
Message Passing Toolkit (MPT) User
Guide

007–3773–021

COPYRIGHT
©1996, 1998-2011, 2012, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, Altix, the SGI logo, Silicon Graphics, IRIX, and Origin are registered trademarks and CASEVision, ICE, NUMAlink, OpenMP,
OpenSHMEM, Performance Co-Pilot, ProDev, SHMEM, SpeedShop, and UV are trademarks of Silicon Graphics International Corp. or
its subsidiaries in the United States and other countries.

InfiniBand is a trademark of the InfiniBand Trade Association. Intel, Itanium, and Xeon are registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries. Kerberos is a trademark of Massachusetts Institute of Technology. Linux is
a registered trademark of Linus Torvalds in several countries. MIPS is a registered trademark and MIPSpro is a trademark of MIPS
Technologies, Inc., used under license by SGI, in the United States and/or other countries worldwide. PBS Professional is a trademark
of Altair Engineering, Inc. Platform Computing is a trademark and Platform LSF is a registered trademark of Platform Computing
Corporation. PostScript is a trademark of Adobe Systems, Inc. TotalView and TotalView Technologies are registered trademarks and
TVD is a trademark of TotalView Technologies. UNIX is a registered trademark of the Open Group in the United States and other
countries.

Record of Revision

Version Description

001 March 2004
Original Printing. This manual documents the Message Passing
Toolkit implementation of the Message Passing Interface (MPI).

002 November 2004
Supports the MPT 1.11 release.

003 June 2005
Supports the MPT 1.12 release.

004 June 2007
Supports the MPT 1.13 release.

005 October 2007
Supports the MPT 1.17 release.

006 January 2008
Supports the MPT 1.18 release.

007 May 2008
Supports the MPT 1.19 release.

008 July 2008
Supports the MPT 1.20 release.

009 October 2008
Supports the MPT 1.21 release.

010 January 2009
Supports the MPT 1.22 release.

011 April 2009
Supports the MPT 1.23 release.

012 October 2009
Supports the MPT 1.25 release.

007–3773–021 iii

Record of Revision

013 April 2010
Supports the MPT 2.0 release.

014 July 2010
Supports the MPT 2.01 release.

015 October 2010
Supports the MPT 2.02 release.

016 February 2011
Supports the MPT 2.03 release.

017 March 2011
Supports additional changes for the MPT 2.03 release.

018 August 2011
Supports changes for the MPT 2.04 release.

019 November 2011
Supports changes for the MPT 2.05 release.

020 May 2012
Supports changes for the MPT 2.06 release.

021 November 2012
Supports changes for the MPT 2.07 release.

iv 007–3773–021

Contents

About This Manual . xiii

Related Publications and Other Sources xiii

Obtaining Publications . xiv

Conventions . xiv

Reader Comments . xv

1. Introduction . 1

MPI Overview . 2

MPI 2.2 Standard Compliance 2

MPI Components . 2

SGI MPI Features . 2

2. Installing and Configuring the Message Passing Toolkit (MPT) . . . 5

Verifying Prerequisites . 5

Installing and Configuring MPT 6

Installing the MPT RPM into the Default Location 7

Installing the MPT RPM into an Alternate Location 7

Using a .cpio File to Install the RPM into the Default Location or into an Alternate Location 8

(Conditional) Enabling MPT for Cluster Environments for Alternate-location Installations . 10

(Conditional) Resetting Enviroment Variables for Alternate-location Installations 11

Configuring Array Services . 13

Configuring OFED for MPT . 14

Restarting Services or Rebooting 14

(Conditional) Adjusting File Descriptor Limits 15

007–3773–021 v

Contents

Adjusting the Resource Limit for Locked Memory 16

(Conditional) Enabling Cross-partition NUMAlink MPI Communication 17

3. Getting Started . 19

Running MPI Jobs . 19

Compiling and Linking MPI Programs 21

Using mpirun to Launch an MPI Application 22

Launching a Single Program on the Local Host 22

Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host . 22

Launching a Distributed Application 23

Using MPI-2 Spawn Functions to Launch an Application 23

Running MPI Jobs with a Work Load Manager 24

PBS Professional . 24

Torque . 26

SLURM . 26

Compiling and Running SHMEM Applications 27

Using Huge Pages . 27

Interoperation Between MPI, SHMEM, and UPC 29

4. Programming with SGI MPI 31

Job Termination and Error Handling 31

MPI_Abort . 31

Error Handling . 32

MPI_Finalize and Connect Processes 32

Signals . 32

Buffering . 33

Multithreaded Programming . 34

Interoperability with the SHMEM programming model 34

vi 007–3773–021

Message Passing Toolkit (MPT) User Guide

Miscellaneous Features of SGI MPI 35

stdin/stdout/stderr . 35

MPI_Get_processor_name 35

Programming Optimizations . 35

Using MPI Point-to-Point Communication Routines 35

Using MPI Collective Communication Routines 36

Using MPI_Pack/MPI_Unpack 37

Avoiding Derived Data Types 37

Avoiding Wild Cards . 37

Avoiding Message Buffering — Single Copy Methods 37

Managing Memory Placement 38

Using Global Shared Memory 38

Additional Programming Model Considerations 38

5. Debugging MPI Applications 41

MPI Routine Argument Checking 41

Using the TotalView Debugger with MPI programs 41

Using idb and gdb with MPI programs 42

6. PerfBoost . 43

Using PerfBoost . 43

Environment Variables . 44

MPI Supported Functions . 44

7. Checkpoint/Restart 45

BLCR Installation . 45

Using BLCR with MPT . 46

8. Run-time Tuning . 47

007–3773–021 vii

Contents

Reducing Run-time Variability 47

Tuning MPI Buffer Resources . 48

Avoiding Message Buffering – Enabling Single Copy 49

Using the XPMEM Driver for Single Copy Optimization 49

Memory Placement and Policies 50

MPI_DSM_CPULIST . 50

MPI_DSM_DISTRIBUTE . 52

MPI_DSM_VERBOSE . 52

Using dplace for Memory Placement 52

Tuning MPI/OpenMP Hybrid Codes 52

Tuning for Running Applications Across Multiple Hosts 53

MPI_USE_IB . 55

MPI_IB_RAILS . 55

MPI_IB_SINGLE_COPY_BUFFER_MAX 55

Tuning for Running Applications over the InfiniBand Interconnect 55

MPI_NUM_QUICKS . 55

MPI_NUM_MEMORY_REGIONS 56

MPI_CONNECTIONS_THRESHOLD 56

MPI_IB_PAYLOAD . 56

MPI_IB_TIMEOUT . 56

MPI_IB_FAILOVER . 56

MPI on SGI UV Systems . 57

General Considerations . 58

Job Performance Types . 58

Other ccNUMA Performance Issues 59

Suspending MPI Jobs . 59

9. MPI Performance Profiling 61

viii 007–3773–021

Message Passing Toolkit (MPT) User Guide

Overview of perfcatch Utility 61

Using the perfcatch Utility . 61

MPI_PROFILING_STATS Results File Example 62

MPI Performance Profiling Environment Variables 65

MPI Supported Profiled Functions 66

Profiling MPI Applications . 67

Profiling Interface . 68

MPI Internal Statistics . 69

Third Party Products . 69

10. Troubleshooting and Frequently Asked Questions 71

What are some things I can try to figure out why mpirun is failing? 71

My code runs correctly until it reaches MPI_Finalize() and then it hangs. 73

My hybrid code (using OpenMP) stalls on the mpirun command. 73

I keep getting error messages about MPI_REQUEST_MAX being too small. 73

I am not seeing stdout and/or stderr output from my MPI application. 74

How can I get the MPT software to install on my machine? 74

Where can I find more information about the SHMEM programming model? 74

The ps(1) command says my memory use (SIZE) is higher than expected. 74

What does MPI: could not run executable mean? 75

How do I combine MPI with insert favorite tool here? 75

Why do I see “stack traceback” information when my MPI job aborts? 76

Index . 77

007–3773–021 ix

Tables

Table 4-1 Outline of Improper Dependence on Buffering 33

Table 8-1 Inquiry Order for Available Interconnects 54

007–3773–021 xi

About This Manual

This publication describes the SGI® implementation of the Message Passing Interface
(MPI) 2.07.

MPI consists of a library, which contains both normal and profiling entry points, and
commands that support the MPI interface. MPI is a component of the SGI Message
Passing Toolkit (MPT).

MPT is a software package that supports parallel programming on large systems and
clusters of computer systems through a technique known as message passing. Systems
running MPI applications must also be running Array Services software version 3.7 or
later. For more information on Array Services, see the Linux Resource Administration
Guide.

Related Publications and Other Sources
Information about MPI is available from a variety of sources. Some of the following
sources include pointers to other resources. For information about the MPI standard,
see the following:

• The MPI Standard, which is documented online at the following website:

http://www.mcs.anl.gov/mpi

• Using MPI — 2nd Edition: Portable Parallel Programming with the Message Passing
Interface (Scientific and Engineering Computation), by Gropp, Lusk, and Skjellum.
ISBN-13: 978-0262571326.

• The University of Tennessee technical report. See reference [24] from Using MPI:
Portable Parallel Programming with the Message-Passing Interface, by Gropp, Lusk,
and Skjellum. ISBN-13: 978–0262571043.

• The Message Passing Inteface Forum’s website, which is as follows:

http://www.mpi-forum.org/

• Journal articles in the following publications:

– International Journal of Supercomputer Applications, volume 8, number 3/4, 1994

007–3773–021 xiii

About This Manual

– International Journal of Supercomputer Applications, volume 12, number 1/4,
pages 1 to 299, 1998

• The comp.parallel.mpi newsgroup.

The following SGI manuals also describe MPI:

• The Linux Resource Administration Guide, which provides information on Array
Services.

• The MPInside Reference Guide, which describes the SGI MPInside MPI profiling tool.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at the following website:

http://docs.sgi.com

Manuals in various formats are available. This library contains the most recent
and most comprehensive set of online books, release notes, man pages, and other
information.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

xiv 007–3773–021

Message Passing Toolkit (MPT) User Guide

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

007–3773–021 xv

Chapter 1

Introduction

Message Passing Toolkit (MPT) is a software package that supports interprocess data
exchange for applications that use concurrent, cooperating processes on a single host
or on multiple hosts. Data exchange is done through message passing, which is the
use of library calls to request data delivery from one process to another or between
groups of processes.

The MPT package contains the following components and the appropriate
accompanying documentation:

• Message Passing Interface (MPI). MPI is a standard specification for a message
passing interface, allowing portable message passing programs in Fortran and C
languages. MPI is the dominant programming model on large scale HPC systems
and clusters today. MPT supports version 2.2 of the MPI standard specification.

• The SHMEMTM programming model. SHMEM is a partitioned global address
space (PGAS) programming model that presents distributed processes with
symmetric arrays that are accessible via PUT and GET operations from other
processes. The SGI SHMEM programming model is the basis for the
OpenSHMEMTM programming model specification which is being developed by
the Open Source Software Solutions multi-vendor working group.

SGI MPT is highly optimized for all SGI hardware platforms. The SGI Performance
Suite 1.x Start Here lists all current SGI software and hardware manuals and can be
found on the SGI Technical Publications Library at the following website:

http://docs.sgi.com

This chapter provides an overview of the MPI software that is included in the toolkit.
It includes descriptions of the MPI standard compliance, the basic components of
MPI, and the basic features of MPI. Subsequent chapters address the following topics:

• Chapter 2, "Installing and Configuring the Message Passing Toolkit (MPT)" on
page 5

• Chapter 3, "Getting Started" on page 19

• Chapter 4, "Programming with SGI MPI" on page 31

• Chapter 5, "Debugging MPI Applications" on page 41

• Chapter 6, "PerfBoost" on page 43

007–3773–021 1

1: Introduction

• Chapter 7, "Checkpoint/Restart " on page 45

• Chapter 8, "Run-time Tuning" on page 47

• Chapter 9, "MPI Performance Profiling" on page 61

• Chapter 10, "Troubleshooting and Frequently Asked Questions" on page 71

MPI Overview
MPI was created by the Message Passing Interface Forum (MPIF). MPIF is not
sanctioned or supported by any official standards organization. Its goal was to
develop a widely used standard for writing message passing programs.

SGI supports implementations of MPI that are released as part of the Message Passing
Toolkit. The MPI standard is documented online at the following website:

http://www.mcs.anl.gov/mpi

MPI 2.2 Standard Compliance

The SGI MPI implementation complies with the MPI 2.2 standard.

MPI Components

The MPI library is provided as a dynamic shared object (DSO). A DSO is a file that
ends in .so. The basic components that are necessary for using MPI are the
libmpi.so library, the include files, and the mpirun command.

SGI includes profiling support in the libmpi.so library. Profiling support replaces
all MPI_Xxx prototypes and function names with PMPI_Xxx entry points.

SGI MPI Features

The SGI MPI implementation offers a number of significant features that make it the
preferred implementation for use on SGI hardware. The following are some of these
features:

• Data transfer optimizations for NUMAlink where available, including single-copy
data transfer

2 007–3773–021

Message Passing Toolkit (MPT) User Guide

• Multi-rail InfiniBand support, which takes full advantage of the multiple
InfiniBand fabrics available on SGI® ICETM systems

• Use of hardware fetch operations (fetchops), where available, for fast
synchronization and lower latency for short messages

• Optimized MPI-2 one-sided commands

• Interoperability with the SHMEM (LIBSMA) programming model

• High-performance communication support for partitioned systems

007–3773–021 3

Chapter 2

Installing and Configuring the Message Passing
Toolkit (MPT)

This chapter explains how to install the MPT software and how to configure your
system to use it effectively. The information in this chapter also appears on your
system in the MPT directory. To access the information online, change to the
following directory:

/opt/sgi/mpt/mpt-mpt_rel/doc/README.relnotes

For mpt_rel, specify the MPT release number. For example, 2.07.

This chapter includes the following topics:

• "Verifying Prerequisites" on page 5

• "Installing and Configuring MPT" on page 6

• "(Conditional) Enabling MPT for Cluster Environments for Alternate-location
Installations" on page 10

• "(Conditional) Resetting Enviroment Variables for Alternate-location Installations"
on page 11

• "Configuring Array Services" on page 13

• "Restarting Services or Rebooting" on page 14

• "(Conditional) Adjusting File Descriptor Limits" on page 15

• "Adjusting the Resource Limit for Locked Memory" on page 16

• "(Conditional) Enabling Cross-partition NUMAlink MPI Communication" on page
17

• "Configuring OFED for MPT" on page 14

Verifying Prerequisites
The following procedure explains how to verify the MPT software’s installation
prerequisites.

