Application Programmer’s /O Guide
SG-2168 3.0.1

Copyright © 1994, 1997 Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Cray Research, Inc.

Portions of this product may still be in development. The existence of those portions still in development is not a commitment of
actual release or support by Cray Research, Inc. Cray Research, Inc. assumes no liability for any damages resulting from attempts
to use any functionality or documentation not officially released and supported. If it is released, the final form and the time of
official release and start of support is at the discretion of Cray Research, Inc.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CClI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,

CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,

ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

CDC is a trademark of Control Data Systems, Inc. DEC, ULTRIX, VAX, and VMS are trademarks of Digital Equipment
Corporation. DynaWeb is a trademark of Electronic Book Technologies, Inc. ER90 is a trademark of EMASS, Inc. ETA is a
trademark of ETA Systems, Inc. IBM is a trademark of International Business Machines Corporation. Silicon Graphics and the
Silicon Graphics logo are registered trademarks, and IRIX is a trademark of Silicon Graphics, Inc. MIPS is a registered trademark
and MIPSpro is a trademark of MIPS Technologies, Inc. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. X/Open is a registered trademark, and the X device is a trademark, of
X/0pen Company Ltd. X Window System is a trademark of X Consortium, Inc.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Application Programmer’s I/O Guide SG-2168 3.0.1

The following new features have been added for this revision of this manual:

= You can now specify nhumeric parameters for many FFIO layers with a keyword syntax. This new syntax
is documented in Chapter 14.

= Information about support for 1/0 on IRIX systems has been added throughout this document.
< A new FFIO layer, the global layer, has been added and is documented in Chapter 14.
= Several new options were added to the assign command and are documented in Chapter 6.

= A new conversion routine, the CRI2IBM routine, has been added and is documented in Chapter 12.

Record of Revision

Version Description

1.0 May 1994.
Original Printing. This document incorporates information from the I/O User’s
Guide, publication SG-3075, and the Advanced I/O User’s Guide, publication SG-3076.

1.2 October 1994.
Revised for the Programming Environment 1.2 release.

2.0 November 1995.
Revised for the Programming Environment 2.0 release.

3.0 May 1997
Revised for the Programming Environment 3.0 release.

3.0.1 August 1997

Revised for the Programming Environment 3.0.1 release and the MIPSpro 7 Fortran
90 compiler release.

SG-2168 3.0.1

Contents

Preface
Related publications

Ordering Cray Research publications

Conventions
Reader comments

Introduction [1]

The message system

Standard Fortran 1/0O [2]

Files
Internal files
External files

Fortran unit identifiers

Data transfer statements

Formatted 170

Edit-directed 170

Procedure 1:
Procedure 2:
Procedure 3:
Procedure 4:

List-directed 170
Unformatted 1/0
Auxiliary 1/0

Optimization technique:
Optimization technique:
Optimization technique:

Optimization technique:

File connection statements
The INQUIRE statement

SG-2168 3.0.1

using single statements
using longer records
using repeated edit descriptors

using data edit descriptors

Page

XV
XV

XVi

XVi

XVii

N

co o o1 o1 o1

11
11
12
13

13
14
14

14
16
17

17
17

Application Programmer’s 1/0O Guide

File positioning statements
Private 1/0 on CRAY T3E systems
Multithreading and standard Fortran 1/0

Fortran 1/O Extensions [3]
BUFFER IN/BUFFER OUT routines
The UNIT intrinsic
The LENGTHintrinsic .
Positioning (deferred implementation on IRIX systems)

Random access 1/0 routines (not available on IRIX systems)
Example 1: MS package use
Example 22 DR package use
Word-addressable 1/0 routines (not available on IRIX systems)
Example 3: WA package use
Asynchronous queued 170 (AQIO) routines (not available on IRIX systems)
Error detection by using AQIO
Example 4: AQIO routines: compound read operations
Example 5: AQIO routines: error detection

Logical record 170 routines (Not available on IRIX systems)

Tape and Named Pipe Support [4]
Tape support (not available on IRIX systems)
User EOV processing
Handling bad data on tapes
Positioning
Named pipes
Piped 1/0 example without end-of-file detection
Example 6: No EOF detection: writerd
Example 7: No EOF detection: readwt

Page

18
19
19

21
21
22
22
23

23
26
27
28
30
31
33
33
36
38

41
41
41
42
42
42
44
44
44

SG-2168 3.0.1

Contents

Detecting end-of-file on a named pipe

Piped 1/0 example with end-of-file detection
Example 8: EOF detection: writerd
Example 9: EOF detection: readwt

System and C 1/O [5]
System 1/0
Synchronous 1/0
Asynchronous 1/0

listio 170 (not available on IRIX systems)
Unbuffered 170
clI/0

C 1/0 from Fortran
Example 10: C 1/0 from Fortran

C I/0 on CRAY T3E systems

The assign Environment [6]
assign basics
Open processing
The assign command
Related library routines
assign and Fortran 1/0
Alternative file names
File structure selection

Buffer size specification

Foreign file format specification

File space allocation (deferred implementation on IRIX systems)

Device allocation (deferred implementation on IRIX systems)

Direct-access 1/0 tuning

SG-2168 3.0.1

Page

45
45
46
46

49
49
49
49
50

50
50
50
52

52

55
55
55
56
61
63

63
64
65

66
67
67
68

Application Programmer’s 1/0O Guide

Fortran file truncation
The assign environment file

Local assign

Example 11: local assign mode

File Structures [7]
Unblocked file structure

assign -s unblocked file processing

assign -s sbhin file processing (Not recommended)
assign -s bin file processing (Not recommended)
assign -s u file processing

Text file structure
COS or blocked file structure
Tape/bmx file structure (not available on IRIX systems)

Library buffers

Buffering [8]
Buffering overview
Types of buffering

Unbuffered 170
Library buffering

System cache
Logical cache buffering

Default buffer sizes

Devices [9]
Tape
Tape 1/0 interfaces
Tape subsystem capabilities

SSD

vi

Page

68
71

72
72

73
74
75

76
76
76

77
77
79

80

81
81
83

83
83

84
85
85

87
87

87
88
89

SG-2168 3.0.1

Contents

Page

SSD file systems 89
Secondary data segments (SDS) Ce e 90
Logical device cache (Idcache) Ce e 91
Disk drives C e e e e 91
Main memory C e e 93
Introduction to FFIO [10] 95
Layered I/O oL 95
Using layered 1/0 C e 97
I/O layers Lo 99
Layered 1/0 options e e e 100
Setting FFIO library parameters (UNICOS systems only) Ce e 102
Using FFIO [11] 105
FFIO on IRIX systems L. 105
FFIO and common formats C e 106
Reading and writing text files L. 106
Reading and writing unblocked files Ce e 107
Reading and writing fixed-length records Ce e 107
Reading and writing COS blocked files 108
Enhancing performance C e e e 108
Buffer size considerations L L. L. 108
Removing blocking oo L L L 109
The bufa and cachea layers L. 109
The sds layer (available only on UNICOS systems) 110
The mr layer (deferred implementation on IRIX systems) e 112
The cache layer oL 112
Sample programs for UNICOS systems Ce e 114
Example 12: sds using buffer I#/O L. 114

SG-2168 3.0.1 vii

Application Programmer’s 1/0O Guide

Example 13: Unformatted sequential sds example
Example 14: sds and mr with WAIO

Example 15: Unformatted direct sds and mr example
Example 16: sds with MS package example

Example 17: mr with buffer 1/0 example

Example 18: Unformatted sequential mr examples

Example 19: mr and MS package example

Foreign File Conversion [12]

Conversion overview

Transferring data
Using fdcp to transfer files (not available on IRIX systems)
Example 20: Copy VAX/VMS tape file to disk
Example 21: Copy unknown tape type to disk
Example 22: Creating files for other systems
Example 23: Copying to UNICOS text files
Moving data between systems

Station conversion facilities
Magnetic tape
TCP/IP and other networks

Data item conversion

Explicit data item conversion (not available on IRIX systems)
Implicit data item conversion (deferred implementation on IRIX systems)
Choosing a conversion method

Station conversion (not available on IRIX systems)

Explicit conversion

Implicit conversion

Disabling conversion types (not available on IRIX systems)

viii

Page

115
116
118
119
120
121
122

125

125
126

126
126
126
127
128
128

128
129

131
131
132

133
138
138
138
139
139

SG-2168 3.0.1

Contents

Foreign conversion techniques (not available on IRIX systems)
CDC CYBER NOS (VE and NOS/BE 60-bit) conversion

COS conversions e
CDC CYBER 205 and ETA conversion
CTSS conversion
IBM overview

Using the MVS station

Data transfer between UNICOS and VM
Workstation and IEEE conversion
VAX/VMS conversion

Implicit numeric conversions (Cray PVP systems only)

1/0 Optimization [13]
Overview
An overview of optimization techniques

Evaluation tools
Optimizations not affecting source code

Optimizations that affect source code

Optimizing 1/0 speed
Determining 1/0 activity

Checking program execution time

Generating an 170 profile
Optimizing system requests

The MR feature

Using faster devices

Using MR/SDS combinations

Using a cache layer

Preallocating file space

User striping

SG-2168 3.0.1

Page

139
140

141
143
143
143
144

148
149
150
152

155

155
157

157
157

158
158
159
160
161
162

163
166

167
168
169
170

Application Programmer’s 1/0O Guide

Optimizing file structure overhead

Scratch files
Alternate file structures e
Using the asynchronous COS blocking layer

Using asynchronous read-ahead and write-behind
Using simpler file structures
Minimizing data conversions
Minimizing data copying
Changing library buffer sizes
Bypassing library buffers
Other optimization options
Using pipes
Overlapping CPU and 1/0
Optimization on UNICOS/mk systems

FFIO Layer Reference [14]
Characteristics of layers

Individual layers

The blankx expansion/compression layer (not available on IRIX systems)

The bmx/tape layer (deferred implementation on IRIX systems)

The bufa layer

The CYBER 205/ETA (c205) blocking layer (not available on IRIX systems)

The cache layer
The cachea layer
The cdc layer (not available on IRIX systems)

The cos blocking layer

The er90 layer (available only on UNICOS systems)

The event layer (deferred implementation on IRIX systems)

Page

171

171
173
174

175
176
176
177
177
178
179
179
179
180

183
184
185
186
188
190
192
193
195
198
200
202
203

SG-2168 3.0.1

Contents

Page

The f77 layer C e e e 204
The fd layero 206
The global layer (deferred implementation on IRIX systems) 206
The ibm layer (deferred implementation on IRIX systems) 208
The mr layer (deferred implementation on IRIX systems) e 211
The nosve layer (not available on IRIX systems) 214
The null layer C e 218
The sds layer (available only on UNICOS systems) 218
The syscall layer L. 222
The system layer C e 223
The text layer C e 223
The user and site layers Ce e 225
The vms layer (deferred implementation on IRIX systems) 225
Creating a user Layer [15] 231
Internal functions Ce e e e 231
The operations structure Ce e 232
FFIO and the stat structure Ce e 233
user layer example C e e 234
Appendix A Older Data Conversion Routines 261
Old IBM data conversion routines Ce e 261
Old CDC data conversion routines L. L. 262
Old VAX/VMS data conversion routine Ce e 262
Glossary 265
Index 267

SG-2168 3.0.1 Xi

Application Programmer’s 1/0O Guide

Figures
Figure 1.

Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Tables
Table 1.

Table 2.
Table 3.

Table 4.
Table 5.

Table 6.
Table 7.

Table 8.

Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.

Xii

Access methods and default buffer sizes (UNICOS systems)
Access methods and default buffer size (IRIX systems)
Typical data flow

170 layers

/0 data movement

I/0 data movement (current)

I/0 processing with library processing eliminated

Fortran access methods and options

Disk information

I/0 Layers available on all hardware platforms
Deferred implementation for IRIX systems
Unavailable on IRIX systems

HARDREMirectives

Foreign file conversion routines

Foreign file conversion routines (IEEE)
Supported foreign 1/0 formats and data types
Data manipulation: blankx layer
Supported operations: blankx layer
-T specified on tpmnt

Data manipulation: bmx/tape layer
Supported operations: bmx/tape layer
Data manipulation: bufa layer
Supported operations: bufa layer
Data manipulation: c205 layer
Supported operations: c205 layer

Data manipulation: cache layer

Page

70
71
95
156
164
172
174

74

92
99

100
100

102
132

133
135
186
187
188
189
189
191
191
192
193
194

SG-2168 3.0.1

Contents

Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.

Table 39.
Table 40.
Table 41.

Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.

Supported operations: cache layer
Data manipulation: cachea layer
Supported operations: cachea layer
Data manipulation: cdc layer
Supported operations: cdc layer
Data manipulation: cos layer
Supported operations: cos layer
Data manipulation: er90 layer
Supported operations: er90 layer
Data manipulation: f77 layer
Supported operations: f77 layer
Data manipulation: global layer

Supported operations: global layer

Values for maximum record size on ibm layer

Values for maximum block size in ibm layer

Data manipulation: ibm layer
Supported operations: ibm layer
Data manipulation: mr layer
Supported operations: mr layer

Values for maximum record size
Values for maximum block size
Data manipulation: nosve layer

Supported operations: nosve layer
Data manipulation: sds layer
Supported operations: sds layer
Data manipulation: syscall layer
Supported operations: syscall layer

Data manipulation: text layer

SG-2168 3.0.1

Page

195
197
197
199
199
201
201
202
202
205
205
207
207
209
210
210
210
213
214

215
215
216

217
221
221
222
222
224

xiii

Application Programmer’s 1/0O Guide

Table 48.
Table 49.
Table 50.
Table 51.
Table 52.

Xiv

Supported operations: text layer

Values for record size: vms layer

Values for maximum block size: vms layer
Data manipulation: vms layer

Supported operations: vms layer

Page

224
227
227
228
228

SG-2168 3.0.1

Preface

Related publications

SG-2168 3.0.1

This publication describes Fortran input/output (1/0) techniques for use on
Cray Research and on Silicon Graphics systems. It also contains information

about advanced 1/0 topics such as asynchronous queued 1/0 and logical record
I/70. Information about the interaction of the 1/0 library and the Cray Research
Fortran 90 compiler, CF90, is also discussed. The information in this manual is

pertinent for UNICOS systems, UNICOS/mk systems, and IRIX systems.

This document also serves as an 1/0 optimization guide for Fortran
programmers on UNICOS systems. It describes the types of 1/0 that are
available, including insight into the efficiencies and inefficiencies of each, the

ways to speed up various forms of 1/0, and the tools used to extract statistics
from the execution of a Fortran program.

Information which is marked as available on IRIX systems is available with the
MIPSpro 7 Fortran 90 compiler.

The following Cray Research documents contain additional information that
may be helpful:

Application Programmer’s Library Reference Manual, publication SR-2165
Optimizing Code on Cray PVP Systems, publication SG-2192

Guide to Parallel Vector Applications, publication SG-2182

UNICOS Performance Utilities Reference Manual, publication SR-2040
UNICOS System Calls Reference Manual, publication SR-2012

UNICOS System Libraries Reference Manual, publication SR-2080

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual, publication
SR-3907

CF90 Ready Reference, publication SQ-3900
CF90 Commands and Directives Reference Manual, publication SR-3901
Fortran Language Reference Manual, Volume 1, publication SR-3902

Fortran Language Reference Manual, Volume 2, publication SR-3903

XV

Application Programmer’s 1/0O Guide

= Fortran Language Reference Manual, Volume 3, publication SR-3905

Ordering Cray Research publications

Conventions

XVi

The User Publications Catalog, publication CP-0099, describes the availability and
content of all Cray Research hardware and software documents that are
available to customers. Cray Research customers who subscribe to the Cray
Inform (CRInform) program can access this information on the CRInform
system.

To order a document, either call the Distribution Center in Mendota Heights,
Minnesota, at +1-612-683-5907, or send a facsimile of your request to fax
number +1-612-452-0141. Cray Research employees may send electronic mail
to orderdsk (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

The following conventions are used throughout this documentation:

command This fixed-space font denotes literal items, such as pathnames,
man page names, commands, and programming language
structures.

variable Italic typeface denotes variable entries and words or concepts
being defined.

[] Brackets enclose optional portions of a command line.

In addition to these formatting conventions, several naming conventions are
used throughout the documentation. “Cray PVP systems” denotes all
configurations of Cray parallel vector processing (PVP) systems which run the
UNICOS operating system. “Cray MPP systems” denotes all configurations of
the CRAY T3E series that run the UNICOS/mk operating system. “IRIX
systems” denotes Silicon Graphics platforms that run the IRIX operating system.

SG-2168 3.0.1

Preface

Reader comments

SG-2168 3.0.1

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

Send us electronic mail at the following address:
publications@cray.com

Contact your customer service representative and ask that an SPR or PV be
filed. Use PUBLICATIONS for the group name, PUBSfor the command, and
NO-LICENSE for the release name.

Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1-800-950-2729 (toll free from the United States and Canada)
+1-612-683-5600

Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1-612-683-5599.

We value your comments and will respond to them promptly.

XVii

Introduction [1]

SG-2168 3.0.1

This manual introduces standard Fortran, supported Fortran extensions, and
provides a discussion of flexible file input/output (FFIO) and other
input/output (1/0) methods for UNICOS and UNICOS/mk systems and for
IRIX systems. This manual is for Fortran programmers who need general 1/0
information or who need information on how to optimize their 1/0.

Some information in this manual addresses usage information for UNICOS and
UNICOS/mk systems only. When this occurs, the information is flagged as
applicable only to those systems.

This manual contains the following chapters:

- “Standard Fortran 1/0,” Chapter 2, page 5, discusses elements of the Fortran
90 standard that relate to 1/0.

= “Fortran 1/0 Extensions,” Chapter 3, page 21, discusses Cray Research
extensions to the Fortran standard.

= “Tape and Named Pipe Support,” Chapter 4, page 41, discusses tape
handling and FIFO special files.

= “System and C I/0,” Chapter 5, page 49, discusses system calls and Fortran
callable entry points to C library routines.

< “The assign Environment,” Chapter 6, page 55, discusses the use of the
assign (1) command to access and update advisory information from the
170 library and how to create an 1/0 environment.

= “File Structures,” Chapter 7, page 73, discusses native file structures.
= “Buffering,” Chapter 8, page 81, discusses file buffering as it applies to 1/0.
= “Devices,” Chapter 9, page 87, discusses types of storage devices.

= “Introduction to FFIO,” Chapter 10, page 95, provides an overview of the
Flexible File 170 system.

= “Using FFIO,” Chapter 11, page 105, describes how to use FFIO with
common file structures, and how to use FFIO to enhance program
performance.

= “Foreign File Conversion,” Chapter 12, page 125, discusses how to convert
data from one file structure to another.

Application Programmer’s 1/0O Guide

= “I/0O Optimization,” Chapter 13, page 155, discusses methods to speed up
1/0 processing.

= “FFIO Layer Reference,” Chapter 14, page 183, provides details about
individual FFIO layers.

= “Creating a user Layer,” Chapter 15, page 231, provides an example of how
to create an FFIO layer.

= “Older Data Conversion Routines,” Appendix A, page 261, lists outdated
data conversion routines.

1.1 The message system

The UNICOS operating system contains an error message system that consists
of commands, library routines, and files that allow error messages to be
retrieved from message catalogs and formatted at run time.

The user who receives a message can request more information by using the
explain (1) user command. The explain command retrieves a message
explanation from an online explanation catalog and displays it on the standard
output device.

The msgid argument to the explain command is the message ID string that
appears when an error message is written. The ID string contains a product
group code and the message number.

The product group code or product code is a string that identifies the product
issuing the message. The product code for the Fortran libraries and for the 1/0
libraries is lib . The number specifies the number of the message. The
following list describes the categories of message numbers:

= All Fortran library errors on UNICOS and UNICOS/mk systems are within
the range of 1000 to 2000. Library errors on IRIX systems are within the
range of 4000-5000. Libraries may also return system error numbers in the
range of 1 to the first library error number. You must use the sys product
code with numbers in this range.

= Flexible file 1/0 (FFIO) returns error values that are in the range of 5000 to
6000 and have a product code of lib

= On UNICOS systems, the tape system returns error numbers that are in the
range of 90000 through 90500. The UNICOS Tape Subsystem User’s Guide,
publication SG-2051, lists tape system error messages.

2 SG-2168 3.0.1

Introduction [1]

SG-2168 3.0.1

Both of the following are variations of the explain command used with a
msgid from the Fortran 170 library:

explain lib1100
explain lib-1100

The previous explain command produces the following description on a
standard output file:

explain lib-1100
lib-1100: A READ operation tried to read a nonexistent record.

