

DC2 022 018 12 Device control 2

DC3 023 019 13 Device control 3

DC4 024 020 14 Device control 4 (stop)

NAK 025 021 15 Negative acknowledge (CC)

SYN 026 022 16 Synchronous idle (CC)

ETB 027 023 17 End of transmission block (CC)

CAN 030 024 18 Cancel

EM 031 025 19 End of medium

SUB 032 026 1A Substitute

ESC 033 027 1B Escape

FS 034 028 1C File separator (IS)

GS 035 029 1D Group separator (IS)

RS 036 030 1E Record separator (IS)

US 037 031 1F Unit separator (IS)

space 040 032 20 A, C (blank)

! 041 033 21 A, C Exclamation point

" 042 034 22 A, C Quotation mark

# 043 035 23 Number sign

$ 044 036 24 A, C Dollar sign (currency symbol)

% 045 037 25 A, C Percent

& 046 038 26 A, C Ampersand

’ 047 039 27 A, C Apostrophe (single quote)

( 050 040 28 A, C Opening (left) parenthesis

) 051 041 29 A, C Closing (right) parenthesis

78 007–3694–004



Character Set [3]

Character Octal Decimal Hex Notes Description

* 052 042 2A A, C Asterisk

+ 053 043 2B A, C Plus

, 054 044 2C A, C Comma (cedilla)

- 055 045 2D A, C Minus (hyphen)

. 056 046 2E A, C Period (decimal point)

/ 057 047 2F A, C Slant (slash, virgule)

0 060 048 30 A, C Zero

1 061 049 31 A, C One

2 062 050 32 A, C Two

3 063 051 33 A, C Three

4 064 052 34 A, C Four

5 065 053 35 A, C Five

6 066 054 36 A, C Six

7 067 055 37 A, C Seven

8 070 056 38 A, C Eight

9 071 057 39 A, C Nine

: 072 058 3A A, C Colon

; 073 059 3B A, C Semicolon

< 074 060 3C A, C Less than

= 075 061 3D A, C Equal

> 076 062 3E A, C Greater than

? 077 063 3F A, C Question mark

@ 100 064 40 C "At" sign. Reserved for internal use. Not
a valid character on IRIX systems.

A 101 065 41 A, C Uppercase letter

B 102 066 42 A, C Uppercase letter

C 103 067 43 A, C Uppercase letter

D 104 068 44 A, C Uppercase letter

007–3694–004 79



Fortran Language Reference Manual, Volume 3

Character Octal Decimal Hex Notes Description

E 105 069 45 A, C Uppercase letter

F 106 070 46 A, C Uppercase letter

G 107 071 47 A, C Uppercase letter

H 110 072 48 A, C Uppercase letter

I 111 073 49 A, C Uppercase letter

J 112 074 4A A, C Uppercase letter

K 113 075 4B A, C Uppercase letter

L 114 076 4C A, C Uppercase letter

M 115 077 4D A, C Uppercase letter

N 116 078 4E A, C Uppercase letter

O 117 079 4F A, C Uppercase letter

P 120 080 50 A, C Uppercase letter

Q 121 081 51 A, C Uppercase letter

R 122 082 52 A, C Uppercase letter

S 123 083 53 A, C Uppercase letter

T 124 084 54 A, C Uppercase letter

U 125 085 55 A, C Uppercase letter

V 126 086 56 A, C Uppercase letter

W 127 087 57 A, C Uppercase letter

X 130 088 58 A, C Uppercase letter

Y 131 089 59 A, C Uppercase letter

Z 132 090 5A A, C Uppercase letter

{ 133 091 5B Opening (left) brace

\ 134 092 5C Reverse slant (backslash)

} 135 093 5D Closing (right) brace

^ 136 094 5E Caret (circumflex)

_ 137 095 5F A, C Underline

‘ 140 096 60 Grave accent

80 007–3694–004



Character Set [3]

Character Octal Decimal Hex Notes Description

a 141 097 61 A, C Lowercase letter

b 142 098 62 A, C Lowercase letter

c 143 099 63 A, C Lowercase letter

d 144 100 64 A, C Lowercase letter

e 145 101 65 A, C Lowercase letter

f 146 102 66 A, C Lowercase letter

g 147 103 67 A, C Lowercase letter

h 150 104 68 A, C Lowercase letter

i 151 105 69 A, C Lowercase letter

j 152 106 6A A, C Lowercase letter

k 153 107 6B A, C Lowercase letter

l 154 108 6C A, C Lowercase letter

m 155 109 6D A, C Lowercase letter

n 156 110 6E A, C Lowercase letter

o 157 111 6F A, C Lowercase letter

p 160 112 70 A, C Lowercase letter

q 161 113 71 A, C Lowercase letter

r 162 114 72 A, C Lowercase letter

s 163 115 73 A, C Lowercase letter

t 164 116 74 A, C Lowercase letter

u 165 117 75 A, C Lowercase letter

v 166 118 76 A, C Lowercase letter

w 167 119 77 A, C Lowercase letter

x 170 120 78 A, C Lowercase letter

y 171 121 79 A, C Lowercase letter

z 172 122 7A A, C Lowercase letter

[ 173 123 7B Opening (left) bracket

| 174 124 7C Vertical line

007–3694–004 81



Fortran Language Reference Manual, Volume 3

Character Octal Decimal Hex Notes Description

] 175 125 7D Closing (right) bracket

~ 176 126 7E Overline (tilde, general accent)

DEL 177 127 7F Delete

82 007–3694–004



Extensions and Differences [4]

This chapter describes the differences various Fortran implementations. This
chapter is divided into the following sections:

• Fortran 95 standard differences and incompatibilities with FORTRAN 77
implementations

• CF90 extensions to Fortran 95

• MIPSpro 7 Fortran 90 extensions to Fortran 95

• CF90, MIPSpro Fortran 77 and MIPSpro 7 Fortran 90 differences

4.1 Fortran 95 Standard Differences and Incompatibilities With FORTRAN 77
Implementations

This section discusses the following topics:

• Fortran 95 and the G edit descriptor output differences

• Fortran 95 and list-directed output differences

• Delimited and undelimited character strings in list-directed I/O

• List-directed I/O and floating-point zero

4.1.1 Fortran 95 and the G Edit Descriptor Output Differences

The format of a floating-point zero written with a G edit descriptor is different
in Fortran 95.

The floating-point zero was written with an Ew.d edit descriptor in
FORTRAN 77, but it is written with an Fw.d edit descriptor in the CF90 and
MIPSpro 7 Fortran 90 compilers.

The G edit descriptor has been expanded to be a general edit descriptor that can
read or write any data type including character, integer, and logical data.
FORTRAN 77 allows only floating-point data types.

Fortran 95 is specific about the rounding of floating-point values with the G
format. The change in rules may cause asterisks in the output field for some

007–3694–004 83



Fortran Language Reference Manual, Volume 3

floating-point values. Other values will be written as an Ew.d-formatted value
by the CF90 and MIPSpro 7 Fortran 90 compilers.

Consider the following code fragment:

DOUBLE PRECISION AVD, BVD, CVD

AVD = 0.0D0

WRITE(6, 1) AVD

1 FORMAT(G28.2)

END

It generates the following output when compiled by CF90:

0.0

4.1.2 Fortran 95 and List-directed Output Differences

Fortran 95 requires a separator between noncharacter data and character data in
list-directed output. FORTRAN 77 disallows a separator in this instance.

Consider the following example output list:

’This is a one(’,1,’)’

This output list generates different output under the two standards:

• Fortran 95 output:

>This is a one( 1 )

• FORTRAN 77 output:

>This is a one(1)

4.1.3 Delimited and Undelimited Character Strings in List-directed I/O

FORTRAN 77 compilers support only delimited character string input to a
list-directed item that will be stored to a list item of type character.

4.1.4 List-directed I/O and Floating-point Zero

Fortran 95 specifies a different form of output constant for a floating-point zero
in list-directed output records. Consider the following program:

84 007–3694–004



Extensions and Differences [4]

PRINT *,0.0

PRINT 1, 0.0
1 FORMAT(1X,G12.2)

END

The preceding code generates the following output for the CF90 compiler:

% f90 tt.f

% a.out

0.E+0
0.0

4.2 CF90 extensions to Fortran 95

This section discusses the following topics:

• List-directed I/O and Hollerith constants

• Differences in the B, O, and Z edit descriptors

4.2.1 List-directed I/O and Hollerith Constants

Fortran 95 does not support Hollerith constants in list-directed input files, but
the CF90 and MIPSpro 7 Fortran 90 compilers provides this as an extension.
Note that Hollerith data is an deleted feature. See Chapter 6, page 137, for
information on deprecated features and preferred alternatives.

4.2.2 Differences in the B, O, and Z Edit Descriptors

The B, O, and Z edit descriptors are available in Fortran 95. They are limited to
integer I/O list items.

Signed octal and hexadecimal values are not allowed in Fortran 95. The CF90
and MIPSpro 7 Fortran 90 compilers allow signed input values, but they write
only unsigned values.

If the size of the value is less than w in Ow or Zw on output, Fortran 95 requires
blank padding on the left. If the edit descriptor Ow.m or Zw.m is used, the
field must contain at least m digits. The .m form is one way to get leading
zeros with Fortran 95. If the size of the value is greater than w in Ow or Zw on
output, the CF90 and MIPSpro 7 Fortran 90 compilers fill the field with
asterisks. The CF90 and MIPSpro 7 Fortran 90 compilers provide the Fortran 95
form of Ow and Zw output.

007–3694–004 85



Fortran Language Reference Manual, Volume 3

4.3 MIPSpro 7 Fortran 90 extensions to Fortran 95

The MIPSpro 7 Fortran 90 compiler supports the following extensions to
Fortran 95:

• Formatted I/O:

– Q edit descriptor returns the number of characters remaining in the
record.

– The dollar sign ($) and backslash (\) edit descriptors suppress the
newline character at the end of a record.

– The field width of a data edit descriptor other than the A format cannot
be present. The data edit descriptors are B, D, E, F, G, I, L, O, and Z. The
field width defaults to a size chosen by the I/O library. The Fortran 95
standard allows a zero for the field width for the I, B, O, and Z data edit
descriptors.

• Internal I/O:

– ENCODE statement

– DECODE statement

• NAMELIST I/O:

– Skip unmatched namelist groups on input without error.

– Accept either an ampersand (&) or dollar sign ($) as a prefix to the
namelist group name on input. If the dollar sign is used, the slash (/) or
$END can be used to terminate the namelist input group. If the
ampersand is used, the slash or $END can be used to terminate the
namelist input group.

• Unformatted I/O:

– Specify FORM=’SYSTEM’ to ensure that no record headers exist in the
file. This is available on all systems but is only necessary where the f77
layer is the default for an unformatted file.

– Specify FORM=’BINARY’ to ensure that no record headers exist in the file.

4.4 CF90, MIPSpro 7 Fortran 90, and MIPSpro Fortran 77 Differences

This section describes differences between the various Fortran compilers
supported on IRIX, UNICOS, and UNICOS/mk systems.

86 007–3694–004



Extensions and Differences [4]

4.4.1 MIPSpro 7 Fortran 90 and CF90 Compiler Differences

The following sections describe various differences found when compiling
Fortran programs with the MIPSpro 7 Fortran 90 compiler and the CF90
compiler.

4.4.1.1 Numerical Model Differences

The model differences are as follows:

• The model for the CF90 REAL(KIND=16) data type on CRAY T90 systems
that support IEEE floating-point arithmetic is different from the model for
the MIPSpro 7 Fortran 90 compiler. This means that the results of math
functions, arithmetic calculations, I/O, and other library routines are
different for this particular data type.

• The internal size of INTEGER(KIND=1), INTEGER(KIND=2),
LOGICAL(KIND=1), and LOGICAL(KIND=2) on the MIPSpro 7 Fortran 90
compiler is actually 1 and 2 bytes, respectively. The CF90 compiler treats
these kind type parameters as INTEGER(KIND=4) and LOGICAL(KIND=4).

• The default sizes of the MIPSpro 7 Fortran 90 integer, real, and logical data
types are 32 bits. This differs from the CF90 default of 64 bits. The default
data type sizes for the MIPSpro 7 Fortran 90 compiler may be incorrect for
routines such as IRTC(3I) and SHMEM.

• The MIPSpro 7 Fortran 90 compiler does not support Cray character pointers.

• Pointer arithmetic is in default numeric storage units when using the CF90
compiler. Pointer arithmetic is in bytes when using the MIPSpro 7 Fortran
90 compiler.

For more information on the model, see the models(3I) man page.

4.4.1.2 Fortran Statement Differences

The Fortran 95 statement differences are as follows:

• When using the MIPSpro 7 Fortran 90 compiler, the execution of the STOP
statement does not cause the word STOP to be written to stdout unless
there is an argument to the STOP statement. The CF90 compiler always
writes STOP to stdout.

• When using the MIPSpro 7 Fortran 90 compiler, the initialization of entities
in a common block in a DATA statement can only be done in one program
unit. That is, if a common block contains two variables initialized in a DATA

007–3694–004 87



Fortran Language Reference Manual, Volume 3

statement, those DATA statements must be in one program unit. The load
indicates the presence of multiple initializations, and only one initialization
is done.

With the CF90 compiler, different variables can be initialized in DATA
statements in separate program units.

4.4.1.3 Function and Procedure Differences

The CF90 typeless functions (such as MASK(3I), SHIFTL(3I), SHIFTR(3I),
SHIFT(3I), CVM(3I), and so on) are typed as integer functions by the MIPSpro 7
Fortran 90 compiler. Conversion occur in expressions involving a mixture of
floating point and integer functions. When called by the CF90 compiler, these
functions are typeless and no conversion occurs when there is a mixture of
floating point and these typeless functions.

4.4.1.4 Modules Differences

When using the MIPSpro 7 Fortran 90 compiler, the compilation of Fortran 95
modules creates a file.mod for each module in the source file and creates a
file.o for any module procedures.

