
MineSet™ Enterprise Edition
Interface Guide

Document Number 007-3993-002

MineSet™ Enterprise Edition Interface Guide
Document Number 007-3993-002

CONTRIBUTORS

Written by Helen Vanderberg and Sandra Motroni
Edited by Connie Boltz
Production by Diane Ciardelli
Engineering contributions by Barry Becker, Amit Bleiweiss, Jeff Brainerd, Cliff

Brunk, Eben Haber, Ara Jerahian, Andy Kar, Ed Karrels, Eser Kandogan, Alex
Kozlov, Alan Norton, Peter Rathmann, Mario Schkolnick, Dan Sommerfield, Peter
Welch, and Brett Zane-Ulman.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical
Publications.

COPYRIGHT
© 2000, Silicon Graphics, Inc. All rights reserved; provided portions may be
copyright in third parties, as indicated elsewhere herein. No permission is granted to
copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense;
if acquired under an agreement with the USA government or any contractor thereto,
it is acquired as "commercial computer software" subject to the provisions of its
applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if
acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR
Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon
Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, IRIX, and OpenGL are registered trademarks, and SGI, the Silicon
Graphics logo, and MineSet are trademarks, of Silicon Graphics, Inc. INFORMIX is a
registered trademark of Informix Software, Inc. Microsoft, Windows, Windows NT,
Microsoft Developer Studio, Visual Basic, Visual C++, Visual J++, Visual FoxPro, and
Internet Explorer are registered trademarks, and ActiveX is a trademark, of Microsoft
Corporation. Netscape and Netscape Navigator are registered trademarks of
Netscape Communications Corporation. Oracle is a registered trademark, and
Oracle8i, Net8, and SQL*Net are trademarks of Oracle Corporation. Sybase is a
registered trademark, and SQL Server is a trademark of Sybase Inc. UNIX is a
registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd. X Window System is a trademark of the
Massachussetts Institute of Technology. Linux is a registered trademark of Linus
Torvolds. Java is a registered trademark of Sun Microsystems, Inc. Quattro and
Paradox are registered trademarks of Corel Corporation. dBASE is a registered
trademark of dBASE Inc. LIMDEP is a registered trademark or trademark of
Econometric Software. Lotus 1-2-3 is a trademark of Lotus Development

MineSet™ Enterprise Edition Interface Guide
Document Number 007-3993-002

Corporation. S-PLUS is a registered trademark of MathSoft Inc. MATLAB is a
registered trademark of The MathWorks, Inc. MINITAB is a registered trademark of
Minitab Inc. Osiris is a registered trademark of Osiris Software Inc. SAS and JMP are
registered trademarks of SAS Institute Inc. SPSS, SigmaPlot, and SYSTAT are
trademarks or registered trademarks of SPSS Science. Stata is a registered trademark
of Stata Corporation.

The Tree Visualizer is patented under United States Patents No. 5,528,735, 5,555,354
5,671,381, and 5,861,885. The Splat Visualizer is patented under United States Patent
No. 5,861,891. Patent pending for the 2D slider in the Map Visualizer, Scatter
Visualizer and Splat Visualizer. Patent pending for the Evidence Visualizer.

v

Contents

List of Tables xiii

About This Guide xv
Structure of This Document xvi
Typographical Conventions xvii
Reader Comments xviii

1. MineSet Overview 1
MineSet Tools Suite Overview 1
About the Tool Manager 2
Understanding DataMover 3
MineSet Plug-in Capability 3

Plug-in Functions 3
Plug-In Transformations 4
Plug-in Mining Tools 4

Basic Tool Execution Scenario 4

2. Configuring and Setting Up MineSet 7
Configuring MineSet 7

IRIX Systems 8
Linux Systems 9
Configuring MineSet on Windows Systems 9

Configuring the DataMover Server 10
User Configuration File 10
Global Configuration File 13
Using MineSet with Existing Data Files 16

Importing Data Files 18
Exporting Files 20
Loading Sample Datasets 21

vi

Contents

Logging in to a DBMS 24
Running MineSet in Batch Mode 25

Session Files 25
Creating the saved_session.mineset File On NT 26
Creating the saved_session.mineset File On IRIX or Linux 26
Running MineSet in Batch Mode on NT 26
Running MineSet in Batch Mode on UNIX 26
Sample UNIX Shell Script 28