On a Fortran READ statement, the REC (record) specifier was
larger than the largest record number for that direct-access
file. Check the value of the REC specifier to ensure that it

is a valid record number. Check the file being read to ensure
that it is the correct file. Also see the description of
input/output statements in your Fortran reference manual. The
class of the error is unrecoverable (issued by the Fortran
run-time library).

There are two classes of Fortran library error messages: UNRECOVERABL&hd
WARNING

The following is an example of a warning message:

lib-1951 a.out: At line <n> in Fortran routine "<name>", in
dimension <d>, extents <el> and <e2> are not equal.

When bounds checking is enabled, this message is issued if an array
assignment exceeds the bounds of the result array. The line

number <n> in the Fortran routine <name> is where the two array
extents (<el> and <e2>) did not match.

Modify the program so as not exceed the bounds of the array, or
ensure that the array extents are equal.

Also see the description of array operations in your Fortran

reference manual.

Note that this message is issued as a warning. Execution of the
program will continue.

If the message number is not valid, a message similar to the following appears:

explain: no explanation for lib-3000

Standard Fortran 1/O [2]

2.1 Files

2.1.1 Internal files

SG-2168 3.0.1

The Fortran standard describes program statements that you can use to transfer
data between external media (external files) or between internal files and
internal storage. It describes auxiliary input/output (1/0) statements that can
be used to change the position in the external file or to write an endfile record.
It also describes auxiliary 1/0 statements that describe properties of the
connection to a file or that inquire about the properties of that connection.

The Fortran standard specifies the form of the input data that a Fortran program
processes and the form of output data resulting from a Fortran program. It
does not specifically describe the physical properties of 1/0 records, files, and
units. This section provides a general overview of files, records, and units.

Standard Fortran has two types of files: external and internal. An external file is
any file that is associated with a unit number. An internal file is a character
variable that is used as the unit specifier in a READor WRITE statement. A unit
is a means of referring to an external file. A unit is connected or linked to a file
through the OPENstatement in standard Fortran. An external unit identifier
refers to an external file and an internal file identifier refers to an internal file.
See Section 2.2, page 8, for more information about unit identifiers.

A file can have a name that can be specified through the FILE= specifier in a
Fortran OPENstatement. If no explicit OPENstatement exists to connect a file to
a unit, and if assign (1) was not used, the 170 library uses a form of the unit
number as the file name.

Internal files provide a means of transferring and converting text stored in
character variables. An internal file must be a character variable or character
array. If the file is a variable, the file can contain only one record. If the file is a
character array, each element within the array is a record. On output, the record
is filled with blanks if the number of characters written to a record is less than
the length of the record. An internal file is always positioned at the beginning
of the first record prior to data transfer. Internal files can contain only
formatted records.

Application Programmer’s 1/0O Guide

2.1.2 External files

When reading and writing to an internal file, only sequential formatted data
transfer statements that do not specify list-directed formatting may be used.
Only sequential formatted READand WRITE statements may specify an internal
file.

In standard Fortran, one external unit may be connected to a file. Cray
Research allows more than one external unit to be connected to the standard
input, standard output, or standard error files if the files were assigned with the
assign -D command. More than one external unit can be connected to a
terminal.

External files have properties of form, access, and position as described in the
following text. You can specify these properties explicitly by using an OPEN
statement on the file. The Fortran standard provides specific default values for
these properties.

< Form (formatted or unformatted): external files can contain formatted or
unformatted records. Formatted records are read or written by formatted
170 data transfer statements. Unformatted records are accessed through
unformatted 1/0 data transfer statements. If the default does not match the
form needed, you can specify the form by using an OPENstatement.

= File access (sequential or direct access): external files can be accessed
through sequential or direct access methods. The file access method is
determined when the file is connected to a unit.

— Sequential access does not require an explicit open of a file by using an
OPENstatement.

When connected for sequential access, the external file has the following
properties:

= The records of the file are either all formatted or unformatted, except
that the last record of the file may be an endfile record.

= The records of the file must not be read or written by direct-access
170 statements when the file is opened for sequential access.

= If the file is created with sequential access, the records are stored in
the order in which they are written (that is, sequentially).

To use sequential access on a file that was created as a formatted
direct-access file, open the file as sequential. To use sequential access on

SG-2168 3.0.1

Standard Fortran I/O [2]

SG-2168 3.0.1

a file that was created as an unformatted direct-access file, open the file
as sequential, and use the assign command on the file as follows:

assign -s unblocked ...

The assign command is required to specify the type of file structure.
The 1/0 libraries need this information to access the file correctly.

Buffer 170 files are unformatted sequential access files.

Direct access does require an explicit open of a file by using an OPEN
statement. If a file is accessed through a sequential access READor
WRITE statement, the 170 library implicitly opens the file. During an
explicit or implicit open of a file, the 1/0 library tries to access
information generated by the assign (1) command for the file.

Direct access can be faster than sequential access when a program must
access a set of records in a nonsequential manner.

When connected for direct access, an external file has the following
properties:

= The records of the file are either all formatted or all unformatted. If
the file can be accessed as a sequential file, the endfile record is not
considered part of the file when it is connected for direct access.
Some sequential files do not contain a physical endfile record.

= The records of the file must not be read or written by sequential-access
170 statements while the file is opened for direct access.

= All records of the file have the same length, which is specified in the
RECLspecifier of the OPENstatement.

e Records do not have to be read or written in the order of their record
numbers.

= The records of the file must not be read or written using list-directed
or namelist formatting.

= The record number (a positive integer) uniquely identifies each record.

If all of the records in the file are the same length and if the file is
opened as direct access, a formatted sequential-access file can be accessed
as a formatted direct-access file on UNICOS and UNICOS/mk systems.
On IRIX systems, the default direct access formatted file structure does
not support this; the capability is available if the direct access file is
assigned a text structure (with assign -s text).

Application Programmer’s 1/0O Guide

2.2 Fortran unit identifiers

Unformatted sequential-access files can be accessed as unformatted
direct-access files if all of the records are the same length and if the file is
opened as direct access, but only if the sequential-access file was created
with an unblocked file structure. The following assign commands
create these file structures:

assign -s unblocked ...
assign -s u ...
assign -F system ...

For more information about the assign environment and about default
file structures, see Chapter 6, page 55.

File position: a file connected to a unit has a position property, which can be
either an initial point or a terminal point. The initial point of a file is the
position just before the first record, and the terminal point is the position just
after the last record. If a file is positioned within a record, that record is
considered to be the current record; otherwise, there is no current record.

During an 1/0 data transfer statement, the file can be positioned within a
record as each individual input/out or in/out list (iolist) item is processed.
The use of a dollar sign ($) as a carriage control edit descriptor in a format
may cause a file to be positioned within a record.

In standard Fortran, the end-of-file (EOF) record is a special record in a
sequential access file; it denotes the last record of a file. A file can be
positioned after an EOF, but only CLOSE BACKSPACEor REWIND
statements are then allowed on the file in standard Fortran. Other 1/0
operations are allowed after an EOF to provide multiple-file 170 if a file is
assigned to certain devices or is assigned with a certain file structure.

A Fortran unit identifier is required for Fortran READor WRITE statements to
uniquely identify the file. A unit identifier can be one of the following:

An integer variable or expression whose value is greater than or equal to 0.
Each integer unit identifier i is associated with the fort. i file, which may
exist (except as noted in the following text). For example, unit 10 is
associated with the fort.10 file in the current directory.

An asterisk (*) is allowed only on READand WRITE statements. It identifies
a particular file that is connected for formatted, sequential access. On READ

SG-2168 3.0.1

Standard Fortran I/O [2]

SG-2168 3.0.1

statements, an asterisk refers to unit 100 (standard input). On WRITE
statements, an asterisk refers to unit 101 (standard output).

= A Hollerith (integer) variable consisting of 1 to 8 left-justified, blank-filled or
zero-filled ASCII characters. Each Hollerith unit identifier is associated with
the file of the same name, which may exist. For example, unit 'red’L is
associated with the red file in the current working directory. The use of
uppercase and lowercase characters is significant for file names. This
extension is supported only on 64-bit systems.

Certain Fortran 1/0 statements have an implied unit number. The PRINT
statement always refers to unit 101 (standard output), and the outmoded PUNCH
statement always refers to unit 102 (standard error).

Fortran INQUIRE and CLOSEstatements may refer to any valid or invalid unit
number (if referring to an invalid unit number, no error is returned). All other
Fortran 1/0 statements may refer only to valid unit numbers. For the purposes
of an executing Fortran program, all unit numbers in use or available for use by
that program are valid; that is, they exist. All unit numbers not available for
use are not valid; that is, they do not exist.

Valid unit numbers are all nonnegative numbers except 100 through 102. Unit
numbers 0, 5, and 6 are associated with the standard error, standard input, and
standard output files; any unit can also refer to a pipe. All other valid unit
numbers are associated with the fort. i file, or with the file name implied in a
Hollerith unit number. Use the INQUIRE statement to check the validity
(existence) of any unit number prior to using it, as in the following example:

logical UNITOK, UNITOP...
inquire (unit=l,exist=UNITOK,opened=UNITOP)
if (UNITOK .and. .not. UNITOP) then
open (unit = I, ...)
endif

All valid units are initially closed. A unit is connected to a file as the result of
one of three methods of opening a file or a unit:

= An implicit open occurs when the first reference to a unit number is an 1/0
statement other than OPEN CLOSE INQUIRE, BACKSPACEENDFILE, or
REWIND The following example shows an implicit open:

WRITE (4) 1K

Application Programmer’s 1/0O Guide

10

If unit number 4 is not open, the WRITE statement causes it to be connected
to the associated file fort.4 , unless overridden by an assign command
that references unit 4.

The BACKSPACEENDFILE, and REWINDstatements do not perform an
implicit OPEN If the unit is not connected to a file, the requested operation
is ignored.

= An explicit unnamed open occurs when the first reference to a unit number is
an OPENstatement without a FILE specifier. The following example shows
an explicit unnamed open:

OPEN (7, FORM="UNFORMATTED")

If unit number 7 is not open, the OPENstatement causes it to be connected
to the associated file fort.7 , unless an assign (1) command that references
unit 7 overrides the default file name.

= An explicit named open occurs when the first reference to a unit number is an
OPENstatement with a FILE specifier. The following is an example:

OPEN (9, FILE='blue)

If unit number 9 is not open, the OPENstatement causes it to be connected
to file blue , unless overridden by an assign command that references the
file named blue .

Unit numbers 100, 101, and 102 are permanently associated with the standard
input, standard output, and standard error files, respectively. These files can be
referenced on READand WRITE statements. A CLOSEstatement on these unit
numbers has no effect. An INQUIRE statement on these unit numbers indicates
they are nonexistent (not valid).

These unit numbers exist to allow guaranteed access to the standard input,
standard output, and standard error files without regard to any unit actions
taken by an executing program. Thus, a READor WRITE /0 statement with an
asterisk unit identifier (which is equivalent to unit 101) or a PRINT statement
always works. Nonstandard 1/0 operations such as BUFFER INand BUFFER
OUT READMSand WRITMSon these units are not supported.

Fortran applications or library subroutines that must access the standard input,
standard output, and standard error files can be certain of access by using unit
numbers 100 through 102, even if the user program closes or reuses unit
numbers 0, 5, and 6.

SG-2168 3.0.1

Standard Fortran I/O [2]

For all unit numbers associated with the standard input, standard output, and
standard error files, the access mode and form must be sequential and
formatted. The standard input file is read only, and the standard output and
standard error files are write only. REWINDand BACKSPACEtatements are
permitted on workstation files but have no effect. ENDFILE statements are
permitted on terminal files unless they are read only. The ENDFILE statement
writes a logical endfile record.

The REWINDstatement is not valid for any unit numbers associated with pipes.
The BACKSPACHEtatement is not valid if the device on which the file exists
does not support repositioning. BACKSPACH(fter a logical endfile record does
not require repositioning because the endfile record is only a logical
representation of an endfile record.

2.3 Data transfer statements

2.3.1 Formatted I/O

SG-2168 3.0.1

The READstatement is the data transfer input statement. The WRITEand PRINT
statements are the data transfer output statements. If the data transfer
statement contains a format specifier, the data transfer statement is a formatted
/70 statement. If the data transfer statement does not contain a format specifier,
the data transfer statement is an unformatted 1/0 statement. The time required
to convert input or output data to the proper form adds to the execution time
for formatted 1/0 statements. Unformatted 1/0 maintains binary
representations of the data. Very little CPU time is required for unformatted
/0 compared to formatted 1/0.

On CRAY T3E systems with HPF_CRAFT, shared variables can be used in the
170 lists of formatted 1/0, list-directed 170, and unformatted 1/0 statements.
Shared variables are not supported for the IOSTAT specifier, the unit specifier
or any other control list specifier on 1/0 statements.

In formatted 1/0, data is transferred with editing. Formatted 1/0 can be
edit-directed, list-directed, and namelist I/0. If the format identifier is an
asterisk, the 170 statement is a list-directed 1/0 statement. All other format
identifiers indicate edit-directed 1/0.

Formatted 170 should be avoided when 1/0 performance is important.
Unformatted 1/0 is faster and it avoids potential inaccuracies due to
conversion. However, there are occasions when formatted 1/0 is necessary. The
advantages for formatted 1/0 are as follows:

11

Application Programmer’s 1/0O Guide

2.3.1.1 Edit-directed 1/O

12

= Formatted data can be interpreted by humans.

= Formatted data can be readily used by programs and utilities not written in
Fortran, or otherwise unable to process Fortran unformatted files.

= Formatted data can be readily exchanged with other computer systems
where the structure of Fortran unformatted files may be different.

See the Fortran Language Reference manuals for your compiler system for more
information about formatted 1/0 statements.

The format used in an edit-directed 1/0 statement provides information that
directs the editing between internal representation and the character strings of a
record (or sequence of records) in the file.

An example of a sequential access, edit-directed WRITE statement follows:

C Sequential edit-directed WRITE statement
C

WRITE (10,10,ERR=101,I0STAT=I0S) 100,200
10 FORMAT (TR2,110,1X,110)

An example of a sequential access, edit-directed READstatement follows:

C Sequential edit-directed READ statement
C

READ (10,11,END=99,ERR=102,I0STAT=I0S) IVAR
11 FORMAT (BN,TR2,110:1X,110)

An example of a direct access edit-directed 1/0 statement follows:

OPEN (11,ACCESS='DIRECT’,FORM="FORMATTED’,
RECL=24)

Direct edit-directed READ and WRITE statements

OO0+

WRITE (11,10,REC=3,ERR=103,I0STAT=I0S) 300,400
READ (11,11,REC=3,ERR=104,I0STAT=I0S) IVAR

There are four general optimization techniques that you can use to improve the
efficiency of edit-directed formatted 1/0.

SG-2168 3.0.1

Standard Fortran I/O [2]

SG-2168 3.0.1

Procedure 1: Optimization technique: using single statements

Read or write as much data with a single READ/WRITE/PRINT statement as
possible. The following is an example of an inefficient way to code a WRITE
statement:

DO J=1M
DO I=1,N
WRITE (42, 100) X(1,J)
100 FORMAT (E25.15)
ENDDO
ENDDO

It is better to write the entire array with a single WRITE statement, as is done in
the following two examples:

WRITE (42, 100) ((X(1,d),I=1,N),J=1,M)
100 FORMAT (E25.15)

or

WRITE (42, 100) X
100 FORMAT (E25.15)

Each of these three code fragments produce exactly the same output; although
the latter two are about twice as fast as the first. Note that the format can be
used to control how much data is written per record. Also, the last two cases
are equivalent if the implied DOloops write out the entire array, in order and
without omitting any items.

Procedure 2: Optimization technique: using longer records

Use longer records if possible. Because a certain amount of processing is
necessary to read or write each record, it is better to write a few longer records
instead of more shorter records. For example, changing the statement from
Example 1 to Example 2 causes the resulting file to have one fifth as many
records and, more importantly, causes the program to execute faster:

Example 1: (Not recommended)

WRITE (42, 100) X
100 FORMAT (E25.15)

13

Application Programmer’s 1/0O Guide

2.3.1.2 List-directed 1/O

14

Example 2: (Recommended)

WRITE (42,101) X
101 FORMAT (5E25.15)

You must make sure that the resultant file does not contain records that are too
long for the intended application. Certain text editors and utilities, for example,
cannot process lines that are longer than a predetermined limit. Generally lines
that are 128 characters or less are safe to use in most applications.

Procedure 3: Optimization technique: using repeated edit
descriptors

Use repeated edit descriptors whenever possible. Instead of using the format in
Example 1, use the format in Example 2 for integers which fit in four digits
(that is, less than 10000 and greater than —1000).

Example 1: (Not recommended)

200 FORMAT (16(X,14))

Example 2: (Recommended)

201 FORMAT (16(I5))

Procedure 4: Optimization technique: using data edit descriptors

Character data should be read and written using data edit descriptors that are
the same width as the character data. For CHARACTER*n variables, the
optimal data edit descriptor is A (or An). For Hollerith data in INTEGER
variables, the optimal data edit descriptor is A8 (or R8).

If the format specifier is an asterisk, list-directed formatting is specified. The
REC=specifier must not be present in the 1/0 statement.

In list-directed 170, the 1/0 records consist of a sequence of values separated
by value separators such as commas or spaces. A tab is treated as a space in
list-directed input, except when it occurs in a character constant that is
delimited by apostrophes or quotation marks.

List-directed and namelist output of real values uses either an F or an E format
with a number of decimal digits of precision that assures full-precision printing
of the real values. This allows formatted, list-directed, or namelist input of real
values to result later in the generation of bit-identical binary floating point

SG-2168 3.0.1

Standard Fortran I/O [2]

SG-2168 3.0.1

representation. Thus, a value may be written and then reread without changing
the stored value.

The LISTIO_PRECISION and LISTIO_OUTPUT_STYLE environment variables
can be used to control list-directed output, as discussed in the following
paragraphs.

You can set the LISTIO_PRECISION environment variable to control the
number of digits of precision printed by list-directed or namelist output. The
following values can be assigned to LISTIO_PRECISION :

FULL Prints full precision (this is the default value).

PRECISION Prints x or x +1 decimal digits, where x is a value of the Fortran
90 PRECISION() intrinsic function for a given real value. This is
a smaller number of digits that usually ensures that the last
decimal digit is accurate to within 1 unit.

YMP80 Causes list-directed and namelist output of real values to be of
the format used in Cray Research’s UNICOS 8.0 release and
previous Cray Research library versions on UNICOS systems.

LISTIO_OUTPUT_STYLE provides a compatibility mode for the Cray Research
CrayLibs 2.0 release and later versions. When set to OLD this environment
variable causes three effects:

= Repeated list-directed output values closely resemble those printed by the
Cray Research CrayLibs 1.2 and prior releases. In these prior releases, the
repeat counts never spanned vector array extents passed to the library from
the compiler. In the current version of CrayLibs, the libraries coalesce repeat
counts as much as possible to compress output and to ensure that compiler
optimization does not affect the format of list-directed output.

= Value separators are not printed between adjacent nondelimited character
values and noncharacter values printed by list-directed output in Fortran 90
files. In CrayLibs 2.0, the libraries produce one blank character as a value
separator to comply with the ANSI Fortran 90 standard. No value separator
is printed between adjacent nondelimited character values and noncharacter
values in FORTRAN 77 files because the ANSI FORTRAN 77 standard
requires that none be printed.

= A blank character will not be printed in column 1 when a list-directed
statement with no 1/0 list items is executed. In the CrayLibs 2.0 release, the
libraries started printing a blank character in column 1 to comply with the
ANSI FORTRAN 77 and ANSI Fortran 90 standards.

An example of a list-directed WRITE statement follows:

15

Application Programmer’s 1/0O Guide

2.3.1.2.1 Namelist I/O

2.3.2 Unformatted /O

16

C Sequential list-directed WRITE statement
WRITE (10,* ERR=101,I0STAT=IOS) 100,200

An example of a list-directed READstatement follows:

C Sequential list-directed READ statement
READ (10,* END=99,ERR=102,I0STAT=I0S) IVAR

Namelist 1/0 is similar to list-directed 1/0, but it allows you to group variables
by specifying a namelist group name. On input, any namelist item within that
list may appear in the input record with a value to be assigned. On output, the
entire namelist is written.