To load compiled module procedures, specify module.o on the command line.

When using the CF90 compiler, compiling modules creates one file.o that
contains all the Fortran 95 modules in the source file.

4.4.1.5 I/O Library Differences

The I/O library differences are as follows:

• Direct access formatted output files cannot be read as sequential formatted
files by MIPSpro 7 Fortran 90 programs unless an assign(1) command with
-s unblocked, -F cachea, or -F cache is supplied for the particular
file.

• The set of I/O library errors begins at 4000 for MIPSpro 7 Fortran 90
programs. The error numbers begin at 1000 for CF90 programs.

• The FILENV environment variable must be set for MIPSpro 7 Fortran 90
programs when using the assign(1) command. For CF90 users, this
environment variable need not be set.

88 007–3694–004



Extensions and Differences [4]

4.4.1.6 Library Function and Procedure Differences

The library function and intrinsic procedure differences are as follows:

• The CRI_IEEE_DEFINITIONS module is available for the MIPSpro 7
Fortran 90 compiler, but the preferred name is FTN_IEEE_DEFINITIONS
for the IEEE module and the interface to the IEEE procedures.

• The MAXVAL(3I) intrinsic procedure returns negative infinity for a zero-sized
input array when called from a MIPSpro 7 Fortran 90 program and returns
-HUGE(3I) when called from a CF90 program. A request for interpretation
has been submitted to the Fortran standards committee.

• The MINVAL(3I) intrinsic procedure returns positive infinity for a zero-sized
input array when called from a MIPSpro 7 Fortran 90 program and returns
+HUGE(3I) when called from a CF90 program. A request for interpretation
has been submitted to the Fortran standards committee.

4.4.1.7 Math Library Differences

The math library differences are as follows:

• The math routines from the MIPSpro 7 Fortran 90 compiler are referenced
from the compiler. The results of the math routines from the MIPSpro 7
Fortran 90 compiler may differ from the results returned by the math
routines for the CF90 compiler.

• Signaling of errors during references to the MIPSpro 7 Fortran 90 compiler
math routines is not turned off. For the CF90 compiler, the math routines
turn off signaling of errors and detect input data errors through source code
checks.

4.4.2 MIPSpro FORTRAN 77 and MIPSpro 7 Fortran 90 Compiler Differences

The following sections describe various differences found when compiling
Fortran programs with the MIPSpro FORTRAN 77 compiler and the MIPSpro 7
Fortran 90 compiler.

4.4.2.1 Intrinsic Function and Subroutine Differences

The MIPSpro FORTRAN 77 compiler supports the TIME intrinsic function and
the MIPSpro 7 Fortran 90 compiler does not. The Fortran 95 standard defines
the DATE_AND_TIME(3I) function, and its use is recommended when using the
MIPSpro 7 Fortran 90 compiler.

007–3694–004 89



Fortran Language Reference Manual, Volume 3

4.4.2.2 DATA Statement Initialization Differences

The Fortran 95 standard explicitly disallows multiple explicit intitializations of
the same variable or part of a variable. Doing so results in undefined behavior.

Some codes initialize the same local variable or part of a variable in a DATA
statement. Some codes initialize data in COMMON blocks more than once, either
in the same or in different program units.

The MIPSpro 7 Fortran 90 compiler, like many other implementations, allows
COMMON blocks to be initialized in program units other than BLOCKDATA
subprograms. Multiple initializations are not detected by the system. As a
result, different processors may exhibit different behavior in cases of multiple
initializations. For example, one processor may use the last value seen as the
value of the initialized variable, while another may use the first value seen.
Porting a code from one of these processors to another may result in differing
results due to this difference.

Permitting multiple initializations of the same or part of a variable is not an
extension. It is a user error that cannot be detected, in all cases, by the compiler.
Behavior of multiple intializations is different across the IRIX, UNICOS, and
UNICOS/mk platforms. For the program to be a standard conforming program
with predictable results, you must remove multiple initializations.

4.4.2.3 I/O Record Length Differences

Fortran 95 standard I/O always specifies record lengths in I/O statements in
bytes. By default, FORTRAN 77 direct-access unformatted I/O specifies the
record length in words. This can cause incompatibilities when moving codes
from FORTRAN 77 to Fortran 95 and vice versa. The -bytereclen option to
the f77(1) command causes the FORTRAN 77 compiler to interpret all record
lengths in bytes.

4.4.2.4 Special File Formats Differences

The MIPSpro FORTRAN 77 compiler permits you to specify the following two
special modes in the FORM= clause of the OPEN statement:

• FORM="BINARY", which permits reading and writing binary data from
character variables.

• FORM="SYSTEM", which allows input ignoring record boundaries.

These special modes are permitted in early releases of the MIPSpro 7 Fortran 90
compiler. However, neither form is supported by the Fortran 95 standard or by

90 007–3694–004



Extensions and Differences [4]

the MIPSpro 7 Fortran 90 compiler, releases 7.2 and later. Either type of file
access can also be achieved by using the read(2) and write(2) IRIX kernel
functions.

4.4.2.5 MIscellaneous Differences

The following miscellaneous items in the MIPSpro Fortran 77 compiler are not
in the MIPSpro 7 Fortran 90 compiler:

• Keyed access (ACCESS=’KEYED’):

– OPEN statement extensions:

ACCESS= ’KEYED’ specifier

KEY= () specifier

RECORDSIZE= specifier (same as RECL)

– INQUIRE statement extension:

KEYED= specifier

– READ statement extensions:

KEY= specifier

KEYID= specifier

– DELETE statement

– REWRITE statement

– UNLOCK statement

• Direct access (ACCESS =’DIRECT’):

– OPEN statement extension:

ASSOCIATEVARIABLE= specifier to retain the REC= information.

MAXREC= specifier contains the maximum number of records allowed for
a direct access file. If not present, no limit exists.

RECORDSIZE= specifier (same as RECL).

– DEFINE FILE statement for a direct access unformatted file.

– FIND statement for a direct access file.

007–3694–004 91



Fortran Language Reference Manual, Volume 3

– Record length of one byte indicates a binary data stream without record
boundaries.

– Efficient reading of direct unformatted record in reverse order.

• Sequential access (ACCESS=’SEQUENTIAL’). Extension for ENDFILE to
allow multifile file by using a tab character rather than an EOF.

• stdin, stdout, and stderr I/O:

– ACCEPT statement on stdin only. Same as a READ statement with an
asterisk (*) as the unit.

– OPEN statement extensions:

FILE=’SYS$INPUT’, ’SYS$OUTPUT’, ’SYS$ERROR’

– TYPE statement on stdout only; same as a PRINT statement.

– Allow the double asterisk (**) to indicate stderr unit; that is,
specifying WRITE(**,...).

– Special compile time option to allow reread from stdin after EOF is
-vms_stdin.

• Unformatted I/O:

– Allow unformatted I/O on an INTERNAL file.

– Nonstandard aggregate reference in an I/O list is restricted to
unformatted I/O and only one aggregate item is allowed.

• Formatted I/O:

– Carriage control with an ASCII NUL to cause overprint with no advance;
that is, it does not return to left margin after printing.

– Variable format in which the width can be an expression that is
evaluated at execution.

– INQUIRE statement extension:

CARRIAGECONTROL= specifier

– Allow the use of the letter Q for an exponent letter on input for a floating
point value.

– Special compile time option to interpret the carriage control character
and replace it with the proper character in stdout.

92 007–3694–004



Extensions and Differences [4]

• List-directed I/O:

– No repeat counts are generated for list-directed output.

– Allow the use of the letter Q for an exponent letter on input for a
floating-point value.

• NAMELIST I/O:

– No repeat counts are generated for namelist output.

– Allow the use of the letter Q for an exponent letter on input for a floating
point value.

• INQUIRE statement extensions:

– ORGANIZATION= specifier specifier to also contain ACCESS=
specifications.

– Use of different-sized variables for more specifiers than allowed in
Fortran 95.

• OPEN statement extensions:

– DEFAULTFILE= specifier to contain an alternate path or prefix for the
opened unit. The specifier is concatenated with the string in the FILE=
specifier or with the unit number if FILE= is absent.

– DISP= specifier to designate how the file is handled after the file is
closed. This is another form of the STATUS specifier on the CLOSE
statement for Fortran 95.

– FORM=’BINARY’ to indicate a formatted read with the A format on
binary data. The implemented form of binary is unformatted I/O
without record headers.

– READONLY specifier indicates the file is read only. Fortran 95 provides
the ACTION= specifier with more options.

– RECORDTYPE= specifier to indicate type of records the file can contain.
This may be present for direct, sequential, and keyed files.

– SHARED= specifier indicates the file must be flushed after each record is
written.

– TYPE= specifier is the same as the Fortran 95 STATUS= specifier.

007–3694–004 93



Fortran Language Reference Manual, Volume 3

• Environment variable FORTRAN_BUFFER_SIZE to set buffer size and
determine if direct I/O should be used.

• Interoperability with UNIX routines for I/O such as fseek(3), ftell(3),
flush(3), fgetc(3), fstat(2), and others. The PXF interface routines allow
the use of these routines with a proper Fortran interface.

• Ability to query for the error status of the last I/O operation by unit.

• Allow MP-safe I/O at the subroutine level so non-MP-safe and MP-safe I/O
can be mixed in one program but not in a program unit.

94 007–3694–004



Data Representation and Storage [5]

This chapter shows how different data types are represented in storage and
describes how the CF90 and MIPSpro 7 Fortran 90 compilers use storage.

Numbers shown on the formats are bit positions, which represent powers of 2
in binary notation. Code that depends on internal representation is not portable
and might not conform with the Fortran standard.

Note: Storage words are represented here with bits counted from the right,
making bit 0 the low-order bit and bit 31 or 63 the high-order bit. This agrees
with the convention used in the integer-type bit functions as well as the
convention used in Cray hardware documentation. It does not agree with
some conventions used in some other UNICOS and UNICOS/mk software
documentation.

This chapter describes the machine representation of data. The last sections in
this chapter describe storage issues, including overindexing.

5.1 Data Representation for UNICOS Systems

The following sections describe the representation of data on UNICOS systems,
including CRAY T90 systems that support Cray floating-point arithmetic. These
subsections do not describe data representation on CRAY T90 systems that
support IEEE floating-point arithmetic. For information pertaining to CRAY T90
systems that support IEEE floating-point arithmetic, see Section 5.4, page 120.

5.1.1 Integer Type

All integer data is 64 bits (KIND=8), 2’s complement.

When slower integer operations (f90 -O nofastint) are in effect, the range
for INTEGER(KIND=8) operations is –263 < I < 263 or approximately
–1018 < I < 1018.

When fast integer operations (f90 -O fastint) are in effect, which is the
default, the range for INTEGER(KIND=8) operations is –246 < I < 246 or
approximately –1013 < I < 1013.

007–3694–004 95



Fortran Language Reference Manual, Volume 3

63

Sign Integer

0

a10773

Figure 1. Default 64-bit integers

63 04647

a11339

Figure 2. Fast integer operations with INTEGER(KIND=8), UNICOS systems
(except CRAY T90 systems that support IEEE floating-point arithmetic)

To declare an entity to be of type integer, specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

5.1.2 Real Type

Real (floating-point) numbers are represented in a packed representation of a
binary mantissa and an exponent (power of 2). The bits in a Cray word are
used to represent a real number as follows:

63 48 47 0Exponent Mantissa

Exponent sign

Mantissa sign

Assumed binary point

a10775

Figure 3. Real type

Notes on real data type representation:

96 007–3694–004



Data Representation and Storage [5]

The exponent is a power of 2, represented by a number that is 400008 higher
than the actual value; this is called a bias. The effect of the bias is that the
second bit in the word serves as the exponent’s sign bit. This bit’s usage is the
inverse of the mantissa’s sign bit, as follows:

Bit Applies to 1 value indicates

63 Mantissa Negative

62 Exponent Positive

The exponent is represented by the second through sixth digits in an octal
printout; these digits have the range 40000 through 577768 for a positive
exponent, and 37777 through 200038 for a negative exponent.

When the bias is accounted for, the range of all exponents is as follows (notice
the negative range is one smaller):

• 2–17775 to 217776 (octal)

or

• 2–8189 to 28190 (decimal)

The mantissa is a 48-bit signed fraction. The sign of the mantissa is separated
from the rest of the mantissa as shown in the preceding diagram. The mantissa
is not complemented for negative values. That is, the mantissa for –10.0 is the
same as for +10.0.

In terms of decimal values, the floating-point format of the CPU allows
representation of numbers to about 15 significant decimal digits in the
following approximate decimal range:

.367 � 10–2465 < R < .273 � 10 2466

A zero value is not biased and is represented as a word of all zeros.

Following are some sample numbers as represented within memory:

Decimal Octal Hexadecimal

10.0 040004500000000000000 4004A00000000000

–10.0 140004500000000000000 C004A00000000000

007–3694–004 97



Fortran Language Reference Manual, Volume 3

0.1 0377756314631463146315 3FFDCCCCCCCCCCCD

–0.1 1377756314631463146315 BFFDCCCCCCCCCCCD

0100000000000100101000000000000000000000000000000000000000000000

Bit 47 a10776

Figure 4. Binary version of 10.0

The leftmost bit, with a 0 value, indicates a positive mantissa; that is, the real
value is positive. The next bit, set to 1, is the sign bit of the exponent,
indicating a positive exponent value; that is, the absolute value of the number is
1.0 or greater. The value 4 in the exponent (100 appearing to the left of bit 47)
means that the binary fraction in the mantissa is multiplied by 24 (or, to express
it another way, the binary point is moved 4 bits to the right from the highest bit
of the mantissa.) Interpreted in this way, the first 4 digits of the mantissa, 1010,
indicate the real decimal value 10.0. You can display other values by printing
them with formats O22, Z16, or B64.

To declare an entity to be of type real, specify one of the following:

• KIND=4, KIND=8

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4 or 8

Note that a real data object with KIND=4 has the same internal representation
as a real data object with KIND=8. Numeric inquiry functions on a real data
object with KIND=4 return different values than on a real data object with
KIND=8. A numeric operation on a real data object with KIND=4 returns the
same result as the same numeric operation on a real data object with KIND=8.