007–3773–021 5

2: Installing and Configuring the Message Passing Toolkit (MPT)

Procedure 2-1 To verify prerequisites

1. Verify that you have 25 Mbytes of free disk space in the installation directory.

If you want to install the MPT software into the default installation directory,
make sure there are 25 Mbytes of free space in /opt/sgi/mpt.

2. Verify that you have the following software installed and configured:

• Red Hat Enterprise Linux (RHEL) 6.2, RHEL 6.3, or SUSE Linux Enterprise
Server (SLES) 11 SP2.

• OpenFabrics Enterprise Distribution (OFED) software. The operating system
packages include OFED by default. To verify the OFED installation status,
type one of the following commands:

– On SLES 11 platforms, type the following:

zypper info ---t pattern ofed

– On RHEL 6 platforms, type the following:

yum grouplist "Infiniband Support"

3. Proceed to the following:

"Installing and Configuring MPT" on page 6

Installing and Configuring MPT
SGI distributes the MPT software as an RPM module. You can install the RPM itself,
or you can use a .cpio file to install the RPM. In addition, you need to decide if you
want to install the MPT software in the default location or if you want to install in a
custom location.

Use one of the following procedures to install and configure the MPT software:

• "Installing the MPT RPM into the Default Location" on page 7

• "Installing the MPT RPM into an Alternate Location" on page 7

• "Using a .cpio File to Install the RPM into the Default Location or into an
Alternate Location" on page 8

6 007–3773–021

Message Passing Toolkit (MPT) User Guide

Installing the MPT RPM into the Default Location

The following procedure explains how to install the MPT RPM into its default
location, which is /opt/sgi/mpt.

Procedure 2-2 To install the RPM into the default location

1. As the root user, log into the computer upon which you want to install the MPT
software.

2. Type the following command:

rpm -Uvh sgi-mpt-mpt_rel-sgilrp_rel.x86_64.rpm

The variables in the preceding command are as follows:

• For mpt_rel, type the release level of the MPT software that you want to install.

• For lrp_rel, type the release level of the SGI Linux release product that includes
the the MPT software.

For example, to install the MPT 2.07 release, type the following command:

rpm -Uvh sgi-mpt-2.07-sgi707.x86_64.rpm

3. Proceed to:

"Configuring Array Services" on page 13

Installing the MPT RPM into an Alternate Location

You can install the MPT RPM in an alternate location. If you install the MPT RPM
into an alternate directory, users need to reset certain environment variables after the
installation. The installation procedure guides you to "(Conditional) Resetting
Enviroment Variables for Alternate-location Installations" on page 11 in a later step.

The following procedure explains how to install the MPT RPM into an alternate
location.

Procedure 2-3 To install the RPM into an alternate location

1. As the root user, log into the computer upon which you want to install MPT.

007–3773–021 7

2: Installing and Configuring the Message Passing Toolkit (MPT)

2. Type the following command:

rpm -i --relocate /opt/sgi/mpt/mpt-mpt_rel=/path \
--excludepath /usr sgi-mpt-mpt_rel-sgilrp_rel.x86_64.rpm

Note: The preceding command uses the \ character to signify a line break. Type this
command all on one line before you press Enter.

The variables in the preceding command are as follows:

• For mpt_rel, type the release level of the MPT software that you want to install.

• For path, type the path to your alternate directory.

• For lrp_rel, type the release level of the SGI Linux release product that includes
the the MPT software.

For example, to install the MPT 2.07 release into the /tmp directory, type the
following command:

rpm -i --relocate /opt/sgi/mpt/mpt-2.07=/tmp \

--excludepath /usr sgi-mpt-2.07-sgi707.x86_64.rpm

3. Proceed to one of the following:

• "(Conditional) Enabling MPT for Cluster Environments for Alternate-location
Installations" on page 10

• "Configuring Array Services" on page 13

Using a .cpio File to Install the RPM into the Default Location or into an Alternate Location

The procedure in this topic explains how to use a .cpio file to install the MPT
software into the default location or into an NFS file system that is shared by a
number of hosts. In this case, it is not important or desirable for the RPM database on
only one of the machines to track the versions of MPT that are installed. You do not
need root permission to install the MPT software if you use a .cpio file.

The following procedure explains how to use a .cpio file to install the MPT software.

Procedure 2-4 To use a .cpio file to install the MPT RPM

1. As the root user, log into the computer upon which you want to install MPT.

8 007–3773–021

Message Passing Toolkit (MPT) User Guide

2. Use the cd command to change to the installation directory.

You can install the software in any directory to which you have write permission.
The default installation directory is /opt/sgi/mpt.

If you install the MPT software into an alternate directory, you need to reset your
environment variables later in the installation procedure. The installation
procedure guides you to "(Conditional) Resetting Enviroment Variables for
Alternate-location Installations" on page 11 in a later step.

3. Type the following command to install the MPT software:

rpm2cpio -sgi-mpt-mpt_rel-*.rpm | cpio -idcmv

For mpt_rel, type the release version of MPT. For example, 2.07.

For example:

% rpm2cpio -sgi-mpt-2.07-*.rpm | cpio -idcmv

opt/sgi/mpt/mpt-2.07/bin/mpirun

opt/sgi/mpt/mpt-2.07/include/mpi++.h
opt/sgi/mpt/mpt-2.07/include/mpi.h

...

opt/sgi/mpt/mpt-2.07/lib/libmpi++.so

opt/sgi/mpt/mpt-2.07/lib/libmpi.so

opt/sgi/mpt/mpt-2.07/lib/libxmpi.so

...

4. List the files in the installation directory to confirm the installation.

For example:

% ls -R /tmp/opt/sgi/mpt/mpt-2.06

bin doc include lib man

/tmp/opt/sgi/mpt/mpt-2.06/bin:

mpirun

/tmp/opt/sgi/mpt/mpt-2.06/include:

MPI.mod mpi.h mpi_ext.h mpif.h mpio.h mpp

mpi++.h mpi.mod mpi_extf.h mpif_parameters.h mpiof.h

/tmp/opt/sgi/mpt/mpt-2.06/lib:

007–3773–021 9

2: Installing and Configuring the Message Passing Toolkit (MPT)

libmpi++.so* libmpi.so* libsma.so* libxmpi.so*
...

5. Proceed to one of the following:

• If you installed MPT in a nondefault location in a cluster environment,
proceed to the following:

"(Conditional) Enabling MPT for Cluster Environments for Alternate-location
Installations" on page 10

• If you installed MPT in a nondefault location, but not in a cluster
environment, proceed to the following:

"(Conditional) Resetting Enviroment Variables for Alternate-location
Installations" on page 11

• If you installed MPT in the default location, proceed to the following:

"Configuring Array Services" on page 13

(Conditional) Enabling MPT for Cluster Environments for Alternate-location
Installations

Perform this procedure if you installed MPT in an alternate location and you have
MPT jobs that you need to run in a cluster environment.

The procedure in this topic explains how to copy all the MPT software modules to an
NFS-mounted file system. This procedure enables the cluster nodes to access all the
MPT software.

Procedure 2-5 To enable MPT in cluster environments if MPT was installed in an alternate
location

1. As the root user, log into the computer upon which you installed the MPT
software.

2. Type the following command to create a tar file of the MPT software modules:

% tar cf /path/mpt.mpt_rel.tar /opt/sgi/mpt/mpt-mpt_rel

For path, type the path to your alternate directory.

For mpt_rel, type the release level of the MPT software that you want to install.

10 007–3773–021

Message Passing Toolkit (MPT) User Guide

3. Type the following command to copy the MPT software to the NFS file system:

% cp /path/mpt.mpt_rel.tar /nfs_dir

The variables in the preceding command are as follows:

• For path, type the path to your alternate directory.

• For mpt_rel, type the release level of the MPT software.

• For nfs_dir, type the NFS-mounted directory that the cluster-aware programs
can access.

4. Use the cd(1) command to change to the NFS-mounted directory.

For example:

% cd /data/nfs

5. Type the following command to expand the file:

% tar xf mpt.mpt_rel.tar

For mpt_rel, type the release level of the MPT software.

6. Proceed to the following:

"(Conditional) Resetting Enviroment Variables for Alternate-location Installations"
on page 11

(Conditional) Resetting Enviroment Variables for Alternate-location
Installations

Perform the procedure in this topic if you installed the MPT software into an alternate
location.

The mpirun command assumes that the PATH and LD_LIBRARY_PATH environment
variables are configured for the default MPT installation directory. The compilers,
linkers, and loaders all use the values in these environment variables.

You can use the procedure in this topic to reset the environment variables either on
the command line or in environment modules. For more information about
environment modules, see "Running MPI Jobs" on page 19.

007–3773–021 11

2: Installing and Configuring the Message Passing Toolkit (MPT)

Procedure 2-6 To reset environment variables — Method 1, using commands

1. Open the configuration file appropriate to your shell, and change the following
variables:

• For the tcsh shell, the commands are as follows:

setenv PATH /path/bin:${PATH}
setenv LD_LIBRARY_PATH /path/lib

For example:

setenv PATH /tmp/bin:${PATH}

setenv LD_LIBRARY_PATH /tmp/lib

• For the bash shell, the commands are as follows:

export PATH=/path/bin:${PATH}
export LD_LIBRARY_PATH=/path/lib

For example:

export PATH=/tmp/bin:${PATH}
export LD_LIBRARY_PATH=/tmp/lib

For path, specify the full path to your alternate installation directory.

2. Proceed to the following:

"Configuring Array Services" on page 13

Procedure 2-7 To reset environment variables — Method 2, using environment modules

1. Examine the following example module files:

• /opt/sgi/mpt/mpt-mpt_rel/doc/mpivars.sh

• /opt/sgi/mpt/mpt-mpt_rel/doc/mpivars.csh

• On RHEL platforms, see the following file:

/usr/share/Modules/modulefiles/mpt/mpt_rel

• On SLES platforms, see the following file:

/usr/share/modules/modulefiles/mpt/mpt_rel

For mpt_rel, specify the release level of the MPT software that you installed.

12 007–3773–021

Message Passing Toolkit (MPT) User Guide

2. Edit the module files and specify the variables needed.

3. Proceed to the following:

"Configuring Array Services" on page 13

Configuring Array Services
Array Services must be configured and running on your SGI system or cluster before
you start an MPI job. To configure Array Services, use one of the following
procedures:

• If you have an SGI ICE series system, follow the procedure on the
arrayconfig_tempo(8) man page to enable Array Services.

• If you have any other type of SGI system, use the procedure in this topic to
configure Array Services.

For more information about Array Services, see the arrayconfig(1) man page,
the arrayd.conf(4) man page, and the Linux Resource Administration Guide.

Procedure 2-8 To enable array services

1. As the root user, log into one of the hosts.

2. Type the following command:

/usr/sbin/arrayconfig -m host1 [host2 ...]

For host1 specify the hostname of the computer upon which you installed the
MPT software. If you installed the MPT software on a cluster, specify the
hostnames of the other computers in the cluster.

This command creates the following two configuration files:
/etc/array/arrayd.conf and /etc/array/arrayd.auth.

3. (Conditional) Copy files /etc/array/arrayd.conf and
/etc/array/arrayd.auth to every cluster host.

Perform this step if you installed the MPT software on multiple, clustered hosts.

4. Proceed to the following:

"Configuring OFED for MPT" on page 14

007–3773–021 13

2: Installing and Configuring the Message Passing Toolkit (MPT)

Configuring OFED for MPT
You can specify the maximum number of queue pairs (QPs) for SHMEM and UPC
applications when run on large clusters over OFED fabric. If the log_num_qp
parameter is set to a number that is too low, the system generates the following
message:

MPT Warning: IB failed to create a QP

SHMEM and UPC codes use the InfiniBand RC protocol for communication between
all pairs of processes in the parallel job, which requires a large number of QPs. The
log_num_qp parameter defines the log2 of the number of QPs. The following
procedure explains how to specify the log_num_qp parameter.

Procedure 2-9 To specify the log_num_qp parameter

1. Log into one of the hosts upon which you installed the MPT software as the root
user.

2. Use a text editor to open file /etc/modprobe.d/libmlx4.conf.

3. Add a line similar to the following to file /etc/modprobe.d/libmlx4.conf:

options mlx4_core log_num_qp=21

By default, the maximum number of queue pairs is 217 (131072).

4. Save and close the file.

5. Repeat the preceding steps on other hosts.

6. Proceed to the following:

"Restarting Services or Rebooting" on page 14

Restarting Services or Rebooting
The following procedure explains how to restart services. If you do not want to
restart services, you can reboot your system.

14 007–3773–021

Message Passing Toolkit (MPT) User Guide

Procedure 2-10 To restart services

1. Type the following commands:

modprobe xpmem

/etc/init.d/procset restart

/etc/init.d/arrayd restart

2. (Conditional) Log into other hosts and type the commands in the preceding step.

Perform this step if you want to run cluster-aware MPT programs.

Make sure to reboot or to restart services on all cluster hosts.

3. Proceed to one of the following:

• "(Conditional) Adjusting File Descriptor Limits" on page 15

• "Adjusting the Resource Limit for Locked Memory" on page 16

(Conditional) Adjusting File Descriptor Limits
Perform the procedure in this chapter if you installed the MPT software on a large
host with hundreds of processors.

MPI jobs require a large number of file descriptors, and on larger systems, you might
need to increase the system-wide limit on the number of open files. The default value
for the file-limit resource is 8192.

The following procedure explains how to increase the limit on the number of open
files for all users.

Procedure 2-11 To increase the system limit on open files

1. As the root user, log in to the host upon which you installed the MPT software.

2. Use a text editor to open file /etc/pam.d/login.

3. Add the following line to file /etc/pam.d/login:

session required /lib/security/pam_limits.so

4. Save and close the file.

5. Use a text editor to open file /etc/security/limits.conf.

007–3773–021 15

2: Installing and Configuring the Message Passing Toolkit (MPT)

6. Add the following line to file /etc/security/limits.conf:

* hard nofile limit

For limit, specify an open file limit, for the number of MPI processes per host,
based on the following guidelines:

Processes/host limit

512 3000

1024 6000

8192 8192 (default)

4096 21000

For example, the following line specifies 512 MPI processes per host:

* hard nofile 3000

7. Save and close the file.

8. (Conditional) Update other files in the /etc/pam.d directory as needed.

Perform this step if your site allows other login methods, such as ssh, rlogin,
and so on.

Modify the other files in the /etc/pam.d directory to accommodate the
increased file descriptor limits.

9. (Conditional) Repeat the preceding steps on other hosts.

Perform these steps if you installed the MPT software on more than one host.

10. Proceed to the following:

"Adjusting the Resource Limit for Locked Memory" on page 16

Adjusting the Resource Limit for Locked Memory
The following procedure increases the resource limit for locked memory.