The namelist item name is used in the namelist input record to indicate the
namelist item to be initialized or updated. During list-directed input, the input
records must contain a value or placeholder for all items in the input list.
Namelist does not require that a value be present for each namelist item in the
namelist group.

You can specify a namelist group name in READ WRITE and PRINT statements.

The following is an example of namelist 1/0:

NAMELIST/GRP/T,|
READ(5,GRP)
WRITE(6,GRP)

During unformatted 1/0, binary data is transferred without editing between the
current record and the entities specified by the 170 list. Exactly one record is
read or written. The unit must be an external unit.

The following is an example of a sequential access unformatted 1/0 WRITE
statement:

C Sequential unformatted WRITE statement
WRITE (10,ERR=101,I0STAT=I0S) 100,200
The following is an example of a sequential access unformatted 1/0 READ
statement:
C Sequential unformatted READ statement

READ (10,END=99,ERR=102,I0STAT=IOS) IVAR

SG-2168 3.0.1

Standard Fortran I/O [2]

2.4 Auxiliary 1/10

The following is an example of a direct access unformatted 1/0 statement:

OPEN (11,ACCESS='DIRECT' ,FORM="UNFORMATTED’, RECL=24)
C Direct unformatted READ and WRITE statements

WRITE (11,REC=3,ERR=103,I0STAT=10S) 300,400

READ (11,REC=3,ERR=103,I0STAT=I0S) IVAR

The auxiliary 1/0 statements consist of the OPEN CLOSE INQUIRE,
BACKSPACEREWIND and ENDFILE statements. These types of statements
specify file connections, describe files, or position files. See the Fortran
Language Reference manual for your compiler system for more details about
auxiliary 1/0 statements.

2.4.1 File connection statements

The OPENand CLOSEstatements specify an external file and how to access the
file.

An OPENstatement connects an existing file to a unit, creates a file that is
preconnected, creates a file and connects it to a unit, or changes certain
specifiers of a connection between a file and a unit. The following are examples
of the OPENSstatement:

OPEN (11,ACCESS='DIRECT’,FORM="FORMATTED’,RECL=24)
OPEN (10,ACCESS="SEQUENTIAL’, FORM="UNFORMATTED’)
OPEN (9,BLANK="NULL’)

The CLOSEstatement terminates the connection of a particular file to a unit. A
unit that does not exist or has no file connected to it may appear within a
CLOSEstatement; this would not affect any files.

2.4.2 The INQUIRE statement

SG-2168 3.0.1

The INQUIRE statement describes the connection to an external file. This
statement can be executed before, during, or after a file is connected to a unit.
All values that the INQUIRE statement assigns are current at the time that the
statement is executed.

You can use the INQUIRE statement to check the properties of a specific file or
check the connection to a particular unit. The two forms of the INQUIRE
statement are INQUIRE by file and INQUIRE by unit.

17

Application Programmer’s 1/0O Guide

The INQUIRE by file statement retrieves information about the properties of a
particular file.

The INQUIRE by unit statement retrieves the name of a file connected to a
specified unit if the file is a named file. The standard input, standard output,
and standard error files are unnamed files. An INQUIRE on a unit connected to
any of these files indicates that the file is unnamed.

An INQUIRE by unit on any unit connected by using an explicit named OPEN
statement indicates that the file is named, and returns the name that was
present in the FILE= specifier in the OPENstatement.

An INQUIRE by unit on any unit connected by using an explicit unnamed
OPENstatement, or an implicit open may indicate that the file is named. A
name is returned only if the 1/0 library can ensure that a subsequent OPEN
statement with a FILE= name will connect to the same file.

2.4.3 File positioning statements

18

The BACKSPACENd REWINDstatements change the position of the external
file. The ENDFILE statement writes the last record of the external file.

You cannot use file positioning statements on a file that is connected as a direct
access file. The REC=record specifier is used for positioning in a READor
WRITE statement on a direct access file.

The BACKSPACHKtatement causes the file connected to the specified unit to be
positioned to the preceding record. The following are examples of the
BACKSPACIKtatement:

BACKSPACE 10

BACKSPACE (11, I0STAT=ios, ERR=100)
BACKSPACE (12, ERR=100)
BACKSPACE (13, IOSTAT=ios)

The ENDFILE statement writes an endfile record as the next record of the file.
The following are examples of the ENDFILE statement:

ENDFILE 10

ENDFILE (11, IOSTAT=ios, ERR=100)
ENDFILE (12, ERR=100)

ENDFILE (13, IOSTAT=ios)

The REWINDstatement positions the file at its initial point. The following are
examples of the REWINDstatement:

SG-2168 3.0.1

Standard Fortran I/O [2]

REWIND 10
REWIND (11, IOSTAT=ios, ERR=100)
REWIND (12, ERR=100)

REWIND (13, IOSTAT=ios)

REWIND (14)

2.5 Private I/0 on CRAY T3E systems

2.6 Multithreading and

SG-2168 3.0.1

Private 170 consists of the READ WRITE OPEN CLOSE REWIND ENDFILE,
BACKSPACEand INQUIRE statements. A private READor WRITE statement is
executed by the processing element (PE) that encounters it with no
communication or coordination with other PEs.

At program start, unit numbers 0, 5, 6, and 100 through 102 are associated with
stdin , stdout , and stderr . If stdin or stdout is not associated with a
terminal, it is buffered. Results are unpredictable if more than one PE tries to
read from units 5 or 100, or tries to write to units 6 or 101.

standard Fortran 1/O

Multithreading is the concurrent use of multiple threads of control which
operate within the same address space. On UNICOS systems, multithreading is
available through macrotasking, Autotasking, and the Pthread interface. On
UNICOS/mk systems, multithreading is available through the Pthreads
interface. On IRIX systems, multithreading is available through DOACROSS
compiler directives and through the Pthreads interface.

Standard Fortran 1/0 is thread-safe on UNICOS and IRIX systems. Standard
Fortran 170 is not thread-safe on UNICOS/mk systems.

On UNICOS systems and IRIX systems, the runtime 1/0 library performs all
the needed locking to permit multiple threads to concurrently execute Fortran
I/0 statements. The result is proper execution of all Fortran 1/0 statements
and the sequential execution of 1/0 statements issued across multiple threads
to files opened for sequential access.

On UNICOS/mk systems (where Fortran 1/0 is not thread-safe), threaded
programs must use locks or other synchronization around Fortran 1/0
statements to prevent concurrent execution of 1/0 statements on multiple
threads. Failure to do so causes unpredictable results.

19

Fortran I/O Extensions [3]

This chapter describes additional 1/0 routines and statements available with
the CF90 compiler and the MIPSpro 7 Fortran 90 compiler. These additional
routines, known as Fortran extensions, perform unformatted 1/0.

For details about the routines discussed in this chapter, see the individual man
pages for each routine. In addition, see the reference manuals for your compiler
system.

3.1 BUFFER IN/BUFFER OUT routines

SG-2168 3.0.1

BUFFER INand BUFFER OUTtatements initiate a data transfer between the
specified file or unit at the current record and the specified area of program
memory. To allow maximum asynchronous performance, all BUFFER INand
BUFFER OUDperations should begin and end on a sector boundary. See
Chapter 9, page 87, for more information about sector sizes.

The BUFFER INand BUFFER OUTBtatements can perform sequential
asynchronous unformatted 1/0 if the files are assigned as unbuffered files. You
must declare the BUFFER INand BUFFER OUTiles as unbuffered by using
one of the following assign (1) commands.

assign -s u ...
assign -F system ...

If the files are not declared as unbuffered, the BUFFER INand BUFFER OUT
statements may execute synchronously.

For tapes, BUFFER INand BUFFER OUDperate synchronously; when you
execute a BUFFERstatement, the data is placed in the buffer before you execute
the next statement in the program. Therefore, for tapes, BUFFER INhas no
advantage over a read statement or a CALL READstatement; however, the
library code is doing asynchronous read-aheads to fill its own buffer.

The COS blocked format is the default file structure on UNICOS and
UNICOS/mk systems for files (not tapes) that are opened explicitly as
unformatted sequential or implicitly by a BUFFER INor BUFFER OUT
statement. The F77 format is the default file structure on IRIX systems.

The BUFFER INand BUFFER OUTEtatements decrease the overhead associated
with transferring data through library and system buffers. These statements

21

Application Programmer’s 1/0O Guide

3.1.1 The UNIT intrinsic

3.1.2 The LENGTHintrinsic

22

also offer the advantages of asynchronous 1/0. I/0 operations for several files
can execute concurrently and can also execute concurrently with CPU
instructions. This can decrease overall wall-clock time.

In order for this to occur, the program must ensure that the requested
asynchronous data movement was completed before accessing the data. The
program must also be able to do a significant amount of CPU-intensive work or
other 1/0 during asynchronous 1/0 to increase the program speed.

Buffer 1/0 processing waits until any previous buffer /0 operation on the file
completes before beginning another buffer 1/0 operation.

Use the UNIT (3F) and LENGTH3F) functions with BUFFER INand BUFFER
OUTstatements to delay further program execution until the buffer 1/0
statement completes.

For details about the routines discussed in this section, see the individual man
pages for each routine.

The UNIT intrinsic routine waits for the completion of the BUFFER INor
BUFFER OUTtatement. A program that uses asynchronous BUFFER INand
BUFFER OUTnust ensure that the data movement completes before trying to
access the data. The UNIT routine can be called when the program wants to
delay further program execution until the data transfer is complete. When the
buffer 170 operation is complete, UNIT returns a status indicating the outcome
of the buffer 1/0 operation.

The following is an example of the UNIT routine:
STATUS=UNIT(90)

The LENGTHIintrinsic routine returns the length of transfer for a BUFFER INor
a BUFFER OUTtatement. If the LENGTHroutine is called during a BUFFER IN
or BUFFER OUDperation, the execution sequence is delayed until the transfer

is complete. LENGTHthen returns the number of words successfully transferred.
A 0 is returned for an end-of-file (EOF).

The following is an example of the LENGTHroutine:
LENG=LENGTH(90)

SG-2168 3.0.1

Fortran 1/0 Extensions [3]

3.1.3 Positioning (deferred implementation on IRIX systems)

The GETPO®F) and SETPOS3F) file positioning routines change or indicate
the position of the current file. The GETPOSoutine returns the current position
of a file being read. The SETPOSroutine positions a tape or mass storage file to
a previous position obtained through a call to GETPOS

You can use the GETPOSnd SETPOSpositioning statements on buffer 1/0
files. These routines can be called for random positioning for BUFFER INand
BUFFER OUTProcessing. These routines can be used with COS blocked files on
disk, but not with COS blocked files on tape.

You can also use these routines with the standard Fortran READand WRITE
statements. The direct-access mode of standard Fortran is an alternative to the
GETPOSnd SETPOSfunctionality.

3.2 Random access I/O routines (not available on IRIX systems)

SG-2168 3.0.1

The record-addressable random-access file 1/0 routines let you generate
variable length, individually addressable records. The I/0 library updates
indexes and pointers.

Each record in a random-access file has a 1-word (64-bit) key or number
indicating its position in an index table of records for the file. This index table
contains a pointer to the location of the record on the device and can also
contain a name of each record within the file.

Alphanumeric record keys increase CPU time compared to sequential integer
record keys because the 1/0 routines must perform a sequential lookup in the
index array for each alphanumeric key. Each record should be named a numeric
value n; n is the integer that corresponds to the n th record created on the file.

The following two sets of record-addressable random-access file 1/0 routines
are available:

= The Mass Storage (MS) package provides routines that perform buffered,
record-addressable file I/0 with variable-length records. It contains the
OPENMSREADMSWRITMS CLOSMSWAITMS FINDMS SYNCMSASYNCMS
CHECKMSnd STINDX routines.

= The Direct Random (DR) package provides routines that perform unbuffered,
record-addressable file 1/0. It contains the OPENDRREADDRWRITDR
CLOSDRWAITDR SYNCDRASYNCDRCHECKDRand STINDR routines. The
amount of data transferred for a record is rounded up to a multiple of 512
words, because 1/0 performance is improved for many disk devices.

23

Application Programmer’s 1/0O Guide

24

Both synchronous and asynchronous MS and DR 1/0 can be performed on a
random-access file. You can use these routines in the same program, but they
must not be used on the same file simultaneously. The MS and DR packages
cannot be used for tape files.

If a program uses asynchronous 1/0, it must ensure that the data movement is
completed before trying to access the data. Because asynchronous I/0 has a
larger overhead in CPU time than synchronous 170, only very large data
transfers should be done with asynchronous 1/0. To increase program speed,
the program must be able to do a significant amount of CPU-intensive work or
other 1/0 while the asynchronous I/0 is executing.

The MS library routines are used to perform buffered record-addressable
random-access 1/0. The DR library routines are used to perform unbuffered
record-addressable random-access 1/0.

These library routines are not internally locked to ensure single-threading; a
program must lock each call to the routine if the routine is called from more
than one task.

The following list describes these two packages in more detail. For details
about the routines discussed in this section, see the individual man pages for
each routine.

< OPENM@F) and OPENDEF) open a file and specify the file as a
random-access file that can be accessed by record-addressable
random-access 170 routines.

These routines must be used to open a file before the file can be accessed by
other MS or DR package routines. OPENMSets up an 1/0 buffer for the
random-access file. These routines read the index array for the file into the
array provided as an argument to the routine. CLOSMS®r CLOSDRmust
close any files opened by the OPENM®r OPENDRoutine. The following are
examples of these two routines:

CALL OPENMS(80,intarr,len,it,ierr)
CALL OPENDR(20,inderr,len,itflg,ierr)

< READMG@F) performs a read of a record into memory from a random-access
file. READDReads a record from a random-access file into memory.

If READDRSs used in asynchronous mode and the record size is not a
multiple of 512 words, user data can be overwritten and not restored. You
can use SYNCDRo switch to a synchronous read; the data is copied and
restored after the read has completed. The following are examples of these
routines:

SG-2168 3.0.1

Fortran 1/0 Extensions [3]

SG-2168 3.0.1

CALL READMS(80,ibuf,nwrd,irec,ierr)
CALL READDR(20,iloc,nwrd,irec,ierr)

WRITM$3F) writes to a random-access file on disk from memory. WRITDR
writes data from user memory to a record in a random-access file on disk.
Both routines update the current index. The following are examples of these
routines:

CALL WRITMS(20,ibuf,nwrd,irec,irflg,isflag,ierr)
CALL WRITDR(20,ibuf,nwrd,irec,irflag,isflg,ierr)

The CLOSM&F) and CLOSDRroutines write the master index specified in
the call to OPENM®r OPENDRrom the array provided in the user program
to the random-access file and then close the file. These routines also write
statistics about the file to the stderr file. The following are examples of
these routines:

CALL CLOSMS(20,ierr)
CALL CLOSDR(20,ierr)

ASYNCM@F) and ASYNCDRet the I/0 mode for the random-access
routines to asynchronous. 1/0 operations can be initiated and subsequently
proceed simultaneously with the actual data transfer. If the program uses
READMSprecede asynchronous reads with calls to FINDMS The following
are examples of these routines:

CALL ASYNCMS(20,ierr)
CALL ASYNCDR(20,ierr)

CHECKM@F) and CHECKDRheck the status of the asynchronous
random-access 1/0 operation. The following are examples of these routines:

CALL CHECKMS(20,istat,ierr)
CALL CHECKDR(20,istat,ierr)

WAITMS$3F) and WAITDRwait for the completion of an asynchronous 170
operation. They return a status flag indicating if the 1/0 on the specified file
completed without error. The following are examples of these routines:

CALL WAITMS(20,istat,ierr)
CALL WAITDR(20,istat,ierr)

SYNCM@EF) and SYNCDRset the 1/0 mode for the random-access routines
to synchronous. All future 1/0 operations wait for completion. The
following are examples of these routines:

25

Application Programmer’s 1/0O Guide

26

CALL SYNCMS(20,ierr)
CALL SYNCDR(20,ierr)

STINDX(3F) and STINDR allow an index to be used as the current index by
creating a subindex. These routines reduce the amount of memory needed
by a file that contains a large number of records. They also maintain a file
containing records logically related to each other. Records in the file, rather
than records in the master index area, hold secondary pointers to records in
the file.

These routines allow more than one index to manipulate the file. Generally,
STINDX or STINDR toggle the index between the master index maintained
by OPENMS/OPEND&d CLOSMS/CLOSDRNd the subindex supplied by
the Fortran program. The following are examples of these routines:

CALL STINDX(20,inderr,len,itflg,ierr)
CALL STINDR(20,inderr,len,itflg,ierr)

FINDMS3F) asynchronously reads the desired record into the data buffers
for the specified file. The next READM®r WRITMScall waits for the read to
complete and transfers data appropriately. An example of a call to FINDMS
follows:

CALL FINDMS(20,inwrd,irec,ierr)

The following program example uses the MS package:

Example 1: MS package use

100

program msio
dimension r(512)
dimension idx(512)
data r/512*2.0/
irflag=0

call openms(1,idx,100,0,ier)

do 100 i=1,100
call writms(1,r,512,i,irflag,0,ier)
if(ier.ne.0)then
print *"error on writms=",ier
goto 300
end if
continue

SG-2168 3.0.1

Fortran 1/0 Extensions [3]

SG-2168 3.0.1

200
300

do 200 i=1,100
call readms(1,r,512,i,irflag,0,ier)
if(ier.ne.0)then
print *"error on readms=",ier
goto 300
end if

continue
continue

call closms(1,ier)
end

The following program uses the DR package:

Example 2: DR package use

100

program daio
dimension r(512)
dimension idx(512)
data r/512*2.0/
irflag=0

ierrs=0

call assign(assign -R’jierl)
call asnunit(1,’-F mr.save.ovf1:10:200:20’,ier2)
if(ierl.ne.0.or.ier2.ne.0)then
print *"assign error=",ierl,ier2
ierrs=ierrs+1
end if

call opendr(1,idx,100,0,ier)
if(ier.ne.0)then
print *"error on opendr=",ier
ierrs=ierrs+1
end if

do 100 i=1,100
call writdr(1,r,512,i,irflag,0,ier)
if(ier.ne.0)then
print *"error on writdr=",ier
ierrs=ierrs+1
end if
continue

27

Application Programmer’s 1/0O Guide

do 200 i=1,100
call readdr(1,r,512,i,irflag,0,ier)
if(ier.ne.0)then
print *"error on readdr=",ier
ierrs=ierrs+1
end if
200 continue
300 call closdr(1,ier)
if(ier.ne.0)then
print *"error on readdr=",ier
ierrs=ierrs+1
end if
400 continue
if(ierrs.eq.0)then
print *"daio passed"
else
print *"daio failed"
end if
end

3.3 Word-addressable 1/O routines (not available on IRIX systems)

A word-addressable (WA) random-access file consists of an adjustable number
of contiguous words. The WA package performs unformatted buffered 1/0; the
WA routines perform efficiently when the 1/0 buffers are set to a size large
enough to hold several records that are frequently read and/or written. When a
WA read operation is executed, the 1/0 buffers are searched to see if the data
that will be read is already in the buffers. If the data is found in the 1/0 buffers,
170 speedup is achieved because a system call is not needed to retrieve the data.

A program using the package may access a word or a contiguous sequence of
words from a WA random-access file. The WA package cannot be used for tape
files.

Although the WA 1/0 routines provide greater control over 1/0 operations than
the record-addressable routines, they require that the user track information
that the system would usually maintain when other forms of 1/0 are used. The
program must keep track of the word position of each record in a file that it
will read or write with WA 1/0. This is easiest to do with fixed-length records;
with variable-length records, the program must store record lengths for the file
where they can be retrieved when the file is accessed. When variable-length
records are used, the program should use record-addressable 1/0.

28 SG-2168 3.0.1

Fortran 1/0 Extensions [3]

SG-2168 3.0.1

The WA package allows both synchronous and asynchronous 1/0. To speed up
the program, the program must be able to do a significant amount of
CPU-intensive work or other 1/0 while the asynchronous 1/0 is executing.

These library routines are not internally locked to ensure single-threading; a
program must lock each call to the routine if the routine is called from more
than one task.

The following list briefly describes the routines in this package; for details
about the routines discussed in this section, see the individual man pages for
each routine.