3. File Exchange between MineSet and SAS (IRIX only) 29
Converting MineSet Data Files to SAS Data Sets 29

-names namefile Command Line Option 30
-svsc Option 31

Converting SAS Data Sets to MineSet Data Files 31
-nolabel Option 31
-names namefile Option 32
-nodata Option 32
-svsc Option 32

4. MineSet Web Extensions 33
Overview 33
MineSet Web Extension Files 34
MineSet Web Installation (Client) 35
MineSet .mtr Files 35
Publishing on the Web 35

5. Data and Configuration File Basics 37
Data Types 37

Enumerations 38
Arrays 39

Variable Names 41
Strings and Characters 42
Comments 42
MineSet Expression Language 42
Keywords 44

Contents

vii

Configuration File Basics 45
Sections 45
Options Files 45
Statements 46
Input Options 47

 47

6. Flat File Support for MineSet 49
Data File 49
.schema File 50

File Statements 51
Data Statements 51

Exceptions 52

7. Creating Data and Configuration Files for the Tree Visualizer 53
Data File 53
Configuration File Overview 55
Configuration File Input Section 55

Input Options 56
Configuration File Expressions Section 57
Configuration File Hierarchy Section 58

Levels Statements 59
Key Statements 60
Aggregate Subsection 62
Aggregate Base Subsection 63
Expressions Subsection 64
Sort Statements 65
Hierarchy Options 65

viii

Contents

Configuration File View Section 67
Height Statements 68
Normalize Clause 68
Scale Clause 69
Filter Clause 69
Legend Clause 70
Base Height Statements 70
Disk Height Statements 71
Color Statements 72
Base Color Statements 75
Disk Color Statements 75
Label Statements 75
Message Statements 76
Execute Statement 77
View Options 78

8. Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer 85
Data File 85

Data Types 86
Fixed Arrays 86

Configuration File Overview 87
Configuration File Input Section 88

File Statements 88
Enum Statements 89
Dates 89
Data Statements 91
Fixed Arrays 91
Input Options 92

Configuration File Expressions Section 94

Contents

ix

Configuration File View Section 95
Title Statement 96
Map Statement 96
Slider Statement 97
Height Statement 97
Color Statement 98
Message Statement 101
Execute Statement 102
Summary Statement 103

Hierarchy File 103
.gfx File 105

9. Creating Data and Configuration Files for the Scatter Visualizer 109
Data File 109

Data Types 110
Arrays 110
Null Values 111

Configuration File Overview 111
Defaults Files 111

Configuration File Input Section 112
File Statements 113
Enumeration Statements 113
Data Statements 115
Input Options 117

Configuration File Expressions Section 118

x

Contents

Configuration File View Section 119
Slider Statement 119
Entity Statement 120
Size Statement 121
Max Clause 122
Color Statement 123
Axis Statement 126
Summary Statement 127
Drillthrough Statement 128
Message Statement 129
Execute Statement 130
Filter Statement 131
View Options 131

10. Creating Data and Configuration Files for the Splat Visualizer 133
Data File 133

Data Types 134
Null Values 134

Configuration File Overview 135
Defaults Files 135

Configuration File Input Section 135
File Statements 136
Enumeration Statements 136
Data Statements 138
Input Options 139

Configuration File View Section 140
Slider Statement 140
Opacity Statement 141
Color Statement 142
Axis Statement 145
Summary Statement 146
View Options 147

Contents

xi

11. Creating Data and Configuration Files for the Decision Table Visualizer 149

12. Format of the Evidence Visualizer’s Data File 151

13. Nulls in MineSet 157
Semantics of Nulls 157
Representation of Nulls 158
Operations on Nulls 158

Arithmetic Expressions 158
Boolean Expressions 158
Relational Operations 159
Testing for Nulls 159

Aggregations in the Presence of Nulls 160
Sort Order for Nulls 161
Bins and Arrays with Nulls 161

14. ActiveX Visualization Control API for MineSet Visualizers 163
API Overview 163

Basics of Component Object Model 163
ActiveX Architecture 164
MineSet’s Visualization Controls 164
Recommended Requirements 165