5.1.2.1 Normalized Floating-point Numbers

A nonzero, floating-point number is normalized if the most significant bit of the
mantissa is nonzero. This condition implies that the mantissa has been shifted
as far left as possible and the exponent adjusted accordingly. Therefore, the
floating-point number has no leading zeros in the mantissa. The exception is
that a normalized floating-point zero is all zeros.

When your program creates a floating-point number by inserting an exponent
of 400608 into a KIND=8 integer word, you should normalize the result before

98 007–3694–004



Data Representation and Storage [5]

using it in a floating-point operation. To do this, add the unnormalized
floating-point operand to 0. Compiler optimization suppresses an operation
such as X=X+0. You can perform it with code such as the following:

DATA REALZERO /0./

X = X + REALZERO

5.1.3 Double-precision Type

A double-precision value is represented by 2 words. The first has the same
format as the real type. The second word uses bits 0 through 47 as 48
additional bits of the mantissa. The other 16 bits of the second word must be
zeros. Double-precision numbers can be in the following range:

• 2–8188 .LE. R < 28189

or approximately

• .367 � 10–2465 < R < .273 � 102466

63 48 47 0Exponent Mantissa, high-order bits

Exponent sign

Mantissa sign

0000000000000000000

Mantissa, low-order bits

a10777

Figure 5. Double-precision type

To declare an entity to be of type double precision, specify one of the following:

• REAL(KIND=16).

• REAL(KIND=KIND(kind_expr)), where kind_expr is a scalar initialization
expression with a kind type parameter that evaluates to 16.

5.1.4 Single-precision Complex Type

A single-precision complex value is represented by 2 words, each of which has
the same format as the real type. The first word represents the real part, and

007–3694–004 99



Fortran Language Reference Manual, Volume 3

the second represents the imaginary part. Each word has the same range as a
real value.

63 48 47 0Exponent Mantissa

Exponent sign

Mantissa sign

Real

Exponent sign

Mantissa sign

Imaginary

a10778

Figure 6. Single-precision complex type

To declare an entity to be of single-precision complex type, specify one of the
following:

• KIND=4 or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
that evaluates to 4 or 8.

Note that a complex data object with KIND=4 has the same internal
representation as a complex data object with KIND=8. Numeric inquiry
functions on a complex data object with KIND=4 return different values than on
a complex data object with KIND=8. A numeric operation on a complex data
object with KIND=4 returns the same result as the same numeric operation on a
complex data object with KIND=8.

5.1.5 Double-precision Complex Type

Values of double precision complex type are represented by 4 words. The first 2
words are the real part, and the last 2 words are the imaginary part. The real
part and the imaginary part each have the same range as a double precision
value.

100 007–3694–004



Data Representation and Storage [5]

63 48 47 0Exponent

Exponent sign

Mantissa sign

000000000000000000

Mantissa, high-order bits

Mantissa, low-order bits

a10779

Figure 7. Double-precision complex type (real portion)

63 48 47 0Exponent

Exponent sign

Mantissa sign

000000000000000000

Mantissa, high-order bits

Mantissa, low-order bits

a10780

Figure 8. Double-precision complex type (imaginary portion)

To declare an entity to be of double-precision complex type, specify one of the
following:

• KIND=16.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.1.6 Character Type

Characters are represented by 8-bit ASCII codes packed eight per word.

63 55 47 39 31 23 15 7 0

a10781

Figure 9. Character type

007–3694–004 101



Fortran Language Reference Manual, Volume 3

The CF90 compiler does not support a nondefault character type. The only kind
value supported is 1.

5.1.7 Logical Type

A logical variable uses one 64-bit word. Its value is true if the numeric value in
the word is negative (typically, –1), and it is false if the numeric value in the
word is nonnegative (typically, 0).

Note: Silicon Graphics does not guarantee a particular internal representation
of logical values on any machine or system; the CF90 compiler is designed on
the assumption that logical values will be used only as described in the
Fortran standard. Therefore, it is not good programming practice to exploit
gaps in type checking, such as between a function reference and its function
value, to use logical values as numbers or vice versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

Note that logical entities with KIND=1, KIND=2, KIND=4, and KIND=8 all
occupy 64 bits.

5.1.8 Cray Character Pointers

Cray character pointers include a word address, bit offset, and bit length field.

63 32 31

Length Address

058 57

Offset
a10782

Figure 10. 64-bit addressing for UNICOS systems (except CRAY T90 systems)

102 007–3694–004



Data Representation and Storage [5]

63

Address

058 57

Offset

63

Length

0

a10783

Figure 11. 64-bit addressing for CRAY T90 systems

5.2 Data Representation for IRIX systems

The following sections describe the representation of data on IRIX systems.

Note: On IRIX systems, KIND=4 values are stored in 32 bits and can be
packed two per word.

5.2.1 Integer Type

The following sections describe integer data representation of KIND=1, 2, 4, and
8 on IRIX systems.

5.2.1.1 KIND=1

Range: –27 < I < 27 or approximately –102 < I < 102

067

a11340

Figure 12. INTEGER(KIND=1) on IRIX systems

To declare 8-bit integers, specify one of the following:

• KIND=1.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1.

007–3694–004 103



Fortran Language Reference Manual, Volume 3

5.2.1.2 KIND=2

Range: –215 < I < 215 or approximately –104 < I < 104

01415

a11341

Figure 13. INTEGER(KIND=2) on IRIX systems

To declare 16-bit integers, specify one of the following:

• KIND=2.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 2.

5.2.1.3 KIND=4

Range: –231 < I < 231 or approximately –109 < I < 109

31 30

Sign Integer

0

a10784

Figure 14. INTEGER(KIND=4) on IRIX systems

To declare 32-bit integers, specify one of the following:

• KIND=4.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

5.2.1.4 KIND=8

Range: –263 < I < 263 or approximately –1018 < I < 1018

104 007–3694–004



Data Representation and Storage [5]

31

Sign Integer

0310

Word 1 Word 2
a10785

Figure 15. INTEGER(KIND=8) on IRIX systems

To declare 64-bit integers, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.2.2 Real Type

The following sections describe real data representation of KIND= 4, 8, and 16
on IRIX systems. Real (floating-point) numbers are represented in a packed
representation of a sign, an exponent (power of 2), and a binary mantissa.

5.2.2.1 KIND=4

Range: –2–125 .LE. I < 2128 or approximately –10–38 .LE. I < 1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10786

Figure 16. REAL(KIND=4) on IRIX systems

To declare 32-bit reals, specify one of the following:

• KIND=4.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

Notes on real data type representation:

007–3694–004 105



Fortran Language Reference Manual, Volume 3

The exponent is a power of 2, represented by a number that is 1778 higher than
the actual value; this is called a bias. The effect of the bias is that the second bit
in the word serves as the exponent’s sign bit. This bit’s usage is the inverse of
the mantissa’s sign bit, as follows:

Bit Applies to 1 value indicates

31 Mantissa Negative

30 Exponent Positive ( > 0 )

The exponent is represented by the second through ninth digits in a binary
printout; these digits have the range 011111112 through 111111102 for a positive
exponent, and 000000002 through 011111102 for a negative exponent.

When the bias is accounted for, the range of all exponents is as follows:

• 2–177 to 2177 (octal)

or

• 2–127 to 2127 (decimal)

The mantissa is a 24-bit fraction with an assumed leading 1; that is, the leading
1 is not stored. The only exception is for the value 0, which has an assumed
leading 0. The sign of the mantissa is separated from the rest of the mantissa as
shown in the preceding diagram. The mantissa is not complemented for
negative values. That is, the mantissa for –10.0 is the same as for +10.0.

In terms of decimal values, the 32-bit floating-point format allows
representation of numbers to about 7 significant decimal digits in the following
approximate decimal range:

1.18 � 10–38 < R < 3.4 � 1038

A zero value is not biased and is represented as a word of all zeros.

The following are some sample numbers as represented within memory:

Decimal Octal Hexadecimal

10.0 010110000000 41200000

–10.0 030110000000 C1200000

106 007–3694–004



Data Representation and Storage [5]

Decimal Octal Hexadecimal

0.1 007563146315 3DCCCCCD

–0.1 027563146315 BDCCCCCD

01000001001000000000000000000000

Bit 22
a10787

Figure 17. Binary version of 10.0

The leftmost bit, with a 0 value, indicates a positive mantissa; that is, the real
value is positive. The next 8 bits (10000010, or decimal 130) are the exponent.
Subtracting the bias of 127 yields an exponent of 3, meaning that the binary
fraction in the mantissa is multiplied by 23. To express it another way, the binary
point is moved 3 bits to the right from the mantissa’s highest bit. Interpreted
this way, the first 4 bits of the mantissa, [1]010, indicate the real decimal value
10.0 (remember that there is an assumed 1 to the left of the mantissa in the
IEEE floating-point format with a binary point to its immediate right). You can
display other values by printing them with formats O11, Z8, or B32.

5.2.2.2 KIND=8

Double precision, REAL(KIND=8), values are represented in 2 words on IRIX
systems.

Range: –2–1021 .LE. I < 21024 or approximately –10–308 .LE. I < 10308

31 30  20 19   0 31  0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2
a10788

Figure 18. REAL(KIND=8) on IRIX systems

007–3694–004 107



Fortran Language Reference Manual, Volume 3

To declare 64-bit reals, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.2.2.3 KIND=16

Quad precision, REAL(KIND=16), values are represented in 4 words on IRIX
systems. For more information on quad precision representation IRIX systems,
see math(3M).

Range: –2–967 .LE. I < 21023 or approximately –10–292 .LE. I < 10308

31 30  20 19 0 31  0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2

31  0 31   0

0Mantissa (52)

Word 3 Word 4
a10789

30 20 19

Figure 19. REAL(KIND=16) on IRIX systems

To declare 128-bit reals, specify one of the following:

• KIND=16.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

108 007–3694–004



Data Representation and Storage [5]

5.2.3 Complex Type

The following sections describe complex data representation of KIND=4, 8, and
16 on IRIX systems. A complex value has two parts. The first part represents
the real part, and the second represents the imaginary part. Each word has the
same range as a real value.

5.2.3.1 KIND=4

A single-precision, KIND=4, complex value is represented by 2 words. The first
word represents the real part, and the second represents the imaginary part.
Each word has the same range as a real value.

Range: –2–125 .LE. I < 2128 or approximately –1038 .LE. I < 1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10790

Figure 20. COMPLEX(KIND=4) on IRIX systems (real portion)

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10791

Figure 21. COMPLEX(KIND=4) on IRIX systems (imaginary portion)

To declare an entity to be of single-precision, complex type, specify one of the
following:

• KIND=4.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

007–3694–004 109



Fortran Language Reference Manual, Volume 3

5.2.3.2 KIND=8

A double-precision, KIND=8, complex value is represented by 4 words. The first
2 words represent the real part, and the second 2 words represent the imaginary
part. Each word has the same range as a real value.

Range: –2–1021 .LE. I < 21024 or approximately –10308 .LE. I < 10308

31 30   20 19  0 31 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2
a10792

Figure 22. COMPLEX(KIND=8) on IRIX systems (real portion)

31 30 20 19  0 13  0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 3 Word 4
a10793

Figure 23. COMPLEX(KIND=8) on IRIX systems (imaginary portion)

To declare an entity to be of double-precision, complex type, specify one of the
following:

• KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.2.3.3 KIND=16

A quad precision, KIND=16, complex value is represented by 8 words. The first
4 words represent the real part, and the second 4 words represent the imaginary
part. Each word has the same range as a real value.

110 007–3694–004



Data Representation and Storage [5]

Range: –2–967 .LE. I < 21023 or approximately –10–292 .LE. I < 10308

31 30  20 19 0  31  0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2

31  0 31  0

0Mantissa (52)

Word 3 Word 4
a10794

30  20 19 

Figure 24. COMPLEX(KIND=16) on IRIX systems (real portion)

31 30  20 19  0 31 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 Word 2

31  0  31  0

0Mantissa (52)

Word 3 Word 4
a10795

 30  20 19

Figure 25. COMPLEX(KIND=16) on IRIX systems (imaginary portion)

To declare an entity to be of quad precision, complex type, specify one of the
following:

• KIND=16.

007–3694–004 111



Fortran Language Reference Manual, Volume 3

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.2.4 Character Type

Characters are represented by 8-bit ASCII codes. On IRIX systems, the codes
are stored in 1 byte.

31 23 15 7 0

a10796

Figure 26. Character type

The MIPSpro 7 Fortran 90 compiler does not support a nondefault character
type. The only kind value supported is 1.

5.2.5 Logical Type

Logical entities specified as KIND=1, KIND=2, and KIND=4 occupy 32 bits on
IRIX systems. Logical entities specified as KIND=8 occupy 64 bits on IRIX
systems. Its value is true if the numeric value in the word is one (1). Its value is
false if the numeric value in the word is zero (0).

Note: Silicon Graphics does not guarantee a particular internal representation
of logical values on any machine or system; the MIPSpro 7 Fortran 90
compiler is designed on the assumption that logical values will be used only
as described in the Fortran standard. Therefore, it is not good programming
practice to use logical values as numbers or vice versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

5.2.6 Cray Character Pointers (Deferred Implementation)

Cray character pointers include a byte address and a byte length field.

112 007–3694–004



Data Representation and Storage [5]

31

Length (bytes)

0

Address

a10797

Figure 27. 32-bit addressing on IRIX systems

5.3 Data Representation for UNICOS/mk Systems

The following sections describe the representation of data on UNICOS/mk
systems.

Note: On UNICOS/mk systems, KIND=4 values are stored in 32 bits and can
be packed two per word.

5.3.1 Integer Type

The following subsections describe integer data representation of KIND=1, 2, 4,
and 8 on UNICOS/mk systems.