WOPE(SF) opens a file and specifies it as a word-addressable random-access
file. WOPEMnust be called before any other WA routines are called because
it creates the 1/0 buffer for the specified file by using blocks. By using
WOPENyou can combine synchronous and asynchronous 1/0 to a given file
while the file is opened. The following is an example of a call to WOPEN

CALL WOPEN(30,iblks,istat,err)

GETWESF) synchronously reads data from a buffered word-addressable
random-access file. SEEK3F) is used with GETWAo provide more efficient
I/70; the SEEKroutine performs an asynchronous pre-fetch of data into a
buffer. The following is an example of a call to GETWA

CALL GETWA(30,iloc,iadr,icnt,ierr)
SEEK3F) asynchronously reads data from the word-addressable file into a
buffer. A subsequent GETW4Asall will deliver the data from the buffer to the

user data area. This provides a way for the user to do asynchronous
read-ahead. The following is an example of a call to SEEK

CALL SEEK(30,iloc,iadr,icnt,ierr)

PUTWF) synchronously writes from memory to a word-addressable
random-access file. The following is an example of a call to PUTWA
CALL PUTWA(30,iloc,iadr,icnt,ierr)

APUTWEBF) asynchronously writes from memory to a word-addressable
random-access file. The following is an example of a call to APUTWA
CALL APUTWA(30,iloc,iadr,icnt,ierr)

WCLOSEF) finalizes changes and additions to a WA file and closes it. The
following is an example of a call to WCLOSE

29

Application Programmer’s 1/0O Guide

CALL WCLOSE(30,ierr)

The following is an example of a program which uses the WA 170 routines:

Example 3: WA package use

program waio

dimension r(512), r1(512)

iblks=10 luse a 10 block buffer
istats=1 Iprint out 1/O Stats

call wopen(1,iblks,0,ier)
if(ier.ne.0)then
print *"error on wopen=",ier
goto 300
end if

jaddr=1
do 100 k=1,100

do 10 j=1,512
10 r(j)=j+k
call putwa(l,r,iaddr,512,ier)
if(ier.ne.0)then
print *"error on putwa=",ier," rec=",k
goto 300
end if
iaddr=iaddr+512
100 continue

jaddr=1
do 200 k=1,100
call getwa(1,rl,iaddr,512,ier)
if(ier.ne.0)then
print *, “error on getwa=",ier," rec=",k

goto 300
end if
iaddr=iaddr+512

200 continue
300 continue
call wclose(1)

end

30 SG-2168 3.0.1

Fortran 1/0 Extensions [3]

3.4 Asynchronous queued I/0O (AQIO) routines (not available on IRIX systems)

SG-2168 3.0.1

The asynchronous queued 1/0 (AQIO) routines perform asynchronous, queued
170 operations. Asynchronous 1/0 allows your program to continue executing
while an 1/0 operation is in progress, and it allows several 1/0 requests to be
active concurrently. AQIO further refines asynchronous 1/0 by allowing a
program to queue several 1/0 requests and to issue one request to the
operating system to perform all 1/0 operations. When queuing 1/0 requests,
the overhead that is associated with calling the operating system is incurred
only once per group of 1/0 requests rather than once per request as with other
forms of 1/0.

AQIO also offers options for streamlining 1/0 operations that involve
fixed-length records with a fixed-skip increment through the user file and a
fixed-skip increment through program memory. A form of this is a read or
write that involves contiguous fixed-length records. Such an operation is called
a compound AQIO request or a compound AQIO operation. AQIO provides
separate calls for compound operations so that a program can specify multiple
I/0 operations in one call, thus saving 1/0 time.

Asynchronous 1/0 has a larger overhead in system CPU time than synchronous
1/0; therefore, only large data transfers should be done using asynchronous
170. To speed up the program, the program must be able to do a significant
amount of CPU-intensive work or other 1/0 while the asynchronous 170 is
executing.

The value of the queue argument on the AQWRITE/AQWRITEQGF) or
AQREAD/AQREALBF) call controls when the operating system is called to
process the request. If queue is nonzero, packets are queued in the AQIO buffer
and the operating system is not called to start packet processing until the buffer
is full (for example, to queue 20 packets, the program would issue 19 AQWRITE
calls with queue set to a nonzero value and then set it to 0 on the twentieth call).

On CRAY T3E systems, when a program opens a file with AQOPENa file handle
is returned. The library associates this handle with information in the
processing element’s (PE) local memory; therefore, the file handle should not be
used by other PEs. More than one PE can open a file with AQOPENif
coordination between the different PEs is required, the user must do the
coordination using synchronization routines.

The following list briefly describes the AQIO routines; for details about the
routines discussed in this section, see the individual man pages for each routine.

= AQOPEIBF) opens a file for AQIO. The AQOPEMall must precede all other
AQIO requests in a Fortran program.

31

Application Programmer’s 1/0O Guide

32

AQCLOSBF) closes an AQIO file.
The AQREADunction queues a simple asynchronous 1/0 read request.

AQREAD@F) lets you use a compound AQIO request call to transfer
fixed-length records repeatedly. You must provide the values for a repeat
count, memory skip increment, and disk increment arguments. AQREADC
transfers the first record from disk and increments the starting disk block
and the starting user memory by the amounts you specify.

To transfer data to a continuous array in memory, set the memory skip
increment value to the record length in words. To transfer data sequentially
from disk, set the disk increment value to the record length in blocks. See
Example 4, page 33, for an example of a program using AQIO read routines.

AQWRITEqueues a simple asynchronous write request.

AQWRITEQrovides a compound AQIO request call when repeatedly
transferring fixed-length records. The program supplies the repetition count,
the disk skip increment, and the memory skip increment on these
compound AQIO calls.

AQIO then transfers the first record to or from disk and increments the
starting disk block and the starting user memory address. To transfer data
from a contiguous array in memory, set the memory skip increment value to
the record length in words. To transfer data sequentially to disk, set the disk
increment value to the record length in blocks.

AQSTATchecks the status of AQIO requests. AQWAITforces the program to
wait until all queued entries are completed.

After queuing a AQWRITEor AQREADrequest and calling the operating
system, you may need to monitor their completion status to know when it is
safe to use the data or to reuse the buffer area. AQSTATreturns information
about an individual AQIO request.

The reqgid argument of AQREAD/AQREADENd AQWRITE/AQWRITEGSs stored
in the packet buffer and can be used in an AQSTATcall to monitor the
completion status of a particular transfer. The agpsize argument to AQOPENS
important because of the ability to monitor the status.

A requested ID can be deleted after the request completes but before its
status is checked because each request buffer is reused. This can happen, for
example, if you set the agpsize argument in AQOPENo be 20, and issued 30
requests. If you then request the status of the first request, AQSTATreturns
0, indicating that the requested ID was not found.

SG-2168 3.0.1

Fortran 1/0 Extensions [3]

3.4.1 Error detection by using AQIO

SG-2168 3.0.1

Because of the asynchronous nature of AQIO, error detection and reporting
with AQIO may not occur immediately on return from a call to an
asynchronous queued 1/0 subroutine. If one of the queued 1/0 requests causes
an error when the operating system tries to do the 1/0, the error is returned in
a subsequent AQIO request.

For example, if a program issues an AQWRITEwith queue set to 0, 1/0 is
initiated. If no previous errors occurred, a 0 status is returned from this
statement even though this request may ultimately fail. If the request fails, for
example, because it tried to exceed the maximum allowed file size, the error is
returned to the user in the subsequent AQIO statement that coincides with its
detection. If the next AQIO statement is AQWAIT the error is detected and
returned to the user. If the next AQIO statement is AQSTAT the error is
detected and reported only if the requested ID failed. When an error is reported
to the user, it is not reported again. Checking the status after each AQIO
statement ensures that the user program detects all errors.

Example 4: AQIO routines: compound read operations

PROGRAM AQIO1

IMPLICIT INTEGER(A-Z)
PARAMETER (TOTREQ=20)
PARAMETER (AQPSIZE=20)
INTEGER AQP

INTEGER BUFFER (TOTREQ*512)
INTEGER EVNBUF (TOTREQ/2*512)
INTEGER ODDBUF (TOTREQ/2*512)

CALL AQOPEN (AQP,AQPSIZE, FILE4'H,STAT)
IF (STAT.NE.O) THEN
PRINT *'’AQOPEN FAILED, STATUS= ',STAT
CALL ABORT()
ENDIF

C INITIALIZE DATA
DO 10 1=1, TOTREQ*512
BUFFER() = |
10 CONTINUE

DO 50 RNUM=1,TOTREQ

C QUEUE THE REQUESTS
C INITIATE I/O ON THE LAST REQUEST

33

Application Programmer’s 1/0O Guide

C THE DATA FROM BUFFER IS WRITTEN IN A SEQUENTIAL
C FASHION TO DISK
QUEUE=1

IF (RNUM.EQ.TOTREQ) QUEUE=0
OFFSET= (RNUM-1)*512+1
CALL AQWRITE(

’ AQP,

’ BUFFER(OFFSET), Istart address

’ RNUM-1, Iblock address

’ 1, Inumber of blocks

’ RNUM, Irequest id

’ QUEUE, lqueue request or start /O
’ STAT) Ireturn status

IF (STAT.NE.O)THEN
PRINT*’AQWRITE FAILED, STATUS= ',STAT
CALL ABORT()
ENDIF
50 CONTINUE

C WAIT FOR /0 TO COMPLETE
CALL AQWAIT (AQP,STAT)
IF (STAT.LT.0) THEN
PRINT*'AQWAIT AFTER AQWRITE FAILED, STATUS='STAT
CALL ABORT()
ENDIF

NOW ISSUE TWO COMPOUND READS. THE FIRST READ
GETS THE ODD SECTORS AND THE SECOND GETS THE
EVEN SECTORS.

O000

INCS=TOTREQ/2-1
CALL AQREADC(

AQP,
’ ODDBUF(1), | start address
’ 512, I mem stride
’ 1, I block number
’ 1, I number of blocks
’ 2, I disk stride
’ INCS, ! incs
’ 1, ! request id
' 1, | queue request
’ STAT1) ! return status

34 SG-2168 3.0.1

Fortran 1/0 Extensions [3]

SG-2168 3.0.1

80

90

95

99

CALL AQREADC(
© AQP,

' EVNBUF(1),
© 512,

' STAT2)

start address
mem stride

I block number
I number of blocks

disk stride

I incs
I request id

start request
return status

IF ((STATLNE.0). OR. (STAT2.NE.0)) THEN
PRINT *’AQREADC FAILED, STATUS= ',STAT1,STAT2

CALL ABORT()
ENDIF

CALL AQWAIT (AQP,STAT)
IF (STAT.LT.0) THEN

PRINT *’AQWAIT FAILED, STATUS= ',STAT

CALL ABORT()
ENDIF

VERIFY THAT THE DATA READ WAS CORRECT

K=1
DO 90 | = 1,TOTREQ,2
DO 80 J = 1,512

IF (EVNBUF (J+(K-1)*512).NE.J+(I-1)*512)THEN
PRINT *’BAD DATA EVN',EVNBUF(J+(K-1)*512),,I,K

CALL ABORT()
ENDIF
CONTINUE
K=K+1
CONTINUE
K=1
DO 99 | = 2,TOTREQ,2
DO 95 J = 1,512

IF (ODDBUF(J+(K-1)*512).NE.J+(I-1)*512)

PRINT *’BAD DATA ODD’,ODDBUF(J+(K-1)*512),J,1,K

CALL ABORT()
ENDIF
CONTINUE
K=K+1
CONTINUE

35

Application Programmer’s 1/0O Guide

CALL AQCLOSE(AQP,STAT)
IF(STAT.NE.O) THEN
PRINT *’AQCLOSE FAILED, STATUS= ’,STAT
CALL ABORT()
ENDIF
END

Example 5: AQIO routines: error detection

PROGRAM AQIO2

IMPLICIT INTEGER(A-2)
PARAMETER (TOTREQ=20)
PARAMETER (AQPSIZE=20)
INTEGER AQP

INTEGER BUFFER (TOTREQ*512)
INTEGER INBUF (512)

CALL AQOPEN (AQP,AQPSIZE, FILE4'H,STAT)
IF (STAT.NE.O) THEN
PRINT *’AQOPEN FAILED, STATUS=',STAT
CALL ABORT()
ENDIF

DO 50 RNUM=1,TOTREQ

QUEUE THE REQUESTS
INITIATE I/O ON THE LAST REQUEST
THE DATA FROM BUFFER WILL BE WRITTEN IN A
SEQUENTIAL FASHION TO DISK
QUEUE=1
IF (RNUM.EQ.TOTREQ) QUEUE=0
OFFSET= (RNUM-1)*512+1
CALL AQWRITE (

O00O0

AQP,
’ BUFFER (OFFSET), | start address
’ RNUM-1, I block number
’ 1, ! number of blocks
’ RNUM, I request id
’ QUEUE, ! queue request or start 1/O
’ STAT) ! return status

IF (STAT.NE.O) THEN
PRINT *’AQWRITE FAILED, STATUS=',STAT
CALL ABORT ()

36 SG-2168 3.0.1

Fortran 1/0 Extensions [3]

ENDIF
50 CONTINUE

CALL AQWAIT (AQP,STAT)

IF (STAT.LT.0) THEN
PRINT *’AQWAIT AFTER AQWRITE FAILED, STATUS= ', STAT
CALL ABORT ()

ENDIF

C NOW WE ISSUE A READ. TO ILLUSTRATE ERROR
DETECTION, WE ATTEMPT TO READ BEYOND THE END
C OF THE FILE

CALL AQREAD (

@]

AQP,
’ INBUF(2), | start address
’ TOTREQ+1, I block number
’ 1, ! number of blocks
’ TOTREQ+1, ! request id
’ 0, | start 1/O
’ STAT) ! return status

IF (STAT.NE.O)THEN
PRINT *’AQREAD FAILED, STATUS='STAT
CALL ABORT()

ENDIF

CALL AQWAIT (AQP,STAT)

BECAUSE WE ATTEMPTED TO READ BEYOND THE END
OF THE FILE, AQWAIT WILL RETURN A NEGATIVE
VALUE IN "STAT", AND THE PROGRAM WILL ABORT IN
THE FOLLOWING STATEMENT

OO0

IF (STAT.LT.0) THEN
PRINT *’AQWAIT AFTER AQREAD FAILED, STATUS= ' STAT
CALL ABORT()

ENDIF

CALL AQCLOSE (AQP,STAT)

IF (STAT.NE.O) THEN
PRINT *’AQCLOSE, STATUS= ',STAT
CALL ABORT()

ENDIF

END

SG-2168 3.0.1 37

Application Programmer’s 1/0O Guide

The following is the output from running this program:

AQWAIT AFTER AQREAD FAILED, STATUS= -1202

3.5 Logical record I/O routines (Not available on IRIX systems)

38

The logical record 1/0 routines provide word or character granularity during
read and write operations on full or partial records. The read routines move
data from an external device to a user buffer. The write routines move data
from a user buffer to an external device.

The following list briefly describes these routines; for details about the routines
discussed in this section, see the individual man pages for each routine.

READand READPmove words of data from disk or tape to a user data area.
REAO3F) reads words in full-record mode. READPreads words in
partial-record mode.

READpositions the file at the beginning of the next record after a READ
READPpositions the file at the beginning of the next word in the current
record after a READP If foreign record translation is enabled for the specified
unit, the bits from the foreign logical records are moved without conversion.
Therefore, if the file contained IBM data, that data is not converted before it
is stored. The following are examples of calls to READand READP

CALL READ (7,ibuf,icnt,istat,iubc)
CALL READP(8,ibuf,icnt,istat,iubc)

READQS3F) reads characters in full-record mode. READCPeads characters in
partial-record mode. Characters are moved to the user area with only one
character per word and are right-justified in the word. The bits from foreign
logical records are moved after conversion when foreign record translation is
enabled for the specified unit. The following are examples of calls to READC
and READCP

CALL READC (9,ibuf,icnt,istat)
CALL READCP (10,ibuf,icnt,istat)

READIBM3F) reads IBM 32-bit floating-point words that are converted to
Cray 64-bit words. The IBM 32-bit format is converted to the equivalent
Cray 64-bit value and the result is stored. A conversion routine,
IBM2CRAY3F), converts IBM data to Cray format. A preferred method to
obtain the same result is to read the file with an unformatted READ

SG-2168 3.0.1

Fortran 1/0 Extensions [3]

SG-2168 3.0.1

statement and then convert the data through a call to IBM2CRAY. The
following is an example of a call to READIBM

CALL READIBM (7,ibuf,ileng,incr)

WRITH3F) writes words in full-record mode. WRITEPwrites words in
partial-record mode. WRITEand WRITEPmove words of data from the user
data area to an 1/0 buffer area. If foreign record translation is enabled, no
data conversion occurs before the words are stored in the 1/0 buffer area.
The following are examples of calls to WRITEand WRITEPR

CALL WRITE (8,ibuf,icnt,iubc,istat)
CALL WRITEP (9,ibuf,icnt,iubc,istat)

WRITEGS3F) writes characters in full-record mode. WRITECPwrites
characters in partial-record mode. Characters are packed into the buffer for
the file. If foreign record translation is enabled, the characters are converted
and then packed into the buffer. The following are examples of calls to
WRITECand WRITECP

CALL WRITEC (10,icbuficlen,istat)
CALL WRITECP (11,icbuf,iclenistat)

WRITIBM(3F) writes Cray 64-bit values as IBM 32-bit floating-point words.
The Cray 64-bit values are converted to IBM 32-bit format, using a
conversion routine, CRAY2IBM3F). After this conversion, you can use an
unformatted WRITE statement to write the file. The following is an example
of the call to WRITIBM:

CALL WRITIBM (12,ibuf,ilen,incr)

39

Tape and Named Pipe Support [4]

Tape handling is usually provided through the tape subsystem with a minimum
of user intervention. However, user end-of-volume (EOV) processing, bad data
handling, and some tape positioning actions require additional support routines.

Named pipes or UNIX FIFO special files are created with the mknod(2) system
call; these special files allow any two processes to exchange information. The
system call creates an inode for the named pipe and establishes it as a
read/write named pipe. It can then be used by standard Fortran 1/0 or C I/0.
Piped 1/0 is faster than normal 1/0; it requires less memory than
memory-resident files.

The er90 and tape layers are not available on IRIX systems. The er90 layer is
not available on CRAY T3E systems.

4.1 Tape support (not available on IRIX systems)

4.1.1 User EQV processing

SG-2168 3.0.1

You can write and read from a tape using formatted or unformatted 1/0
statements. You can also use BUFFER INand BUFFER OUTFtatements and the
logical record routines (READCREADR WRITEG and WRITEB to access the tape
file from a Fortran program. For complete details about using tape files in
Fortran programs on UNICOS and UNICOS/mk platforms, see the Cray
document, UNICOS Tape Subsystem User’s Guide, publication SG-2051.

Several library routines assist users with EOV processing from a Fortran
program. Tape-volume switching is usually handled by the tape subsystem and
is transparent to the user. However, when a user requests EOV processing, the
program gains control at the end of tape, and the program may perform special
processing. The following library routines can be used with tape processing:

= CHECKTRRF) checks the tape position.

e CLOSENSF) closes the volume and mounts the next volume in a volume
identifier list.

= ENDSRK3F) disables special tape processing.
= SETSRB3F) enables and disables EOV processing.

41

Application Programmer’s 1/0O Guide

= STARTSRH3F) enables special tape processing.

4.1.2 Handling bad data on tapes

4.1.3 Positioning

4.2 Named pipes

42

The SKIPBAD(3F) and ACPTBAIRBF) routines can be called from a Fortran
program to handle bad data on tape files.

= SKIPBAD skips bad data; it does not write it to the buffer.

< ACPTBADmakes bad data available by transferring it to the user-specified
buffer. It allows a program to read beyond bad data within a file by moving
it into the buffer and positioning past the bad data.

The GETTR3F) and SETTR3F) file positioning routines change or indicate the
position of the current file.

= GETTPgets information about an opened tape file.

= SETTPpositions a tape file at a tape block and/or a tape volume.

After a named pipe is created, Fortran programs can access that pipe almost as
if it were a typical file; the differences between process communication using
named pipes and process communication using normal files is discussed in the
following list. The examples show how a Fortran program can use standard
Fortran 1/0 on pipes.

< A named pipe must be created before a Fortran program opens it. The
following is the syntax for the command to create a named pipe called
fort.13

/etc/mknod fort.13 p
A named pipe can be created from within a Fortran program by using

ISHELL (3F) or by using the C language library interface to the mknod(2)
system call; either of the following examples creates a named pipe:

CALL ISHELL(/etc/mknod fort.13 p’)

I = MKNOD (fort.13’,010600B,0)

SG-2168 3.0.1

Tape and Named Pipe Support [4]

SG-2168 3.0.1

Fortran programs can communicate using two named pipes: one to read
and one to write. A Fortran program must either read from or write to any
named pipe, but it cannot do both at the same time. This is a Fortran
restriction on pipes, not a system restriction. It occurs because Fortran does
not allow read and write access at the same time.