ActiveX Controls 165
IVizCommon 168
IVizCommon2 178
IScatterviz 180
IScatter2 183
ISplatviz 184
ISplatviz2 185
IMapviz 186
IEviviz 187
IDtableviz 189
IDtableviz2 190
ITreeviz 191

xii

Contents

A. Further Reading and Acknowledgments 193
Further Reading 193
Acknowledgments 197

Index 199

xiii

List of Tables

Table 2-1 systune Parameters 8
Table 2-2 Configuration Options 11
Table 2-3 Importable Data File Types 18
Table 4-1 MineSet Web Extension Files 34
Table 5-1 Operators Used With Expressions 42
Table 5-2 Expression Language Functions 43
Table 5-3 Keywords for the Tree Visualizer 44
Table 8-1 Characters That Can Follow the Percent Symbol in the Format String 90
Table 9-1 Characters That Can Follow the Percent Symbol in the Format String

114
Table 10-1 Characters That Can Follow the Percent Symbol in the Format String

138
Table 14-1 IVizCommon Methods—COM vtable Interface 168
Table 14-2 IVizCommon Methods—Automation Interface 173
Table 14-3 IVizCommon2 Methods—COM vtable Interface 178
Table 14-4 IVizCommon2 Methods—Automation Interface 179
Table 14-5 IScatterviz Methods—COM vtable Interface 180
Table 14-6 IScatterviz Methods—Automation Interface 182
Table 14-7 IScattert2 Methods—Automation Interface 183
Table 14-8 ISplatviz Methods 184
Table 14-9 IScattert2 Methods 185
Table 14-10 IMapviz Methods 186
Table 14-11 IEviviz Methods 187
Table 14-12 IDtableviz Methods 189
Table 14-13 IScattert2 Methods 190
Table 14-14 ITreeviz Methods 191

xv

About This Guide

The MineSet Enterprise Edition Interface Guide explains the advanced technical features of
the MineSet suite of data mining and visualization tools. You can also find current
information about MineSet online at http://www.sgi.com/software/mineset/.

This guide is written for people already familiar with the operation of the MineSet Tool
Manager, and it explains how to perform the following tasks:

• Make interconnections with MineSet and the outside world.

• Export MineSet files to other applications.

• Build custom applications using the ActiveX API to the 3D visualizers.

• Perform basic system administration tasks.

Windows users will find familiar methods and pathnames given. IRIX users should be
familiar with UNIX commands, and Linux users should be familiar with Linux
commands.

This guide explains the tasks involved with installing and running MineSet from the
command-line or configuration files. In some cases programmatic interfaces are
described. A chapter-by-chapter summary can be found in “Structure of This Document”
on page xvi.

For background information, see the MineSet Enterprise Edition Reference Guide. For
information on how to use the MineSet tools, see the MineSet Enterprise Edition User’s
Guide for the Windows Client.

MineSet allows third party software such as AcPro to plug in to the application. If AcPro
is installed, documentation can be found in /usr/acpro/doc. Late-breaking information can
be found on the MineSet Web page.

MineSet also allows third parties to integrate the 3D visualization tools into their own
Windows applications using an ActiveX API (see Chapter 14.)

xvi

About This Guide

Structure of This Document

The guide begins with installing MineSet. Subsequent chapters concentrate on specific
tools and processes as shown:

Chapter 1, “MineSet Overview”
Answers installation questions and provides an overview of MineSet operations.

Chapter 2, “Configuring and Setting Up MineSet”
Provides directions on installing and setting up configuration files and connecting to the
database server. It also describes how to run MineSet in batch mode for complex or
time-consuming calculations.

Chapter 3, “File Exchange between MineSet and SAS (IRIX only)”
Describes how to convert MineSet data files into SAS data sets, and vice versa.

Chapter 4, “MineSet Web Extensions”
Describes how to interact with MineSet over the Web, and how to set up the necessary
files to achieve secure remote viewing.

Chapter 5, “Data and Configuration File Basics”
Describes basic requirements for MineSet data and configuration files, including data
types, configuration file structure, and the MineSet expression language.

Chapter 6, “Flat File Support for MineSet”
Describes the files that are necessary to run MineSet, and gives examples of the .data and
.schema files.