5.3.1.1 KIND=1, KIND=2, or KIND=4

Range: –231 < I < 231 or approximately –109 < I < 109

31 30

Sign Integer

0

a10798

Figure 28. Integer KIND=1, 2, or 4 on UNICOS/mk systems

To declare 32-bit integers, specify one of the following:

• KIND=1, KIND=2, or KIND=4.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, or 4.

007–3694–004 113



Fortran Language Reference Manual, Volume 3

5.3.1.2 KIND=8

Range: –263 < I < 263 or approximately –1018 < I < 1018

63

Sign Integer

0

a10799

Figure 29. INTEGER(KIND=8) on UNICOS/mk systems

To declare 64-bit integers, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.3.2 Real Type

The following sections describe real data representation of KIND=4 and 8. Real
(floating-point) numbers are represented in a packed representation of a sign,
an exponent (power of 2), and a binary mantissa.

5.3.2.1 KIND=4

Range: –2–125 .LE. I < 2128 or approximately –10–38 .LE. I < 1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10800

Figure 30. REAL(KIND=4) on UNICOS/mk systems

To declare 32-bit reals, specify one of the following:

• KIND=4.

114 007–3694–004



Data Representation and Storage [5]

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

Notes on real data type representation:

The exponent is a power of 2, represented by a number that is 1778 higher than
the actual value; this is called a bias. The effect of the bias is that the second bit
in the word serves as the exponent’s sign bit. This bit’s usage is the inverse of
the mantissa’s sign bit, as follows:

Bit Applies to 1 value indicates

31 Mantissa Negative

30 Exponent Positive ( > 0 )

The exponent is represented by the second through ninth digits in a binary
printout; these digits have the range 011111112 through 111111102 for a positive
exponent, and 000000002 through 011111102 for a negative exponent.

When the bias is accounted for, the range of all exponents is as follows:

• 2–177 to 2177 (octal)

or

• 2–127 to 2127 (decimal)

The mantissa is a 24-bit fraction with an assumed leading 1; that is, the leading
1 is not stored. The only exception is for the value 0, which has an assumed
leading 0. The sign of the mantissa is separated from the rest of the mantissa as
shown in the preceding diagram. The mantissa is not complemented for
negative values. That is, the mantissa for –10.0 is the same as for +10.0.

In terms of decimal values, the 32-bit floating-point format allows
representation of numbers to about 7 significant decimal digits in the following
approximate decimal range:

1.18 � 10–38 < R < 3.4 � 1038

A zero value is not biased and is represented as a word of all zeros.

The following are some sample numbers as represented within memory:

007–3694–004 115



Fortran Language Reference Manual, Volume 3

Decimal Octal Hexadecimal

10.0 010110000000 41200000

–10.0 030110000000 C1200000

0.1 007563146315 3DCCCCCD

–0.1 027563146315 BDCCCCCD

01000001001000000000000000000000

Bit 22
a10801

Figure 31. Binary version of 10.0

The leftmost bit, with a 0 value, indicates a positive mantissa; that is, the real
value is positive. The next 8 bits (10000010, or decimal 130) are the exponent.
Subtracting the bias of 127 yields an exponent of 3, meaning that the binary
fraction in the mantissa is multiplied by 23; to express it another way, the binary
point is moved 3 bits to the right from the mantissa’s highest bit. Interpreted
this way, the first 4 bits of the mantissa, [1]010, indicate the real decimal value
10.0; remember that there is an assumed 1 to the left of the mantissa in the IEEE
floating-point format with a binary point to its immediate right. You can
display other values by printing them with formats O11, Z8, or B32.

5.3.2.2 KIND=8

Range: –2–1021 .LE. I < 21024 or approximately –10–308 .LE. I < 10308

63 52 51 0Exponent Mantissa

Exponent sign

Mantissa sign

Assumed binary point

a10802

Figure 32. REAL(KIND=8) on UNICOS/mk systems

116 007–3694–004



Data Representation and Storage [5]

To declare 64-bit reals, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.3.3 Complex Type

The following sections describe complex data representation of KIND=4 and
KIND=8 on UNICOS/mk systems. A complex value has two parts. The first
part represents the real part, and the second represents the imaginary part.
Each word has the same range as a real value.

5.3.3.1 KIND=4

A KIND=4 complex value consists of 2 parts. The first part represents the real
portion, and the second represents the imaginary portion. Each part has the
same range as a 32-bit (or KIND=4) real value.

Range: –2–125 .LE. I < 2128 or approximately –10–38 .LE. I <1038

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10803

Figure 33. COMPLEX(KIND=4) on UNICOS/mk systems (real portion)

31 30 23 22 0Exponent Mantissa

Mantissa sign Assumed binary point
a10804

Figure 34. COMPLEX(KIND=4) on UNICOS/mk systems (imaginary portion)

007–3694–004 117



Fortran Language Reference Manual, Volume 3

To declare an entity to be of complex type with a total length of 64 bits, specify
one of the following:

• KIND=4.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4.

5.3.3.2 KIND=8

A single-precision, KIND=8, complex value is represented by 2 words. The first
word represents the real part, and the second represents the imaginary part.
Each word has the same range as a 64-bit (or KIND=8) real value.

Range: –2–1021 .LE. I < 21024 or approximately –10–308 .LE. I < 10308

63 62 61         52 51  0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1
a10805

Figure 35. COMPLEX(KIND=8) on UNICOS/mk systems (real portion)

63 62 61        52 51  0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 2 a10806

Figure 36. COMPLEX(KIND=8) on UNICOS/mk systems (imaginary portion)

To declare an entity to be of single-precision, complex type, specify one of the
following:

• KIND=8.

118 007–3694–004



Data Representation and Storage [5]

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.3.4 Character Type

Characters are represented by 8-bit ASCII codes. On UNICOS/mk systems, the
codes are packed 8 per word.

63 47 31 15 0

a10807

55 39 23 7

Figure 37. Character type

The CF90 compiler does not support a nondefault character type. The only kind
value supported is 1.

5.3.5 Logical Type

A logical variable uses one word. Its value is true if the numeric value in the
word is nonzero, and it is false if the numeric value in the word is zero.

Note: Silicon Graphics does not guarantee a particular internal representation
of logical values on any machine or system; the CF90 compiler is designed on
the assumption that logical values will be used only as described in the
Fortran standard. Therefore, it is not good programming practice to use
logical values as numbers or vice versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

On UNICOS/mk systems, all KIND=1, 2, and 4 occupy 32 bits. The KIND=8
specification occupies 64 bits.

007–3694–004 119



Fortran Language Reference Manual, Volume 3

5.3.6 Cray Character Pointers

Cray character pointers include a byte address and a byte length field. On
UNICOS/mk systems, character pointers are 128-bit objects, as follows:

63

Length (bytes)

0

Address

a10808

Figure 38. Cray character pointers on UNICOS/mk systems

5.4 Data Representation for CRAY T90 Systems That Support IEEE Floating-point
Arithmetic

The following sections describe the representation of data on CRAY T90 systems
that support IEEE floating-point arithmetic.

5.4.1 Integer Type

The following sections describe integer data representation of KIND=1, 2, 4, and
8 on CRAY T90 systems that support IEEE floating-point arithmetic.

5.4.1.1 KIND=1, KIND=2, or KIND=4

Range: –231 < I < 231 or approximately –109 < I < 109

63

Sign Propagation of sign bit

03132

a10809

Figure 39. Integer KIND=1, 2, or 4 on CRAY T90 systems that support IEEE
floating-point arithmetic

To declare 32-bit integers, specify one of the following:

• KIND=1, KIND=2, or KIND=4.

120 007–3694–004



Data Representation and Storage [5]

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, or 4.

5.4.1.2 KIND=8

By default, the range for INTEGER(KIND=8) operations is –263 < I < 263 or
approximately –1018 < I < 1018. When fast integer operations are specified on
the f90(1) command line, the range for INTEGER(KIND=8) operations is
–250 < I < 250 or approximately –1015 < I < 1015.

63

Sign Integer

0

a10811

Figure 40. Default INTEGER(KIND=8) on CRAY T90 systems that support IEEE
floating-point arithmetic

63

SignIgnored

05253

a10774

Figure 41. Fast operations with INTEGER(KIND=8) on CRAY T90 systems that
support IEEE floating-point arithmetic

To declare 64-bit integers, specify one of the following:

• KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 8.

5.4.2 Real Type

The following sections describe real data representation of KIND=4, 8, and 16
on CRAY T90 systems that support IEEE floating-point arithmetic. Real
(floating-point) numbers are represented in a packed representation of a sign,
an exponent (power of 2), and a binary mantissa.

007–3694–004 121



Fortran Language Reference Manual, Volume 3

5.4.2.1 KIND=4 and KIND=8

Range: –2–1021 .LE. I < 21024 or approximately –10–308 .LE. I < 10308

63 62 52 51  0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

a10813

Figure 42. Real KIND=4 or 8 on CRAY T90 systems that support IEEE
floating-point arithmetic

To declare 64-bit reals, specify one of the following:

• KIND=4 or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4 or 8.

For additional information on how real data is represented on CRAY T90
systems that support IEEE floating-point arithmetic, see "Notes on real data type
representation" in Section 5.3.2.1, page 114. The information presented there for
UNICOS/mk systems applies to CRAY T90 systems that support IEEE
floating-point arithmetic.

Note that a real data object with KIND=4 has the same internal representation
as a real data object with KIND=8. Numeric inquiry functions on a real data
object with KIND=4 return different values than on a real data object with
KIND=8. A numeric operation on a real data object with KIND=4 returns the
same result as the same numeric operation on a real data object with KIND=8.

5.4.2.2 KIND=16

Double precision, REAL(KIND=16), values are represented in 2 words on
CRAY T90 systems that support IEEE floating-point arithmetic.

Range: –2–16381 .LE. I < 216384 or approximately –10–4932 .LE. I < 104932

122 007–3694–004



Data Representation and Storage [5]

63 62  48 47  0

0Mantissa (48)

Mantissa sign (1)

Exponent (15)

Word 1

63 0

0Mantissa (64)

Word 2 a10814

Figure 43. REAL(KIND=16) on CRAY T90 systems that support IEEE
floating-point arithmetic

To declare 64-bit reals, specify one of the following:

• KIND=16.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.4.3 Complex Type

The following sections describe complex data representation of KIND=4, 8, and
16 on CRAY T90 systems that support IEEE floating-point arithmetic. A
complex value has two parts. The first part represents the real part, and the
second represents the imaginary part. Each word has the same range as a real
value.

5.4.3.1 KIND=4 and KIND=8

A single-precision, KIND=4 or KIND=8, complex value is represented by 2
words. The first word represents the real part, and the second represents the
imaginary part. Each word has the same range as a real value.

Range: –2–1021 .LE. I < 21024 or approximately –10–308 .LE. I < 10308

007–3694–004 123



Fortran Language Reference Manual, Volume 3

63 62 61 52 51   0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 1 a10815

Figure 44. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE
floating-point arithmetic (real portion)

63 62 61  52 51 0

0Mantissa (52)

Mantissa sign (1)

Exponent (11)

Word 2 a10816

Figure 45. Complex KIND=8 or 4 on CRAY T90 systems that support IEEE
floating-point arithmetic (imaginary portion)

To declare an entity to be of single-precision, complex type, specify one of the
following:

• KIND=4 or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 4 or 8.

Note that a complex data object with KIND=4 has the same internal
representation as a complex data object with KIND=8. Numeric inquiry
functions on a complex data object with KIND=4 return different values than on
a complex data object with KIND=8. A numeric operation on a complex data
object with KIND=4 returns the same result as the same numeric operation on a
complex data object with KIND=8.

5.4.3.2 KIND=16

A double-precision, KIND=16, complex value is represented by 4 words. The
first two words represent the real part, and the second two words represent the
imaginary part. Each word has the same range as a real value.

124 007–3694–004



Data Representation and Storage [5]

Range: –2–16381 .LE. I < 216384 or approximately –10–4932 .LE. I < 104932

63 62  48 47  0

0Mantissa (48)

Mantissa sign (1)

Exponent (15)

Word 1

63 0

0Mantissa (64)

Word 2 a10817

Figure 46. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE
floating-point arithmetic (real portion)

63 62 48 47  0

0Mantissa (48)

Mantissa sign (1)

Exponent (15)

Word 1

63  0

0Mantissa (64)

Word 2
a10818

Figure 47. COMPLEX(KIND=16) on CRAY T90 systems that support IEEE
floating-point arithmetic (imaginary portion)

To declare an entity to be of double-precision, complex type, specify one of the
following:

007–3694–004 125



Fortran Language Reference Manual, Volume 3

• KIND=16.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 16.

5.4.4 Character Type

Characters are represented by 8-bit ASCII codes. The codes are packed 8 per
word.

63 55 47 39 31 23 15 7 0

a10819

Figure 48. Character type

The CF90 compiler does not support a nondefault character type. The only kind
value supported is 1.

5.4.5 Logical Type

A logical variable uses one word. Its value is true if the numeric value in the
word is nonzero, and it is false if the numeric value in the word is zero.

Note: Silicon Graphics does not guarantee a particular internal representation
of logical values on any machine or system; the CF90 compiler is designed on
the assumption that logical values will be used only as described in the
Fortran standard. Therefore, it is not good programming practice to use
logical values as numbers or vice versa.

To declare an entity to be of logical type, you can specify one of the following:

• KIND=1, KIND=2, KIND=4, or KIND=8.

• KIND=KIND(kind_expr), where kind_expr is a scalar initialization expression
with a kind type parameter that evaluates to 1, 2, 4, or 8.

On CRAY T90 systems that support IEEE floating-point arithmetic, all KIND=1,
KIND=2, and KIND=4 specifications occupy 32 bits. The KIND=8 specification
occupies 64 bits.

126 007–3694–004



Data Representation and Storage [5]

5.4.6 Cray Character Pointers

Cray character pointers are two words in length. The first word includes an
offset and an address. The second word includes the byte length field.