170 transfers through named pipes use memory for buffering. A separate
buffer is created for each named pipe that is created. The PIPE_BUF
parameter defines the kernel buffer size in the /sys/param.h parameter
file. The default value of PIPE_BUF is 8 blocks (8 * 512 words), but the full
size may not be needed or used. 1/0 to named pipes does not transfer to or
from a disk. However, if 1/0 transfers fill the buffer, the writing process
waits for the receiving process to read the data before refilling the buffer. If
the size of the PIPE_BUF parameter is increased, I/0 performance may
decrease; there may be more 1/0 buffer contention. If memory has already
been allocated for buffers, more space will not be allocated.

Binary data transferred between two processes through a named pipe must
use the correct file structure. The undefined file structure (specified by
assign -s u) should be specified for a pipe by the sending process. The
unblocked structure (specified by assign -s unblocked) should be
specified for a pipe by the receiving process.

The file structure for the pipe of the sending (write) process should be set to
undefined (assign -s u), which issues a system call for each write. You
can also select a file specification of system (assign -F system) for the
sending process.

The file structure of the receiving or read process can be set to either the
undefined or the unblocked file structure. However, if the sending process
writes a request that is larger than MAXPIPE it is essential for the receiving
process to read the data from a pipe set to the unblocked file structure. A
read of a transfer larger than MAXPIPEon an undefined file structure yields
only MAXPIPEamount of data. The receiving process would not wait to see
whether the sending process is refilling the buffer. The pipe may be less
than MAXPIPE

For example, the following assign commands specify that the file structure
of the named pipe (unit 13, file name pipe) for the sending process should
be undefined (-s u) . The named pipe (unit 15, file name pipe) is type
unblocked (-s unblocked) for the read process.

assign -s u -a pipe u:13
assign -s unblocked -a pipe u:15

43

Application Programmer’s 1/0O Guide

= A read from a pipe that is closed by the sender causes a detection of
end-of-file (EOF).

To detect EOF on a hamed pipe, the pipe must be opened as read-only by the
receiving process. Users with the MIPSpro 7 Fortran 90 compiler can use the
ACTION=READspecifier on the OPENstatement to open a file as read-only.

4.2.1 Piped I/O example without end-of-file detection

44

In this example, two Fortran programs communicate without end-of-file (EOF)
detection. In the example, program writerd generates an array that contains
the elements 1 to 3 and writes the array to named pipe pipel . Program
readwt reads the three elements from named pipe pipel , prints out the
values, adds 1 to each value, and writes the new elements to named pipe
pipe2 . Program writerd reads the new values from named pipe pipe2 and
prints them. The -a option of the assign (1) command allows the two
processes to access the same file with different assign characteristics.

Example 6: No EOF detection: writerd

program writerd
parameter(n=3)
dimension ia(n)
do 10 i=1,n
ia(i)=i
10 continue
write (10) ia
read (11) ia
do 20 i=1,n
print*’ia(’,i,”) is ’jia(i),” in writerd’
20 continue
end

Example 7: No EOF detection: readwt

program readwt

parameter(n=3)

dimension ia(n)

read (15) ia

do 10 i=1,n
print*’ia(’,i,’) is ’jia(i),” in readwt’
ia(i)=ia(i)+1

10 continue
write (16) ia

SG-2168 3.0.1

Tape and Named Pipe Support [4]

end

The following commands execute the programs:

f90 -o readwt readwt.f

f90 -o writerd writerd.f

/etc/mknod pipel p

/etc/mknod pipe2 p

assign -s u -a pipel u:10

assign -s unblocked -a pipe2 u:ll
assign -s unblocked -a pipel u:15
assign -s u -a pipe2 u:l6

readwt &

writerd

The following is the output of the two programs:

ia(l) is 1 in readwt
ia(2) is 2 in readwt
ia(3) is 3 in readwt
ia(l) is 2 in writerd
ia(2) is 3 in writerd
ia(3) is 4 in writerd

4.2.2 Detecting end-of-file on a named pipe

The following conditions must be met to detect end-of-file on a read from a
named pipe within a Fortran program: the program that sends data must open
the pipe in a specific way, and the program that receives the data must open the
pipe as read-only.

The program that sends or writes the data must open the named pipe as read
and write or write-only. This is the default because the /etc/mknod command
creates a named pipe with read and write permission.

The program that receives or reads the data must open the pipe as read-only. A
read from a named pipe that is opened as read and write waits indefinitely for
the data. Users with the MIPSpro 7 Fortran 90 compiler can use the
ACTION=READspecifier on the OPENstatement to open a file as read-only.

4.2.3 Piped I/0 example with end-of-file detection

This example uses hamed pipes for communication between two Fortran
programs with end-of-file detection. The programs in this example are similar

SG-2168 3.0.1 45

Application Programmer’s 1/0O Guide

46

to the programs used in the preceding section. This example shows that
program readwt can detect the EOF.

Program writerd generates array ia and writes the data to the named pipe
pipel . Program readwt reads the data from the named pipe pipel , prints the
values, adds one to each value, and writes the new elements to named pipe
pipe2 . Program writerd reads the new values from pipe2 and prints them.
Finally, program writerd closes pipel and causes program readwt to detect
the EOF.

The following commands execute these programs:

f90 -0 readwt readwt.f

f90 -o writerd writerd.f

assign -s u -a pipel u:10

assign -s unblocked -a pipe2 u:ll
assign -s unblocked -a pipel u:15
assign -s u -a pipe2 u:l6
/etc/mknod pipel p

/etc/mknod pipe2 p

readwt &

writerd

Example 8: EOF detection: writerd

program writerd
parameter(n=3)
dimension ia(n)
do 10 i=1,n
ia(i)=i
10 continue
write (10) ia
read (11) ia
do 20 i=1,n
print*’ia(’,i,”) is',ia(i),” in writerd’
20 continue
close (10)
end

Example 9: EOF detection: readwt

program readwt
parameter(n=3)
dimension ia(n)

C open the pipe as read-only

SG-2168 3.0.1

Tape and Named Pipe Support [4]

SG-2168 3.0.1

10

101
102

The output of the two programs is as follows:

ia(1) is
ia(2) is
ia(3) is
ia(1) is
ia(2) is
ia(3) is
End of

open(15,form="unformatted’, action="read’)
read (15,end = 101) ia
do 10 i=1,n
print*’ia(’,i,”) is ’jia(i),” in readwt’
ia(i)=ia(i)+1
continue
write (16) ia
read (15,end = 101) ia
goto 102
print *’End of file detected’
continue
end

1 in readwt
2 in readwt
3 in readwt
2 in writerd
3 in writerd
4 in writerd
file detected

47

System and C I/O [5]

5.1 System 1/O

5.1.1 Synchronous /O

5.1.2 Asynchronous I/O

SG-2168 3.0.1

This chapter describes systems calls used by the 1/0 library to perform
asynchronous or synchronous I/0. This chapter also describes Fortran callable
entry points to several C library routines and describes C 1/0 on UNICOS/mk
systems.

The 1/0 library and programs use the system calls described in this chapter to
perform synchronous and asynchronous 1/0, to queue a list of distinct 1/0
requests, and to perform unbuffered 1/0 without system buffering. For more
information about the system calls described in this chapter, see the Cray
document, UNICOS System Calls Reference Manual, publication SR-2012 or the
individual man pages.

With synchronous 1/0, an executing program relinquishes control during the
/0 operation until the operation is complete. An operation is not complete
until all data is moved.

The read (2) and write (2) system calls perform synchronous reads and writes.
The REAO3F) and WRITH3F) functions provide a Fortran interface to the read
and write system calls. The read system call reads a specified humber of
bytes from a file into a specified buffer. The write system call writes from a
buffer to a file.

Asynchronous 1/0 lets the program use the time that an 1/0 operation is in
progress to perform some other operations that do not involve the data in the
I/0 operation. In asynchronous 1/0 operations, control is returned to the
calling program after the 170 is initiated. The program may perform
calculations unrelated to the previous 1/0 request or it may issue another
unrelated 170 request while waiting for the first 1/0 request to complete.

The asynchronous 1/0 routines provide functions that let a program wait for a
particular 1/0 request to complete. The asynchronous form of BUFFER INand

49

Application Programmer’s 1/0O Guide

BUFFER OUTtatements used with UNIT and LENGTHroutines provide this
type of 1/0.

On UNICOS and UNICOS/mk systems, the READA3F) and WRITEA3F)
functions provide a Fortran interface to the reada (2) and writea (2) system
calls. The reada system call reads a specified humber of bytes from a file into a
specified buffer. The system call returns immediately, even if the data cannot be
delivered until later. The writea system call writes from a buffer to a file as
specified.

5.1.3 listio I/O (not available on IRIX systems)

5.1.4 Unbuffered I/O

52 CI/O

5.2.1 C /O from Fortran

50

Use the listio (2) system call to initiate a list of distinct 1/0 requests and,
optionally, wait for all of them to complete. No subroutine or function interface
to listio exists in Fortran. The AQIO package provides an indirect Fortran
interface to listio

The open (2) system call opens a file for reading or writing. If the 1/0 request is
well-formed and the O_RAWag is set, the read (3F) or write (3F) system call
reads or writes whole blocks of data directly into user space, bypassing system
cache. On UNICOS and UNICOS/mk systems, doing asynchronous system
buffered 170 (for example, not using O_RAWCcan cause performance problems
because system caching can cause performance problems.

This section describes C library 1/0 from Fortran, and describes C library 1/0
on CRAY T3E systems.

The C library provides a set of routines that constitute a user-level 1/0
buffering scheme to be used by C programmers. UNICOS and UNICOS/mk
systems also provide Fortran callable entry points to many of these routines.
For more information about the C library functions, see the Cray document,
UNICOS System Libraries Reference Manual, publication SR-2080.

The getc (3C) and putc (3C) inline macros process characters. The getchar
and putchar macros, and the higher-level routines fgetc , fgets , fprintf |

SG-2168 3.0.1

System and C I/O [5]

SG-2168 3.0.1

fputc , fputs , fread , fscanf , fwrite , gets , getw, printf , puts , putw ,
and scanf all use or act as if they use getc and putc . They can be intermixed.

A file with this associated buffering is called a stream and is associated with a
pointer to a defined type FILE . The fopen (3C) routine creates descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. Three open streams with constant pointers are usually declared in
the <stdio.h> header file and are associated with stdin , stdout , and

stderr

Three types of buffering are available with functions that use the FILE type:
unbuffered, fully buffered, and line buffered, as described in the following list:

= |If the stream is unbuffered, no library buffer is used.

= For a fully buffered stream, data is written from the library buffer when it is
filled, and read into the library buffer when it is empty.

= |f the stream is line buffered, the buffer is flushed when a new line character
is written, the buffer is full, or when input is requested.

The setbuf and setvbuf functions let you change the type and size of the
buffers. By default, output to a terminal is line buffered, output to stderr is
unbuffered, and all other 170 is fully buffered. See the setbuf (3C) man page
for details.

On UNICOS and UNICOS/mk systems, Fortran interfaces exist for the
following C routines that use the FILE type:

FCLOSE FPUTS
FDOPEN FREAD
FGETS FREOPEN
FILENO FSEEK
FOPEN

Mixing the use of C 1/0 functions with Fortran 1/0 on the same file may have
unexpected results. If you want to do this, ensure that the Fortran file structure
chosen does not introduce unexpected control words and that library buffers
are flushed properly before switching between types of 1/0.

The following example illustrates the use of some C routines. The assign
environment does not affect these routines.

51

Application Programmer’s 1/0O Guide

Example 10: C I/O from Fortran

PROGRAM STDIOEX
INTEGER FOPEN, FCLOSE, FWRITE, FSEEK
INTEGER FREAD, STRM
CHARACTER*25 BUFWR, BUFRD
PARAMETER(NCHAR=25)
C Open the file /tmp/mydir/myfile for update
STRM = FOPEN(/tmp/mydir/myfile’,’r+")
IF (STRM.EQ.0) THEN
STOP 'ERROR OPENING THE FILE’
ENDIF
C Write
| = FWRITE(BUFWR, 1, NCHAR, STRM)
IF (LNE.NCHAR*1)THEN
STOP 'ERROR WRITING FILE’
ENDIF
C Rewind and read the data
| = FSEEK(STRM, 0, 0)
IF (1.NE.O)THEN
STOP 'ERROR REWINDING FILE’
ENDIF
| = FREAD(BUFRD, 1, NCHAR, STRM)
IF (.LNE.NCHAR*1)THEN
STOP 'ERROR READING FILE’
ENDIF
C Close the file
| = FCLOSE(STRM)
IF (I.NE.O) THEN
STOP 'ERROR CLOSING THE FILE’
ENDIF
END

5.2.1.1 C I/O on CRAY T3E systems

When using system calls on CRAY T3E systems, if more than one processing
element (PE) opens the same file with an open (2) system call, distinct file
descriptors are returned. If each PE uses its file descriptor to perform a read
operation on the file, each PE reads the entire file.

If each PE uses its file descriptor to perform a write operation to the file, the
results are unpredictable.

52 SG-2168 3.0.1

System and C I/O [5]

SG-2168 3.0.1

When a program opens a stream with fopen (), a pointer to the stdio.h file
structure associated with the stream is returned. This stream pointer points to a
structure contained in local memory on a PE; therefore, the stream pointer may
not be used from another PE. If a stream is buffered, its buffer is contained in
local memory to the PE that opened it, and it is unknown to other PEs.

At program startup, each PE has an open stdio stream pointer for stdin
stdout , and stderr ; stderr is usually not fully buffered and stdin and
stdout are fully buffered only if they do not refer to an interactive device.
Buffers associated with stdin , stdout , and stderr are local to a PE.

Results are unpredictable if stdin is buffered and more than one PE attempts
to read from it and if stdout is buffered and more than one PE attempts to
write to it. The file descriptor for any of these streams is shared across all PEs;
therefore, applying an fclose () operation to stdin , stdout , or stderr on
any PE closes that stream on all PEs.

When a program opens a file for flexible file input/output (FFIO) with

ffopen (3C) or ffopens (3C), the library associates a structure local to the PE
that contains descriptive data with the value returned to the user. Therefore, the
value returned by ffopen may not be used from another PE. The FFIO
processing layers may also contain buffering that is local to the PE. Attempting
to perform an ffopen operation and do 1/0 to the same file from more than
one PE may produce unpredictable results.

53

The assign Environment [6]

6.1 assign Dbasics

6.1.1 Open processing

SG-2168 3.0.1

Fortran programs require the ability to alter many details of a Fortran file
connection. You may need to specify device residency, an alternative file name,
a file space allocation scheme, file structure, or data conversion properties of a
connected file.

On IRIX systems, the assign command affects Fortran programs compiled
with the MIPSpro 7 Fortran 90 or programs compiled with the MIPSpro 7.2 F77
compiler and the -craylibs compiler option. It also affects programs that use
ffopen (3C).

This chapter describes the assign (1) command and the ASSIGN3F) library
routine, which are used for these purposes.

The assign (1) command passes information to Fortran OPENstatements and to
the ffopen (3C), AQOPERBF), WOPE(SF), OPENDRF), and OPENM@EF) routines.

This information is called the assign environment; it consists of the following
elements:

= A list of unit numbers
= File names
= File name patterns that have attributes associated with them

Any file name, file name pattern, or unit number to which assign options are
attached is called an assign_object. When the unit or file is opened from Fortran,
the options are used to set up the properties of the connection.

The 170 library routines apply options to a file connection for all related
assign_objects.

If the assign_object is a unit, the application of options to the unit occurs
whenever that unit becomes connected.

55

Application Programmer’s 1/0O Guide

If the assign_object is a file name or pattern, the application of options to the file
connection occurs whenever a matching file name is opened from a Fortran
program.

When any of the previously listed library 1/0 routines open a file, they use
assign options for any assign_objects which apply to this open request. Any of
the following assign_objects or categories might apply to a given open request:

< g:all options apply to any open request.

< g:su,gsf ,gdu,g:aq,and g:ff each apply to types of open requests
(for example, sequential unformatted, sequential formatted, and so on).

e Uu: unit_number applies whenever unit unit_number is opened.

= p: pattern applies whenever a file whose name matches pattern is opened.
The assign environment can contain only one p: assign_object which
matches the current open file. The exception is that the p:%pattern (which
uses the %wildcard character) is silently ignored if a more specific pattern
also matches the current filename being opened.

- f: filename applies whenever a file with the name filename is opened.

Options from the assign objects in these categories are collected to create the
complete set of options used for any particular open. The options are collected
in the listed order, with options collected later in the list of assign objects
overriding those collected earlier.

6.1.2 The assign command

56

The following is the syntax for the assign command:

UNICOS and UNICOS/mk systems:

assign [-I] [-O] [-a actualfile] [-b bs] [-c] [-d bdr] [-f fortstd]
[-| buflev] [-m setting] [-n sz[: st]] [-p partlist] [-g ocblks] [-r setting]
[-s ft] [-t] [-u bufcnt] [-w setting] [-x setting] [-y setting] [-C charcon]
[-D fildes] [-F spec[, specs]] [-L setting] [-N numcon] [-P scope] [-R]
[-S setting] [-T setting] [-U setting] [-V] [-W setting] [-Y setting]
assign_object

SG-2168 3.0.1

The assign Environment [6]

SG-2168 3.0.1

IRIX systems:

assign [-a actualfile] [-b bs] [-f fortstd] [-s ft] [-t] [-y setting]
[-B setting] [-D fildes] [-F spec[, specs]] [-1 1 [-O] [-R] [-S setting]
[-T setting] [-U setting] [-V] [-W setting] [-Y setting] assign_object

The following two specifications cannot be used with any other options:

assign -R [assign_object]

assign -V [assign_object]

The following is a summary of the assign command options. For details, see
the assign (1) and INTRO_FFIO(3F) man pages. The assign command is
implemented through the ASSIGN3F), ASNFILE(3F), and ASNUNIT(3F) routines
for Cray Research Programming Environment releases prior to 1.2.

The following are the assign command control options:

-l Specifies an incremental assign. All attributes are added to the
attributes already assigned to the current assign_object. This
option and the -O option are mutually exclusive.

-0 Specifies a replacement assign. This is the default control option.
All currently existing assign attributes for the current
assign_object are replaced. This option and the -1 option are
mutually exclusive.

-R Removes all assign attributes for assign_object. If assign_object is
not specified, all currently assigned attributes for all assign_objects
are removed.

-V Views attributes for assign_object. If assign_object is not specified,
all currently assigned attributes for all assign_objects are printed.

The following are the assign command attribute options:

-a actualfile The FILE= specifier or the actual file name.

-b bs Library buffer size in 4096-byte blocks.

-C Contiguous storage. Must be used with the -n
option. Deferred implementation on IRIX
systems.

57

Application Programmer’s 1/0O Guide

-d bdr

-f fortstd

- buflev

-m setting

-n sz [: st]

58

Online tape bad data recovery. Specify either
skipbad or acptbad for bdr. Deferred
implementation on IRIX systems.

Fortran standard.

Specify 77 to be compatible with the FORTRAN
77 standard and Cray Research’s CF77 compiling
system.

Specify 90 to be compatible with the Fortran 90
standard and Cray Research’s CF90 compiling
system.

Specify irixf77 to be compatible with Silicon
Graphic’s FORTRAN 77 compiling system which
runs on IRIX systems.

Specify irixfo0 to be compatible with the
MIPSpro 7 Fortran 90 compiler.

Kernel buffering. Specify none, Idcache , or
full for buflev. If this is not set, the level of
buffering is dependent on the type of open
operation being performed. Deferred
implementation on IRIX systems.

Special handling of a direct access file that will be
accessed concurrently by several processes or
tasks. Special handling includes skipping the
check that only one Fortran unit be connected to
a unit, suppressing file truncation to true size by
the 170 buffering routines, and ensuring that the
file is not truncated by the 170 buffering routines.
Enter either on or off for setting. Not available
on IRIX systems.

Amount of system file space to reserve for a file.
This is a number of 4096-byte blocks. Used by
Fortran 1/0 and auxiliary 170 (AQIO, WAIO,
DRIO, and MSIO). The optional st value is an
obsolete way to specify the -q assign attribute.
Use of -q is preferable to using the st value on
-n . Deferred implementation on IRIX systems.