Chapter 7, “Creating Data and Configuration Files for the Tree Visualizer”
Describes the necessary files for the Tree Visualizer and gives appropriate examples.

Chapter 8, “Creating Data, Configuration, Hierarchy, and .gfx Files for the Map
Visualizer”
Describes the files needed to enable the Map Visualizer to run, and includes examples.

Chapter 9, “Creating Data and Configuration Files for the Scatter Visualizer”
Describes the Scatter Visualizer configuration and data files and includes examples.

Chapter 10, “Creating Data and Configuration Files for the Splat Visualizer”
Describes the Splat Visualizer configuration and data files and includes examples.

About This Guide

xvii

Chapter 11, “Creating Data and Configuration Files for the Decision Table Visualizer”
Describes the Decision Table Visualizer configuration and data files and includes
examples.

Chapter 12, “Format of the Evidence Visualizer’s Data File”
Describes the Evidence Visualizer and its data and configuration files.

Chapter 13, “Nulls in MineSet”
Describes how nulls are handled in MineSet.

Chapter 14, “ActiveX Visualization Control API for MineSet Visualizers”
Describes how application developers can use ActiveX controls to create custom data
mining solutions for Windows platforms with MineSet’s visualizers.

Appendix A, “Further Reading and Acknowledgments”
Provides a resource for further reading, and acknowledges the resources used to
establish MineSet.

Typographical Conventions

The following type conventions and symbols are used in this guide:

Italics Executable names, filenames, program variables, tools, utilities, variable
command-line arguments, and variables to be supplied by the user in
examples, code, and syntax statements.

Bold Keywords.

Fixed-width type

On-screen command-line text and prompts.

Bold fixed-width type

User input, including keyboard keys (printing and non-printing);
literals supplied by the user in examples, code, and syntax statements.

xviii

About This Guide

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please send your comments to SGI. Be sure to include the title and document
number of the manual with your comments. (Online, the document number is located in
the front matter of the manual. In printed manuals, you can find the document number
on the back cover.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs.sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com/

• Contact your customer service representative and ask that the incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801

SGI values your comments and will respond to the promptly.

1

Chapter 1

1. MineSet Overview

This chapter provides a summary of MineSet tools as well as a tool execution scenario
that helps you better understand how MineSet tools can be used in combination. This
chapter contains the following sections:

• “MineSet Tools Suite Overview” on page 1

• “About the Tool Manager” on page 2

• “Understanding DataMover” on page 3

• “MineSet Plug-in Capability” on page 3

• “Basic Tool Execution Scenario” on page 4

MineSet Tools Suite Overview

The MineSet suite of tools lets you mine and graphically display quantitative
information so you can better visualize, explore, and understand your data. These tools
provide a highly interactive, three-dimensional (3D) visual interface that lets you
manipulate visual objects on the screen, as well as search, filter and perform animations.

The MineSet suite consists of three basic components:

• A centralized control module, consisting of a graphical user interface tool called the
Tool Manager, and a process called the DataMover, which runs on the server part of
MineSet’s client/server architecture.

• Analytical data mining, with nine data mining tools:

– Association Rules Generator

– Automatic Binning

– Cluster Generator

– Column Importance

– Decision Table Inducer and Classifier

2

Chapter 1: MineSet Overview

– Decision Tree Inducer and Classifier

– Evidence Inducer and Classifier

– Option Tree Inducer and Classifier

– Regression Tree Inducer and Regressor

• Visualization tools, which let you view your data using ten different visual
metaphors:

– Cluster Visualizer

– Decision Table Visualizer

– Evidence Visualizer

– Map Visualizer

– Record Viewer

– Scatter Visualizer

– Splat Visualizer

– Statistics Visualizer

– Tree Visualizer

For complete descriptions and directions for using the tools see the MineSet Enterprise
Edition User’s Guide for Windows or for IRIX, the MineSet Enterprise Edition Reference
Guide or the MineSet Enterprise Edition Tutorial for Windows or for IRIX.

About the Tool Manager

Each of the mining and visualization tools can be configured and started using the Tool
Manager, which does the following:

• Connects you to the server on which the analytical mining and transformations are
performed.

• Lets you access, query and transform data.

• Creates configuration files for each tool.