63

Address

058 57

Offset

63

Length

0

a10820

Figure 49. Cray character pointer for CRAY T90 systems that support IEEE
floating-point arithmetic

5.5 Storage Issues

This section describes how the CF90 and MIPSpro 7 Fortran 90 compilers use
storage, including how these compilers accommodate programs that use
overindexing.

007–3694–004 127



Fortran Language Reference Manual, Volume 3

Note: The information in this section assumes that you are using the default
data representations.

On UNICOS/mk systems, specifying -i 32 or -s default32 on the f90(1)
command line changes the storage and data representation of all noncharacter
data types. This affects data that is storage sequence-associated. Mixing data
types is not recommended when these command line options are used.

On IRIX systems, the following options to the f90(1) command affect storage
and data representation:

• -d16 changes default double precision and double complex to 128 bits

• -i4 changes default integer and logical to 32 bits

• -i8 changes default integer and logical to 64 bits

• -n32 and -64 change pointer sizes and the maximum amount of
addressable memory

• -r4 changes default real and complex to 32 bits/64 bits

• -r8 changes default real and complex to 64 bits/128 bits

5.5.1 Storage Units and Sequences

A numeric storage unit can be one of the following:

• A word on UNICOS and UNICOS/mk systems of 64 bits.

• A word on IRIX systems of 32 bits.

A character storage unit is an 8-bit byte.

A storage sequence is a contiguous group of storage units with a consecutive
series of addresses. Each array and each common block is stored in a storage
sequence. The size of a storage sequence is the number of storage units it
contains. Two storage sequences are associated if they share at least one storage
unit.

All nondefault types have an unspecified storage unit. The -s default32
option on the f90(1) command line changes the number of bits in a numeric
storage unit for UNICOS/mk systems. There is no longer a relationship
between storage units after this command line option is used.

The following list shows the storage units for the default types on UNICOS
systems:

128 007–3694–004



Data Representation and Storage [5]

Type Storage units

Integer 1

Real (single precision) 1

Real (double precision) 2

Complex 2

Logical 1

Complex values occupy twice the storage of real values. The real portion of the
complex value occupies the first half of the total storage; the imaginary portion
of the complex value occupies the second half of the total storage, as follows:

• On UNICOS and UNICOS/mk systems, a double precision or complex
value (KIND=4 or KIND=8) uses a storage sequence of two numeric storage
units. The first storage unit contains the most significant bits of a
double-precision value or the real part of a complex value. The second
storage unit contains the least significant bits of a double-precision value or
the imaginary part of a complex value. Double precision and double
complex data types are not supported on UNICOS/mk systems.

On IRIX systems, a double-precision value uses a storage sequence of 8 or
16 bytes. Depending on the KIND= specification, a complex value uses 8, 16,
or 32 bytes. The first half of the bytes used contains the most significant bits
of a double-precision value or the real part of a complex value. The last half
of the bytes used contains the least significant bits of a double-precision
value or the imaginary part of a complex value.

• On UNICOS and UNICOS/mk systems, a double-complex value occupies 4
words of storage; the first 2 words contain the real part of the complex
value, and the second 2 words contain the imaginary part.

On IRIX systems, a double-complex value occupies 16 bytes of storage; the
first 8 bytes contain the real part of the complex value, and the second 8
bytes contain the imaginary part.

On IRIX systems, a quad precision complex value occupies 32 bytes of
storage; the first 16 bytes contain the real part of the complex value, and the
second 16 bytes contain the imaginary part.

A character value is represented as an 8-bit ASCII code, packed 8 characters per
word on UNICOS and UNICOS/mk systems; this value is packed 4 characters
per byte on IRIX systems. The storage size depends on the length specification
of the value.

007–3694–004 129



Fortran Language Reference Manual, Volume 3

ANSI/ISO: The Fortran standard does not specify the relationship between
storage units and computer words, and it does not specify any relation
between default numeric and character storage units.

5.5.2 Static and Stack Storage

With static storage, any variable that is allocated memory occupies the same
address throughout program execution. Allocation is determined before
program execution.

Code using static storage can be used with Autotasking, multitasking, and
macrotasking if variables in static storage conform to the following guidelines:

• Loops are Autotasked regardless of the presence of variables in static or
stack storage. Scoping is controlled by the presence of PRIVATE or SHARED
parameters on the DOALL Autotasking directive. If a subroutine that
contains static data is called from within an autotasked loop, static data is
treated as shared data, which means that the static data must be protected
by GUARD and ENDGUARD Autotasking directives.

• Variables in static storage can be read when loops are multitasked and
macrotasked. If a loop modifies variables in static storage, you must use
guards (GUARD and ENDGUARD Autotasking directives) or locks (LOCKON()
and LOCKOFF() calls) to protect the variables.

For more information on Autotasking directives, see the CF90 Commands and
Directives Reference Manual, or the MIPSpro 7 Fortran 90 Commands and Directives
Reference Manual. For more information on locks, see the LOCKON(3F) or
LOCKOFF(3F) man pages.

Stack storage is the default storage allocation for the CF90 compiler on UNICOS
and UNICOS/mk systems. On IRIX systems, stack storage is the MIPSpro 7
Fortran 90 default for all subprograms, but static storage is the default for items
that require 256 bits of storage in a main program. The stack is an area of
memory where storage for variables is allocated when a subprogram or
procedure begins execution. These variables are released when execution
completes. The stack expands and contracts as procedures are entered and
exited. Autotasking and recursion require a stack.

When stack storage is used, the value of a variable is not saved between
invocations of a subprogram unless it is specified in a SAVE or DATA statement.
When f90 -e v (UNICOS and UNICOS/mk systems) or f90 -static (IRIX
systems) is specified, all user variables are treated as if they appeared in a SAVE

130 007–3694–004



Data Representation and Storage [5]

statement. When -e v or -static is in effect, compiler-generated temporary
variables and the calling sequence are still allocated to the stack.

Note: If f90 -e i is specified, variables are reset for each invocation of a
subprogram, even in static storage. Therefore, the SAVE or DATA statement is
necessary to preserve the value of a variable between invocations. This
information applies only to UNICOS and UNICOS/mk systems.

The way in which the amount of memory available for the stack is determined
depends on your platform. On UNICOS and UNICOS/mk systems, it is
determined by the STACK directive, available with the segldr(1) or cld(1)
loaders; see the segldr(1) or cld(1) man pages for more information. On IRIX
systems, you can use the limit(1) command to change the amount of stack
space that a program is allowed; see the limit(1) man page for more
information.

A heap is memory that, like a stack, is dynamically allocated; it is used internally.

The CF90 and MIPSpro 7 Fortran 90 compilers allocate variables to storage
according to the following criteria:

• Variables in common blocks are always allocated in the order in which they
appear in COMMON statements.

• Data in modules are statically allocated.

• User variables that are defined or referenced in a program unit, and that
also appear in SAVE or DATA statements, are allocated to static storage, but
not necessarily in the order shown in your source program.

• Other referenced user variables are assigned to the stack. If -e v (UNICOS
and UNICOS/mk systems) or -static (IRIX systems) is specified on the
f90(1) command line, referenced variables are allocated to static storage.
This allocation does not necessarily depend on the order in which the
variables appear in your source program.

• Compiler-generated variables are assigned to a register or to memory (to the
stack or heap), depending on how the variable is used. Compiler-generated
variables include DO-loop trip counts, dummy argument addresses,
temporaries used in expression evaluation, argument lists, and variables
storing adjustable dimension bounds at entries.

• Automatic objects may be allocated to either the stack or to the heap,
depending on how much stack space is available when the objects are
allocated.

007–3694–004 131



Fortran Language Reference Manual, Volume 3

• Heap or stack allocation can be used for TASK COMMON variables and some
compiler-generated temporary data such as automatic arrays and array
temporaries.

Note: Unreferenced user variables not appearing in COMMON statements
are not allocated.

5.5.3 Dynamic Memory Allocation (UNICOS Systems Only)

Many FORTRAN 77 programs contain a memory allocation scheme that
expands an array in a common block located in central memory at the end of
the program. This practice of expanding a blank common block or expanding a
dynamic common block (sometimes referred to as overindexing) causes conflicts
between user management of memory and the dynamic memory requirements
of UNICOS libraries. It is recommended that you modify programs rather than
expand blank common blocks, particularly when migrating from other
environments.

Figure 50, page 133, shows the structure of a program under the UNICOS
operating system in relation to expanding a blank common block. In both
figures, the user area includes code, data, and common blocks.

132 007–3694–004



Data Representation and Storage [5]

Heap

User
area

Without an expandable
common block:

Heap

User
area

With an expandable
common block:

Dynamic
area

Address 0
a10821

Figure 50. Memory use under UNICOS

There are two ways to change your code. The standard method, shown in
Section 5.5.3.1 is preferred.

5.5.3.1 Changing Your Code: Standard Method

You can use the ALLOCATE statement to dynamically allocate an array. Use the
following three-step process:

1. For arrays that expand in a common block, define Fortran allocatable arrays
in a Fortran module.

2. Replace the common block definition in all source files that use the global
array with a USE statement.

3. Use the ALLOCATE statement in place of any calls to the MEMORY routine.

Original code:

PROGRAM TEST
C Puts array X in blank common:

007–3694–004 133



Fortran Language Reference Manual, Volume 3

COMMON X(1)

...
C Adds 100000 words to blank common:

CALL MEMORY (’UC’,100000)

...

DO 10, I=1,100000

X(I) = RANF()

10 CONTINUE
...

Converted code (after steps 1 and 2):

MODULE GLOBAL_DATA ! STEP 1
REAL, SAVE, ALLOCATABLE :: X(:)

END MODULE

...

PROGRAM TEST

USE GLOBAL_DATA ! STEP 2

LIMIT = 100000
ALLOCATE (X(LIMIT)) ! STEP 3

...

DO 10 I = 1,LIMIT

X(I) = RANF()

10 CONTINUE
...

END

5.5.3.2 Changing Your Code: Nonstandard Method

The nonstandard way to change your program is by using the following
two-step process:

1. For arrays that expand in a common block, define Cray pointers that point
to the first address in each array.

2. Change any calls to memory to calls to library routine HPALLOC(3).

Original code:

PROGRAM TEST

C Puts array X in blank common:

COMMON X(1)

...

C Adds 100000 words to blank common:
CALL MEMORY (’UC’,100000)

134 007–3694–004



Data Representation and Storage [5]

...

DO 10, I=1,100000
X(I) = RANF()

10 CONTINUE

...

Converted code (after steps 1 and 2):

PROGRAM TEST

COMMON /WORK/ IPTR

...

C Establish array location at runtime:

POINTER (IPTR,X(1))
...

C Effective common block size:

CALL HPALLOC (IPTR,100000,ERRCODE,0)

...

DO 10 I=1,100000

X(I) = RANF()
10 CONTINUE

...

007–3694–004 135





Outmoded Features [6]

This chapter describes outmoded Fortran features that the CF90 and MIPSpro 7
Fortran 90 compilers support. These features have been replaced by alternatives
that enhance the portability of CF90 and MIPSpro 7 Fortran 90 programs. None
of the outmoded features described in this chapter were part of any Fortran
standard; they were extensions supported in older Cray Research compilers.
The outmoded features and their preferred alternatives are listed in Table 4.

Table 4. Outmoded features and preferred alternatives

Outmoded feature Preferred alternative

Hollerith data Character data.

ENCODE and DECODE Internal files.

Asterisk character constant delimiters in formats Apostrophe or quotation mark delimiters.

[-b]X edit descriptor TL edit descriptor, 1X.

A descriptor used for noncharacter data and R
descriptor

Character type and other conventional matchings
of data with descriptors.

EOF, IEOF, and IOSTAT functions End-of-file specifier (END=) or status specifier
(IOSTAT=).

Initialization using long strings Replace the numeric target with a character item.
Replace a Hollerith constant with a character
constant.

IMPLICIT UNDEFINED IMPLICIT NONE

Type statements with *n Standard type statements (KIND=).

Two-branch arithmetic IF IF construct or IF statement.

TASK COMMON statement TASKCOMMON compiler directive.

Indirect logical IF IF construct or IF statement.

Nested loops ending with a single, labeled END DO One END DO statement for each loop.

DOUBLE COMPLEX statement and related specific
intrinsic function names

COMPLEX (KIND=) statement and standard
intrinsic functions. See Section 6.9, page 152, for
more information.

007–3694–004 137



Fortran Language Reference Manual, Volume 3

Outmoded feature Preferred alternative

Bitwise intrinsic functions Standard intrinsic functions. See Section 6.10, page
153, for more information.

CLOCK(3I), DATE(3I), and JDATE(3I) intrinsic
functions

DATE_AND_TIME(3I) intrinsic subroutine.

DCOT(3M) intrinsic function COT(3M) intrinsic function.

DFLOAT(3M) and DREAL(3M) intrinsic functions REAL(3M) intrinsic function.

NUMARG(3I) intrinsic function PRESENT(3I) intrinsic function for optional
arguments.

RANF(3I) and RANGET(3I) intrinsic functions RANDOM_NUMBER(3I) intrinsic subroutine.

RANSET(3I) intrinsic function RANDOM_SEED(3I) intrinsic subroutine.

RTC(3I) intrinsic function SYSTEM_CLOCK(3I) intrinsic subroutine.

6.1 Hollerith Type

Hollerith data is a sequence of any characters capable of internal representation
as specified in Table 3, page 77. Its length is the number of characters in the
sequence, including blank characters. Each character occupies a position within
the storage sequence identified by one of the numbers 1, 2, 3, . . . indicating its
placement from the left (position 1). Hollerith data must contain at least one
character.