Procedure 2-12 To increase the resource limit

1. As the root user, log into the host upon which you installed the MPT software.

16 007–3773–021

Message Passing Toolkit (MPT) User Guide

2. Use a text editor to open file /etc/security/limits.conf.

3. Add the following line to file /etc/security/limits.conf:

* hard memlock unlimited

4. (Conditional) Type the following commands to increase the resource limit for
locked memory in the array services startup script:

sed -i.bak ’s/ulimit -n/ulimit -l unlimited ; ulimit -n/’ \
/etc/init.d/array

/etc/init.d/array restart

5. (Conditional) Repeat the preceding steps on other hosts.

Perform these steps if you installed the MPT software on multiple hosts.

6. (Conditional) Proceed to the following procedure if you installed the MPT
software on multiple hosts:

"(Conditional) Enabling Cross-partition NUMAlink MPI Communication" on page
17

(Conditional) Enabling Cross-partition NUMAlink MPI Communication
Perform the procedure in this topic if you installed the MPT software on multiple
software partitions on an SGI UV system.

Large SGI UV systems can be configured into two or more NUMAlink-connected
partitions. These partitions act as separate, clustered hosts. The hardware supports
efficient and flexible global memory access for cross-partition communication on such
systems, but to enable this access, you need to load special kernel modules. SGI
recommends that you complete the procedure in this topic as part of the installation.
If you do not perform this procedure during installation, you might receive the
following message during the run of your application:

MPT ERROR from do_cross_gets/xpmem_get, rc = -1, errno = 22

Depending on your operating system, perform one of the following procedures to
ensure that the kernel modules load every time the system boots.

007–3773–021 17

2: Installing and Configuring the Message Passing Toolkit (MPT)

Procedure 2-13 To load the kernel modules at boot (SLES)

1. As the root user, log into one of the hosts upon which you installed the MPT
software.

2. Use a text editor to open file /etc/sysconfig/kernel.

3. Within file /etc/sysconfig/kernel, search for the line that begins with
MODULES_LOADED_ON_BOOT.

4. To the list of modules that are load at boot time, add xpc.

5. Save and close the file.

6. Reinitialize the kernel modules.

To reinitialize the kernel modules, either reboot the system or type the following
command:

modprobe xpc

7. Repeat the preceding steps on the other hosts.

Procedure 2-14 To load the kernel modules at boot (RHEL)

1. As the root user, log into one of the hosts upon which you installed the MPT
software.

2. Type the following command:

echo "modprobe xpc" >> /etc/sysconfig/modules/sgi-propack.modules

3. Save and close the file.

4. Reinitialize the kernel modules.

To reinitialize the kernel modules, either reboot the system or type the following
command:

modprobe xpc

5. Repeat the preceding steps on the other hosts.

18 007–3773–021

Chapter 3

Getting Started

This chapter provides procedures for building MPI applications. It provides examples
of the use of the mpirun(1) command to launch MPI jobs. It also provides procedures
for building and running SHMEM applications. It covers the following topics:

• "Compiling and Linking MPI Programs" on page 21

• "Running MPI Jobs with a Work Load Manager" on page 24

• "Compiling and Running SHMEM Applications" on page 27

• "Using Huge Pages" on page 27

• "Interoperation Between MPI, SHMEM, and UPC" on page 29

Running MPI Jobs
The following procedure explains how to run an MPI application when the MPT
software is installed in an alternate location.

Procedure 3-1 To run jobs with MPT installed in an alternate location

1. Determine the directory into which the MPT software is installed.

2. Type one of the following commands to compile your program.

mpif90 -I /install_path/usr/include file.f -L lib_path/usr/lib -lmpi

mpicc -I /install_path/usr/include file.c -L lib_path/usr/lib -lmpi

The variables in the preceding command are as follows:

• For install_path, type the path to the directory in which the MPT software is
installed.

• For file, type the name of your C program file name.

• For lib_path, type the path to the library files.

For example:

% mpicc -I /tmp/usr/include simple1_mpi.c -L /tmp/usr/lib -lmpi

007–3773–021 19

3: Getting Started

3. (Conditional) Ensure that the program can find the MPT library routines when it
runs.

You can use either site-specific library modules, or you can specify the library
path on the command line before you run the program.

If you use module files, set the library path in the mpt module file. Sample
module files reside in the following locations:

• /opt/sgi/mpt/mpt-mpt_rel/doc

• /usr/share/modules/modulefiles/mpt/mpt_rel

If you want to specify the library path as a command, type the following
command:

% setenv LD_LIBRARY_PATH /install_path/usr/lib

For install_path, type the path to the directory in which the MPT software is
installed.

Example 1. The following command assumes that the libraries reside in /tmp:

% setenv LD_LIBRARY_PATH /tmp/usr/lib

Example 2. The following command assumes that the libraries reside in
/data/nfs/lib, which might be the case if you installed MPT in an
NFS-mounted file system:

% setenv LD_LIBRARY_PATH /data/nfs/lib

4. Type the following command to link the program:

% ldd a.out
libmpi.so => /tmp/usr/lib/libmpi.so (0x40014000)

libc.so.6 => /lib/libc.so.6 (0x402ac000)

libdl.so.2 => /lib/libdl.so.2 (0x4039a000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Line 1 in the preceding output shows the library path correctly as
/tmp/usr/lib/libmpi.so. If you do not specify the correct library path, the
MPT software searches incorrectly for the libraries in the default location of
/usr/lib/libmpi.so.

5. Use the mpirun(1) command to run the program.

20 007–3773–021

Message Passing Toolkit (MPT) User Guide

For example, assume that you installed the MPT software on an NFS-mounted file
system (/data/nfs) in the alternate directory /tmp. Type the following
command to run the program:

% /data/nfs/bin/mpirun -v -a myarray hostA hostB -np 1 a.out

Compiling and Linking MPI Programs
The default locations for the include files, the .so files, the .a files, and the mpirun
command are pulled in automatically.

To ensure that the mpt software module is loaded, type the following command:

% module load mpt

Once the MPT RPM is installed as default, the commands to build an MPI-based
application using the .so files are as follows:

• To compile using GNU compilers, choose one of the following commands:

% g++ -o myprog myprog.C -lmpi++ -lmpi

% gcc -o myprog myprog.c -lmpi

• To compile programs with the Intel compiler, choose one of the following
commands:

% ifort -o myprog myprog.f -lmpi (Fortran - version 8)
% icc -o myprog myprog.c -lmpi (C - version 8)
% mpif90 simple1_mpi.f (Fortan 90)
% mpicc -o myprog myprog.c (Open MPI C wrapper compiler)
% mpicxx -o myprog myprog.C (Open MPI C++ wrapper compiler)

Note: Use the Intel compiler to compile Fortran 90 programs.

• To compile Fortran programs with the Intel compiler and enable compile-time
checking of MPI subroutine calls, insert a USE MPI statement near the beginning
of each subprogram to be checked. Also, use the following command:

% ifort -I/usr/include -o myprog myprog.f -lmpi (version 8)

007–3773–021 21

3: Getting Started

Note: The preceding command assumes a default installation. If you installed
MPT into a non-default location, replace /usr/include with the name of the
relocated directory.

• The special case of using the Open64 compiler in combination with hybrid
MPI/OpenMP applications requires separate compilation and link command lines.
The Open64 version of the OpenMP library requires the use of the -openmp
option on the command line for compiling, but it interferes with proper linking of
MPI libraries. Use the following sequence:

% opencc -o myprog.o -openmp -c myprog.c
% opencc -o myprog myprog.o -lopenmp -lmpi

Using mpirun to Launch an MPI Application
The mpirun(1) command starts an MPI application. For a complete specification of
the command line syntax, see the mpirun(1) man page. This section summarizes the
procedures for launching an MPI application.

Launching a Single Program on the Local Host

To run an application on the local host, enter the mpirun command with the -np
argument. Your entry must include the number of processes to run and the name of
the MPI executable file.

The following example starts three instances of the mtest application, which is
passed an argument list (arguments are optional):

% mpirun -np 3 mtest 1000 "arg2"

Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host

You are not required to use a different host in each entry that you specify on the
mpirun command. You can start a job that has multiple executable files on the same
host. In the following example, one copy of prog1 and five copies of prog2 are run
on the local host. Both executable files use shared memory.

% mpirun -np 1 prog1 : 5 prog2

22 007–3773–021

Message Passing Toolkit (MPT) User Guide

Launching a Distributed Application

You can use the mpirun command to start a program that consists of any number of
executable files and processes, and you can distribute the program to any number of
hosts. A host is usually a single machine, but it can be any accessible computer
running Array Services software. For available nodes on systems running Array
Services software, see the /usr/lib/array/arrayd.conf file.

You can list multiple entries on the mpirun command line. Each entry contains an
MPI executable file and a combination of hosts and process counts for running it.
This gives you the ability to start different executable files on the same or different
hosts as part of the same MPI application.

The examples in this section show various ways to start an application that consists of
multiple MPI executable files on multiple hosts.

The following example runs ten instances of the a.out file on host_a:

% mpirun host_a -np 10 a.out

When specifying multiple hosts, you can omit the -np option and list the number of
processes directly. The following example launches ten instances of fred on three
hosts. fred has two input arguments.

% mpirun host_a, host_b, host_c 10 fred arg1 arg2

The following example launches an MPI application on different hosts with different
numbers of processes and executable files:

% mpirun host_a 6 a.out : host_b 26 b.out

Using MPI-2 Spawn Functions to Launch an Application

To use the MPI-2 process creation functions MPI_Comm_spawn or
MPI_Comm_spawn_multiple, use the -up option on the mpirun command to
specify the universe size. For example, the following command starts three instances
of the mtest MPI application in a universe of size 10:

% mpirun -up 10 -np 3 mtest

By using one of the above MPI spawn functions, mtest can start up to seven more
MPI processes.

007–3773–021 23

3: Getting Started

When running MPI applications on partitioned SGI UV systems that use the MPI-2
MPI_Comm_spawn or MPI_Comm_spawn_multiple functions, you might need to
explicitly specify the partitions on which additional MPI processes can be launched.
For more information, see the mpirun(1) man page.

Running MPI Jobs with a Work Load Manager
When an MPI job is run from a workload manager like PBS Professional, Torque,
Load Sharing Facility (LSF), or SGI® Simple Linux Utility for Resource Management
(SLURM), it needs to start on the cluster nodes and CPUs that have been allocated to
the job. For multi-node MPI jobs, the command that you use to start this type of job
requires you to communicate the node and CPU selection information to the
workload manager. MPT includes one of these commands, mpiexec_mpt(1), and the
PBS Professional workload manager includes another such command, mpiexec(1).
The following topics describe how to start MPI jobs with specific workload managers:

• "PBS Professional" on page 24

• "Torque" on page 26

• "SLURM" on page 26

PBS Professional

You can run MPI applications from job scripts that you submit through batch
schedulers such as PBS Professional. The following procedures explain how to
configure PBS job scripts to run MPI applications.

Procedure 3-2 To specify computing resources

Within a script, use the -l option on a #PBS directive line. These lines have the
following format:

#PBS -l select=processes:ncpus=threads[:other_options]

For processes, specify the total number of MPI processes in the job.

For threads, specify the number of OpenMP threads per process. For purely MPI jobs,
specify 1.

For more information on resource allocation options, see the pbs_resources(7) man
page from the PBS Professional software distribution.

24 007–3773–021

Message Passing Toolkit (MPT) User Guide

Procedure 3-3 To run the MPI application

Use the mpiexec_mpt command included in the SGI Message Passing Toolkit (MPT).
The mpiexec_mpt command is a wrapper script that assembles the correct host list
and corresponding mpirun command before it runs the assembled mpirun
command. The format is as follows:

mpiexec_mpt -n processes ./a.out

For processes, specify the total number of MPI processes in the application. Use this
syntax on both a single host and clustered systems. For more information, see the
mpiexec(1) man page.

Process and thread pinning onto CPUs is especially important on cache coherent
non-uniform memory access (ccNUMA) systems like the SGI UV system series.
Process pinning is performed automatically if PBS Professional is set up to run each
application in a set of dedicated cpusets. In these cases, PBS Professional sets the
PBS_CPUSET_DEDICATED environment variable to the value YES. This has the same
effect as setting MPI_DSM_DISTRIBUTE=ON. Process and thread pinning are also
performed in all cases where omplace(1) is used.

Example 3-1 Running an MPI application with 512 Processes

To run an application with 512 processes, include the following in the directive file:

#PBS -l select=512:ncpus=1

mpiexec_mpt -n 512 ./a.out

Example 3-2 Running an MPI application with 512 Processes and Four OpenMP Threads per
Process

To run an MPI application with 512 Processes and four OpenMP threads per process,
include the following in the directive file:

#PBS -l select=512:ncpus=4
mpiexec_mpt -n 512 omplace -nt 4 ./a.out

Some third-party debuggers support the mpiexec_mpt(1) command. The
mpiexec_mpt(1) command includes a -tv option for use with TotalView and
includes a -ddt option for use with DDT. For more information, see Chapter 5,
"Debugging MPI Applications" on page 41.

PBS Professional includes an mpiexec(1) command that enables you to run SGI MPI
applications. PBS Professional’s command does not support the same set of extended
options that the SGI mpiexec_mpt(1) supports.

007–3773–021 25

3: Getting Started

Torque

When running Torque, SGI recommends the MPT mpiexec_mpt(1) command to
launch MPT MPI jobs.

The basic syntax is as follows:

mpiexec_mpt -n P ./a.out

For P, specify is the total number of MPI processes in the application. This syntax
applies whether running on a single host or a clustered system. See the
mpiexec_mpt(1) man page for more details.

The mpiexec_mpt command has a -tv option for use by MPT when running the
TotalView Debugger with a batch scheduler like Torque. For more information on
using the mpiexec_mpt command -tv option, see "Using the TotalView Debugger
with MPI programs" on page 41.

SLURM

MPT can be used in conjunction with SGI® Simple Linux Utility for Resource
Management (SLURM) product. The SLURM product has been adapted for MPT. Just
use the sgimpi SLURM mpi plugin supplied in the product.

Type the following commands to get started:

% module load slurm

% module load mpt

% mpicc ...

% srun -n16 --mpi=sgimpi a.out

For information about how to install and configure SGI® SLURM, see the following:

Simple Linux Utility for Resource Management Install Guide

For general information about SLURM, see the following website:

https://computing.llnl.gov/linux/slurm/slurm.html

For more information about how to use MPI with SLURM, see the following website:

https://computing.llnl.gov/linux/slurm/mpi_guide.html

26 007–3773–021

Message Passing Toolkit (MPT) User Guide

Compiling and Running SHMEM Applications
To compile SHMEM programs with a GNU compiler, choose one of the following
commands:

% g++ compute.C -lsma -lmpi

% gcc compute.c -lsma -lmpi

To compile SHMEM programs with the Intel compiler, use the following commands:

% icc compute.C -lsma -lmpi

% icc compute.c -lsma -lmpi

% ifort compute.f -lsma -lmpi

You must use mpirun to launch SHMEM applications. The NPES variable has no
effect on SHMEM programs. To request the desired number of processes to launch,
you must set the -np option on mpirun.