The Tool Manager is installed on the MineSet client.

Understanding DataMover

3

Understanding DataMover

DataMover is a process that runs on the server. The server performs the following
actions:

• Connects to databases, or flat files (ASCII or binary), and retrieves the data.

• Invokes the mining tools.

• Performs additional data manipulation such as binning and aggregation.

• Returns the data to the Tool Manager for distribution to the visualization tools.

• Stores the data in files on the server or client for future operations.

You can run MineSet in client-only mode with limited functionality, provided you have
access to the server.

MineSet Plug-in Capability

MineSet supports a plug-in architecture that allows you to add new mining tools,
functions, and data transformations to MineSet. These plug-ins are installed and
executed on the MineSet server, and any user interface for the plug-ins is downloaded by
the Mineset client. The MineSet plug-in API is identical on IRIX, Linux, and Windows, so
plug-ins can be installed on any MineSet server.

Plug-in Functions

Plug-in functions are added to the list of available functions when forming Add Column
or Filter expressions. You can implement them by writing and implementing a C function
with a particular prototype, compiling that into a shared library, and putting the shared
library on the MineSet server computer.

4

Chapter 1: MineSet Overview

Plug-In Transformations

You can access plug-in transformations are from the “Plug-in Ops” button in the Data
Transformations pane of the Tool Manager. They are also visible in the View History
panel. A plug-in transformation is implemented with a standalone executable that is
given a data set as input, and produces a data set as output. The MineSet plug-in SDK
ships with a library of functions that will assist you in reading and writing MineSet data
sets. Plug-in transformations also require a Java GUI that will be sent to the MineSet
client, and incorporated into the Tool Manager.

Plug-in Mining Tools

Plug-in mining tools are added as new tabs in the “Mining Tools” tabbed deck in the Tool
Manager. They are implemented as standalone executables on the MineSet server that
are given data sets or model files as input, and produce data sets or model files as output.
Like plug-in transformations, plug-in mining tools also include a Java GUI that will be
added to the Tool Manager.

Basic Tool Execution Scenario

Each of the MineSet tools is started, configured, and run in a consistent manner. The
sequence of actions followed by the MineSet client and the MineSet server is shown in
Figure 1-1.

Basic Tool Execution Scenario

5

Figure 1-1 Tool Execution Sequence

The following steps describe a typical interaction with a MineSet tool, and the sequence
of the tool’s actions. Depending on your requirements, you might skip some steps (for
example, if the data and configuration files were already generated in a previous work
session).

MineSet client MineSet server

Tool
manager

Configuration
file

Configuration
file

Visualization
tool

Visual
files

Data
file

DataMover User's
data

source

User

Visualdisplay

Inducer
(MIndUtil)

MODEL

Information & statistics
(error estimate)

OR

6

Chapter 1: MineSet Overview

1. Start the Tool Manager, which is the graphical interface for generating and
specifying the configuration file, data file, and tools to be used. The Tool Manager
runs on your MineSet client.

2. The Tool Manager opens a network connection to the DataMover, which runs on the
MineSet server, which in some cases may be the same as your client workstation,
and in others is a separate machine.

3. Use the Tool Manager to specify the following:

• The database and table, or a binary or ASCII flat file containing the data on
either the client or the server.

• Which mining or visualization tools are to be applied.

• How that data is to be displayed, through tool options.

• A session file in which to save the history of your work.

Information retrieved using the DataMover guides this interaction. As a result, the
Tool Manager generates a configuration file. This file contains the user-defined
parameters that determine the execution of the following steps.

4. The Tool Manager transmits a copy of the configuration file from step 3 to the
DataMover. The DataMover processes the file by:

• Accessing the database or flat file.

• Performing the specified data transformations.

• Running the mining tools when requested.

• Generating the visualization files when requested.

These visualization files consist of your data in a specific format readable by the
MineSet tool. Then a copy of these visualization files is transferred to the MineSet
client.

5. The Tool Manager invokes the appropriate MineSet visualization tool.

6. The tool accesses the visualization files and displays the data.

7. If you generated a model, that model can be applied to additional data.

Note: The MineSet client and server can run on different machines, using a network to
communicate. Because network bandwidth is often scarce, you should be cautious about
regularly transferring large files between client and server. If you are mining a large
database or file, you can achieve greater efficiency by storing that file on the server where
the DataMover runs, rather than on the client.