6.1.1 Hollerith Constants

A Hollerith constant is expressed in one of three forms. The first of these is
specified as a nonzero integer constant followed by the letter H, L, or R and as
many characters as equal the value of the integer constant. The second form of
Hollerith constant specification delimits the character sequence between a pair
of apostrophes followed by the letter H, L, or R. The third form is like the
second, except that quotation marks replace apostrophes. For example:

Character sequence: ABC 12
Form 1: 6HABC 12

Form 2: ’ABC 12’H

Form 3: "ABC 12"H

Two adjacent apostrophes or quotation marks appearing between delimiting
apostrophes or quotation marks are interpreted and counted by the compiler as

138 007–3694–004



Outmoded Features [6]

a single apostrophe or quotation mark within the sequence. Thus, the sequence
DON’T USE "*" would be specified with apostrophe delimiters as ’DON’’T
USE "*"’H, and with quotation mark delimiters as "DON’T USE ""*"""H.

Each character of a Hollerith constant is represented internally by an 8-bit code,
with up to 32 such codes allowed. This limit corresponds to the size of the
largest numeric type, COMPLEX(KIND = 16). The ultimate size and makeup of
the Hollerith data depends on the context. If the Hollerith constant is larger
than the size of the type implied by context, the constant is truncated to the
appropriate size. If the Hollerith constant is smaller than the size of the type
implied by context, the constant is padded with a character dependent on the
Hollerith indicator. When an H Hollerith indicator is used, the truncation and
padding is done on the right end of the constant. The pad character is the
blank character code (20).

Null codes can be produced in place of blank codes by substituting the letter L
for the letter H in the Hollerith forms described above. The truncation and
padding is also done on the right end of the constant, with the null character
code (00) as the pad character.

Using the letter R instead of the letter H as the Hollerith indicator means
truncation and padding is done on the left end of the constant with the null
character code (00) used as the pad character.

All of the following Hollerith constants yield the same Hollerith constant and
differ only in specifying the content and placement of the unused portion of the
single 64-bit entity containing the constant:

Hollerith Internal byte, beginning on bit:

constant 0 8 16 24 32 40 48 56

6HABCDEF A B C D E F 2016 2016

’ABCDEF’H A B C D E F 2016 2016

"ABCDEF" H A B C D E F 2016 2016

6LABCDEF A B C D E F 00 00

’ABCDEF’L A B C D E F 00 00

"ABCDEF"L A B C D E F 00 00

6RABCDEF 00 00 A B C D E F

007–3694–004 139



Fortran Language Reference Manual, Volume 3

Hollerith Internal byte, beginning on bit:

constant 0 8 16 24 32 40 48 56

’ABCDEF’R 00 00 A B C D E F

"ABCDEF"R 00 00 A B C D E F

A Hollerith constant is limited to 32 characters except when specified in a CALL
statement, a function argument list, or a DATA statement. An all-zero computer
word follows the last word containing a Hollerith constant specified as an
actual argument in an argument list.

A character constant of 32 or fewer characters is treated as if it were a Hollerith
constant in situations where a character constant is not allowed by the standard
but a Hollerith constant is allowed by the CF90 and MIPSpro 7 Fortran 90
compilers. If the character constant appears in a DATA statement value list, it
can be longer than 32 characters.

6.1.2 Hollerith Values

A Hollerith value is a Hollerith constant or a variable that contains Hollerith
data. A Hollerith value is limited to 32 characters.

A Hollerith value can be used in any operation in which a numeric constant
can be used. It can also appear on the right-hand side of an assignment
statement in which a numeric constant can be used. It is truncated or padded
to be the correct size for the type implied by the context.

6.1.3 Hollerith Relational Expressions

Used with a relational operator, the Hollerith value e1 is less than e2 if its value
precedes the value of e2 in the collating sequence and is greater if its value
follows the value of e2 in the collating sequence.

The following examples are evaluated as true if the integer variable LOCK
contains the Hollerith characters K, E, and Y in that order and left-justified with
five trailing blank character codes:

140 007–3694–004



Outmoded Features [6]

3HKEY.EQ.LOCK

’KEY’.EQ.LOCK
LOCK.EQ.LOCK

’KEY1’.GT.LOCK

’KEY0’H.GT.LOCK

6.2 Formatted I/O and Internal Files

A formatted I/O operation defines entities by transferring data between I/O list
items and records of a file. The file can be on an external media or in internal
storage.

The Fortran standard provides READ and WRITE statements for both formatted
external and internal file I/O. This is the preferred method for formatted
internal file I/O. It is the only method for list-directed internal file I/O.

The ENCODE and DECODE statements are an alternative to standard Fortran
READ and WRITE statements for formatted internal file I/O.

An internal file in standard Fortran I/O must be declared as character, while
the internal file in ENCODE and DECODE statements can be any data type. A
record in an internal file in standard Fortran I/O is either a scalar character
variable or an array element of a character array. The record size in an internal
file in an ENCODE or DECODE statement is independent of the storage size of the
variable used as the internal file. If the internal file is a character array in
standard Fortran I/O, multiple records can be read or written with internal file
I/O. The alternative form does not provide the multiple record capability.

6.2.1 ENCODE Statement

The ENCODE statement provides a method of converting or encoding the
internal representation of the entities in the output list to a character
representation. The format of the ENCODE statement is as follows:

ENCODE ( n, f, dest ) [ elist ]

n Number of characters to be processed. Nonzero integer
expression not to exceed the maximum record length for
formatted records. This is the record size for the internal file.

f Format identifier. It cannot be an asterisk.

007–3694–004 141



Fortran Language Reference Manual, Volume 3

dest Name of internal file. It can be a variable or array of any data
type. It cannot be an array section, a zero-sized array, or a
zero-sized character variable.

elist Output list to be converted to character during the ENCODE
statement.

The output list items are converted using format f to produce a sequence of n
characters that are stored in the internal file dest. The n characters are packed 8
characters per word on UNICOS and UNICOS/mk systems. The n characters
are packed 4 characters per word on IRIX systems.

An ENCODE statement transfers one record of length n to the internal file dest. If
format f attempts to write a second record, ENCODE processing repositions the
current record position to the beginning of the internal file and begins writing
at that position.

An error is issued when the ENCODE statement attempts to write more than n
characters to the record of the internal file. If dest is a noncharacter entity and n
is not a multiple of 8 (for UNICOS and UNICOS/mk systems) or 4 (for IRIX
systems), the last word of the record is padded with blanks to a word
boundary. If dest is a character entity, the last word of the record is not padded
with blanks to a word boundary.

Example 1: The following example assumes a machine word length of 64 bits
and uses the underscore character (_) as a blank:

INTEGER ZD(5), ZE(3)

ZD(1)=’THIS____’

ZD(2)=’MUST____’

ZD(3)=’HAVE____’
ZD(4)=’FOUR____’

ZD(5)=’CHAR____’

1 FORMAT(5A4)

ENCODE(20,1,ZE)ZD

DO 10 I=1,3
PRINT 2,’ZE(’,I,’)="’,ZE(I),’"’

10 CONTINUE

2 FORMAT(A,I2,A,A8,A)

END

142 007–3694–004



Outmoded Features [6]

On UNICOS systems, the output is as follows:

>ZE( 1)="THISMUST"

>ZE( 2)="HAVEFOUR"
>ZE( 3)="CHAR____"

Example 2: On IRIX systems, the comparable example would be as follows:

INTEGER ZD(5), ZE(3)

ZD(1)=’TH__’

ZD(2)=’IS__’

ZD(3)=’=4__’
ZD(4)=’CH__’

ZD(5)=’AR__’

1 FORMAT(5A2)

ENCODE(10,1,ZE)ZD

DO 10 I=1,3

PRINT 2,’ZE(’,I,’)="’,ZE(I),’"’
10 CONTINUE

2 FORMAT(A,I2,A,A4,A)

END

The output is as follows:

>ZE( 1)="THIS"
>ZE( 2)="=4CH"

>ZE( 3)="AR__"

6.2.2 DECODE Statement

The DECODE statement provides a method of converting or decoding from a
character representation to the internal representation of the entities in the input
list. The format of the DECODE statement is as follows:

DECODE ( n, f, source ) [ dlist ]

n Number of characters to be processed. Nonzero integer
expression not to exceed the maximum record length for
formatted records. This is the record size for the internal file.

f Format identifier. It cannot be an asterisk.

007–3694–004 143



Fortran Language Reference Manual, Volume 3

source Name of internal file. It can be a variable or array of any data
type. It cannot be an array section or a zero-sized array or a
zero-sized character variable.

dlist Input list to be converted from character during the DECODE
statement.

The input list items are converted using format f from a sequence of n
characters in the internal file source to an internal representation and stored in
the input list entities. If the internal file source is noncharacter, the internal file is
assumed to be a multiple of 8 characters (for UNICOS and UNICOS/mk
systems) or 4 characters (for IRIX systems).

Example 1: On UNICOS systems, an example of a DECODE statement is as
follows:

INTEGER ZD(4), ZE(3)

ZE(1)=’WHILETHI’

ZE(2)=’S HAS F’

ZE(3)=’IVE ’

3 FORMAT(4A5)
DECODE(20,3,ZE)ZD

DO 10 I=1,4

PRINT 2,’ZD(’,I,’)="’,ZD(I),’"’

10 CONTINUE

2 FORMAT(A,I2,A,A8,A)
END

The output is as follows:

>ZD( 1)="WHILE "

>ZD( 2)="THIS "

>ZD( 3)="HAS "

>ZD( 4)="FIVE "

Example 2: On IRIX systems, an example of a DECODE statement is as follows:

INTEGER ZD(5), ZE(4)

ZE(1)=’WHIL’

ZE(2)=’E_IT’

ZE(3)=’=4CH’

ZE(4)=’ARS_’
ZE(5)=’RS.+’

3 FORMAT(5A3)

DECODE(16,3,ZE)ZD

DO 10 I=1,4

144 007–3694–004



Outmoded Features [6]

PRINT 2,’ZD(’,I,’)="’,ZD(I),’"’

10 CONTINUE
2 FORMAT(A,I2,A,A4,A)

END

The output is as follows:

>ZD( 1)="WHI_"

>ZD( 2)="LE__"

>ZD( 3)="IT=_"
>ZD( 4)="4CH_"

>ZD( 5)="ARS_"

6.3 Edit Descriptors

The following sections show obsolete edit descriptors and outmoded uses of
current descriptors.

6.3.1 Asterisk Delimiters

The asterisk was allowed to delimit a literal character constant. It has been
replaced by the apostrophe and quotation mark.

*h1 h2 ... hn*

* Delimiter for a literal character string

h Any ASCII character indicated by a C in Table 3, page 77 (that is,
capable of internal representation)

Example:

*AN ASTERISK EDIT DESCRIPTOR*

6.3.2 Negative-valued X Descriptor

A negative value could be used with the X descriptor to indicate a move to the
left. This has been replaced by the TL descriptor.

[-b]X

007–3694–004 145



Fortran Language Reference Manual, Volume 3

b Any nonzero, unsigned integer constant

X Indicates a move of as many positions as indicated by b

Example:

-55X ! Moves current position 55 spaces left

6.3.3 A and R Descriptors for Noncharacter Types

The Rw descriptor and the use of the Aw descriptor for noncharacter data are
available primarily for programs that were written before a true character type
was available. Other uses include adding labels to binary files and the transfer
of data whose type is not known in advance.

List items can be of type real, integer, complex, or logical. For character use, the
binary form of the data is converted to or from ASCII codes. The numeric list
item is assumed to contain ASCII characters when used with these edit
descriptors.

Complex items use two storage units and require two A descriptors, for the first
and second storage units respectively.

The Aw descriptor works with noncharacter list items containing character data
in essentially the same way as described in the Fortran Language Reference
Manual, Volume 1. The Rw descriptor works like Aw with the following
exceptions:

• Characters in an incompletely filled input list item are right-justified with
the remainder of that list item containing binary zeros.

• Partial output of an output list item is from its rightmost character positions.

The following example shows the Aw and Rw edit descriptors for noncharacter
data types:

INTEGER IA

LOGICAL LA

REAL RA
DOUBLE PRECISION DA

COMPLEX CA

CHARACTER*52 CHC

CHC=’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’

READ(CHC,3) IA, LA, RA, DA, CA
3 FORMAT(A4,A8,A10,A17,A7,A6)

PRINT 4, IA, LA, RA, DA, CA

146 007–3694–004



Outmoded Features [6]

4 FORMAT(1x,3(A8,’-’),A16,’-’,2A8)

READ(CHC,5) IA, LA, RA
5 FORMAT(R2,R8,R9)

PRINT 4, IA, LA, RA

END

On UNICOS and UNICOS/mk systems, the output of this program would be
as follows:

> ABCD -EFGHIJKL-OPQRSTUV-XYZabcdefghijklm-nopqrst uvwxyz
^^^^

> ooooooAB-CDEFGHIJ-LMNOPQRS-

The carat (^) indicates leading blanks in the use of the A edit descriptor. The
lowercase letter o is used to indicate where binary zeros have been written with
the R edit descriptor.

On IRIX systems, the output of this program would be as follows:

> ABCD- IJKL- STUV- fghijklm- qrst wxyz

^^^^^ ^^^^ ^^^^ ^^^^^^^^ ^^^^ ^^^^
> AB- GHIJ- PQRS-

^^^^^ ^^^^ ^^^^

The binary zeros are not printable characters, so the printed output simply
contains the characters without the binary zeros.

6.4 Type Declaration with Data Length

Data type declarations that include the data length are outmoded. The CF90
and MIPSpro 7 Fortran 90 compilers recognize this usage in type statements,
IMPLICIT statements, and FUNCTION statements, mapping these numbers onto
lengths appropriate for the target machine.

Format:

type [ *n ] v [ , v ] ...

IMPLICIT type [ *n ] ( a1 [ -a2 ] [ , a1 [ -a2 ]] ... )
[ , type ... ] ...

[ type [ *n ]] FUNCTION fun ([ d [ , d ] ... ])

007–3694–004 147



Fortran Language Reference Manual, Volume 3

type Can be INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL.

*n Data length as shown in Table 5, Table 6, page 149, and Table 7,
page 149. Any other data length generates an error.

v Name of a constant, variable, or array declarator.

an A letter. A range of letters is denoted by the first and last letters
of the range separated by a hyphen. A range (a1 – an) has the
same effect as a list of the letters (a1, a2, ... an).

fun Name of the function subprogram.

d Dummy argument representing a variable, array, or dummy
procedure name.