The SHMEM programming model supports both single-host SHMEM applications and
SHMEM applications that span multiple partitions. To launch a SHMEM application
on more than one partition, use the multiple host mpirun syntax, as follows:

% mpirun hostA, hostB -np 16 ./shmem_app

For more information, see the intro_shmem(3) man page.

Using Huge Pages
You can use huge pages to optimize the performance of your MPI application. The
MPI_HUGEPAGE_HEAP_SPACE environment variable (see the mpi(1) man page)
defines the minimum amount of heap space each MPI process would allocate using
huge pages. If set to a positive number, libmpi verifies that enough hugetlbfs
overcommit resources are available at program start-up to satisfy that amount on all
MPI processes. The heap uses all available hugetlbfs space, even beyond the
specified minimum amount. A value of 0 disables this check and disables the
allocation of heap variables on huge pages. Values can be followed by K, M, G, or T
to denote scaling by 1024, 10242, 10243, or 10244, respectively.

The following steps explain how to configure system settings for huge pages.

007–3773–021 27

3: Getting Started

1. Type the following command to make sure that the current MPT software release
module is installed:

sys:~ # module load mpt

2. To configure the system settings for huge pages, as root user, perform the
following:

sys:~ # mpt_hugepage_config -u

Updating system configuration

System config file: /proc/sys/vm/nr_overcommit_hugepages

Huge Pages Allowed: 28974 pages (56 GB) 90% of memory
Huge Page Size: 2048 KB

Huge TLB FS Directory: /etc/mpt/hugepage_mpt

3. To view the current system configuration, perform the following command:

sys:~ # mpt_hugepage_config -v

Reading current system configuration

System config file: /proc/sys/vm/nr_overcommit_hugepages
Huge Pages Allowed: 28974 pages (56 GB) 90% of memory

Huge Page Size: 2048 KB

Huge TLB FS Directory: /etc/mpt/hugepage_mpt (exists)

4. When running your MPT program, set the MPI_HUGEPAGE_HEAP_SPACE
environment variable to 1.

This activates the new libmpi huge page heap. Memory allocated by calls to the
malloc function are allocated on huge pages. This makes single-copy MPI sends
much more efficient when using the SGI UV global reference unit (GRU) for MPI
messaging.

5. To clear the system configuration settings, as root user, type the following:

sys:~ # mpt_hugepage_config -e

Removing MPT huge page configuration

6. To verify that the MPT huge page configuration has been cleared, retrieve the
system configuration again, as follows:

uv44-sys:~ # mpt_hugepage_config -v

Reading current system configuration

28 007–3773–021

Message Passing Toolkit (MPT) User Guide

System config file: /proc/sys/vm/nr_overcommit_hugepages
Huge Pages Allowed: 0 pages (0 KB) 0% of memory

Huge Page Size: 2048 KB

Huge TLB FS Directory: /etc/mpt/hugepage_mpt (does not exist)

For more information about how to configure huge pages for MPI applications, see
the mpt_hugepage_config(1) man page.

Interoperation Between MPI, SHMEM, and UPC
The SGI UPC run-time environment depends on the SGI Message Passing Toolkit,
which consists of the message passing interface (MPI) libraries and the SHMEM
libraries. The MPI and SHMEM libraries provide job launch, parallel job control,
memory mapping, and synchronization functions.

Just as with MPI or SHMEM jobs, you can use the mpirun(1) or mpiexec_mpt(1)
commands to launch UPC jobs. UPC thread numbers correspond to SHMEM PE
numbers and MPI rank numbers for MPI_COMM_WORLD.

For more information, see the Unified Parallel C (UPC) User’s Guide.

007–3773–021 29

Chapter 4

Programming with SGI MPI

Portability is one of the main advantages MPI has over vendor-specific message
passing software. Nonetheless, the MPI Standard offers sufficient flexibility for
general variations in vendor implementations. In addition, there are often
vendor-specific programming recommendations for optimal use of the MPI library.
The following topics explain how to develop or port MPI applications to SGI systems:

• "Job Termination and Error Handling" on page 31

• "Signals" on page 32

• "Buffering" on page 33

• "Multithreaded Programming" on page 34

• "Interoperability with the SHMEM programming model" on page 34

• "Miscellaneous Features of SGI MPI" on page 35

• "Programming Optimizations" on page 35

• "Additional Programming Model Considerations" on page 38

Job Termination and Error Handling
This section describes the behavior of the SGI MPI implementation upon normal job
termination. Error handling and characteristics of abnormal job termination are also
described.

MPI_Abort

In the SGI MPI implementation, a call to MPI_Abort causes the termination of the
entire MPI job, regardless of the communicator argument used. The error code value
is returned as the exit status of the mpirun command. A stack traceback is displayed
that shows where the program called MPI_Abort.

007–3773–021 31

4: Programming with SGI MPI

Error Handling

Section 7.2 of the MPI Standard describes MPI error handling. Although almost all
MPI functions return an error status, an error handler is invoked before returning
from the function. If the function has an associated communicator, the error handler
associated with that communicator is invoked. Otherwise, the error handler
associated with MPI_COMM_WORLD is invoked.

The SGI MPI implementation provides the following predefined error handlers:

• MPI_ERRORS_ARE_FATAL. The handler, when called, causes the program to abort
on all executing processes. This has the same effect as if MPI_Abort were called
by the process that invoked the handler.

• MPI_ERRORS_RETURN. The handler has no effect.

By default, the MPI_ERRORS_ARE_FATAL error handler is associated with
MPI_COMM_WORLD and any communicators derived from it. Hence, to handle the
error statuses returned from MPI calls, it is necessary to associate either the
MPI_ERRORS_RETURN handler or another user-defined handler with
MPI_COMM_WORLD near the beginning of the application.

MPI_Finalize and Connect Processes

In the SGI implementation of MPI, all pending communications involving an MPI
process must be complete before the process calls MPI_Finalize. If there are any
pending send or recv requests that are unmatched or not completed, the application
hangs in MPI_Finalize. For more details, see section 7.5 of the MPI Standard.

If the application uses the MPI-2 spawn functionality described in Chapter 5 of the
MPI-2 Standard, there are additional considerations. In the SGI implementation, all
MPI processes are connected. Section 5.5.4 of the MPI-2 Standard defines what is
meant by connected processes. When the MPI-2 spawn functionality is used,
MPI_Finalize is collective over all connected processes. Thus all MPI processes,
both launched on the command line, or subsequently spawned, synchronize in
MPI_Finalize.

Signals
In the SGI implementation, MPI processes are UNIX processes. As such, the general
rule regarding signal handling applies as it would to ordinary UNIX processes.

32 007–3773–021

Message Passing Toolkit (MPT) User Guide

In addition, the SIGURG and SIGUSR1 signals can be propagated from the mpirun
process to the other processes in the MPI job, whether they belong to the same process
group on a single host, or are running across multiple hosts in a cluster. To make use
of this feature, the MPI program must have a signal handler that catches SIGURG or
SIGUSR1. When the SIGURG or SIGUSR1 signals are sent to the mpirun process ID,
the mpirun process catches the signal and propagates it to all MPI processes.

Buffering
Most MPI implementations use buffering for overall performance reasons, and some
programs depend on it. However, you should not assume that there is any message
buffering between processes because the MPI Standard does not mandate a buffering
strategy. Table 4-1 on page 33 illustrates a simple sequence of MPI operations that
cannot work unless messages are buffered. If sent messages were not buffered, each
process would hang in the initial call, waiting for an MPI_Recv call to take the
message.

Because most MPI implementations do buffer messages to some degree, a program
like this does not usually hang. The MPI_Send calls return after putting the messages
into buffer space, and the MPI_Recv calls get the messages. Nevertheless, program
logic like this is not valid according to the MPI Standard. Programs that require this
sequence of MPI calls should employ one of the buffer MPI send calls, MPI_Bsend or
MPI_Ibsend.

Table 4-1 Outline of Improper Dependence on Buffering

Process 1 Process 2

MPI_Send(2,....) MPI_Send(1,....)

MPI_Recv(2,....) MPI_Recv(1,....)

By default, the SGI implementation of MPI uses buffering under most circumstances.
Short messages (64 or fewer bytes) are always buffered. Longer messages are also
buffered, although under certain circumstances, buffering can be avoided. For
performance reasons, it is sometimes desirable to avoid buffering. For further
information on unbuffered message delivery, see "Programming Optimizations" on
page 35.

007–3773–021 33

4: Programming with SGI MPI

Multithreaded Programming
SGI MPI supports hybrid programming models, in which MPI is used to handle one
level of parallelism in an application, while POSIX threads or OpenMP processes are
used to handle another level. When mixing OpenMP with MPI, for performance
reasons, it is better to consider invoking MPI functions only outside parallel regions,
or only from within master regions. When used in this manner, it is not necessary to
initialize MPI for thread safety. You can use MPI_Init to initialize MPI. However, to
safely invoke MPI functions from any OpenMP process or when using Posix threads,
MPI must be initialized with MPI_Init_thread.

When using MPI_Thread_init() with the threading level MPI_THREAD_MULTIPLE,
link your program with -lmpi_mt instead of -lmpi. See the mpi(1) man page for
more information about compiling and linking MPI programs.

Interoperability with the SHMEM programming model
You can mix SHMEM and MPI message passing in the same program. The
application must be linked with both the SHMEM and MPI libraries. Start with an
MPI program that calls MPI_Init and MPI_Finalize.

When you add SHMEM calls, the PE numbers are equal to the MPI rank numbers in
MPI_COMM_WORLD. Do not call start_pes() in a mixed MPI and SHMEM program.

When running the application across a cluster, some MPI processes may not be able
to communicate with certain other MPI processes when using SHMEM functions. You
can use the shmem_pe_accessible and shmem_addr_accessible functions to
determine whether a SHMEM call can be used to access data residing in another MPI
process. Because the SHMEM model functions only with respect to
MPI_COMM_WORLD, these functions cannot be used to exchange data between MPI
processes that are connected via MPI intercommunicators returned from MPI-2 spawn
related functions.

SHMEM get and put functions are thread safe. SHMEM collective and
synchronization functions are not thread safe unless different threads use different
pSync and pWork arrays.

For more information about the SHMEM programming model, see the intro_shmem
man page.

34 007–3773–021

Message Passing Toolkit (MPT) User Guide

Miscellaneous Features of SGI MPI
This section describes other characteristics of the SGI MPI implementation that might
be of interest to application developers.

stdin/stdout/stderr

In this implementation, stdin is enabled for only those MPI processes with rank 0 in
the first MPI_COMM_WORLD. Such processes do not need to be located on the same
host as mpirun. stdout and stderr results are enabled for all MPI processes in the
job, whether started by mpirun or started by one of the MPI-2 spawn functions.

MPI_Get_processor_name

The MPI_Get_processor_name function returns the Internet host name of the
computer on which the MPI process that started this subroutine is running.

Programming Optimizations
The following topics describe how to use the optimized features of SGI’s MPI
implementation. You might need to modify your MPI application to use these
recommendations.

Using MPI Point-to-Point Communication Routines

MPI provides for a number of different routines for point-to-point communication.
The most efficient ones in terms of latency and bandwidth are the blocking and
nonblocking send/receive functions, which are as follows:

• MPI_Send

• MPI_Isend

• MPI_Recv

• MPI_Irecv

Unless required for application semantics, avoid the synchronous send calls, which
are as follows:

007–3773–021 35

4: Programming with SGI MPI

• MPI_Ssend

• MPI_Issend

Also avoid the buffered send calls, which double the amount of memory copying on
the sender side. These calls are as follows:

• MPI_Bsend

• MPI_Ibsend

This implementation treats the ready send routines, MPI_Rsend and MPI_Irsend, as
standard MPI_Send and MPI_Isend routines. Persistent requests do not offer any
performance advantage over standard requests in this implementation.

Using MPI Collective Communication Routines

The MPI collective calls are frequently layered on top of the point-to-point primitive
calls. For small process counts, this can be reasonably effective. However, for higher
process counts of 32 processes or more, or for clusters, this approach can be less
efficient. For this reason, a number of the MPI library collective operations have been
optimized to use more complex algorithms.

Most collectives have been optimized for use with clusters. In these cases, steps are
taken to reduce the number of messages using the relatively slower interconnect
between hosts.

Some of the collective operations have been optimized for use with shared memory.
The barrier operation has also been optimized to use hardware fetch operations
(fetchops). The MPI_Alltoall routines also use special techniques to avoid
message buffering when using shared memory. For more details, see "Avoiding
Message Buffering — Single Copy Methods" on page 37.

Note: Collectives are optimized across partitions by using the XPMEM driver which
is explained in Chapter 8, "Run-time Tuning". The collectives (except MPI_Barrier)
try to use single-copy by default for large transfers unless
MPI_DEFAULT_SINGLE_COPY_OFF is specified.

36 007–3773–021

Message Passing Toolkit (MPT) User Guide

Using MPI_Pack/MPI_Unpack

While MPI_Pack and MPI_Unpack are useful for porting parallel virtual machine
(PVM) codes to MPI, they essentially double the amount of data to be copied by both
the sender and receiver. It is generally best to avoid the use of these functions by
either restructuring your data or using derived data types. Note, however, that use of
derived data types can lead to decreased performance in certain cases.

Avoiding Derived Data Types

Avoid derived data types when possible. In the SGI implementation, use of derived
data types does not generally lead to performance gains. Use of derived data types
might disable certain types of optimizations, for example, unbuffered or single copy
data transfer.

Avoiding Wild Cards

The use of wild cards (MPI_ANY_SOURCE, MPI_ANY_TAG) involves searching
multiple queues for messages. While this is not significant for small process counts,
for large process counts, the cost increases quickly.

Avoiding Message Buffering — Single Copy Methods

One of the most significant optimizations for bandwidth-sensitive applications in the
MPI library is single-copy optimization, avoiding the use of shared memory buffers.
However, as discussed in "Buffering" on page 33, some incorrectly coded applications
might hang because of buffering assumptions. For this reason, this optimization is not
enabled by default for MPI_send, but you can use the MPI_BUFFER_MAX
environment variable to enable this optimization at run time. The following
guidelines show how to increase the opportunity for use of the unbuffered pathway:

• The MPI data type on the send side must be a contiguous type.

• The sender and receiver MPI processes must reside on the same host. In the case
of a partitioned system, the processes can reside on any of the partitions.