7

Chapter 2

2. Configuring and Setting Up MineSet

This chapter describes how to set up MineSet on Linux, Windows, and IRIX systems. The
subjects discussed are:

• “Configuring MineSet” on page 7

• “Configuring the DataMover Server” on page 10

• “Importing Data Files” on page 18

• “Exporting Files” on page 20

• “Loading Sample Datasets” on page 21

• “Logging in to a DBMS” on page 24

• “Running MineSet in Batch Mode” on page 25

This chapter also explains how to load the sample files into Oracle, Sybase, and
INFORMIX.

Configuring MineSet

There are two major pieces of configuration information in MineSet:

• The directory used to store the user’s temporary and persistent files on the server.

• The databases to which the server can connect.

On IRIX and Linux systems, this configuration is defined by global and per-user
configuration files. On Windows, these configuration files are still available, but most
information is stored in the registry. Windows users therefore have less need to edit
configuration files.

8

Chapter 2: Configuring and Setting Up MineSet

IRIX Systems

Setting up MineSet on IRIX systems requires modifying dm_config and the DataMover
configuration file /usr/lib/MineSet/.datamove. The DataMover process runs on the server,
and is not directly accessible to users. The DataMover provides access to databases and
data stored in flat files, and transforms data for the mining and visualization tools. The
configuration has three parts:

• The configuration of kernel parameters.

• A global configuration by the system administrator.

• The configuration of an account on the server.

“Configuring the DataMover Server” on page 10 describes these files and how they may
be modified.

Configuring Systune Parameters

The systune parameters on IRIX machines determine the default limits on the available
system resources. Table 2-1 lists the systune parameter values that SGI recommends.

Note: You must reboot your machine after installing the new parameters.

For more information about these parameters, see the systune(1M) reference page.

Table 2-1 systune Parameters

Parameter Definition Recommended Value

rlimit_pthread_cur Current limit on the
number of threads

1024

rlimit_rss_cur Current limit on
memory usage

Amount of physical memory on your machine

rlimit_vmem_cur Current limit on virtual
memory usage

Size of logical swap space on machine, or
about twice the physical memory

rlimit_nofile_cur Current limit on
number of open file

1024 or the limit on the number of threads

Configuring MineSet

9

Linux Systems

To configure MineSet on a Linux server follow these steps:

1. Move to the /etc directory and use your favorite text editor to edit the file services.

cd /etc
vi services

2. Remove the pound (#) sign at the beginning of the following line in services:

exec 512/tcp

3. In the same directory, edit the file inetd.conf. Remove the pound (#) sign at the
beginning of the line that contains:

exec... in.rexecd

4. Start the service as follows:

killall -HUP inetd

Configuring MineSet on Windows Systems

The MineSet server uses a hybrid strategy to determine where on the server to store
model, schema, and data files. At installation time, the Installer program prompts for a
base directory for all users’ server files. Each user is then assigned a subdirectory of this
base directory, according to username. For example, if ServerFilesBase is left at its
installation default of C:\MineSet Files, user guest will have MineSet server files located
in C:\MineSet File\guest.

An individual may override this machine-level default by setting the registry entry
HKEY_CURRENT_USER\SOFTWARE\SGI\MineSet\3.0\ServerFilesDirectory. (To set a
registry entry, right-click the My Computer icon on your desktop, and choose
Preferences.) If this entry exists, its value will set the server files directory for that user
only.

The different versions of Windows support various filesystems, the most common of
which are NTFS and FAT. In general, it is better to locate the server files directory on an
NTFS filesystem, if possible. The MineSet server allows multiple instances of the MineSet
client to connect to the same server files directory. This can be convenient, if one user
wants to try several experiments in parallel, or if two or more individuals want to share
data and model files. On FAT filesystems, the DataMover uses a coarse-grained locking
mechanism to maintain consistency, which means that only one client can run a history

10

Chapter 2: Configuring and Setting Up MineSet

at one time from within a given server files directory. Other users attempting to run
histories will receive a Failed to get a lock error message. On NTFS, the
DataMover’s locking implementation is more finely grained, so this problem will seldom
occur.