The following tables show the data lengths for UNICOS, UNICOS/mk, and
IRIX systems.

Note: On UNICOS systems, a 32-bit item or a 46-bit item is contained in a
64-bit word.

Table 5. Data length (UNICOS systems)

type n: *1 *2 *4 *8 *16 *32

INTEGER 64-bit 64-bit 64-bit 64-bit Error Error

REAL Error Error 64-bit single
precision

64-bit
single
precision

128-bit
double
precision

Error

COMPLEX Error Error Error 128-bit
single
precision

128-bit
single
precision

256-bit
double
precision

LOGICAL 64-bit 64-bit 64-bit 64-bit Error Error

DOUBLE
PRECISION

Error Error Error Error 128-bit
double
precision

Error

148 007–3694–004



Outmoded Features [6]

Table 6. Data length (UNICOS/mk systems)

type n: *1 *2 *4 *8 *16 *32

INTEGER 32-bit 32-bit 32-bit 64-bit Error Error

REAL Error Error 32-bit single
precision1

64-bit
double
precision2

64-bit
double
precision3

Error

COMPLEX Error Error Error 64-bit single
precision4

64-bit single
precision5

64-bit single
precision6

LOGICAL 32-bit 32-bit 32-bit 64-bit Error Error

DOUBLE
PRECISION

Error Error Error Error 64-bit single
precision7

Error

Table 7. Data length (IRIX systems)

type n: *1 *2 *4 *8 *16 *32

INTEGER 8-bit 16-bit 32-bit 64-bit Error Error

LOGICAL 8-bit 16-bit 32-bit 64-bit Error Error

REAL Error Error 32-bit 64-bit 128-bit Error

COMPLEX Error Error 32-bit 64-bit 128-bit Error

DOUBLE
PRECISION

Error Error Error 64-bit Error Error

1 This is an additional precision on a UNICOS/mk system.
2 This is a single precision on a UNICOS/mk system.
3 128-bit precision is not supported on UNICOS/mk systems.
4 This is an additional precision on a UNICOS/mk system.
5 128-bit precision is not supported on UNICOS/mk systems.
6 128-bit precision is not supported on UNICOS/mk systems.
7 128-bit precision is not supported on UNICOS/mk systems.

007–3694–004 149



Fortran Language Reference Manual, Volume 3

6.5 DATA Statement Features

The DATA statement has the following outmoded features:

• A constant need not exist for each element of a whole array named in a
data_stmt_object_list if the array is the last item in the list.

• A Hollerith or character constant can initialize more than one element of an
integer or single-precision real array if the array is specified without
subscripts.

Example 1: On a machine with 64-bit words, if an array is declared by
INTEGER A(2), the following DATA statements have the same effect:

DATA A /’1234567890123456’/

DATA A /’12345678’,’90123456’/

Example 2: On a machine with 32-bit words, if an array is declared by
INTEGER A(2), the following DATA statements have the same effect:

DATA A /’12345678’/

DATA A /’1234’,’5678’/

An integer or single-precision real array can be defined in the same way in a
DATA implied-DO statement.

6.6 IF Statements

Outmoded IF statements are the two-branch arithmetic IF and the indirect
logical IF.

6.6.1 Two-branch Arithmetic IF

A two-branch arithmetic IF statement transfers control to statement s1 if
expression e is evaluated as nonzero or to statement s2 if e is zero. The
arithmetic expression should be replaced with a relational expression, and the
statement should be changed to an IF statement or an IF construct. This
format is as follows:

IF ( e ) s1, s2

e Integer, real, or double-precision expression

150 007–3694–004



Outmoded Features [6]

s Label of an executable statement in the same program unit

Example:

IF (I+J*K) 100,101

6.6.2 Indirect Logical IF

An indirect logical IF statement transfers control to statement st if logical
expression le is true and to statement sf if le is false. An IF construct or an IF
statement should be used in place of this outmoded statement. This format is
as follows:

IF ( le ) st, sf

le Logical expression

st, sf Labels of executable statements in the same program unit

Example:

IF(X.GE.Y)148,9999

6.7 TASK COMMON Statement (UNICOS Systems Only)

When multitasking is used, some common blocks might need to be local to a
task. The TASK COMMON statement declares all variables in a common block to
be local to a task. If multiple tasks execute code containing the same task
common block, each task will have a separate copy of the block. A common
block cannot be declared both local common and task common. If a common
block is declared local common in one routine and task common in another
routine, the loader will generate an error.

A task common block can also be declared by the use of a COMMON statement
with the TASKCOMMON compiler directive. The compiler directives are described
in CF90 Commands and Directives Reference Manual. The directive is
recommended over the TASK COMMON statement for better portability.

The keyword TASK must precede the keyword COMMON to establish a task
common block. Task common blocks must be named. A task common block is
allocated at task invocation.

The TASK COMMON statement has the following format:

007–3694–004 151



Fortran Language Reference Manual, Volume 3

TASK COMMON / cb / member_list [ , / cb / member_list ] ...

cb Task common block name.

member_list A variable name, array name, or array declarator.
A member name must not be a subprogram
dummy argument name.

Variables in member_list may appear in a DATA statement.

For information on using the -a alloc option to allocate storage from the f90(1)
command line, see the f90(1) man page or the CF90 Commands and Directives
Reference Manual.

6.8 Nested Loop Termination

Older Cray Research Fortran compilers allowed nested DO loops to terminate on
a single END DO statement if the END DO statement had a statement label. The
END DO statement is included in the Fortran standard. The Fortran standard
specifies that a separate END DO statement must be used to terminate each DO
loop, so allowing nested DO loops to end on a single, labeled END DO statement
is an outmoded feature.

6.9 DOUBLE COMPLEX Statement (UNICOS Systems Only)

The DOUBLE COMPLEX statement is used to declare an item to be of type
double complex. The format for the DOUBLE COMPLEX statement is as follows:

DOUBLE COMPLEX [ , attribute_list :: ] entity_list

Items declared as DOUBLE COMPLEX contain two double-precision entities.

When the -d p option is in effect, double complex entities are affected as
follows:

• The nonstandard DOUBLE COMPLEX declaration is treated as a
single-precision complex type.

• Double-precision intrinsic procedures are changed to the corresponding
single-precision intrinsic procedures.

152 007–3694–004



Outmoded Features [6]

The -e p or -d p specification is used for all source files compiled with a
single invocation of the f90(1) command. If a module is compiled separately
from a program unit that uses the module, they both must be compiled with
the same -e p or -d p specification.

Table 8 shows the CF90 double complex intrinsic functions and the preferred
standard alternatives:

Table 8. Standard alternatives to CF90 double-complex functions

Double complex function Fortran 90 standard alternative

CDABS ABS(3)

CDCOS COS(3)

CDEXP EXP(3)

CDLOG LOG(3)

CDSIN SIN(3)

CDSQRT SQRT(3)

6.10 Bitwise Logical Expressions

A bitwise logical expression (also called a masking expression) is an expression in
which a logical operator operates on individual bits within integer, real, Cray
pointer, or Boolean operands, giving a result of type Boolean. Each operand is
treated as a single storage unit. This storage unit is a 64-bit word on UNICOS
and UNICOS/mk systems; it is a 32-bit word on IRIX systems. The result is a
single storage unit. Boolean values and bitwise logical expressions are
contrasted to logical values and expressions.

Bitwise logical operators can also be written as functions; for example A.AND.B
can be written as AND(A,B) and .NOT.A can be written as COMPL(A).

The CF90 and MIPSpro 7 Fortran 90 compiler intrinsic functions that operate on
Boolean values in bitwise fashion, such as shifting, parity count, and tallying 1s
or leading 0s, are extensions to the Fortran standard. Generally, these bitwise
functions have equivalent Fortran standard intrinsic procedures. Table 9 shows
the bitwise functions and, where possible, their equivalent Fortran standard
intrinsic procedures:

007–3694–004 153



Fortran Language Reference Manual, Volume 3

Table 9. Standard alternatives to CF90 and MIPSpro 7 Fortran 90 bitwise
functions

Bitwise function Fortran standard alternative

AND(3M) IAND(3I)

COMPL(3I) NOT(3I)

CSMG(3I) MERGE(3I)

EQV(3M) IEOR(3I)

MASK(3I) IBSET(3I)

OR(3M) IOR(3I)

NEQV(3M) IEOR(3I)

SHIFT(3I) ISHFT(3I), ISHFTC(3I)

SHIFTL(3I), LSHIFT(3I) ISHFT(3I), ISHFTC(3I)

SHIFTR(3I), , RSHIFT(3I) ISHFT(3I), ISHFTC(3I)

XOR(3M) IEOR(3I)

If one operand is of type logical, then both operands must be of type logical;
the operation performed, then, is a logical operation (not a masking operation).
In a logical or masking operation, neither operand can be of type double
precision or of type double complex.

Table 10, page 155, shows which data types can be used together in bitwise
logical operations.

154 007–3694–004



Outmoded Features [6]

Table 10. Data types in bitwise logical operations

x1 x2 Integer Real Boolean Pointer Logical Character

Integer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Real Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Boolean Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Pointer Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Masking
operation,
Boolean
result.

Not valid Not valid1

Logical Not valid Not valid Not valid Not valid Logical
operation
logical result

Not valid

Character Not valid1 Not valid1 Not valid1 Not valid1 Not valid Not valid

Notes:

1. x1 and x2 represent operands for a logical or bitwise expression, using
operators .NOT., .AND., .OR., .XOR., .NEQV., and .EQV..

2. The entry “Not valid1” indicates that if the operand is a character
operand of 32 or fewer characters, the operand is treated as a Hollerith
constant and is allowed.

Bitwise logical expressions can be combined with expressions of Boolean or
other types by using arithmetic, relational, and logical operators. Evaluation of
an arithmetic or relational operator processes a bitwise logical expression with
no type conversion. Boolean data is never automatically converted to another
type.

A bitwise logical expression performs the indicated logical operation separately
on each bit. The interpretation of individual bits in bitwise multiplication_exprs,

007–3694–004 155



Fortran Language Reference Manual, Volume 3

summation_exprs, and general expressions is the same as for logical expressions.
The results of binary 1 and 0 correspond to the logical results TRUE and FALSE,
respectively, in each of the bit positions. These values are summarized as
follows:

.NOT. 1100 1100 1100 1100 1100

=0011 .AND. 1010 .OR. 1010 .XOR. 1010 .EQV. 1010

---- ---- ---- ----

1000 1110 0110 1001

156 007–3694–004



CF90 Defined Externals [7]

This chapter describes global variables used by the CF90 compiler on UNICOS
and UNICOS/mk systems

7.1 Conformance Checks

Additional segldr(1) and cld(1) directives for load time optimization and
activating library features are described in the Application Programmer’s I/O
Guide.

Several segldr(1) directives are used to provide strict, intermediate, and
minimal error checking of edit descriptors with input/output (I/O) list items
during formatted READ and WRITE statements. The NOCHK versions provide the
least error checking.

The version of NOCHK for formatted output is as follows:

% segldr -D EQUIV=$WNOCHK($WCHK)

The version of NOCHK for a formatted input is as follows:

% segldr -D EQUIV=$RNOCHK($RCHK)

For strict conformance to editing in FORTRAN 77, use the CHK77 versions,
which are as follows:

% segldr -D EQUIV=$WCHK77($WCHK)

% segldr -D EQUIV=$RCHK77($RCHK)

For strict conformance to editing in Fortran 90, use the CHK90 versions, which
are as follows:

% segldr -D EQUIV=$WCHK90($WCHK)

% segldr -D EQUIV=$RCHK90($RCHK)

The default checking is somewhat stricter than the NOCHK versions but is not as
strict as the CHK77 and CHK90 versions.

7.2 Record Length

The RECL specifier in an OPEN statement can be used to specify the maximum
record size for a file declared with sequential access. An alternate method is

007–3694–004 157



Fortran Language Reference Manual, Volume 3

provided through segldr(1) directives. If RECL is present, the values provided
by these directives are ignored. The use of RECL for sequential access files is
recommended.

To set the maximum output record length X for a file opened as a sequential
formatted file, use the following specification:

SET=$WBUFLN:X

COMMONS=$WFDCOM:X+9

The default size is 267.

To set the maximum input record length X for a file opened as a sequential
formatted file, use the following specification:

SET=$RBUFLN:X

COMMONS=$RFDCOM:X+9

The default size is 267.

158 007–3694–004



Glossary

argument keyword

The name of a dummy (or formal) argument. This name is used in the
subprogram definition; it also may be used when the subprogram is invoked to
associate an actual argument with a dummy argument. Using argument
keywords allows the actual arguments to appear in any order. The Fortran 90
standard specifies argument keywords for all intrinsic procedures. Argument
keywords for user-supplied external procedures may be specified in a
procedure interface block.

array

(1) A data structure that contains a series of related data items arranged in rows
and columns for convenient access. The C shell and the awk(1) command can
store and process arrays. (2) In Fortran 90, an object with the DIMENSION
attribute. It is a set of scalar data, all of the same type and type parameters.
The rank of an array is at least 1, and at most 7. Arrays may be used as
expression operands, procedure arguments, and function results, and they may
appear in input/output (I/O) lists.

association

An association permits an entity to be referenced by different names in a scoping
unit or by the same or different names in different scoping units. Several kinds
of association exist. The principal kinds of association are pointer association,
argument association, host association, use association, and storage association.

automatic variable

A variable that is not a dummy argument but whose declaration depends on a
nonconstant expression (array bounds and/or character length).

Autotasking

A trademarked process of Cray Research that automatically divides a program
into individual tasks and organizes them to make the most efficient use of the
computer hardware.