• The sender data must be globally accessible by the receiver. The SGI MPI
implementation allows data allocated from the static region (common blocks), the
private heap, and the stack region to be globally accessible. In addition, memory

007–3773–021 37

4: Programming with SGI MPI

allocated via the MPI_Alloc_mem function or the SHMEM symmetric heap
accessed via the shpalloc or shmalloc functions is globally accessible.

Certain run-time environment variables must be set to enable the unbuffered, single
copy method. For information about how to set the run-time environment, see
"Avoiding Message Buffering – Enabling Single Copy" on page 49.

Managing Memory Placement

SGI UV series systems have a ccNUMA memory architecture. For single-process and
small multiprocess applications, this architecture behaves similarly to flat memory
architectures. For more highly parallel applications, memory placement becomes
important. MPI takes placement into consideration when it lays out shared memory
data structures and the individual MPI processes’ address spaces. Generally, you
should not try to manage memory placement explicitly. If you need to control the
placement of the application at run time, however, see the following:

Chapter 8, "Run-time Tuning" on page 47

Using Global Shared Memory

The MPT software includes the Global Shared Memory (GSM) Feature. This feature
allows users to allocate globally accessible shared memory from within an MPI or
SHMEM program. The GSM feature can be used to provide shared memory access
across partitioned SGI UV systems and to provide additional memory placement
options within a single-host configuration.

User-callable functions are provided to allocate a global shared memory segment, free
that segment, and provide information about the segment. Once allocated, the
application can use this new global shared memory segment via standard loads and
stores, just as if it were a System V shared memory segment. For more information,
see the GSM_Intro or GSM_Alloc man pages.

Additional Programming Model Considerations
A number of additional programming options might be worth consideration when
developing MPI applications for SGI systems. For example, the SHMEM
programming model can provide a means to improve the performance of
latency-sensitive sections of an application. Usually, this requires replacing MPI

38 007–3773–021

Message Passing Toolkit (MPT) User Guide

send/recv calls with shmem_put/shmem_get and shmem_barrier calls. The
SHMEM programming model can deliver significantly lower latencies for short
messages than traditional MPI calls. As an alternative to shmem_get/shmem_put
calls, you might consider the MPI-2 MPI_Put/ MPI_Get functions. These provide
almost the same performance as the SHMEM calls, while providing a greater degree
of portability.

Alternately, you might consider exploiting the shared memory architecture of SGI
systems by handling one or more levels of parallelism with OpenMP, with the coarser
grained levels of parallelism being handled by MPI. Also, there are special ccNUMA
placement considerations to be aware of when running hybrid MPI/OpenMP
applications. For further information, see Chapter 8, "Run-time Tuning" on page 47.

007–3773–021 39

Chapter 5

Debugging MPI Applications

Debugging MPI applications can be more challenging than debugging sequential
applications. This chapter presents methods for debugging MPI applications. It
covers the following topics:

• "MPI Routine Argument Checking" on page 41

• "Using the TotalView Debugger with MPI programs" on page 41

• "Using idb and gdb with MPI programs" on page 42

MPI Routine Argument Checking
By default, the SGI MPI implementation does not check the arguments to some
performance-critical MPI routines, such as most of the point-to-point and collective
communication routines. You can force MPI to always check the input arguments to
MPI functions by setting the MPI_CHECK_ARGS environment variable. However,
setting this variable might result in some degradation in application performance, so
it is not recommended that it be set except when debugging.

Using the TotalView Debugger with MPI programs
The syntax for running SGI MPI with the TotalView Debugger (TVD) from TotalView
Technologies is as follows:

% totalview mpirun -a -np 4 a.out

Note that TVD is not expected to operate with MPI processes started via the
MPI_Comm_spawn or MPI_Comm_spawn_multiple functions.

The MPT mpiexec_mpt(1) command has a -tv option for use by MPT with the
TotalView Debugger. Note that the PBS Professional mpiexec(1) command does not
support the -tv option.

To run an MPT MPI job with TotalView without a batch scheduler (same as the above
example), type the following:

% totalview mpirun -a -np 4 a.out

007–3773–021 41

5: Debugging MPI Applications

To run an MPT MPI job with Total View Debugger with a batch schduler, such as PBS
Professional or Torque, type the following:

% mpiexec_mpt -tv -np 4 a.out

Using idb and gdb with MPI programs
Because the idb and gdb debuggers are designed for sequential, non-parallel
applications, they are generally not well suited for use in MPI program debugging
and development. However, the use of the MPI_SLAVE_DEBUG_ATTACH environment
variable makes these debuggers more usable.

If you set the MPI_SLAVE_DEBUG_ATTACH environment variable to a global rank
number, the MPI process sleeps briefly in startup while you use idb or gdb to attach
to the process. A message is printed to the screen, telling you how to use idb or gdb
to attach to the process.

Similarly, if you want to debug the MPI daemon, setting
MPI_DAEMON_DEBUG_ATTACH sleeps the daemon briefly while you attach to it.

42 007–3773–021

Chapter 6

PerfBoost

SGI PerfBoost uses a wrapper library to run applications compiled against other MPI
implementations under the SGI Message Passing Toolkit (MPT) product on SGI
platforms. This chapter describes how to use PerfBoost software.

Note: The MPI C++ API is not supported with PerfBoost.

Using PerfBoost
To use PerfBoost with an SGI MPT MPI program, first load the perfboost
environmental module (see Example 6-1 on page 43). Then insert the perfboost
command in front of the executable name along with the choice of MPI
implementation to emulate. Launch the application with the SGI MPT
mpiexec_mpt(1) or mpirun(1) command. The following are MPI implementations
and corresponding command line options:

MPI
Implementation

Command Line Option

Platform MPI 7.1+ -pmpi

HP-MPI -pmpi

Intel MPI -impi

OpenMPI -ompi

MPICH1 -mpich

MPICH2 -impi

MVAPICH2 -impi

Example 6-1 Using the SGI perfboost Software

The following are some examples that use perfboost:

% module load mpt

% module load perfboost

% mpirun -np 32 perfboost -impi a.out arg1

007–3773–021 43

6: PerfBoost

% mpiexec_mpt perfboost -pmpi b.out arg1
% mpirun host1 32, host2 64 perfboost -impi c.out arg1 arg2

Environment Variables
The following environment variable is supported:

PERFBOOST_VERBOSE Setting the PERFBOOST_VERBOSE environment variable
enables a message when PerfBoost activates and also
when the MPI application is completed through the
MPI_Finalize() function. This message indicates
that the PerfBoost library is active and also when the
MPI application completes through the libperfboost
wrapper library.

Note: Some applications re-direct stderr. In this case,
the verbose messages might not appear in the
application output.

The MPI environment variables that are documented in the MPI(1) man page are
available to PerfBoost. MPI environment variables that are not used by SGI MPT are
currently not supported.

MPI Supported Functions
SGI PerfBoost supports the commonly used elements of the C and Fortran MPI APIs.
If a function is not supported, the job aborts and issues an error message. The
message shows the name of the missing function. You can contact the SGI Customer
Support Center at the following website to schedule a missing function to be added
to PerfBoost:

https://support.sgi.com/caselist

44 007–3773–021

Chapter 7

Checkpoint/Restart

MPT supports the Berkeley Lab Checkpoint/Restart (BLCR) checkpoint/restart
implementation. This implementation allows applications to periodically save a copy
of their state. Applications can resume from that point if the application crashes or
the job is aborted to free resources for higher priority jobs.

The following are the implementation’s limitations:

• BLCR does not checkpoint the state of any data files that the application might be
using.

• When using checkpoint/restart, MPI does not support certain features, including
spawning and one-sided MPI.

• InfiniBand XRC queue pairs are not supported.

• Checkpoint files are often very large and require significant disk bandwidth to
create in a timely manner.

For more information on BLCR, see https://ftg.lbl.gov/projects/CheckpointRestart.

BLCR Installation
To use checkpoint/restart with MPT, BLCR must first be installed. This requires
installing the blcr-, blcr-libs-, and blcr-kmp- RPMs. BLCR must then be
enabled by root, as follows:

% chkconfig blcr on

BLCR uses a kernel module which must be built against the specific kernel that the
operating system is running. In the case that the kernel module fails to load, it must
be rebuilt and installed. Install the blcr- SRPM. In the blcr.spec file, set the
kernel variable to the name of the current kernel, then rebuild and install the new set
of RPMs.

007–3773–021 45

7: Checkpoint/Restart

Using BLCR with MPT
To enable checkpoint/restart within MPT, mpirun or mpiexec_mpt must be passed
the -cpr option, for example:

% mpirun -cpr hostA, hostB -np 8 ./a.out

To checkpoint a job, use the mpt_checkpoint command on the same host where
mpirun is running. mpt_checkpoint needs to be passed the PID of mpirun and a
name with which you want to prefix all the checkpoint files. For example:

% mpt_checkpoint -p 12345 -f my_checkpoint

This will create a my_checkpoint.cps metadata file and a number of
my_checkpoint.*.cpd files.

To restart the job, pass the name of the .cps file to mpirun, for example:

% mpirun -cpr hostC, hostD -np 8 mpt_restart my_checkpoint.cps

The job may be restarted on a different set of hosts but there must be the same
number of hosts and each host must have the same number of ranks as the
corresponding host in the original run of the job.

46 007–3773–021

Chapter 8

Run-time Tuning

This chapter discusses ways in which the user can tune the run-time environment to
improve the performance of an MPI message passing application on SGI computers.
None of these ways involve application code changes. This chapter covers the
following topics:

• "Reducing Run-time Variability" on page 47

• "Tuning MPI Buffer Resources" on page 48

• "Avoiding Message Buffering – Enabling Single Copy" on page 49

• "Memory Placement and Policies" on page 50

• "Tuning MPI/OpenMP Hybrid Codes" on page 52

• "Tuning for Running Applications Across Multiple Hosts" on page 53

• "Tuning for Running Applications over the InfiniBand Interconnect" on page 55

• "MPI on SGI UV Systems" on page 57

• "Suspending MPI Jobs" on page 59

Reducing Run-time Variability
One of the most common problems with optimizing message passing codes on large
shared memory computers is achieving reproducible timings from run to run. To
reduce run-time variability, you can take the following precautions:

• Do not oversubscribe the system. In other words, do not request more CPUs than
are available and do not request more memory than is available. Oversubscribing
causes the system to wait unnecessarily for resources to become available and
leads to variations in the results and less than optimal performance.

• Avoid interference from other system activity. The Linux kernel uses more
memory on node 0 than on other nodes (node 0 is called the kernel node in the
following discussion). If your application uses almost all of the available memory
per processor, the memory for processes assigned to the kernel node can
unintentionally spill over to nonlocal memory. By keeping user applications off
the kernel node, you can avoid this effect.

007–3773–021 47

8: Run-time Tuning

Additionally, by restricting system daemons to run on the kernel node, you can
also deliver an additional percentage of each application CPU to the user.

• Avoid interference with other applications. You can use cpusets to address this
problem also. You can use cpusets to effectively partition a large, distributed
memory host in a fashion that minimizes interactions between jobs running
concurrently on the system. See the Linux Resource Administration Guide for
information about cpusets.

• On a quiet, dedicated system, you can use dplace or the MPI_DSM_CPULIST
shell variable to improve run-time performance repeatability. These approaches
are not as suitable for shared, nondedicated systems.

• Use a batch scheduler; for example, Platform LSF from Platform Computing
Corporation or PBS Professional from Altair Engineering, Inc. These batch
schedulers use cpusets to avoid oversubscribing the system and possible
interference between applications.

Tuning MPI Buffer Resources
By default, the SGI MPI implementation buffers messages that are longer than 64
bytes. The system buffers these longer messages in a series of 16-KB buffers.
Messages that exceed 64 bytes are handled as follows:

• If the message is 128k in length or shorter, the sender MPI process buffers the
entire message.

In this case, the sender MPI process delivers a message header, also called a control
message, to a mailbox. When an MPI call is made, the MPI receiver polls the mail
box. If the receiver finds a matching receive request for the sender’s control
message, the receiver copies the data out of the buffers into the application buffer
indicated in the receive request. The receiver then sends a message header back to
the sender process, indicating that the buffers are available for reuse.

• If the message is longer than 128k, the software breaks the message into chunks
that are 128k in length.

The smaller chunks allow the sender and receiver to overlap the copying of data
in a pipelined fashion. Because there are a finite number of buffers, this can
constrain overall application performance for certain communication patterns. You
can use the MPI_BUFS_PER_PROC shell variable to adjust the number of buffers

48 007–3773–021

Message Passing Toolkit (MPT) User Guide

available for each process, and you can use the MPI statistics counters to
determine if the demand for buffering is high.

Generally, you can avoid excessive numbers of retries for buffers if you increase
the number of buffers. However, when you increase the number of buffers, you
consume more memory, and you might increase the probability for cache
pollution. Cache pollution is the excessive filling of the cache with message buffers.
Cache pollution can degrade performance during the compute phase of a message
passing application.

For information about statistics counters, see "MPI Internal Statistics" on page 69.

For information about buffering considerations when running an MPI job across
multiple hosts, see "Tuning for Running Applications Across Multiple Hosts" on page
53.

For information about the programming implications of message buffering, see
"Buffering" on page 33.

Avoiding Message Buffering – Enabling Single Copy
For message transfers between MPI processes within the same host or transfers
between partitions, it is possible under certain conditions to avoid the need to buffer
messages. Because many MPI applications are written assuming infinite buffering, the
use of this unbuffered approach is not enabled by default for MPI_Send. This section
describes how to activate this mechanism by default for MPI_Send.

For MPI_Isend, MPI_Sendrecv, MPI_Alltoall, MPI_Bcast, MPI_Allreduce,
and MPI_Reduce, this optimization is enabled by default for large message sizes. To
disable this default single copy feature used for the collectives, use the
MPI_DEFAULT_SINGLE_COPY_OFF environment variable.

Using the XPMEM Driver for Single Copy Optimization

MPI takes advantage of the XPMEM driver to support single copy message transfers
between two processes within the same host or across partitions.

Enabling single copy transfers may result in better performance, since this technique
improves MPI’s bandwidth. However, single copy transfers may introduce additional
synchronization points, which can reduce application performance in some cases.

007–3773–021 49

8: Run-time Tuning

The threshold for message lengths beyond which MPI attempts to use this single copy
method is specified by the MPI_BUFFER_MAX shell variable. Its value should be set to
the message length in bytes beyond which the single copy method should be tried. In
general, a value of 2000 or higher is beneficial for many applications.

During job startup, MPI uses the XPMEM driver (via the xpmem kernel module) to
map memory from one MPI process to another. The mapped areas include the static
(BSS) region, the private heap, the stack region, and optionally the symmetric heap
region of each process.