Finally, whichever way the server files directory is determined, the MineSet server will
then look for a file .datamove in that directory, which can contain additional configuration
information, as described in the next section. The format and entries for the
/usr/lib/MineSet/.datamove file are the same on Windows and UNIX. However, the most
common use of the .datamove file is for setting the location of server files, and this is
already handled by the registry on Windows. Therefore, most users of the Windows
MineSet server will not need to create a .datamove file.

Configuring the DataMover Server

To use the MineSet tools, two configuration files must be created on the server:

• The user must create the .datamove file.

• The system administrator must create the dm_config file.

Note: Each user must have an account on every server that can be accessed.

User Configuration File

The DataMover configuration file, .datamove, creates files on the server system for each
user. This .datamove file lets you control where these user files are created and whether
different classes of files are saved or discarded. On UNIX systems, the .datamove file is
located on the server, in the user’s home directory. A sample .datamove file called
datamove.sample is located on the server in the following directories:

• Windows users: MINESET_HOME\config\datamove

• IRIX users: /usr/lib/MineSet/datamove

• Linux users: /usr/lib/MineSet/datamove

If the .datamove file is absent, or if a particular entry is not present in the .datamove file, the
DataMover uses a default value for that entry.

Configuring the DataMover Server

11

Each entry in the DataMover’s configuration file must be on a separate line. For example:

file_cache = directory_name

file_cache specifies the location in which the DataMover stores its output data files and
models resulting from mining algorithms. If the file_cache directory does not exist, the
DataMover attempts to create it, when first invoked. On Windows the default file_cache
directory is determined by the registry (see “Configuring MineSet on Windows Systems”
on page 9); on UNIX, the default file_cache directory is ./mineset_files/%U. The %U is a
wildcard that is filled in with the user’s login name on the client machine.

The file_cache should be a directory in a filesystem with sufficient space to hold all of a
user’s output and temporary files. DataMover creates this directory if it does not already
exist. Intermediate files are deleted when the DataMover no longer needs them, unless
you set one of the following keep options:

keep_client_upload

keep_client_download

keep_classifier_files

keep_mlc_input

use_ascii_mlc_input

Table 2-2 describes these and other options.

Table 2-2 Configuration Options

Option Description Default

keep_client_upload Keep files uploaded from the client for processing.
If kept, the files will be in the client_upload
subdirectory.

no

keep_client_download Retain a copy of data files and visualizations on the
server after they are downloaded to the client. If
kept, the files will be in the client_download
subdirectory.

no

keep_classifier_files Keep the persistent classifiers (decision trees and
so forth) generated by mining operations. The
method is generally useful.

yes

12

Chapter 2: Configuring and Setting Up MineSet

A file in the file_cache directory is the result of a successful operation. If an operation
returns an error (that is, the Tool Manager reports a message that begins with fatal

error on server) MineSet does not change anything in the file_cache directory. Three
examples help illustrate the point:

• A user’s file_cache directory contains the files cars.data and cars.schema, both the
result of a previous database query. The user then selects the same table, and sets
the output to server_file, filtering for examples with mpg>55. Because no records in
the dataset have mpg values this high, when the history executes, it returns no
rows, which is flagged as a fatal error. After this happens, the user’s file_cache
directory will still contain the old cars.schema and cars.data files.

• A user’s file_cache directory contains the files cars.data and cars.schema, both the
result of a previous database query. The user then selects the same table, and sets
the output to a visualization. The operation completes and the visualization
launches successfully. Once again, the user’s file_cache directory still contains the old
cars.schema and cars.data files. The file_cache directory is not updated unless the user
specifically chooses server_file as the output.

keep_classifier_options_files Keep the options file that used when generating
(inducing) the classifier. This tactic is not useful. If
kept, the files will be in the mlc_work subdirectory.

no

keep_mlc_input Keep input files used for mining (MIndUtil or
associations) operations. If kept, the files will be in
the mlc_work subdirectory.

no

use_ascii_mlc_input Normally the DataMover creates MineSet binary
files for MIndUtil input. If this option is set, create
ASCII files instead.

no

aggregation_memory_limit Memory limit (in bytes) for aggregation
operations. This can be no larger than the
system-wide limit set in the dm_config file.