SG-2168 3.0.1

The assign Environment [6]

SG-2168 3.0.1

partlist

ocblks

setting

bufcnt

setting

setting

setting

setting

File system partition list. Used by Fortran 1/0
and auxiliary 1/0. partlist can be a single number,
a range (m-n), a set (m:n), or a combination of
ranges and sets separated by colons. Deferred
implementation on IRIX systems.

Number of 4096-byte blocks to be allocated per
file system partition. Used by Fortran 1/0 and
auxiliary 1/0. Deferred implementation on IRIX
systems.

Activate or suppress the passing of the O_RAW
flag to the open (2) system call. setting can be
either on or off . Not available on IRIX systems.

File type. Enter text , cos, blocked ,
unblocked , u, shbin , bin , bmx, or tape for ft.
The bmx and tape options are not available on
IRIX systems.

Temporary file.

Buffer count. Specifies the number of buffers to
be allocated for a file. Deferred implementation
on IRIX systems.

Activate or suppress the passing of the
O_WELLFORMEIIrg to the open (2) system call.
Used by Fortran 1/0 and FFIO. setting may be on
or off . Deferred implementation on IRIX
systems.

Activate or suppress the passing of the
O_PARALLELflag to the open (2) system call.
setting can be either on or off . Not available on
IRIX systems.

Produces repeat counts in list-directed output.
setting can be either on or off . The default
setting is on.

Activates or suppresses the passing of the
O_DIRECTflag to the open (2) system call. Enter
either on or off for setting. Available only on
IRIX systems.

59

Application Programmer’s 1/0O Guide

60

-C charcon

-D fildes

-F spec [, specs]

-L setting

-N numcon

-P scope

-S setting

-T setting

-U setting

-W setting

Character set conversion information. Enter
ascii , ebcdic , or cdc for charcon. If you
specify the -C option, you must also specify the
-F option. Not available on IRIX systems.

Specifies a connection to a standard file. Enter
stdin , stdout , or stderr for fildes.

Flexible file 1/0 (FFIO) specification. See the
assign (1) man page for details about allowed
values for spec and for details about hardware
platform support. See the INTRO_FFIO(3F) man
page for details about specifying the FFIO layers.

Activates or suppresses the passing of the
O_LDRAWiIag to the open (2) system call. Enter
either on or off for setting. Not available on IRIX
systems.

Foreign numeric conversion specification. See the
assign (1) man page for details about allowed
values for numcon and for details about hardware
platform support. Deferred implementation on
IRIX systems.

Specifies the scope of a Fortran unit and allows
specification of private 1/0 on UNICOS systems.
See the assign (1) man page for details about
allowed values for scope. Deferred
implementation on IRIX systems.

Uses a comma as a separator in list-directed
output. Enter either on or off for setting. The
default setting is on.

Activates or suppresses truncation after write for
sequential Fortran files. Enter either on or off
for setting.

Produces a UNICOS form of list-directed output.
This is a global setting which sets the value for
the -y , -S, and -W options. Enter either on or
off for setting. The default setting is on.

Produces compressed width in list-directed
output. Enter either on or off for setting. The
default setting is on.

SG-2168 3.0.1

The assign Environment [6]

-Y setting Skips unmatched namelist groups in a namelist
input record. Enter either on or off for setting.
The default setting on UNICOS and UNICOS/mk
systems is off . The default setting on IRIX
systems is on.

assign_object Specifies either a file name or a unit number for
assign_object. The assign command associates
the attributes with the file or unit specified. These
attributes are used during the processing of
Fortran OPENstatements or during implicit file
opens.

Use one of the following formats for assign_object:
- f: file_name (for example, f:filel)

= Q:io_type; io_type can be su, sf , du, df , ff , or aq (for example, g:ff)

p: pattern (for example, p:file%)

u: unit_number (for example, u:9)

file_name (for example, myfile)

When the p: pattern form is used, the %and _ wildcard characters can be used.
The % matches any string of 0 or more characters. The _ matches any single
character. The %performs like the * when doing file name matching in shells.
However, the %character also matches strings of characters containing the /
character.

6.1.3 Related library routines

SG-2168 3.0.1

The ASSIGN3F), ASNUNIT(3F), ASNFILE(3F), and ASNRNBF) routines can be
called from a Fortran program to access and update the assign environment.
The ASSIGN routine provides an easy interface to ASSIGN processing from a
Fortran program. The ASNUNIT and ASNFILE routines assign attributes to
units and files, respectively. The ASNRMoutine removes all entries currently in
the assign environment.

The calling sequences for the assign library routines are as follows:

CALL ASSIGN (cmd [, ier])

IRIX systems : CALL ASSIGN (cmd, ier)

61

Application Programmer’s 1/0O Guide

62

CALL ASNUNIT (iunit, astring, ier)
CALL ASNFILE (fname, astring, ier)

CALL ASNRM ier)

cmd Fortran character variable that contains a complete assign
command in the format that is also acceptable to the ISHELL (3F)
routine.

ier Integer variable that is assigned the exit status on return from the

library interface routine.

iunit Integer variable or constant that contains the unit number to
which attributes are assigned.

astring Fortran character variable that contains any attribute options and
option values from the assign command. Control options -l ,
-0, and -R can also be passed.

fname Character variable or constant that contains the file name to
which attributes are assigned.

A status of 0 indicates normal return and a status of greater than 0 indicates a
specific error status. Use the explain command to determine the meaning of
the error status. For more information about the explain command, see the
explain (1) man page.

The following calls are equivalent to the assign -s u f:file command:
CALL ASSIGN(assign -s u f:file’,ier)

CALL ASNFILE(file’,-s u',IER)

The following call is equivalent to executing the assign -1 -n 2 u:99
command:

IUN = 99

CALL ASNUNIT(IUN-I -n 2'IER)

The following call is equivalent to executing the assign -R command:

CALL ASNRM(IER)

SG-2168 3.0.1

The assign Environment [6]

6.2 assign and Fortran 1/O

6.2.1 Alternative file names

SG-2168 3.0.1

Assign processing lets you tune file connections. The following sections describe
several areas of assign command usage and provide examples of each use.

The -a option specifies the actual file name to which a connection is made.
This option allows files to be created in alternative directories without changing
the FILE= specifier on an OPENstatement.

For example, consider the following assign command issued to open unit 1:

assign -a /tmp/mydirtmpfile u:1

The program then opens unit 1 with any of the following statements:

WRITE(1) variable I implicit open

OPEN(1) I unnamed open
OPEN(1,FORM="FORMATTED’) I unnamed open

Unit 1 is connected to file /tmp/mydirtmpfile . Without the -a attribute,

unit 1 would be connected to file fort.1

To allocate a file on an SSD-resident or memory-resident file system on a
UNICOS system, you can use an assign command such as the following:

assign -a /ssd/myfile u:l

When the -a attribute is associated with a file, any Fortran open that is set to
connect to the file causes a connection to the actual file name. An assign
command of the following form causes a connection to file $TMPDIR/joe :

assign -a $TMPDIR/joe ftfile

This is true when any of the following statements are executed in a program:

OPEN(IUN,FILE="ftfile’)

CALL AQOPEN(AQP,AQPSIZE,ftfile’,|STAT)
CALL OPENMS(ftfile’ INDARR,LEN,IT)
CALL OPENDR(ftfile’,INDARR,LEN,IT)
CALL WOPEN(ftfile’, BLOCKS,ISTATS)
WRITE(ftfile’) ARRAY

If the following assign command is issued and is in effect, any Fortran
INQUIRE statement whose FILE= specification is foo refers to the file named

63

Application Programmer’s 1/0O Guide

actual instead of the file named foo for purposes of the EXISTS=, OPENEDz=
or UNIT= specifiers:

assign -a actual f:foo

If the following assign command is issued and is in effect, the -a attribute
does not affect INQUIRE statements with a UNIT= specifier:

assign -a actual ftfile

When the following OPENstatement is executed,
INQUIRE(UNIT= n,NAME=fname) returns a value of ftfile in fname, as if no
assign had occurred:

OPEN(n file="ftfile’)

The 1/0 library routines use only the actual file (-a) attributes from the assign
environment when processing an INQUIRE statement. During an INQUIRE
statement that contains a FILE= specifier, the 1/0 library searches the assign
environment for a reference to the file name that the FILE= specifier supplies.
If an assign-by-filename exists for the file name, the 1/0 library determines
whether an actual name from the -a option is associated with the file name. If
the assign-by-filename supplied an actual name, the 1/0 library uses the name to
return values for the EXIST=, OPENEDzand UNIT= specifiers; otherwise, it
uses the file name. The name returned for the NAME=specifier is the file name
supplied in the FILE= specifier. The actual file name is not returned.

6.2.2 File structure selection

64

Fortran 170 uses five different file structures: text structure, unblocked
structure, bmx or tape , pure data structure and COS blocked structure on
UNICOS and UNICOS/mk systems (on IRIX systems, the F77 blocked structure
is used). By default, a file structure is selected for a unit based on the type of
Fortran 1/0 selected at open time. If an alternative file structure is needed, the
user can select a file structure by using the -s and -F options on the assign
command.

No assign_object can have both -s and -F attributes associated with it. Some
file structures are available as -F attributes but are not available as -s
attributes. The -F option is more flexible than the -s option; it allows nested
file structures and buffer size specifications for some attribute values. The
following list summarizes how to select the different file structures with
different options to the assign command (the tape /bmx structure is not
available on IRIX systems) :

SG-2168 3.0.1

The assign Environment [6]

Structure assi gn command

COS blocked assign -F cos
assign -s cos

text assign -F text
assign -s text

unblocked assign -F system
assign -s unblocked
assign -s u

tape /bmx assign -F tape

assign -F bmx
assign -s tape
assign -s bmx

F77 blocked assign -F f77
For more information about file structures, see Chapter 7, page 73.
The following are examples of file structure selection:

= To select unblocked file structure for a sequential unformatted file:

IUN = 1
CALL ASNUNIT(IUN,-s unblocked’,IER)
OPEN(IUN,FORM="UNFORMATTED’,ACCESS="SEQUENTIAL")

= You can use the assign -s u command to specify the unblocked file
structure for a sequential unformatted file. When this option is selected, the
170 is unbuffered. Each Fortran READor WRITE statement results in a
read (2) or write (2) system call such as the following:

CALL ASNFILE(fort.1',-s u'IER)
OPEN(1,FORM="UNFORMATTED’, ACCESS="SEQUENTIAL’)

= Use the following command to assign unit 10 a COS blocked structure:

assign -F cos u:10

6.2.3 Buffer size specification

The size of the buffer used for a Fortran file can have a substantial effect on 1/0
performance. A larger buffer size usually decreases the system time needed to
process sequential files. However, large buffers increase a program’s memory

SG-2168 3.0.1 65

Application Programmer’s 1/0O Guide

usage; therefore, optimizing the buffer size for each file accessed in a program
on a case-by-case basis can help increase 1/0 performance and can minimize
memory usage.

The -b option on the assign command specifies a buffer size, in blocks, for
the unit. The -b option can be used with the -s option, but it cannot be used
with the -F option. Use the -F option to provide 1/0 path specifications that
include buffer sizes; the -b , and -u options do not apply when -F is specified.

For more information about the selection of buffer sizes, see Chapter 8, page 81,
and the assign (1) man page.

The following are some examples of buffer size specification using the assign
-b and assign -F options:

< If unit 1 is a large sequential file for which many Fortran READor WRITE
statements are issued, you can increase the buffer size to a large value, using
the following assign command:

assign -b 336 u:l
= If unit 1 is to be connected to a large sequential unformatted file with COS

blocked structure on UNICOS or UNICOS/mk systems, enter either of the
following assign commands to specify a buffer size of 336:

assign -b 336 u:l

assign -F cos:336 u:l

The buffer size for the example was calculated by multiplying
tracks-per-cylinder for one type of disk by the track size in sectors of that
disk.

= If file foo is a small file or is accessed infrequently, minimize the buffer size
using the following assign command:

assign -b 1 f:foo

6.2.4 Foreign file format specification

66

The Fortran 1/0 library can read and write files with record blocking and data
formats native to operating systems from other vendors. The assign -F
command specifies a foreign record blocking; the assign -C command
specifies the type of character conversion; the -N option specifies the type of
numeric data conversion. When -N or -C is specified, the data is converted
automatically during the processing of Fortran READand WRITE statements.

SG-2168 3.0.1

The assign Environment [6]

For example, assume that a record in file fgnfile contains the following
character and integer data:

character*4 ch

integer int

open(iun,FILE="fgnfile’, FORM="UNFORMATTED’)
read(iun) ch, int

Use the following assign command to specify foreign record blocking and
foreign data formats for character and integer data:

assign -F ibm.vbs -N ibm -C ebcdic fgnfile

6.2.5 File space allocation (deferred implementation on IRIX systems)

File allocation can be specified with the -n, -c , and -p options to the assign
command. The -n option specifies the amount of disk space to reserve at the
time of a Fortran open. The -c and -p options specify the configuration of the
allocated space, the -c option specifies contiguous allocation, and the -p option
specifies striping (the file system partitions where file allocation will be tried)
across disk devices.

There is no guarantee that blocks will actually be allocated on the specified
partitions. The partlist argument can be one integer, a range of integers (m - n),
a set of integers (m: n), or a combination of ranges and sets separated by
colons. The partition numbers are submitted directly through the ialloc (2)
system calls. This option achieves file striping on the specified partition.

You cannot specify the -c and -p options without the -n option. The I/0
library issues ialloc ~ system calls to preallocate file space and to process the
-c and -p attributes. The ialloc system call requires the -n attribute to
determine the amount of file space to reserve.

For example, to specify file allocation on partitions 0 through 2, partition 4, and
partitions 6 through 8, contiguous allocation in each partition, and a total of 100
4096-byte blocks of file space preallocated, you would enter the following
command:

assign -p 0-2:4:6-8 -c -n 100 foo
6.2.6 Device allocation (deferred implementation on IRIX systems)
The assign -F command has two specifications that alter the device where a

file is resident. If you specify -F sds , a file will be SDS-resident; if you specify

SG-2168 3.0.1 67

Application Programmer’s 1/0O Guide

-F mr, a file will be memory resident. Because the sds and mr flexible file 1/0
layers do not define a record-based file structure, they must be nested beneath a
file structure layer when record blocking is needed.

Examples of device allocation follow:

= If unit 1 is a sequential unformatted file that is to be SDS-resident, the
following Fortran statements connect the unit:

CALL ASNUNIT(1,-F cos,sds.scr.novfl:0:100',|IER)
OPEN(1,FORM="UNFORMATTED’)

The -F cos specification selects COS blocked structure. The
sds.scr.novfl:0:100 specification indicates that the file should be
SDS-resident, that it will not be kept when it is time to close, and that it can
grow in size to one hundred 4096-byte blocks.

= If unit 2 is a sequential unformatted file that is to be memory resident, the
following Fortran statements connect the unit:

CALL ASNUNIT (2,-F cos,mr’,IER)
OPEN(2,FORM="UNFORMATTED’)

The -F cos,mr specification selects COS blocked structure with memory
residency.

For more information about device allocation, see Chapter 9, page 87.

6.2.7 Direct-access I/O tuning

6.2.8 Fortran file truncation

68

Fortran unformatted direct-access 1/0 supports humber tuning and memory
cache page size (buffer) tuning; it also supports specification of the prevailing
direction of file access. The assign -b command specifies the size of each
buffer in 4096-byte blocks, and the -u option specifies the number of buffers
maintained for the connected file.

To open unit 1 for direct unformatted access and to specify 10 separate regions
of the file that will be heavily accessed, use the following assign command:

assign -u 10 u:l

The assign -T option activates or suppresses truncation after the writing of a
sequential Fortran file. The -T on option specifies truncation; this behavior is

SG-2168 3.0.1

The assign Environment [6]

SG-2168 3.0.1

consistent with the Fortran standard and is the default setting for most assign
-s fs specifications. Use assign -T off to suppress truncation in
applications in which GETPO&F) and SETPO®3F) are used to simulate
random access to a file that has sequential 1/0.

The assign (1) man page lists the default setting of the -T option for each -s
fs specification. It also indicates if suppression or truncation is allowed for
each of these specifications.

FFI1O layers that are specified by using the -F option vary in their support for
suppression of truncation with -T off

The following figure summarizes the available access methods and the default
buffer sizes for UNICOS systems.

69

Application Programmer’s 1/0O Guide

70

Blocked Unblocked
Access method Blocked Text Undef Binary Unblocked Buffer size
assign option -S cos -s text -Su -s bin -s unblocked for default*
Formatted sequential /0 Valid
WRITE(9,20) Valid Default 8
PRINT
Formatted direct I/O Valid . . .
WRITE(9,20,REC=) Default Valid Valid min(recl+1, 8) bytes
Unformatted sequential 1/0 Valid . . .
WRITE(9) Default Valid Valid Valid 48
Unformatted direct /0O . . Valid
WRITE(9,REC=) Valid Valid Default max(8, recl) blocks
Buffer in/buffer out Valid valid | Valid Valid 48
Default
Control words Yes NEWLINE No No No
Library buffering Yes Yes No Yes Yes
System cached No Yes Not Nott Varies
Idcache Yes Yes Yes Yes Yes
BACKSPACE Yes Yes No No No
Record size Any Any Any 8*nttt Any
Default library buffer size 48 8 0 16 8

t Cached if not well-formed
tt No guarantee when physical size not 512 words

t11 Everything done to bin should be word boundaries and word size

* In units of 4096 bytes, unless otherwise specified

alo880

Figure 1. Access methods and default buffer sizes (UNICOS systems)

The following figure summarizes the available access methods and the default

buffer sizes for IRIX systems.

SG-2168 3.0.1

The assign Environment [6]

Blocked Unblocked

Access method Blocked Text Undef Binary Unblocked Buffer size

assign option -F {77 -s text -su -s bin -s unblocked for defaultt
Formatted sequential /0O valid

WRITE(9,20) Valid Default Invalid 1

PRINT
Formatted direct I/0 : ; : Valid

Invalid Valid

WRITE(9,20,REC=) Valid Default 65536 bytes
Unformatted sequential 1/0 Valid

WRITE(9) Default Invalid Valid Valid Valid 8
Unformatted direct /O Valid

WRITE(9,REC=) Invalid Invalid Valid Valid Default 65536 bytes
Buffer in/buffer out Valid Invalid Valid Valid Valid 8

Default

Control words Yes NEWLINE No No No
Library buffering Yes Yes No Yes Yes
System cached Yes Yes Yes Yes Yes
BACKSPACE Yes Yes No No No
Record size <232 Any Any Any Any
Default library buffer sizet 8 1 0 Varies Varies

t In units of 4096 bytes, unless otherwise specified

Figure 2. Access methods and default buffer size (IRIX systems)

On UNICOS and UNICOS/mk systems, assign

6.3 The assign environment file

ali3ss

command information is

stored in the assign environment file, which is named $TMPDIR/.assign by

default. To change the location of the current assign

environment file, assign

the desired path name to the FILENV environment variable.

On IRIX systems, you must set the FILENV environment variable to use the

assign

used to store assign
be stored in the process environment.

The format of the assign

UNICOS or IRIX release.

SG-2168 3.0.1

command. FILENV can contain the pathname of a file which will be
information or it can specify that the information should

environment file is subject to change with each

71

Application Programmer’s 1/0O Guide

6.4 Local assign

72

The assign environment information is usually stored in the assign
environment file. Programs that do not require the use of the global assign
environment file can activate local assign mode. If you select local assign
mode, the assign environment will be stored in memory. Thus, other processes
could not adversely affect the assign environment used by the program.

The ASNCTI3F) routine selects local assign mode when it is called by using
one of the following command lines:

CALL ASNCTL(LOCAL'1,IER)
CALL ASNCTL(CNEWLOCAL',1,IER)

Example 11: local assign mode

In the following example, a Fortran program activates local assign mode and
then specifies an unblocked data file structure for a unit before opening it. The
-l option is passed to ASNUNIT to ensure that any assign attributes continue
to have an effect at the time of file connection.

C Switch to local assign environment
CALL ASNCTL(LOCAL'1,IER)
IUN = 11

C Assign the unblocked file structure

CALL ASNUNIT(IUN,-I -s unblocked’,IER)
C Open unit 11
OPEN(IUN,FORM="UNFORMATTED’)

If a program contains all necessary assign statements as calls to ASSIGN
ASNUNIT, and ASNFILE, or if a program requires total shielding from any
assign commands, use the second form of a call to ASNCT]L, as follows:

C New (empty) local assign environment
CALL ASNCTL(NEWLOCAL',1,IER)
IUN = 11

C Assign a large buffer size

CALL ASNUNIT(IUN,-b 336',IER)
C Open unit 11
OPEN(IUN,FORM="UNFORMATTED’)

SG-2168 3.0.1

File Structures [7]

SG-2168 3.0.1

A file structure defines the way that records are delimited and how the
end-of-file is represented.