Memory mapping allows each process to directly access memory from the address
space of another process. This technique allows MPI to support single copy transfers
for contiguous data types from any of these mapped regions. For these transfers,
whether between processes residing on the same host or across partitions, the data is
copied using a bcopy process. A bcopy process is also used to transfer data
between two different executable files on the same host or two different executable
files across partitions. For data residing outside of a mapped region (a /dev/zero
region, for example), MPI uses a buffering technique to transfer the data.

Memory mapping is enabled by default. To disable it, set the MPI_MEMMAP_OFF
environment variable. Memory mapping must be enabled to allow single-copy
transfers, MPI-2 one-sided communication, support for the SHMEM model, and
certain collective optimizations.

Memory Placement and Policies
The MPI library takes advantage of NUMA placement functions that are available.
Usually, the default placement is adequate. Under certain circumstances, however,
you might want to modify this default behavior. The easiest way to do this is by
setting one or more MPI placement shell variables. Several of the most commonly
used of these variables are discribed in the following sections. For a complete listing
of memory placement related shell variables, see the MPI(1) man page.

MPI_DSM_CPULIST

The MPI_DSM_CPULIST shell variable allows you to manually select processors to
use for an MPI application. At times, specifying a list of processors on which to run a
job can be the best means to insure highly reproducible timings, particularly when
running on a dedicated system.

50 007–3773–021

Message Passing Toolkit (MPT) User Guide

This setting is treated as a comma and/or hyphen delineated ordered list that
specifies a mapping of MPI processes to CPUs. If running across multiple hosts, the
per host components of the CPU list are delineated by colons. Within hyphen
delineated lists CPU striding may be specified by placing "/#" after the list where "#"
is the stride distance.

Note: This feature should not be used with MPI applications that use either of the
MPI-2 spawn related functions.

Examples of settings are as follows:

Value CPU Assignment

8,16,32 Place three MPI processes on CPUs 8, 16, and 32.

32,16,8 Place the MPI process rank zero on CPU 32, one on 16,
and two on CPU 8.

8-15/2 Place the MPI processes 0 through 3 strided on CPUs 8,
10, 12, and 14

8-15,32-39 Place the MPI processes 0 through 7 on CPUs 8 to 15.
Place the MPI processes 8 through 15 on CPUs 32 to 39.

39-32,8-15 Place the MPI processes 0 through 7 on CPUs 39 to 32.
Place the MPI processes 8 through 15 on CPUs 8 to 15.

8-15:16-23 Place the MPI processes 0 through 7 on the first host on
CPUs 8 through 15. Place MPI processes 8 through 15
on CPUs 16 to 23 on the second host.

Note that the process rank is the MPI_COMM_WORLD rank. The interpretation of the
CPU values specified in the MPI_DSM_CPULIST depends on whether the MPI job is
being run within a cpuset. If the job is run outside of a cpuset, the CPUs specify
cpunum values beginning with 0 and up to the number of CPUs in the system minus
one. When running within a cpuset, the default behavior is to interpret the CPU
values as relative processor numbers within the cpuset.

The number of processors specified should equal the number of MPI processes that
will be used to run the application. The number of colon delineated parts of the list
must equal the number of hosts used for the MPI job. If an error occurs in processing
the CPU list, the default placement policy is used.

007–3773–021 51

8: Run-time Tuning

MPI_DSM_DISTRIBUTE

Use the MPI_DSM_DISTRIBUTE shell variable to ensure that each MPI process will
get a physical CPU and memory on the node to which it was assigned. If this
environment variable is used without specifying an MPI_DSM_CPULIST variable, it
will cause MPI to assign MPI ranks starting at logical CPU 0 and incrementing until
all ranks have been placed. Therefore, it is recommended that this variable be used
only if running within a cpuset on a dedicated system.

MPI_DSM_VERBOSE

Setting the MPI_DSM_VERBOSE shell variable directs MPI to display a synopsis of the
NUMA and host placement options being used at run time.

Using dplace for Memory Placement

The dplace tool offers another means of specifying the placement of MPI processes
within a distributed memory host. The dplace tool and MPI interoperate to allow
MPI to better manage placement of certain shared memory data structures when
dplace is used to place the MPI job.

For instructions on how to use dplace with MPI, see the dplace(1) man page and
the Linux Application Tuning Guide.

Tuning MPI/OpenMP Hybrid Codes
A hybrid MPI/OpenMP application is one in which each MPI process itself is a
parallel threaded program. These programs often exploit the OpenMP paralllelism at
the loop level while also implementing a higher level parallel algorithm using MPI.

Many parallel applications perform better if the MPI processes and the threads within
them are pinned to particular processors for the duration of their execution. For
ccNUMA systems, this ensures that all local, non-shared memory is allocated on the
same memory node as the processor referencing it. For all systems, it can ensure that
some or all of the OpenMP threads stay on processors that share a bus or perhaps a
processor cache, which can speed up thread synchronization.

MPT provides the omplace(1) command to help with the placement of OpenMP
threads within an MPI program. The omplace command causes the threads in a

52 007–3773–021

Message Passing Toolkit (MPT) User Guide

hybrid MPI/OpenMP job to be placed on unique CPUs within the containing cpuset.
For example, the threads in a 2-process MPI program with 2 threads per process
would be placed as follows:

rank 0 thread 0 on CPU 0

rank 0 thread 1 on CPU 1

rank 1 thread 0 on CPU 2

rank 1 thread 1 on CPU 3

The CPU placement is performed by dynamically generating a dplace(1) placement
file and invoking dplace.

For detailed syntax and a number of examples, see the omplace(1) man page. For
more information on dplace, see the dplace(1) man page. For information on using
cpusets, see the Linux Resource Administration Guide. For more information on using
dplace, see the Linux Application Tuning Guide.

Example 8-1 How to Run a Hybrid MPI/OpenMP Application

Here is an example of how to run a hybrid MPI/OpenMP application with eight MPI
processes that are two-way threaded on two hosts:

mpirun host1,host2 -np 4 omplace -nt 2 ./a.out

When using the PBS batch scheduler to schedule the a hybrid MPI/OpenMP job as
shown in Example 8-1 on page 53, use the following resource allocation specification:

#PBS -l select=8:ncpus=2

And use the following mpiexec command with the above example:

mpiexec -n 8 omplace -nt 2 ./a.out

For more information about running MPT programs with PBS, see"Running MPI Jobs
with a Work Load Manager" on page 24 .

Tuning for Running Applications Across Multiple Hosts
When you are running an MPI application across a cluster of hosts, there are
additional run-time environment settings and configurations that you can consider
when trying to improve application performance.

007–3773–021 53

8: Run-time Tuning

Systems can use the XPMEM interconnect to cluster hosts as partitioned systems, or
use the InfiniBand interconnect or TCP/IP as the multihost interconnect.

When launched as a distributed application, MPI probes for these interconnects at job
startup. For details of launching a distributed application, see "Launching a
Distributed Application" on page 23. When a high performance interconnect is
detected, MPI attempts to use this interconnect if it is available on every host being
used by the MPI job. If the interconnect is not available for use on every host, the
library attempts to use the next slower interconnect until this connectivity
requirement is met. Table 8-1 on page 54 specifies the order in which MPI probes for
available interconnects.

Table 8-1 Inquiry Order for Available Interconnects

Interconnect Default Order of Selection
Environment Variable to
Require Use

XPMEM 1 MPI_USE_XPMEM

InfiniBand 2 MPI_USE_IB

TCP/IP 3 MPI_USE_TCP

The third column of Table 8-1 on page 54 also indicates the environment variable you
can set to pick a particular interconnect other than the default.

In general, to insure the best performance of the application, you should allow MPI to
pick the fastest available interconnect.

When using the TCP/IP interconnect, unless specified otherwise, MPI uses the default
IP adapter for each host. To use a nondefault adapter, enter the adapter-specific host
name on the mpirun command line.

When using the InfiniBand interconnect, MPT applications may not execute a fork()
or system() call. The InfiniBand driver produces undefined results when an MPT
process using InfiniBand forks.

54 007–3773–021

Message Passing Toolkit (MPT) User Guide

MPI_USE_IB

Requires the MPI library to use the InfiniBand driver as the interconnect when
running across multiple hosts or running with multiple binaries. MPT requires the
OFED software stack when the InfiniBand interconnect is used. If InfiniBand is used,
the MPI_COREDUMP environment variable is forced to INHIBIT, to comply with the
InfiniBand driver restriction that no fork()s may occur after InfiniBand resources have
been allocated. Default: Not set

MPI_IB_RAILS

When this is set to 1 and the MPI library uses the InfiniBand driver as the inter-host
interconnect, MPT will send its InfiniBand traffic over the first fabric that it detects. If
this is set to 2, the library will try to make use of multiple available separate
InfiniBand fabrics and split its traffic across them. If the separate InfiniBand fabrics
do not have unique subnet IDs, then the rail-config utility is required. It must be
run by the system administrator to enable the library to correctly use the separate
fabrics. Default: 1 on all SGI UV systems.

MPI_IB_SINGLE_COPY_BUFFER_MAX

When MPI transfers data over InfiniBand, if the size of the cumulative data is greater
than this value then MPI will attempt to send the data directly between the processes’s
buffers and not through intermediate buffers inside the MPI library. Default: 32767

For more information on these environment variables, see the “ENVIRONMENT
VARIABLES” section of the mpi(1) man page.

Tuning for Running Applications over the InfiniBand Interconnect
When running an MPI application across a cluster of hosts using the InfiniBand
interconnect, there are additional run-time environmental settings that you can
consider to improve application performance, as follows:

MPI_NUM_QUICKS

Controls the number of other ranks that a rank can receive from over InfiniBand using
a short message fast path. This is 8 by default and can be any value between 0 and 32.

007–3773–021 55

8: Run-time Tuning

MPI_NUM_MEMORY_REGIONS

For zero-copy sends over the InfiniBand interconnect, MPT keeps a cache of
application data buffers registered for these transfers. This environmental variable
controls the size of the cache. It is 8 by default and can be any value between 0 and
32. If the application rarely reuses data buffers, it may make sense to set this value to
0 to avoid cache trashing.

MPI_CONNECTIONS_THRESHOLD

For very large MPI jobs, the time and resource cost to create a connection between
every pair of ranks at job start time may be prodigious. When the number of ranks is
at least this value, the MPI library will create InfiniBand connections lazily on a
demand basis. The default is 1024 ranks.

MPI_IB_PAYLOAD

When the MPI library uses the InfiniBand fabric, it allocates some amount of memory
for each message header that it uses for InfiniBand. If the size of data to be sent is not
greater than this amount minus 64 bytes for the actual header, the data is inlined with
the header. If the size is greater than this value, then the message is sent through
remote direct memory access (RDMA) operations. The default is 16384 bytes.

MPI_IB_TIMEOUT

When an InfiniBand card sends a packet, it waits some amount of time for an ACK
packet to be returned by the receiving InfiniBand card. If it does not receive one, it
sends the packet again. This variable controls that wait period. The time spent is
equal to 4 * 2 ^ MPI_IB_TIMEOUT microseconds. By default, the variable is set to 18.

MPI_IB_FAILOVER

When the MPI library uses InfiniBand and this variable is set, and an InfiniBand
transmission error occurs, MPT will try to restart the connection to the other rank. It
will handle a number of errors of this type between any pair of ranks equal to the
value of this variable. By default, the variable is set to 4.

56 007–3773–021

Message Passing Toolkit (MPT) User Guide

MPI on SGI UV Systems

Note: This section does not apply to SGI UV 10 systems or SGI UV 20 systems.

The SGI® UVTM series systems are scalable nonuniform memory access (NUMA)
systems that support a single Linux image of thousands of processors distributed
over many sockets and SGI UV Hub application-specific integrated circuits (ASICs).
The UV Hub is the heart of the SGI UV system compute blade. Each "processor" is a
hyperthread on a particular core within a particular socket. Each SGI UV Hub
normally connects to two sockets. All communication between the sockets and the UV
Hub uses Intel QuickPath Interconnect (QPI) channels. The SGI UV 1000 series Hub
has four NUMAlink 5 ports that connect with the NUMAlink 5 interconnect fabric.

On SGI UV 2000 series systems, the UV Hub board assembly has a HUB ASIC with
two identical hubs. Each hub supports one 8.0 GT/s QPI channel to a processor
socket. The SGI UV 2000 series Hub has four NUMAlink 6 ports that connect with
the NUMAlink 6 interconnect fabric.

The UV Hub acts as a crossbar between the processors, local SDRAM memory, and
the network interface. The Hub ASIC enables any processor in the single-system
image (SSI) to access the memory of all processors in the SSI. For more information
on the SGI UV hub, SGI UV compute blades, QPI, and NUMAlink 5, or NUMAlink 6,
see the SGI Altix UV 1000 System User’s Guide, the SGI Altix UV 100 System User’s
Guide or SGI UV 2000 System User’s Guide, respectively.

When MPI communicates between processes, two transfer methods are possible on an
SGI UV system:

• By use of shared memory

• By use of the global reference unit (GRU), part of the SGI UV Hub ASIC

MPI chooses the method depending on internal heuristics, the type of MPI
communication that is involved, and some user-tunable variables. When using the
GRU to transfer data and messages, the MPI library uses the GRU resources it
allocates via the GRU resource allocator, which divides up the available GRU
resources. It fairly allocates buffer space and control blocks between the logical
processors being used by the MPI job.

007–3773–021 57

8: Run-time Tuning

General Considerations

Running MPI jobs optimally on SGI UV systems is not very difficult. It is best to pin
MPI processes to CPUs and isolate multiple MPI jobs onto different sets of sockets
and Hubs, and this is usually achieved by configuring a batch scheduler to create a
cpuset for every MPI job. MPI pins its processes to the sequential list of logical
processors within the containing cpuset by default, but you can control and alter the
pinning pattern using MPI_DSM_CPULIST (see "MPI_DSM_CPULIST" on page 50),
omplace(1), and dplace(1).

Job Performance Types

The MPI library chooses buffer sizes and communication algorithms in an attempt to
deliver the best performance automatically to a wide variety of MPI applications.
However, applications have different performance profiles and bottlenecks, and so
user tuning may be of help in improving performance. Here are some application
performance types and ways that MPI performance may be improved for them:

• Odd HyperThreads are idle.

Most high performance computing MPI programs run best using only one
HyperThread per core. When an SGI UV system has multiple HyperThreads per
core, logical CPUs are numbered such that odd HyperThreads are the high half of
the logical CPU numbers. Therefore, the task of scheduling only on the even
HyperThreads may be accomplished by scheduling MPI jobs as if only half the
full number exist, leaving the high logical CPUs idle.You can use the cpumap(1)
command to determine if cores have multiple HyperThreads on your SGI UV
system. The output tells the number of physical and logical processors and if
Hyperthreading is ON or OFF and how shared processors are paired (towards the
bottom of the command’s output).