007–3694–004 159



Fortran Language Reference Manual, Volume 3

bottom loading

An optimization technique used on some scalar loops in which operands are
prefetched during each loop iteration for use in the next iteration. The operand
is available as soon as the first loop instruction executes. A prefetch is
performed even during the final loop iteration, before the loop’s final jump test
has been performed.

cache

In a processing unit, a high-speed buffer storage that is continually updated to
contain recently accessed contents of main storage. Its purpose is to reduce
access time. In disk subsystems, a method the channel buffers use to buffer disk
data during transfer between the devices and memory.

cache line

On Cray MPP systems, a cache line consists of four quad words, which is the
maximum size of a hardware message.

CIV

A constant increment variable is a variable that is incremented only by a loop
invariant value (for example, in a loop with index J, the statement J = J + K, in
which K can be equal to 0, J is a CIV).

constant

A data object whose value cannot be changed. A named entity with the
PARAMETER attribute is called a named constant. A constant without a name is
called a literal constant.

construct

A sequence of statements that starts with a SELECT CASE, DO, IF, or WHERE
statement and ends with the corresponding terminal statement.

control construct

An action statement that can change the normal execution sequence (such as a
GO TO, STOP, or RETURN statement) or a CASE, DO, or IF construct.

160 007–3694–004



Glossary

critical region

On Cray MPP systems, a synchronization mechanism that enforces serial access
to a piece of code. Only one PE may execute in a critical region at a time.

data entity

A data object, the result of the evaluation of an expression, or the result of the
execution of a function reference (also called the function result). A data entity
always has a type.

data object

A constant, a variable, or a part of a constant or variable.

declaration

A nonexecutable statement that specifies the attributes of a data object (for
example, it may be used to specify the type of a variable or function result or
the shape of an array).

definition

This term is used in two ways. (1) A data object is said to be defined when it
has a valid or predictable value; otherwise, it is undefined. It may be given a
valid value by execution of statements such as assignment or input. Under
certain circumstances, it may subsequently become undefined. (2) Procedures
and derived types are said to be defined when their descriptions have been
supplied by the programmer and are available in a program unit.

derived type

A type that is not intrinsic (a user-defined type); it requires a type definition to
name the type and specify its components. The components may be of intrinsic
or user-defined types. An object of derived type is called a structure. For each
derived type, a structure constructor is available to specify values. Operations
on objects of derived type must be defined by a function with an interface and
the generic specifier OPERATOR. Assignment for derived type objects is defined
intrinsically, but it may be redefined by a subroutine with the ASSIGNMENT
generic specifier. Data objects of derived type may be used as procedure
arguments and function results, and they may appear in input/output (I/O)
lists.

007–3694–004 161



Fortran Language Reference Manual, Volume 3

designator

Sometimes it is convenient to reference only part of an object, such as an
element or section of an array, a substring of a character string, or a component
of a structure. This requires the use of the name of the object followed by a
selector that selects a part of the object. A name followed by a selector is called
a designator.

entity

(1) In Open Systems Interconnection (OSI) terminology, a layered protocol
machine. An entity in a layer performs the functions of the layer in one
computer system, accessing the layer entity below and providing services to the
layer entity above at local service access points. (2) In Fortran 90, a general
term used to refer to any Fortran 90 concept (for example, a program unit, a
common block, a variable, an expression value, a constant, a statement label, a
construct, an operator, an interface block, a derived type, an input/output (I/O)
unit, a name list group, and so on).

executable construct

A statement (such as a GO TO statement) or a construct (such as a DO or CASE
construct).

expression

A set of operands, which may be function invocations, and operators that
produce a value.

extent

A structure that defines a starting block and number of blocks for an element of
file data.

function

Usually a type of operating-system-related function written outside a program
and called in to do a specific function. Smaller and more limited in capability
than a utility. In a programming language, a function is usually defined as a
closed subroutine that performs some defined task and returns with an answer,
or identifiable return value.

The word "function" has a more specific meaning in Fortran than it has in C. In
C, it is refers to any called code; in Fortran, it refers to a subprogram that
returns a value.

162 007–3694–004



Glossary

generic specifier

An optional component of the INTERFACE statement. It can take the form of an
identifier, an OPERATOR (defined_operator) clause, or an ASSIGNMENT (=)
clause.

heap

A section of memory within the user job area that provides a capability for
dynamic allocation. See the HEAP directive in SR-0066.

inlining

The process of replacing a user subroutine or function call with the definition
itself. This saves subprogram call overhead and may allow better optimization
of the inlined code. If all calls within a loop are inlined, the loop becomes a
candidate for vectorization and/or tasking.

intrinsic

Anything that the language defines is intrinsic. There are intrinsic data types,
procedures, and operators. You may use these freely in any scoping unit.
Fortran programmers may define types, procedures, and operators; these
entities are not intrinsic.

local

(1) A type of scope in which variables are accessible only to a particular part of
a program (usually one module). (2) The system initiating the request for
service. This term is relative to the perspective of the user.

multitasking

(1) The parallel execution of two or more parts of a program on different CPUs;
these parts share an area of memory. (2) A method in multiuser systems that
incorporates multiple interconnected CPUs; these CPUs run their programs
simultaneously (in parallel) and shares resources such as memory, storage
devices, and printers. This term can often be used interchangeably with
parallel processing.

name

A term that identifies many different entities of a program such as a program
unit, a variable, a common block, a construct, a formal argument of a

007–3694–004 163



Fortran Language Reference Manual, Volume 3

subprogram (dummy argument), or a user-defined type (derived type). A name
may be associated with a specific constant (named constant).

operator

(1) A symbolic expression that indicates the action to be performed in an
expression; operator types include arithmetic, relational, and logical. (2) In
Fortran 90, an operator indicates a computation that involves one or two
operands. Fortran 90 defines several intrinsic operators (for example, +, -, *, /, **
are numeric operators, and .NOT., .AND., and .OR. are logical operators). Users
also may define operators for use with operands of intrinsic or derived types.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not necessarily, leads to referencing
a storage location outside of the entire array.

parallel processing

Processing in which multiple processors work on a single application
simultaneously.

pointer

(1) A data item that consists of the address of a desired item. (2) A symbol that
moves around a computer screen under the control of the user.

procedure

(1) A named sequence of control statements and/or data that is saved in a
library for processing at a later time, when a calling statement activates it; it
provides the capability to replace values within the procedure. (2) In Fortran 90,
procedure is defined by a sequence of statements that expresses a computation
that may be invoked as a subroutine or function during program execution. It
may be an intrinsic procedure, an external procedure, an internal procedure, a
module procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRY statement, it defines more than one procedure.

procedure interface

In Fortran 90, a sequence of statements that specifies the name and
characteristics of one or more procedures, the name and attributes of each

164 007–3694–004



Glossary

dummy argument, and the generic specifier by which it may be referenced if
any. See generic specifier.

In FORTRAN 77 and Fortran 90, a generic function is one whose output
value data type is determined by the data type of its input arguments. In
FORTRAN 77, the only generic functions allowed are those that the standard
defines. In Fortran 90, programmers may construct their own generic function
by creating "generic interface," which is like a regular procedure interface,
except that it has a "generic specifier" (the name of the generic function) after
the keyword INTERFACE.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar
value by doing a cumulative operation on many of the array elements. This
involves including the result of the previous iteration in the expression of the
current iteration.

reference

A data object reference is the appearance of a name, designator, or associated
pointer in an executable statement that requires the value of the object. A
procedure reference is the appearance of the procedure name, operator symbol,
or assignment symbol in an executable program that requires execution of the
procedure. A module reference is the appearance of the module name in a USE
statement.

scalar

(1) In Fortran 90, a single object of any intrinsic or derived type. A structure is
scalar even if it has a component that is an array. The rank of a scalar is 0. (2)
A nonvectorized, single numerical value that represents one aspect of a physical
quantity and may be represented on a scale as a point. This term often refers to
a floating-point or integer computation that is not vectorized; more generally, it
also refers to logical and conditional (jump) computation.

scope

The region of a program in which a variable is defined and can be referenced.

scoping unit

Part of a program in which a name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type definitions and procedure

007–3694–004 165



Fortran Language Reference Manual, Volume 3

interface bodies also constitute scoping units. Scoping units do not overlap,
although one scoping unit may contain another in the sense that it surrounds it.
If a scoping unit contains another scoping unit, the outer scoping unit is
referred to as the host scoping unit of the inner scoping unit.

search loop

A loop that can be exited by means of an IF statement.

sequence

A set ordered by a one-to-one correspondence with the numbers 1, 2, through
n. The number of elements in the sequence is n. A sequence may be empty, in
which case, it contains no elements.

shared

Accessible by multiple parts of a program. Shared is a type of scope.

shell variable

A name representing a string value. Variables that are usually set only on a
command line are called parameters (positional parameters and keyword
parameters). Other variables are simply names to which a user (user-defined
variables) or the shell itself may assign string values. The shell has predefined
shell variables (for example, HOME). Variables are referenced by prefixing the
variable name by a $ (for example, $HOME).

software pipelining

Software pipelining is a compiler code generation technique in which
operations from various loop iterations are overlapped in order to exploit
instruction-level parallelism, increase instruction issue rate, and better hide
memory and instruction latency. As an optimization technique, software
pipelining is similar to bottom loading, but it includes additional, and more
efficient, scheduling optimizations.

Cray compilers perform safe bottom loading by default. Under these
conditions, code generated for a loop contains operations and stores associated
with the present loop iteration and contains loads associated with the next loop
iteration. Loads for the first iteration are generated in the loop preamble.

When software pipelining is performed, code generated for the loop contains
loads, operations, and stores associated with various iterations of the loop.
Loads and operations for first iterations are generated in the preamble to the

166 007–3694–004



Glossary

loop. Operations and stores for last iterations of loop are generated in the
postamble to the loop.

statement keyword

A keyword that is part of the syntax of a statement. Each statement, other than
an assignment statement and a statement function definition, begins with a
statement keyword. Examples of these keywords are IF, READ, and INTEGER.
Statement keywords are not reserved words; you may use them as names to
identify program elements.

stripmining

A single-processor optimization technique in which arrays, and the program
loops that reference them, are split into optimally-sized blocks, termed strips.
The original loop is transformed into two nested loops. The inner loop
references all data elements within a single strip, and the outer loop selects the
strip to be addressed in the inner loop. This technique is often performed by
the compiler to maximize the usage of cache memory or as part of vector code
generation.

structure

A language construct that declares a collection of one or more variables
grouped together under one name for convenient handling. In C and C++, a
structure is defined with the struct keyword. In Fortran 90, a derived type is
defined first and various structures of that type are subsequently declared.

subobject

Parts of a data object may be referenced and defined separately from other
parts of the object. Portions of arrays are array elements and array sections.
Portions of character strings are substrings. Portions of structures are structure
components. Subobjects are referenced by designators and are considered to be
data objects themselves.

subroutine

A series of instructions that accomplishes a specific task for many other routines.
(A subsection of a user-written program of varying size and, therefore, function.
It is written within the program. It is not a subsection of a routine.) It differs
from a main routine in that one of its parameters must specify the location to
which to return in the main program after the function has been accomplished.

007–3694–004 167



Fortran Language Reference Manual, Volume 3

TKR

An acronym that represents attributes for argument association. It represents
the data type, kind type parameter, and rank of the argument.

type parameter

Two type parameters exist for intrinsic types: kind and length. The kind type
parameter KIND indicates the decimal range for the integer type, the decimal
precision and exponent range for the real and complex types, and the machine
representation method for the character and logical types. The length type
parameter LEN indicates the length of a character string.

variable

(1) A name that represents a string value. Variables that usually are set only on
a command line are called parameters. Other variables are simply names to
which the user or the shell may assign string values. (2) In Fortran 90, data
object whose value can be defined and redefined. A variable may be a scalar or
an array. (3) In the shell command language, a named parameter. See also
shell variable.

168 007–3694–004



Index

A

ASCII character set, 77
ASSIGN statement, 70

B

Backus-Naur Form, 1
Bitwise logical expressions, 153
BNF syntax summary, 1

C

Character
Hollerith, 138

Character data representation
CRAY T90 (IEEE) systems, 126
IRIX systems, 112
UNICOS systems, 101
UNICOS/mk systems, 119

Character set, 77
Compiler differences, 83
Complex data representation

CRAY T90 (IEEE) systems, 123
IRIX systems, 109
UNICOS/mk systems, 117

Complex type (single precision), internal
representation, 109

Constraints, 5
Cray character pointer data representation

CRAY T90 (IEEE) systems, 127
IRIX systems, 112
UNICOS systems, 102
UNICOS/mk systems, 120

D

Data
type

Hollerith, 138
DATA statement, 150
DECODE statement, 143
Decremental features, 69
Defined externals, 157
Differences (between compilers), 83
DOUBLE COMPLEX statement, 152
Double-precision complex data representation

UNICOS systems, 100
Double-precision data representation

UNICOS systems, 99
Dynamic memory allocation, 132

E

Edit descriptors
outmoded, 145

ENCODE statement, 141
Extensions, 83
Externals (defined), 157

F

Formatted
I/O and internal files, 141

Fortran
keywords, 1

G

Global variables, 157

007–3694–004 169



Fortran Language Reference Manual, Volume 3

H

Hollerith type, 138

I

I/O
formatted, 141

IF statement, 150
Integer data representation

CRAY T90 (IEEE) systems, 120
IRIX systems, 103
UNICOS systems, 95
UNICOS/mk systems, 113

IRIX system data representation, 103

K

Keywords, 1

L

Logical data representation
CRAY T90 (IEEE) systems, 126
IRIX systems, 112
UNICOS systems, 102
UNICOS/mk systems, 119

M

Memory allocation, 132

O

Obsolescent features, 69, 73

Outmoded features, 137

P

PAUSE statement, 69

R

Real data representation
CRAY T90 (IEEE) systems, 121
IRIX systems, 105
UNICOS systems, 96
UNICOS/mk systems, 114

Real type, internal representation, 105

S

Single-precision complex data representation
UNICOS systems, 99

Stack storage, 130
Static storage, 130
Storage, 127
Syntax summary (in BNF), 1

T

TASKCOMMON statement, 151

U

UNICOS data representation, 95

170 007–3694–004