Five distinct native file structures are used on UNICOS and UNICOS/mk
systems: unblocked, pure, text, cos or blocked, and tape or bmx. On IRIX
systems, the unblocked, pure, text, and F77 structures are used.

The 1/0 library provides four different forms of file processing to indicate an
unblocked file structure by using the assign -s ft command: unblocked
(unblocked), standard binary (sbin), binary (bin), and undefined (u). These
alternative forms provide different types of 1/0 packages used to access the
records of the file, different types of file truncation and data alignment, and
different endfile record recognitions in a file.

The full set of options allowed with the assign -s ft command are the
following:

e bin (not recommended)

= blocked

- cos

= sbhin

= tape or bmx (not available on IRIX systems)
= text

e Uu

unblocked

For more information about valid arguments to the assign -F command, see
Section 6.2.2, page 64. Table 1 summarizes the Fortran access methods and
options.

73

Application Programmer’s 1/0O Guide

Table 1. Fortran access methods and options

Access and form assign -s ft defaults assign -s ft options
Unformatted sequential BUFFER blocked / cos* bin
IN / BUFFER OUT shin
u
unblocked
bmx/tape
Unformatted direct unblocked bin
sbhin
u
unblocked
Formatted sequential text blocked
cos
shin/text
bmx/tape
Formatted direct on UNICOS text shin/text
systems
Formatted direct on IRIX systems unblocked u
unblocked
Any type of sequential, bmx/tape bmx/tape
formatted, unformatted, or buffer
170 to tape

* UNICOS systems only

On IRIX systems, you cannot specify the default for unformatted sequential
access with assign -s . You must use assign -F {77

7.1 Unblocked file structure

A file with an unblocked file structure contains undelimited records. Because it
does not contain any record control words, it does not have record boundaries.

The unblocked file structure can be specified for a file that is opened with either
unformatted sequential access or unformatted direct access. It is the default file
structure for a file opened as an unformatted direct-access file.

74 SG-2168 3.0.1

File Structures [7]

7.1.1 assign -s unblocked

SG-2168 3.0.1

If a file with unblocked file structure must be repositioned, a BACKSPACE
statement should not be used. You cannot reposition the file to a previous
record when record boundaries do not exist.

BUFFER INand BUFFER OUTFtatements can specify a file that is an unbuffered
and unblocked file structure. If the file is specified with assign -s u , BUFFER
IN and BUFFER OUTFtatements can perform asynchronous unformatted 1/0.

You can specify the unblocked data file structure by using the assign (1)
command in several ways. All methods result in a similar file structure but
with different library buffering styles, use of truncation on a file, alignment of
data, and recognition of an endfile record in the file. The following unblocked
data file structure specifications are available:

Specification Structure

assign -s Library-buffered

unblocked

assign -F system No library buffering

assign -s u No library buffering

assign -s sbhin Standard-1/0O-compatible buffering; for example,

both library and system buffering

The type of file processing for an unblocked data file structure depends on the
assign -s ft option declared or assumed for a Fortran file.

file processing

An 1/0 request for a file specified using the assign -s unblocked

command does not need to be a multiple of a specific number of bytes. Such a
file is truncated after the last record is written to the file. Padding occurs for
files specified with the assign -s bin command and the assign -s
unblocked command. Padding usually occurs when noncharacter variables
follow character variables in an unformatted direct-access file.

No padding is done in an unformatted sequential access file. An unformatted
direct-access file created by a Fortran program on a UNICOS or UNICOS/mk
system and with the MIPSpro 7 Fortran 90 compiler on IRIX systems contains
records that are the same length. The endfile record is recognized in
sequential-access files.

75

Application Programmer’s 1/0O Guide

7.1.2 assign -s shin

7.1.3 assign -s bin

7.1.4 assign -s u

76

file processing (Not recommended)

You can use an assign -s shin specification for a Fortran file that is opened
with either unformatted direct access or unformatted sequential access. The file
does not contain record delimiters. The file created for assign -s sbin in this
instance has an unblocked data file structure and uses unblocked file processing.

The assign -s sbin option can be specified for a Fortran file that is declared
as formatted sequential access. Because the file contains records that are
delimited with the new-line character, it is not an unblocked data file structure.
It is the same as a text file structure.

The assign -s sbin option is compatible with the standard C 1/0 functions.
See Chapter 5, page 49, for more details.

Note: Use of assign -s sbin is discouraged. Use assign -s text for
formatted files, and assign -s unblocked for unformatted files.

file processing (Not recommended)

An /0 request for a file that is specified with assign -s bin does not need
to be a multiple of a specific number of bytes. On UNICOS and UNICOS/mk
systems, padding occurs when noncharacter variables follow character variables
in an unformatted record.

The 1/0 library uses an internal buffer for the records. If opened for sequential
access, a file is not truncated after each record is written to the file.

file processing

The assign -s u command specifies undefined or unknown file processing.
An assign -s u specification can be specified for a Fortran file that is
declared as unformatted sequential or direct access. Because the file does not
contain record delimiters, it has an unblocked data file structure. Both
synchronous and asynchronous BUFFER INand BUFFER OUTProcessing can
be used with u file processing.

For best performance, a Fortran 1/0 request on a file assigned with the assign
-s u command should be a multiple of a sector. 1/0 requests are not library
buffered. They cause an immediate system call.

Fortran sequential files declared by using assign -s u are not truncated after
the last word written. The user must execute an explicit ENDFILE statement on
the file to get truncation.

SG-2168 3.0.1

File Structures [7]

7.2 Text file structure

The text file structure consists of a stream of 8-bit ASCII characters. Every
record in a text file is terminated by a newline character (\n , ASCII 012). Some
utilities may omit the newline character on the last record, but the Fortran
library will treat such an occurrence as a malformed record. This file structure
can be specified for a file that is declared as formatted sequential access or
formatted direct access. It is the default file structure for formatted sequential
access files. On UNICOS and UNICOS/mk systems, it is also the default file
structure for formatted direct access files.

The assign -s text command specifies the library-buffered text file
structure. Both library and system buffering are done for all text file structures
(for more information about library buffering, see Chapter 8, page 81).

An 1/0 request for a file using assign -s text does not need to be a
multiple of a specific number of bytes.

You cannot use BUFFER INand BUFFER OUTBtatements with this structure.
Use a BACKSPACKEtatement to reposition a file with this structure.

7.3 COS or blocked file structure

SG-2168 3.0.1

The cos or blocked file structure uses control words to mark the beginning of
each sector and to delimit each record. You can specify this file structure for a
file that is declared as unformatted sequential access. Synchronous BUFFER IN
and BUFFER OUTBtatements can create and access files with this file structure.
This file structure is the default structure for files declared as unformatted
sequential access on UNICOS and UNICOS/mk systems.

You can specify this file structure with one of the following assign (1)
commands:

assign -s cos
assign -s blocked
assign -F cos
assign -F blocked

These four assign commands result in the same file structure.

An 1/0 request on a blocked file is library buffered. For more information
about library buffering, see Chapter 8, page 81.

In a COS file structure, one or more ENDFILE records are allowed. BACKSPACE
statements can be used to reposition a file with this structure.

77

Application Programmer’s 1/0O Guide

A blocked file is a stream of words that contains control words called Block
Control Word (BCW) and Record Control Words (RCW) to delimit records.
Each record is terminated by an EOR (end-of-record) RCW. At the beginning of
the stream, and every 512 words thereafter, (including any RCWSs), a BCW is
inserted. An end-of-file (EOF) control word marks a special record that is
always empty. Fortran considers this empty record to be an endfile record. The
end-of-data (EOD) control word is always the last control word in any blocked
file. The EOD is always immediately preceded by an EOR, or an EOF and a
BCW.

Each control word contains a count of the number of data words to be found
between it and the next control word. In the case of the EOD, this count is 0.
Because there is a BCW every 512 words, these counts never point forward
more than 511 words.

A record always begins at a word boundary. If a record ends in the middle of a
word, the rest of that word is zero filled; the ubc field of the closing RCW
contains the number of unused bits in the last word.

The following is a representation of the structure of a BCW:

m unused bdf unused bn fwi
(4)) (1) (19) (24) 9)
Field | Bits Description
m 0-3 Type of control word; 0 for BCW
bdf 11 Bad Data flag (modulo 2%%).
bn 31-54 Block number (modulo 224).
fwi 55-63 Forward index; the number of words to next control word.

78

The following is a representation of the structure of an RCW:

SG-2168 3.0.1

File Structures [7]

ubc tran bdf Srs unused pfi pri fwi
m
(4) (6) (1) (1) (1) (19) (20) (20) (9)
Field Bits Description
m 0-3 Type of control word; 10,4 for EOR, 164 for EOF, and 17, for
EOD.
ubc 4-9 Unused bit count; number of unused low-order bits in last
word of previous record.
tran 10 Transparent record field (unused).
bdf 11 Bad data flag (unused).
Srs 12 Skip remainder of sector (unused).
pfi 20-39 Previous file index; offset modulo 22° to the block where
the current file starts (as defined by the last EOF).
pri 40-54 Previous record index; offset modulo 21° to the block
where the current record starts.
fwi 55-63 Forward index; the number of words to next control word.

7.4 Tape/bmx file structure (not available on IRIX systems)

SG-2168 3.0.1

The tape or bmx file structure is used for online tape access through the
UNICOS tape subsystem. You can use any type of sequential, formatted,
unformatted, or buffer 1/0 to read or write an online tape if this file structure
was specified.

Each read or write request results in the processing of one tape block.

This file structure is the default option for doing any type of Fortran 1/0 to an
online tape file. The file structure can be specified with one of the following
commands:

assign -s bmx
assign -s tape
assign -F bmx
assign -F tape

79

Application Programmer’s 1/0O Guide

7.4.1 Library buffers

80

These assign (1) commands result in the same file structure. Each read or write
request results in the processing of one tape block. This structure can be used
only with online IBM-compatible tape files or with ER90 volumes mounted in
blocked mode. See the Cray document, UNICOS Tape Subsystem User’s Guide,
publication SG-2051, for more information on library interfaces to ER90
volumes.

When using Fortran 1/0 or FFIO for online tapes and the tape or bmx file
structure, all of the user’s data passes through a library buffer. The size and
number of buffers can affect performance. Each of the library’s buffers must be
a multiple of the maximum block size (MBS) on the tape, as specified by the
tpmnt -b command.

On 10S model D systems, one tape buffer is allocated by default. The buffer
size is either MBS or (MBS x n), whichever is larger (n is the largest integer
such that MBS x n < 65536).

On 10S model E systems, the default is to allocate 2 buffers of 4 x MBS each,
with a minimum of 65,536 bytes, provided that the total buffer size does not
exceed a threshold defined within the library. If the MBS is too large to
accommodate this formula, the size of the buffers is adjusted downward, and
the number is adjusted downward to remain under the threshold.

In all cases, at least one buffer of at least the MBS in bytes is allocated.

During a write request, the library copies the user’s data to its buffer. Each of
the user’s records must be placed on a 4096-byte boundary within the library
buffer. After a user’s record is copied to the library buffer, the library checks the
remaining free buffer space. If it is less than the maximum block size specified
with the tpmnt -b command, the library issues an asynchronous write

(writea (2)) system call. If the user requests that a tape mark be written, this
also causes the library to issue a writea system call.

When using Fortran 170 or FFIO to read online tapes, the system determines
how much data can be placed in the user’s buffers. Reading a user’s tape mark
stops all outstanding asynchronous 1/0 to that file.

SG-2168 3.0.1

Buffering [8]

8.1 Buffering overview

SG-2168 3.0.1

This chapter provides an overview of buffering and a description of file
buffering as it applies to 1/0.

170 is the process of transferring data between a program and an external
device. The process of optimizing 1/0 consists primarily of making the best
possible use of the slowest part of the path between the program and the device.

The slowest part is usually the physical channel, which is often slower than the
CPU or a memory-to-memory data transfer. The time spent in 1/0 processing
overhead can reduce the amount of time that a channel can be used, thereby
reducing the effective transfer rate. The biggest factor in maximizing this
channel speed is often the reduction of 1/0 processing overhead.

A buffer is a temporary storage location for data while the data is being
transferred. A buffer is often used for the following purposes:

= Small 1/0 requests can be collected into a buffer, and the overhead of
making many relatively expensive system calls can be greatly reduced.

A collection buffer of this type can be sized and handled so that the actual
physical 170 requests made to the operating system match the physical
characteristics of the device being used. For example, a 42-sector buffer,
when read or written, transfers a track of data between the buffer and the
DD-49 disk; a track is a very efficient transfer size.

= Many data file structures, such as the f77 and cos file structures, contain
control words. During the write process, a buffer can be used as a work area
where control words can be inserted into the data stream (a process called
blocking). The blocked data is then written to the device. During the read
process, the same buffer work area can be used to examine and remove
these control words before passing the data on to the user (deblocking).

= When data access is random, the same data may be requested many times.
A cache is a buffer that keeps old requests in the buffer in case these requests
are needed again. A cache that is sufficiently large and/or efficient can
avoid a large part of the physical 1/0 by having the data ready in a buffer.
When the data is often found in the cache buffer, it is referred to as having a
high hit rate. For example, if the entire file fits in the cache and the file is

81

Application Programmer’s 1/0O Guide

82

present in the cache, no more physical requests are required to perform the
I70. In this case, the hit rate is 100%.

= Running the disks and the CPU in parallel often improves performance;
therefore, it is useful to keep the CPU busy while data is being moved. To
do this when writing, data can be transferred to the buffer at
memory-to-memory copy speed and an asynchronous 1/0 request can be
made. The control is then immediately returned to the program, which
continues to execute as if the 1/0 were complete (a process called
write-behind). A similar process can be used while reading; in this process,
data is read into a buffer before the actual request is issued for it. When it is
needed, it is already in the buffer and can be transferred to the user at very
high speed. This is another form or use of a cache.

Buffers are used extensively on UNICOS and UNICOS/mk systems. Some of
the disk controllers have built-in buffers. The kernel has a cache of buffers
called the system cache that it uses for various 1/0 functions on a system-wide
basis. The Cray 10S uses buffers to enhance 1/0 performance. The UNICOS
logical device cache (Idcache) is a buffering scheme that uses a part of the
solid-state storage device (SSD) or buffer memory resident (BMR) in the 10S as
a large buffer that is associated with a particular file system. The library
routines also use buffers.

The 1/0 path is divided into two parts. One part includes the user data area,
the library buffer, and the system cache. The second part is referred to as the
logical device, which includes the ultimate 1/0 device and all of the buffering,
caching, and processing associated with that device. This includes any caching
in the disk controller and the operating system.

Users can directly or indirectly control some buffers. These include most library
buffers and, to some extent, system cache and Idcache . Some buffering, such
as that performed in the 10S, or the disk controllers, is not under user control.

A well-formed request refers to 1/0 requests that meet the criteria for UNICOS
systems; a well-formed request for a disk file requires the following:

= The size of the request must be a multiple of the sector size in bytes. For
most disk devices, this will be 4096 bytes.

= The data that will be transferred must be located on a word boundary.

= The file must be positioned on a sector boundary. This will be a 4096-byte
sector boundary for most disks.

SG-2168 3.0.1

Buffering [8]

8.2 Types of buffering

8.2.1 Unbuffered I/O

8.2.2 Library buffering

SG-2168 3.0.1

The following sections briefly describe unbuffered 1/0, library buffering,
system cache buffering, and Idcache .

The simplest form of buffering is none at all; this unbuffered 1/0 is known as
raw 1/O. For sufficiently large, well-formed requests, buffering is not necessary;
it can add unnecessary overhead and delay. The following assign (1)
command specifies unbuffered 1/0:

assign -s u
Use the assign command to bypass library buffering and the UNICOS system
cache for all well-formed requests. The data is transferred directly between the

user data area and the logical device. Requests that are not well formed use
system cache.

The term library buffering refers to a buffer that the 1/0 library associates with a
file. When a file is opened, the 1/0 library checks the access, form, and any
attributes declared on the assign or asgcmd(1) command to determine the
type of processing that should be used on the file. Buffers are usually an
integral part of the processing.

If the file is assigned with one of the following options, library buffering is used:
-s blocked

-s tape/bmx (deferred implementation on IRIX systems)

-F spec (buffering as defined by spec)

-S CO0S

-s bin

-s unblocked

The -F option specifies flexible file 1/0 (FFIO), which uses library buffering if
the specifications selected include a need for some buffering. In some cases,
more than one set of buffers might be used in processing a file. For example,
the -F blankx,cos option specifies two library buffers for a read of a blank
compressed COS blocked file. One buffer handles the blocking and deblocking

83

Application Programmer’s 1/0O Guide

8.2.3 System cache

84

associated with the COS blocked control words and the second buffer is used as
a work area to process the blank compression. In other cases (for example, -F
system), no library buffering occurs.

The operating system or kernel uses a set of buffers in kernel memory for 1/0
operations. These are collectively called the system cache. The 1/0 library uses
system calls to move data between the user memory space and the system
buffer. The system cache ensures that the actual 1/0 to the logical device is well
formed, and it tries to remember recent data in order to reduce physical 1/0
requests. In many cases, though, it is desirable to bypass the system cache and
to perform 1/0 directly between the user’s memory and the logical device.

On UNICOS and UNICOS/mk systems, if requests are well-formed, and the

O_RAWiag is set by the libraries when the file is opened, the system cache is
bypassed, and 1/0 is done directly between the user’s memory space and the
logical device.

On UNICOS systems, if the requests are not well formed, the system cache is
used even if the O_RAWIlag was selected at open time.

If UNICOS Idcache is present, and the request is well formed, 1/0 is done
directly between the user’s memory and Idcache even if the O_RAWit was
not selected.

The following assign (1) command options do not set the O_RAWiIt, and it can
be expected to use the system cache:

-s shin
-F spec (FFIO, depends on spec)

The following assign command options set the O_RAWiIag and bypass the
system cache on UNICOS and UNICOS/mk systems:

-r on
-s unblocked

-s cos (or-s blocked)
-s bin

s u

-F spec (FFIO, depends on spec)

SG-2168 3.0.1

Buffering [8]

See the UNICOS Tape Subsystem User’s Guide, publication SG-2051 for details
about the use of system caching and tapes.

For the assign -s cos , assign -s bin , and assign -s bmx commands,
a library buffer ensures that the actual system calls are well formed. This is not
true for the assign -s u option. If you plan to bypass the system cache, all
requests go through the cache except those that are well-formed.

The assign - buflev option controls kernel buffering. It is used by Fortran
170, auxiliary 1/0, and FFIO. The buflev argument can be any of the following
values:

e none: sets O_RAVANd O_LDRAW
e Idcache : sets O _RAWclears O_LDRAW
e full : clears O RAVWANd O _LDRAW

If this option is not set, the level of system buffering is dependent on the type
of open operation being performed.

See the explanation of the -B option on the assign (1) man page for
information about bypassing system buffering on IRIX systems.

8.2.4 Logical cache buffering

8.2.5 Default buffer sizes

SG-2168 3.0.1

On UNICOS systems, the following elements are part of the logical device:
I[dcache , 10S models B, C, and D, I0S buffer memory, and cache in the disk
controllers. These buffers are connected to the file system on which the file
resides.

The Fortran 1/0 library automatically chooses appropriate default buffer sizes.
On UNICOS systems, you can specify the default buffer sizes for the various
types of 1/0, using the loader for your compiler. See your loader
documentation for complete details.

85

Devices [9]

9.1 Tape

9.1.1 Tape I/O interfaces

SG-2168 3.0.1

This chapter describes the type of storage devices available on UNICOS and
UNICOS/mk systems including tapes, solid-state storage device (SSD), disks,
and main memory. The type of 1/0 device used affects the 1/0 transfer rate.

The information in this chapter is pertinent for UNICOS and UNICOS/mk
systems only.

The UNICOS tape subsystem runs on all UNICOS systems and is designed for
system users who have large-scale data handling needs. Users can read or write
to a tape with formatted or unformatted sequential Fortran 1/0 statements,
buffer 170, and the READD@@F), READR3F), WRITEG3F), and WRITER3F) 1/0
routines.