If an MPI job uses only half of the available logical CPUs, set
GRU_RESOURCE_FACTOR to 2 so that the MPI processes can utilize all the
available GRU resources on a Hub rather than reserving some of them for the idle
HyperThreads. For more information about GRU resource tuning, see the
gru_resource(3) man page.

• MPI large message bandwidth is important.

Some programs transfer large messages via the MPI_Send function. To switch on
the use of unbuffered, single copy transport in these cases you can set
MPI_BUFFER_MAX to 0. See the MPI(1) man page for more details.

58 007–3773–021

Message Passing Toolkit (MPT) User Guide

• MPI small or near messages are very frequent.

For small fabric hop counts, shared memory message delivery is faster than GRU
messages. To deliver all messages within an SGI UV host via shared memory, set
MPI_SHARED_NEIGHBORHOOD to "host". See the MPI(1) man page for more
details.

Other ccNUMA Performance Issues

MPI application processes normally perform best if their local memory is allocated on
the socket assigned to execute it. This cannot happen if memory on that socket is
exhausted by the application or by other system consumption, for example, file buffer
cache. Use the nodeinfo(1) command to view memory consumption on the nodes
assigned to your job and use bcfree(1) to clear out excessive file buffer cache. PBS
Professional batch scheduler installations can be configured to issue
bcfreecommands in the job prologue. For more information, see PBS Professional
documentation and the bcfree(1) man page.

Suspending MPI Jobs
MPI software from SGI can internally use the XPMEM kernel module to provide
direct access to data on remote partitions and to provide single copy operations to
local data. Any pages used by these operations are prevented from paging by the
XPMEM kernel module. If an administrator needs to temporarily suspend a MPI
application to allow other applications to run, they can unpin these pages so they can
be swapped out and made available for other applications.

Each process of a MPI application which is using the XPMEM kernel module will
have a /proc/xpmem/pid file associated with it. The number of pages owned by this
process which are prevented from paging by XPMEM can be displayed by
concatenating the /proc/xpmem/pid file, for example:

cat /proc/xpmem/5562
pages pinned by XPMEM: 17

To unpin the pages for use by other processes, the administrator must first suspend
all the processes in the application. The pages can then be unpinned by echoing any
value into the /proc/xpmem/pid file, for example:

echo 1 > /proc/xpmem/5562

The echo command will not return until that process’s pages are unpinned.

007–3773–021 59

8: Run-time Tuning

When the MPI application is resumed, the XPMEM kernel module will prevent these
pages from paging as they are referenced by the application.

60 007–3773–021

Chapter 9

MPI Performance Profiling

This chapter describes the perfcatch utility used to profile the performance of an
MPI program and other tools that can be used for profiling MPI applications. It
covers the following topics:

• "Overview of perfcatch Utility" on page 61

• "Using the perfcatch Utility" on page 61

• " MPI_PROFILING_STATS Results File Example" on page 62

• "MPI Performance Profiling Environment Variables" on page 65

• "MPI Supported Profiled Functions"

• "Profiling MPI Applications" on page 67

Overview of perfcatch Utility
The perfcatch utility runs an MPI program with a wrapper profiling library that
prints MPI call profiling information to a summary file upon MPI program
completion. This MPI profiling result file is called MPI_PROFILING_STATS, by
default (see " MPI_PROFILING_STATS Results File Example" on page 62). It is
created in the current working directory of the MPI process with rank 0.

Using the perfcatch Utility
The syntax of the perfcatch utility is, as follows:

perfcatch [-v | -vofed | -i] cmd args

The perfcatch utility accepts the following options:

No option Supports MPT

-v Supports MPI

-vofed Supports OFED MPI

007–3773–021 61

9: MPI Performance Profiling

-i Supports Intel MPI

To use perfcatch with an SGI Message Passing Toolkit MPI program, insert the
perfcatch command in front of the executable name. Here are some examples:

mpirun -np 64 perfcatch a.out arg1

and

mpirun host1 32, host2 64 perfcatch a.out arg1

To use perfcatch with Intel MPI, add the -i options. An example is, as follows:

mpiexec -np 64 perfcatch -i a.out arg1

For more information, see the perfcatch(1) man page.

MPI_PROFILING_STATS Results File Example
The MPI profiling result file has a summary statistics section followed by a
rank-by-rank profiling information section. The summary statistics section reports
some overall statistics, including the percent time each rank spent in MPI functions,
and the MPI process that spent the least and the most time in MPI functions. Similar
reports are made about system time usage.

The rank-by-rank profiling information section lists every profiled MPI function called
by a particular MPI process. The number of calls and the total time consumed by
these calls is reported. Some functions report additional information such as average
data counts and communication peer lists.

An example MPI_PROFILING_STATS results file is, as follows:

62 007–3773–021

Message Passing Toolkit (MPT) User Guide

==
PERFCATCHER version 22

(C) Copyright SGI. This library may only be used

on SGI hardware platforms. See LICENSE file for

details.

==
MPI program profiling information

Job profile recorded Wed Jan 17 13:05:24 2007

Program command line: /home/estes01/michel/sastest/mpi_hello_linux

Total MPI processes 2

Total MPI job time, avg per rank 0.0054768 sec
Profiled job time, avg per rank 0.0054768 sec

Percent job time profiled, avg per rank 100%

Total user time, avg per rank 0.001 sec

Percent user time, avg per rank 18.2588%
Total system time, avg per rank 0.0045 sec

Percent system time, avg per rank 82.1648%

Time in all profiled MPI routines, avg per rank 5.75004e-07 sec

Percent time in profiled MPI routines, avg per rank 0.0104989%

Rank-by-Rank Summary Statistics

Rank-by-Rank: Percent in Profiled MPI routines

Rank:Percent
0:0.0112245% 1:0.00968502%

Least: Rank 1 0.00968502%

Most: Rank 0 0.0112245%

Load Imbalance: 0.000771%

Rank-by-Rank: User Time

Rank:Percent

0:17.2683% 1:19.3699%

Least: Rank 0 17.2683%

Most: Rank 1 19.3699%

Rank-by-Rank: System Time

Rank:Percent

007–3773–021 63

9: MPI Performance Profiling

0:86.3416% 1:77.4796%
Least: Rank 1 77.4796%

Most: Rank 0 86.3416%

Notes

Wtime resolution is 5e-08 sec

Rank-by-Rank MPI Profiling Results

Activity on process rank 0

Single-copy checking was not enabled.

comm_rank calls: 1 time: 6.50005e-07 s 6.50005e-07 s/call

Activity on process rank 1

Single-copy checking was not enabled.

comm_rank calls: 1 time: 5.00004e-07 s 5.00004e-07 s/call

--

recv profile

cnt/sec for all remote ranks

local ANY_SOURCE 0 1
rank

--

recv wait for data profile

cnt/sec for all remote ranks

local 0 1

rank

--

recv wait for data profile

64 007–3773–021

Message Passing Toolkit (MPT) User Guide

cnt/sec for all remote ranks
local 0 1

rank

--

send profile

cnt/sec for all destination ranks

src 0 1

rank

--

ssend profile

cnt/sec for all destination ranks
src 0 1

rank

--

ibsend profile

cnt/sec for all destination ranks

src 0 1

rank

MPI Performance Profiling Environment Variables
The MPI performance profiling environment variables are, as follows:

Variable Description

MPI_PROFILE_AT_INIT Activates MPI profiling
immediately, that is, at the start of
MPI program execution.

MPI_PROFILING_STATS_FILE Specifies the file where MPI
profiling results are written. If not

007–3773–021 65

9: MPI Performance Profiling

specified, the file
MPI_PROFILING_STATS is written.

MPI Supported Profiled Functions
The MPI supported profiled functions are, as follows:

Note: Some functions may not be implemented in all language as indicated below.

Languages Function

C Fortran mpi_allgather

C Fortran mpi_allgatherv

C Fortran mpi_allreduce

C Fortran mpi_alltoall

C Fortran mpi_alltoallv

C Fortran mpi_alltoallw

C Fortran mpi_barrier

C Fortran mpi_bcast

C Fortran mpi_comm_create

C Fortran mpi_comm_free

C Fortran mpi_comm_group

C Fortran mpi_comm_rank

C Fortran mpi_finalize

C Fortran mpi_gather

C Fortran mpi_gatherv

C mpi_get_count

C Fortran mpi_group_difference

C Fortran mpi_group_excl

C Fortran mpi_group_free

C Fortran mpi_group_incl

C Fortran mpi_group_intersection

66 007–3773–021

Message Passing Toolkit (MPT) User Guide

C Fortran mpi_group_range_excl

C Fortran mpi_group_range_incl

C Fortran mpi_group_union

C mpi_ibsend

C Fortran mpi_init

C mpi_init_thread

C Fortran mpi_irecv

C Fortran mpi_isend

C mpi_probe

C Fortran mpi_recv

C Fortran mpi_reduce

C Fortran mpi_scatter

C Fortran mpi_scatterv

C Fortran mpi_send

C Fortran mpi_sendrecv

C Fortran mpi_ssend

C Fortran mpi_test

C Fortran mpi_testany

C Fortran mpi_wait

C Fortran mpi_wait

Profiling MPI Applications
This section describes the use of profiling tools to obtain performance information.
Compared to the performance analysis of sequential applications, characterizing the
performance of parallel applications can be challenging. Often it is most effective to
first focus on improving the performance of MPI applications at the single process
level.

It may also be important to understand the message traffic generated by an
application. A number of tools can be used to analyze this aspect of a message
passing application’s performance, including Performance Co-Pilot and various third

007–3773–021 67

9: MPI Performance Profiling

party products. In this section, you can learn how to use these various tools with MPI
applications. It covers the following topics:

• "Profiling Interface" on page 68

• "MPI Internal Statistics" on page 69

• "Third Party Products" on page 69

Profiling Interface

You can write your own profiling by using the MPI-1 standard PMPI_* calls. In
addition, either within your own profiling library or within the application itself you
can use the MPI_Wtime function call to time specific calls or sections of your code.

The following example is actual output for a single rank of a program that was run
on 128 processors, using a user-created profiling library that performs call counts and
timings of common MPI calls. Notice that for this rank most of the MPI time is being
spent in MPI_Waitall and MPI_Allreduce.

Total job time 2.203333e+02 sec

Total MPI processes 128
Wtime resolution is 8.000000e-07 sec

activity on process rank 0

comm_rank calls 1 time 8.800002e-06

get_count calls 0 time 0.000000e+00
ibsend calls 0 time 0.000000e+00

probe calls 0 time 0.000000e+00

recv calls 0 time 0.00000e+00 avg datacnt 0 waits 0 wait time 0.00000e+00

irecv calls 22039 time 9.76185e-01 datacnt 23474032 avg datacnt 1065

send calls 0 time 0.000000e+00

ssend calls 0 time 0.000000e+00
isend calls 22039 time 2.950286e+00

wait calls 0 time 0.00000e+00 avg datacnt 0

waitall calls 11045 time 7.73805e+01 # of Reqs 44078 avg data cnt 137944

barrier calls 680 time 5.133110e+00

alltoall calls 0 time 0.0e+00 avg datacnt 0
alltoallv calls 0 time 0.000000e+00

reduce calls 0 time 0.000000e+00

allreduce calls 4658 time 2.072872e+01

bcast calls 680 time 6.915840e-02

68 007–3773–021

Message Passing Toolkit (MPT) User Guide

gather calls 0 time 0.000000e+00
gatherv calls 0 time 0.000000e+00

scatter calls 0 time 0.000000e+00

scatterv calls 0 time 0.000000e+00

activity on process rank 1
...

MPI Internal Statistics

MPI keeps track of certain resource utilization statistics. These can be used to
determine potential performance problems caused by lack of MPI message buffers
and other MPI internal resources.

To turn on the displaying of MPI internal statistics, use the MPI_STATS environment
variable or the -stats option on the mpirun command. MPI internal statistics are
always being gathered, so displaying them does not cause significant additional
overhead. In addition, one can sample the MPI statistics counters from within an
application, allowing for finer grain measurements. If the MPI_STATS_FILE variable
is set, when the program completes, the internal statistics will be written to the file
specified by this variable. For information about these MPI extensions, see the
mpi_stats man page.

These statistics can be very useful in optimizing codes in the following ways:

• To determine if there are enough internal buffers and if processes are waiting
(retries) to aquire them

• To determine if single copy optimization is being used for point-to-point or
collective calls

For additional information on how to use the MPI statistics counters to help tune the
run-time environment for an MPI application, see Chapter 8, "Run-time Tuning" on
page 47.

Third Party Products

Two third party tools that you can use with the SGI MPI implementation are Vampir
from Pallas (www.pallas.com) and Jumpshot, which is part of the MPICH
distribution. Both of these tools are effective for smaller, short duration MPI jobs.
However, the trace files these tools generate can be enormous for longer running or

007–3773–021 69

9: MPI Performance Profiling

highly parallel jobs. This causes a program to run more slowly, but even more
problematic is that the tools to analyze the data are often overwhelmed by the
amount of data.

70 007–3773–021

Chapter 10

Troubleshooting and Frequently Asked Questions

This chapter provides answers to some common problems users encounter when
starting to use SGI MPI, as well as answers to other frequently asked questions. It
covers the following topics:

• "What are some things I can try to figure out why mpirun is failing? " on page 71

• "My code runs correctly until it reaches MPI_Finalize() and then it hangs." on
page 73

• "My hybrid code (using OpenMP) stalls on the mpirun command." on page 73

• "I keep getting error messages about MPI_REQUEST_MAX being too small." on
page 73

• "I am not seeing stdout and/or stderr output from my MPI application." on
page 74

• "How can I get the MPT software to install on my machine?" on page 74

• "Where can I find more information about the SHMEM programming model? " on
page 74

• "The ps(1) command says my memory use (SIZE) is higher than expected. " on
page 74

• "What does MPI: could not run executable mean?" on page 75

• "How do I combine MPI with insert favorite tool here?" on page 75

• "Why do I see “stack traceback” information when my MPI job aborts?" on page 76

What are some things I can try to figure out why mpirun is failing?
Here are some things to investigate:

• Look in /var/log/messages for any suspicious errors or warnings. For
example, if your application tries to pull in a library that it cannot find, a message
should appear here. Only the root user can view this file.

• Be sure that you did not misspell the name of your application.

007–3773–021 71

10: Troubleshooting and Frequently Asked Questions

• To find dynamic link errors, try to run your program without mpirun. You will
get the “mpirun must be used to launch all MPI applications"
message, along with any dynamic link errors that might not be displayed when
the program is started with mpirun.

As a last resort, setting the environment variable LD_DEBUG to all will display a
set of messages for each symbol that rld resolves. This produces a lot of output,
but should help you find the cause of the link arror.