A Fortran program interfaces with the tape subsystem through the Fortran 1/0
statements and the 1/0 library. The UNICOS Tape Subsystem User’s Guide,
publication SG-2051, describes the tape subsystem in detail.

There are two different types of tape 1/0 interfaces: the traditional read[a]
and write[a] system calls and tapelist 1/O, which is unique to magnetic tape
processing on UNICOS and UNICOS/mk systems.

Tapelist 170 allows the user to make several 170 requests in one system
exchange. It also allows processing of user tape marks, bad tape data, and
end-of-volume (EOV) processing.

The system libraries provide the following four common ways to perform tape
1/0:

= Through the use of the system calls.

= Through the stdio library, which is commonly used from C. This method
provides no means to detect or regulate the positioning of tape block breaks
on the tape.

= Through Fortran 1/0 (not fully supported on UNICOS/mk systems). This
provides bad data handling, foreign data conversion, EOV processing, and

87

Application Programmer’s 1/0O Guide

high-performance asynchronous buffering. Only a subset of these functions
are currently supported through Fortran 1/0 for the ER90 tape device.

Through the Flexible File 1/0 (FFIO) system (not available on UNICOS/mk
systems). FFIO is used by Fortran 1/0 and is also available to C users. It
provides bad data handling, foreign data conversion, EOV processing, and
asynchronous buffering. FFIO uses tapelist 1/0. For more information about
FFIO see the INTRO_FFIO(3F) man page. Only a subset of these functions
are currently supported through Fortran 1/0 for the ER90 tape device.

9.1.2 Tape subsystem capabilities

88

The tape subsystem provides the following capabilities:

Label processing

Reading and writing of tape marks

Tape positioning

Automatic volume recognition (AVR)

Multivolume tape files

Multifile volume allocation

Foreign dataset conversion on UNICOS and UNICOS/mk systems
User end-of-volume (EOV) processing

Concatenated tape files

The tape subsystem supports the following user commands on UNICOS and
UNICOS/mk systems:

Command Description

rls (1) Releases reserved tape resources

rsv (1) Reserves tape resources

tpmnt (1) Requests a tape mount for a tape file

tprst (1) Displays reserved tape status for the current
session 1D

SG-2168 3.0.1

Devices [9]

9.2 SSD

9.2.1 SSD file systems

SG-2168 3.0.1

tpstat (1) Displays current tape status

See the UNICOS Tape Subsystem User’s Guide, publication SG-2051, for more
details about the tape subsystem.

The SSD is a high-performance device that is used for temporary storage. It is
configured as a linear array of 4096-byte blocks. The total number of available
blocks depends on the physical size of the SSD.

The data is transferred between the mainframe’s central memory and the SSD
through special channels. The actual speed of these transfers depends on the
SSD and the system configuration. The SSD Solid-state Storage Device Hardware
Reference Manual, publication HR-0031, describes the SSD.

The SSD has a very fast transfer rate and a large storage capacity. It is ideal for
large scratch files, out-of-core solutions, cache space for 1/0 transfers such as
Idcache , and other high-volume, temporary uses.

You can configure the SSD for the following three different types of storage:
= SSD file systems

= Secondary data segments (SDS)

= |dcache

All three implementations can be used within the same SSD. The system
administrator allocates a fixed amount of space to each implementation, based
on system requirements. The following sections describe these implementations.

In the UNICOS operating system, file storage space is divided into file systems.
A file system is a logical device made up of slices from various physical devices.
A slice is a set of consecutive cylinders or blocks. Each file system is mounted
on a directory name so that users can access the file system through the
directory name. Thus, if a file system is composed of SSD slices, any file or its
descendants that are written into the associated directory will reside on SSD.

To use an SSD file system from a Fortran program, users must ensure that the
path name of the file contains the appropriate directory. For example, if an SSD

89

Application Programmer’s 1/0O Guide

resident file system is mounted on the /tmp directory, use the assign (1)
command to assign a file to that directory and the file will reside on the SSD.

Example:

assign -a /tmp/ssdfile u:10

Users can also use the OPENstatement in the program to open a file in the
directory.

SSD file systems are useful for holding frequently referenced files such as
system binary files and object libraries. Some sites use an SSD file system for
system swapping space such as /drop or /swapdev . Finally, SSD file systems
can be used as a fast temporary scratch space.

9.2.2 Secondary data segments (SDS)

90

The secondary data segment (SDS) feature allows the 1/0 routines to treat part
of the SSD like an extended or secondary memory. SDS allows 1/0 requests to
move directly between memory and SSD; this provides sustained transfer rates
that are faster than that of SSD file systems.

Users must explicitly request SDS space for a process but the space is released
automatically when the program ends. Users can request that several files
reside in SDS space but the total amount of SDS space requested for the files
must be within the SDS allocation limit for the user.

To request SDS space for unit 11 from a Fortran program, use either of the
following assign commands:

assign -F cos,sds u:ll

or

assign -F cachea.sds u:1l

The ssread (2) and sswrite (2) system calls can be called from a Fortran
program to move data between a buffer and SDS directly. ssread , sswrite
and ssbreak should not be used in a Fortran program that accesses SDS
through the assign command because the libraries use SDSALLOGQ3F) to
control SDS allocation. Using SSBREAKdirectly from Fortran conflicts with the
SDS management provided by SDSALLOCThe UNICOS System Calls Reference
Manual, publication SR-2012, describes ssbreak , ssread , and sswrite

SG-2168 3.0.1

Devices [9]

On UNICOS/mk systems, the library does not handle allocation of SDS space
from more than one processing element (PE). For files opened from different
PEs, do not use SDSALLOCassign -F sds , or the sds option of assign -F
cache or assign -F cachea

A Fortran programmer can use the CDIR$ AUXILIARY compiler directive to
assign SDS space to the arrays specified on the directive line. The name of an
auxiliary array or variable must not appear in an 1/0 statement. See the
Fortran Language Reference manuals for your compiler system for a description
of this feature. The UNICOS File Formats and Special Files Reference Manual,
publication SR-2014, describes SDS.

9.2.3 Logical device cache (Idcache)

9.3 Disk drives

SG-2168 3.0.1

The system administrator can allocate a part of the SDS space as Idcache
Idcache is a buffer space for the most heavily-used disk file systems. It is
assigned one file system at a time. Allocation of the units within each assigned
space is done on a least recently used basis. When a given file system’s portion
of the Idcache is full, the least recently accessed units are flushed to disk. You
do not need to change a Fortran program to make use of Idcache . The
program or operating system issues physical 1/0 requests to disk.

Several permanent mass storage devices or disks are available with UNICOS
and UNICOS/mk systems. A disk system for UNICOS and UNICOS/mk
systems consists of 1/0 processors, disk controller units, and disk storage units.

A sector is the smallest unit of allocation for a file in the file system. It is also
the smallest unit of allocation; all 1/0 is performed in sectors.

In each disk storage unit, the recording surface available to a read/write head
group is called a disk track. Each track contains a number of sectors in which
data can be recorded and read back. The data in one sector is called a data block;
the size of the data block varies with the disk type. The number of sectors per
track, the number of tracks per cylinder, and the number of cylinders per drive
also vary according to the type of disk storage unit. For example, a DD-49 disk
storage unit contains 886 cylinders with 8 tracks per cylinder and 42 sectors per
track. See the dsk (4) and diskspec (7) man pages for complete details.

The following table lists sector size, track size, and tracks per cylinder for a
variety of disks:

91

Application Programmer’s 1/0O Guide

92

Table 2. Disk information

Disk type Sector size (in Track size (in Tracks per
words) sectors) cylinder

DD-49 512 42 8

DD-40 512 48 19
DD-41 512 48 15
DD-42 512 48 19
DD-40r 512 48 19
DD-60 2048 23 2

DA-60 8192 23 2

DD-61 512 11 19
DD-62 512 28 9

DA-62 2048 26 9
DD-301 512 25 7
DA-301 2048 25 7
DD-302 4096 28 7
DA-302 16384 28 7

This information is useful when you must determine an efficient buffer size.

Disk-based storage under the UNICOS operating system is divided into logical
devices. A logical disk device is a collection of blocks on one or more physical
disks or other logical disk devices. These blocks are collected into partitions to
be used as file system entities. A block is a sector.

An optional striping capability exists for all disk drives. Striping allows a group
of physical devices to be treated as one large device with a potential 1/0 rate of
a single device multiplied by the number of devices in the striped group.
Striped devices must consist of physical devices that are all of the same type.
170 requests using striping should be in multiples of n x ts bytes; n is the
number of devices in the group and ts is the track size of the disk in bytes (not
in words or sectors).

For most disks this figure will be n x 4096 bytes. For DD-60 disks, n must be
rounded to the nearest multiple of 4 because its sector size is 16 Kbytes.

SG-2168 3.0.1

Devices [9]

9.4 Main memory

SG-2168 3.0.1

Disk striping on some systems can enhance effective transfer rates to and from
disks.

The assign (1) command provides an option to declare certain files to be
memory resident. This option causes these files to reside within the field length
of the user’s process; its use can result in very fast access times.

To be most effective, this option should be used only with files that will fit
within the user’s field length limit. A program with a fixed-length heap and
memory resident files may deplete memory during execution. Sufficient space
for memory resident files may exist but may not exist for other run-time library
allocations.

See Chapter 6, page 55, for details about using the assign command.

93

Introduction to FFIO [10]

10.1 Layered I/O

SG-2168 3.0.1

This chapter provides an overview of the capabilities of the flexible file
input/output (FFIO) system, sometimes called the FFIO system or layered
input/output (1/0). The FFIO system is used to perform many 1/O-related tasks.
For details about each individual 1/0 layer, see Chapter 14, page 183.

The FFIO system is based on the concept that for all 1/0 a list of processing
steps must be performed to transfer the user data between the user’s memory
and the desired 1/0 device. Computer manufacturers have always provided
170 options to users because 170 is often the slowest part of a computational
process. In addition, it is extremely difficult to provide one 1/0 access method
that works optimally in all situations.

The following figure depicts the typical flow of data from the user’s variables to
and from the 1/0 device.

Kernel

al0844

Figure 3. Typical data flow

It is useful to think of each of these boxes as a stopover for the data, and each
transition between stopovers as a processing step.

Each transition has benefits and costs. Different applications might use the total
170 system in different ways. For example, if 1/0 requests are large, the library
buffer is unnecessary because the buffer is used primarily to avoid making
system calls for every small request. You can achieve better 1/0 throughput
with large 1/0 requests by not using library buffering.

95

Application Programmer’s 1/0O Guide

96

If library buffering is not used, 1/0 requests should be on sector boundaries;
otherwise, 1/0 performance will be degraded. On the other hand, if all 1/0
requests are very small, the library buffer is essential to avoid making a costly
system call for each 170 request.

It is useful to be able to modify the 1/0 process to prevent intermediate steps
(such as buffering of data) for existing programs without requiring that the
source code be changed. The assign (1) command lets you modify the total
user 1/0 path by establishing an 1/0 environment.

The FFIO system lets you specify each stopover in Figure 3, page 95. You can
specify a comma-separated list of one or more processing steps by using the
assign -F command:

assign -F specl, spec2, spec3...

Each spec in the list is a processing step that requests one 1/0 layer, or logical
grouping of layers. The layer specifies the operations that are performed on the
data as it is passed between the user and the 1/0 device. A layer refers to the
specific type of processing being done. In some cases, the name corresponds
directly to the name of one layer. In other cases, however, specifying one layer
invokes the routines used to pass the data through multiple layers. See the
INTRO_FFIO(3F) man page for details about using the -F option to the assign
command.

Processing steps are ordered as if the -F side (the left side) is the user and the
system/device is the right side, as in the following example:

assign -F user,blankx,system

With this specification, a WRITE operation first performs the user operation on
the data, then performs the blankx operation, and then sends the data to the
system. In a READoperation, the process is performed from right to left. The
data moves from the system to the user. The layers closest to the user are
higher-level layers; those closer to the system are lower-level layers.

The FFIO system has an internal model of the world of data, which it maps to
any given actual logical file type. Four of these concepts are basic to
understanding the inner workings of the layers.

Concept Definition
Data Data is a stream of bits.
Record marks End-of-record marks (EOR) are boundaries

between logical records.

SG-2168 3.0.1

Introduction to FFIO [10]

10.2 Using layered 1/O

SG-2168 3.0.1

File marks End-of-file marks (EOF) are special types of
record marks that exist in some file formats.
End-of-data (EOD) An end-of-data (EOD) is a point immediately

beyond the last data bit, EOR, or EOF in the file.
All files are streams of 0 or more bits that may contain record or file marks.

Individual layers have varying rules about which of these things can appear
and in which order they can appear in a file.

Fortran programmers and C programmers can use the capabilities described in
this document. Fortran users can use the assign (1) command to specify these
FFIO options. For C users, the FFIO layers are available only to programs that
call the FFIO routines directly (ffopen (3C), ffread (3C), and ffwrite (3C)).

You can use FFIO with the following Fortran 1/0 forms:

= Buffer I/0

Unformatted sequential

= Unformatted direct access

= Word addressable

= Mass Storage (MS) and Direct Random (DR) packages
= Formatted sequential

= Namelist

= List-directed

= Asynchronous queued 1/0 (AQIO)

The MS package and the DR package includes the OPENMSWRITMS READMS
FINDMS CHECKMSWNVAITMS ASYNCMSSYNCMSSTINDX, CLOSMSOPENDR
WRITDR READDRand CLOSDRibrary routines.

The specification list on the assign -F command comprises all of the
processing steps that the 1/0 system performs. If assign -F is specified, any
default processing is overridden. For example, unformatted sequential 1/0 is
assigned a default structure of cos on UNICOS systems and UNICOS/mk
systems. The -F cos option provides the same structure. The FFIO system

97

Application Programmer’s 1/0O Guide

98

provides detailed control over 1/0 processing requests. However, to effectively
use the cos option (or any FFIO option), you must understand the 1/0
processing details.

As a very simple example, suppose you were making large 170 requests and did
not require buffering or blocking on your data. You could specify the following:

assign -F system

The system layer is a generic system interface that chooses an appropriate layer
for your file. If the file is on disk, it chooses the syscall layer, which maps
each user 170 request directly to the corresponding system call. A Fortran READ
statement is mapped to one or more read (2) system calls and a Fortran WRITE

statement to one or more write (2) system calls. This results in almost the same
processing as would be done if the assign -s u command was used.

If you want your file to be COS blocked (the default blocking for Fortran
unformatted 1/0 on UNICOS and UNICOS/mk systems), you can specify the
following:

assign -F cos,system

If you want your file to be F77 blocked (the default blocking for Fortran
unformatted 1/0 on IRIX systems), you can specify the following:

assign -F f77,system

These two specs request that each WRITE request first be blocked (blocking adds
control words to the data in the file to delimit records). The cos layer then
sends the blocked data to the system layer. The system layer passes the data
to the device.

The process is reversed for READrequests. The system layer retrieves blocked
data from the file. The blocked data is passed to the next higher layer, the cos
layer, where it is deblocked. The deblocked data is then presented to the user.

A COS blocked blank-compressed file can also be read. The following are the
processing steps necessary to do this:

1. Issue system calls to read data from the device.
2. Deblock the data and deliver blank-compressed characters.
3. Decompress the characters and deliver them to the user.

In this case, the spec with system is on the right end and would be as follows:

SG-2168 3.0.1

Introduction to FFIO [10]

10.2.1 1/O layers

SG-2168 3.0.1

-F blankx,cos,system

You do not need to specify the system spec because it is always implied on the
right end. To read the COS blocked blank-compressed file, use the following
specification:

assign -F blankx,cos

Because the system spec is assumed, it is never required.

Several different layers are available for the spec argument. Each layer invokes
one or more layers, which then handles the data it is given in an appropriate
manner. For example, the syscall layer essentially passes each request to an
appropriate system call. The tape layer uses an array of more sophisticated
system calls to handle magnetic tape 1/0. The blankx layer passes all data
requests to the next lower layer, but it transforms the data before it is passed.
The mr layer tries to hold an entire file in a buffer that can change size as the
size of the file changes; it also limits actual 1/0 to lower layers so that 1/0
occurs only at open, close, and overflow.

The following tables list the classes you can specify for the spec argument to the
assign -F option:

Table 3. 170 Layers available on all hardware platforms

Layer Function

bufa Asynchronous buffering layer

cache Memory cached 170

cachea Asynchronous memory cached 170

coSs or COS blocking

blocked

fd File descriptor open

fr7 Record blocking common to most UNIX Fortran implementations
null Syntactic convenience for users (does nothing)
site Site-specific layer

syscall System call 170

system Generic system interface

99

Application Programmer’s 1/0O Guide

10.2.2 Layered I/O options

100

text
user

Layer

event
global
ibm
mr

tape or
bmx

vms

Layer

blankx
or blx

c205/eta
cdc

er90
nosve
sds

Newline separated record formats
User-written layer

Table 4. Deferred implementation for IRIX systems

Function

Monitors 1/0 layers
Distributed cache layer

IBM file formats
Memory-resident file handlers
UNICOS online tape handling

VAX/VMS file formats
Table 5. Unavailable on IRIX systems

Function

Blank compression or expansion layer

CDC CYBER 205/ETA record formats
CDC 60-bit NOS/SCOPE file formats
ER90 handlers

CDC NOS/VE file formats
SDS-resident file handlers

You can modify the behavior of each 1/0 layer. The following spec format
shows how you can specify a class and one or more opt and num fields:

class.optl.opt2:numl:num2:num3

For class, you can specify one of the layers listed in the previous tables. Each of
the layers has a different set of options and numeric parameter fields that can
be specified. This is necessary because each layer performs different duties. The
following rules apply to the spec argument:

SG-2168 3.0.1

Introduction to FFIO [10]

SG-2168 3.0.1

= The class and opt fields are case-insensitive. For example, the following two
specs are identical:

Ibm.VBs:100:200
IBM.vbS:100:200

= The opt and num fields are usually optional, but sufficient separators must
be specified as placeholders to eliminate ambiguity. For example, the
following spec s are identical:

co0s..::40, cos.::40

cos::40

In this example, optl, opt2, numl, and num2 can assume default values.
Similarly, the sds layer also allows optional opt and num fields and it sets
optl, opt2, numl, num2, and num3 to default values as required.

= To specify more than one spec, use commas between specs. Within each spec,
you can specify more than one opt and num. Use periods between opt fields,
and use colons between num fields.

The following options all have the same effect. They all specify the sds layer
on UNICOS systems and set the initial SDS allocation to 100 512-word sectors:

-F sds:100
-F sds.:100
-F sds..:100

The following option contains one spec for an sds layer that has an opt field of
scr (which requests scratch file behavior):

-F sds.scr

The following option requests two class es with no opt s:

-F cos,sds

The following option contains two specs and requests two layers: cos and sds .
The cos layer has no options; the sds layer has options scr and ovfl , which

specify that the file is a scratch file that is allowed to overflow, and that the
maximum SDS allocation is 1000 sectors:

-F cos,sds.scr.ovfl::1000

101

Application Programmer’s 1/0O Guide

When possible, the default settings of the layers are set so that optional fields
are seldom needed.

10.3 Setting FFIO library parameters (UNICOS systems only)

102

The UNICOS operating system supports a number of library parameters that
can be tuned. Sites can use these parameters to change both the performance of
the libraries and some of their limits. Through a similar technique, users can
also change these parameters when linking an application.

When SEGLDR is invoked, one of its first actions is to read the /lib/segdirs

file, which defines the parameters of SEGLDR,; this file contains an LINCLUDE
directive for the file /usr/lib/segdirs/def _lib , which by default is empty.
An administrator can place directives in this file to modify the SEGLDR
behavior.

The following HARDRERirectives select optional capabilities of the FFIO
package to include in the standard libraries compiled into user programs by
default.

Table 6. HARDREMirectives

HARDREF = FFIO option

_f ffvect F-type records, fixed length
_v_ffvect V-type records, variable length
_x_ffvect X-type records

_cos_ffvect COS-type records, COS blocking
_tape_ffvect Magnetic tape handlers
_cdc_ffvect CDC 60-bit record handlers
_sds_ffvect SDS-resident file handlers
_mr_ffvect Memory-resident file handlers
_trc_ffvect Trace layer

_txt_ffvect Text-type records, newline separated records
_fd_ffvect Specified file descriptor
_bix_ffvect Blank compression handlers

SG-2168 3.0.1

Introduction to FFIO [10]

SG-2168 3.0.1

_cch_ffvect Cache layer

Each of these directives refers to a list of function pointers. Each
function-pointer lis