• Be sure that you are setting your remote directory properly. By default, mpirun
attempts to place your processes on all machines into the directory that has the
same name as $PWD. This should be the common case, but sometimes different
functionality is required. For more information, see the section on $MPI_DIR
and/or the -dir option in the mpirun man page.

• If you are using a relative pathname for your application, be sure that it appears
in $PATH. In particular, mpirun will not look in ’.’ for your application unless ’.’
appears in $PATH.

• Run /usr/sbin/ascheck to verify that your array is configured correctly.

• Use the mpirun -verbose option to verify that you are running the version of
MPI that you think you are running.

• Be very careful when setting MPI environment variables from within your
.cshrc or .login files, because these will override any settings that you might
later set from within your shell (due to the fact that MPI creates the equivalent of
a fresh login session for every job). The safe way to set things up is to test for the
existence of $MPI_ENVIRONMENT in your scripts and set the other MPI
environment variables only if it is undefined.

• If you are running under a Kerberos environment, you may experience
unpredictable results because currently, mpirun is unable to pass tokens. For
example, in some cases, if you use telnet to connect to a host and then try to
run mpirun on that host, it fails. But if you instead use rsh to connect to the
host, mpirun succeeds. (This might be because telnet is kerberized but rsh is
not.) At any rate, if you are running under such conditions, you will definitely
want to talk to the local administrators about the proper way to launch MPI jobs.

• Look in /tmp/.arraysvcs on all machines you are using. In some cases, you
might find an errlog file that may be helpful.

72 007–3773–021

Message Passing Toolkit (MPT) User Guide

• You can increase the verbosity of the Array Services daemon (arrayd) using the
-v option to generate more debugging information. For more information, see the
arrayd(8) man page.

• Check error messages in /var/run/arraysvcs.

My code runs correctly until it reaches MPI_Finalize() and then it hangs.
This is almost always caused by send or recv requests that are either unmatched or
not completed. An unmatched request is any blocking send for which a
corresponding recv is never posted. An incomplete request is any nonblocking send
or recv request that was never freed by a call to MPI_Test(), MPI_Wait(), or
MPI_Request_free().

Common examples are applications that call MPI_Isend() and then use internal
means to determine when it is safe to reuse the send buffer. These applications never
call MPI_Wait(). You can fix such codes easily by inserting a call to
MPI_Request_free() immediately after all such isend operations, or by adding a
call to MPI_Wait() at a later place in the code, prior to the point at which the send
buffer must be reused.

My hybrid code (using OpenMP) stalls on the mpirun command.
If your application was compiled with the Open64 compiler, make sure you follow
the instructions about using the Open64 compiler in combination with MPI/OpenMP
applications descibed in "Compiling and Linking MPI Programs" on page 21.

I keep getting error messages about MPI_REQUEST_MAX being too small.
There are two types of cases in which the MPI library reports an error concerning
MPI_REQUEST_MAX. The error reported by the MPI library distinguishes these.

MPI has run out of unexpected request entries;
the current allocation level is: XXXXXX

The program is sending so many unexpected large messages (greater than 64 bytes) to
a process that internal limits in the MPI library have been exceeded. The options here

007–3773–021 73

10: Troubleshooting and Frequently Asked Questions

are to increase the number of allowable requests via the MPI_REQUEST_MAX shell
variable, or to modify the application.

MPI has run out of request entries;

the current allocation level is: MPI_REQUEST_MAX = XXXXX

You might have an application problem. You almost certainly are calling
MPI_Isend() or MPI_Irecv() and not completing or freeing your request objects.
You need to use MPI_Request_free(), as described in the previous section.

I am not seeing stdout and/or stderr output from my MPI application.
All stdout and stderr is line-buffered, which means that mpirun does not print
any partial lines of output. This sometimes causes problems for codes that prompt
the user for input parameters but do not end their prompts with a newline character.
The only solution for this is to append a newline character to each prompt.

You can set the MPI_UNBUFFERED_STDIO environment variable to disable
line-buffering. For more information, see the MPI(1) and mpirun(1) man pages.

How can I get the MPT software to install on my machine?
MPT RPMs are included in the SGI Performance Suite releases. In addition, you can
obtain MPT RPMs from the SGI Support website at

http://support.sgi.com

under "Downloads".

Where can I find more information about the SHMEM programming model?
See the intro_shmem(3) man page.

The ps(1) command says my memory use (SIZE) is higher than expected.
At MPI job start-up, MPI calls the SHMEM library to cross-map all user static memory
on all MPI processes to provide optimization opportunities. The result is large virtual
memory usage. The ps(1) command’s SIZE statistic is telling you the amount of

74 007–3773–021

Message Passing Toolkit (MPT) User Guide

virtual address space being used, not the amount of memory being consumed. Even
if all of the pages that you could reference were faulted in, most of the virtual address
regions point to multiply-mapped (shared) data regions, and even in that case, actual
per-process memory usage would be far lower than that indicated by SIZE.

What does MPI: could not run executable mean?
This message means that something happened while mpirun was trying to launch
your application, which caused it to fail before all of the MPI processes were able to
handshake with it.

The mpirun command directs arrayd to launch a master process on each host and
listens on a socket for those masters to connect back to it. Since the masters are
children of arrayd, arrayd traps SIGCHLD and passes that signal back to mpirun
whenever one of the masters terminates. If mpirun receives a signal before it has
established connections with every host in the job, it knows that something has gone
wrong.

How do I combine MPI with insert favorite tool here?
In general, the rule to follow is to run mpirun on your tool and then the tool on your
application. Do not try to run the tool on mpirun. Also, because of the way that
mpirun sets up stdio, seeing the output from your tool might require a bit of effort.
The most ideal case is when the tool directly supports an option to redirect its output
to a file. In general, this is the recommended way to mix tools with mpirun. Of
course, not all tools (for example, dplace) support such an option. However, it is
usually possible to make it work by wrapping a shell script around the tool and
having the script do the redirection, as in the following example:

> cat myscript

#!/bin/sh
setenv MPI_DSM_OFF

dplace -verbose a.out 2> outfile

> mpirun -np 4 myscript

hello world from process 0

hello world from process 1

hello world from process 2
hello world from process 3

> cat outfile

007–3773–021 75

10: Troubleshooting and Frequently Asked Questions

there are now 1 threads
Setting up policies and initial thread.

Migration is off.

Data placement policy is PlacementDefault.

Creating data PM.

Data pagesize is 16k.
Setting data PM.

Creating stack PM.

Stack pagesize is 16k.

Stack placement policy is PlacementDefault.

Setting stack PM.

there are now 2 threads
there are now 3 threads

there are now 4 threads

there are now 5 threads

Why do I see “stack traceback” information when my MPI job aborts?
More information can be found in the MPI(1) man page in descriptions of the
MPI_COREDUMP and MPI_COREDUMP_DEBUGGER environment variables.

76 007–3773–021

Index

A

Argument checking, 41
Array Services

arrayconfig_tempo command, 13
configuring, 13

arrayconfig_tempo command, 13

B

Berkeley Lab Checkpoint/Restart (BLCR), 45
installation, 45
using with MPT, 46

C

Cache coherent non-uniform memory access
(ccNUMA) systems, 25, 59

ccNUMA
See also "cache coherent non-uniform memory

access", 25, 59
Checkpoint/restart, 45
Code hangs, 73
Combining MPI with tools, 75
Components, 2
Configuring Array Services, 13
Configuring MPT

adjusting file descriptor limits, 15
OFED, 14

D

Debuggers
idb and gdb, 42

Distributed applications, 23

F

Features, 2
Frequently asked questions, 71

G

Getting started, 19
Global reference unit (GRU), 57

I

Internal statistics, 69
Introduction, 1

M

Memory placement and policies, 50
Memory use size problems, 74
MPI 2.2 standard compliance, 2
MPI jobs, suspending, 59
MPI launching problems, 75
MPI on SGI UV systems, 57

general considerations, 58
job performance types, 58
other ccNUMA performance issues, 59

MPI overview, 2
MPI 2.2 standard compliance, 2
MPI components, 2
SGI MPI features, 2

MPI performance profiling, 61

007–3773–021 77

Index

environment variables, 65
results file, 62
supported functions, 66

MPI-2 spawn functions
to launch applications, 23

MPI_REQUEST_MAX too small, 73
mpirun command

to launch application, 22
mpirun failing, 71
MPMD applications, 22
MPT software installation, 74

O

OFED configuration for MPT, 14

P

PerfBoost, 43
environment variables, 44
MPI supported functions, 44
using, 43

Perfcatch utility
results file, 62
See also "MPI performance profiling", 61
using, 61

Profiling interface, 68
Profiling MPI applications, 67

MPI internal statistics, 69
profiling interface, 68
third party products, 69

Profiling tools
Jumpshot, 69
third party, 69
Vampir, 69

Programs
compiling and linking, 21

GNU compilers, 21
Intel compiler, 21

Open 64 compiler with hybrid
MPI/OpenMP applications, 22

debugging methods, 41
launching distributed, 23
launching multiple, 22
launching single, 22
launching with mpirun, 22
launching with PBS, 24
launching with Torque, 26
MPI-2 spawn functions, 23
SHMEM programming model, 27
with TotalView, 41

R

Running MPI Jobs with a workload manager, 24

S

SGI UV Hub, 57
SHMEM applications, 27
SHMEM information, 74
SHMEM programming model, 1
Single copy optimization

avoiding message buffering, 49
using the XPMEM driver, 49

Stack traceback information, 76
stdout and/or stderr not appearing, 74
System configuration

Configuring Array Services, 13
configuring MPT

adjusting file descriptor limits, 15

T

TotalView, 41
Troubleshooting, 71
Tuning

78 007–3773–021

Message Passing Toolkit (MPT) User Guide

avoiding message buffering, 49
buffer resources, 48
enabling single copy, 49
for running applications across multiple

hosts, 53
for running applications over the InfiniBand

Interconnect, 55
memory placement and policies, 50
MPI/OpenMP hybrid codes, 53
reducing run-time variability, 47
using dplace, 52
using MPI_DSM_CPULIST, 50
using MPI_DSM_DISTRIBUTE, 52

using MPI_DSM_VERBOSE, 52
using the XPMEM driver, 49

U

Unpinning memory, 59
Using PBS Professional

to launch application, 24
Using Torque

to launch application, 26

007–3773–021 79

	Table of Contents
	List of Tables

	About This Manual
	Related Publications and Other Sources
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction
	MPI Overview
	MPI 2.2 Standard Compliance
	MPI Components
	SGI MPI Features

	2. Installing and Configuring the Message Passing Toolkit (MPT)
	Verifying Prerequisites
	Installing and Configuring MPT
	Installing the MPT RPM into the Default Location
	Installing the MPT RPM into an Alternate Location
	Using a .cpio File to Install the RPM into the Default Location or into an Alternate Location

	(Conditional) Enabling MPT for Cluster Environments for Alternate-location Installations
	(Conditional) Resetting Enviroment Variables for Alternate-location Installations
	Configuring Array Services
	Configuring OFED for MPT
	Restarting Services or Rebooting
	(Conditional) Adjusting File Descriptor Limits
	Adjusting the Resource Limit for Locked Memory
	(Conditional) Enabling Cross-partition NUMAlink MPI Communication

	3. Getting Started
	Running MPI Jobs
	Compiling and Linking MPI Programs
	Using mpirun to Launch an MPI Application
	Launching a Single Program on the Local Host
	Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host
	Launching a Distributed Application
	Using MPI-2 Spawn Functions to Launch an Application

	Running MPI Jobs with a Work Load Manager
	PBS Professional
	Torque
	SLURM

	Compiling and Running SHMEM Applications
	Using Huge Pages
	Interoperation Between MPI, SHMEM, and UPC

	4. Programming with SGI MPI
	Job Termination and Error Handling
	MPI_Abort
	Error Handling
	MPI_Finalize and Connect Processes

	Signals
	Buffering
	Multithreaded Programming
	Interoperability with the SHMEM programming model
	Miscellaneous Features of SGI MPI
	stdin /stdout/stderr
	MPI_Get_processor_name

	Programming Optimizations
	Using MPI Point-to-Point Communication Routines
	Using MPI Collective Communication Routines
	Using MPI_Pack/MPI_Unpack
	Avoiding Derived Data Types
	Avoiding Wild Cards
	Avoiding Message Buffering | Single Copy Methods
	Managing Memory Placement
	Using Global Shared Memory

	Additional Programming Model Considerations

	5. Debugging MPI Applications
	MPI Routine Argument Checking
	Using the TotalView Debugger with MPI programs
	Using idb and gdb with MPI programs

	6. PerfBoost
	Using PerfBoost
	Environment Variables
	MPI Supported Functions

	7. Checkpoint/Restart
	BLCR Installation
	Using BLCR with MPT

	8. Run-time Tuning
	Reducing Run-time Variability
	Tuning MPI Buffer Resources
	Avoiding Message Buffering { Enabling Single Copy
	Using the XPMEM Driver for Single Copy Optimization

	Memory Placement and Policies
	MPI_DSM_CPULIST
	MPI_DSM_DISTRIBUTE
	MPI_DSM_VERBOSE
	Using dplace for Memory Placement

	Tuning MPI/OpenMP Hybrid Codes
	Tuning for Running Applications Across Multiple Hosts
	MPI_USE_IB
	MPI_IB_RAILS
	MPI_IB_SINGLE_COPY_BUFFER_MAX

	Tuning for Running Applications over the InfiniBand Interconnect
	MPI_NUM_QUICKS
	MPI_NUM_MEMORY_REGIONS
	MPI_CONNECTIONS_THRESHOLD
	MPI_IB_PAYLOAD
	MPI_IB_TIMEOUT
	MPI_IB_FAILOVER

	MPI on SGI UV Systems
	General Considerations
	Job Performance Types
	Other ccNUMA Performance Issues

	Suspending MPI Jobs

	9. MPI Performance Profiling
	Overview of perfcatch Utility
	Using the perfcatch Utility
	MPI_PROFILING_STATS Results File Example
	MPI Performance Profiling Environment Variables
	MPI Supported Profiled Functions
	Profiling MPI Applications
	Profiling Interface
	MPI Internal Statistics
	Third Party Products

	10. Troubleshooting and Frequently Asked Questions
	What are some things Ican try to figure out why mpirun is failing?
	My code runs correctly until it reaches MPI_Finalize() and then it hangs.
	My hybrid code (using OpenMP) stalls on the mpirun command.
	Ikeep getting error messages about MPI_REQUEST_MAX being too small.
	Iam not seeing stdout and/or stderr output from my MPI application.
	How can Iget the MPT software to install on my machine?
	Where can Ifind more information about the SHMEM programming model?
	The ps(1) command says my memory use (SIZE) is higher than expected.
	What does MPI: could not run executable mean?
	How do Icombine MPI with insert favorite tool here?
	Why do Isee "stack traceback" information when my MPI job aborts?

	Index