2147483647

optimize_history=yes The DataMover can rewrite histories to remove
redundant computations. The optimize_history
parameter controls whether or not to do this.
Because this rewriting can speed up processing
considerably, it is normally turned on.

N/A

Table 2-2 (continued) Configuration Options

Option Description Default

Configuring the DataMover Server

13

• Two client users are connected to the same server account, and the same server files
directory. The first user starts a long-running mining operation on the
adult94.schema and adult94.data server files. Before that mining operation completes,
another user executes a database query and replaces the adult94.schema and
adult94.data files with new versions. Neither user will see any errors; the first user’s
model will finish based on the earlier version of the data file. If the users are
connected to a Windows system with the server files directory on a FAT filesystem,
the second user’s operation would exit with a Failed to get a lock error.

Global Configuration File

On IRIX, the DataMover works with Oracle versions 7.2 or later, INFORMIX, and Sybase.
On Windows, the DataMover supports ODBC and OLE-DB data sources and native
connections to Oracle. On a Linux server, the DataMover works with Oracle 8i.

If you are using relational databases, you may need to configure the server to find these
databases. ODBC and OLE-DB data sources are listed in the Windows system registry
and not in the dm_config file. Therefore, a Windows server using only ODBC and OLE-DB
data sources does not need a dm_config file. Windows users need to create a dm_config file
only if they want to use a native connection to a local or remote Oracle database. Oracle
may also be accessed with ODBC or OLE-DB, but the native connection generally gives
better performance. On IRIX, the dm_config file may be omitted if the server will not
access any database.

This section details the DataMover configuration file, dm_config, which is read by the
DataMover server during startup. Windows users access the file from the directory in
which MineSet is installed, under config\datamove\dm_config. UNIX users access the file
from the directory in which mineset is installed, under datamove\dm_config.

This file is not created automatically during installation. The system administrator must
create it and log in as root to edit it. It can be created using any simple text editor such as
Notepad or Emacs. You can find an example file, dm_config.sample, in the datamove
directory. The format of this file is as follows:

Oracle {
"ORACLE_SID", "ORACLE_HOME";
}

Oracle_Remote {
“SERVICE_NAME”, “ORACLE_HOME”;
}

14

Chapter 2: Configuring and Setting Up MineSet

Informix {
"INFORMIXSERVER", "INFORMIXDIR";
}

Sybase {
"DSQUERY", "SYBASE";
}

Replace “ORACLE_SID” and “ORACLE_HOME” with the specific information and repeat it
once for each Oracle database to be accessed via the DataMover. ORACLE_SID and
ORACLE_HOME are Oracle-specific parameters defining an Oracle instance.

The Oracle_Remote section is for accessing remote Oracle databases via Oracle
Networking. The SERVICE_NAME entry is a logical name for the remote database. Such
logical names are defined by editing an Oracle-defined configuration file (for example,
tnsnames.ora), or, depending on the Oracle version and operating system, with an
Oracle-supplied applet (for example, Net8 Easy Config). The second ORACLE_HOME

parameter is the directory of your client installation. On IRIX systems only, you can often
do without an Oracle client installation. In this case the second parameter is interpreted
as the directory where DataMover searches for the tnsnames.ora file. This file is described
in Oracle’s networking documentation.

Each line in the Informix section defines a database server that, in turn, can contain
several databases. The server is checked at runtime to determine which databases it
contains, so there is no need to record the individual databases in the dm_config file. The
first entry is the INFORMIX server (corresponding to the INFORMIXSERVER
environment variable), and the second is the INFORMIX directory (corresponding to the
INFORMIXDIR environment variable).

Each entry in the Sybase section defines a database server (or, in Sybase terminology, an
SQL Server). The first entry is the Sybase SQL Server name (corresponding to the
DSQUERY environment variable); the second is the Sybase home directory
(corresponding to the SYBASE environment variable). This may be a remote database.

Note: A Windows configuration file defines different pathnames, but the structure
follows conventions similar to the following example.

Configuring the DataMover Server

15

An IRIX example configuration file shows:

Oracle {
"v81", "/ora/app/oracle/product/8.1.5";
"wrhse", "/opt/oracle";
}

Oracle_Remote {
 “lifeseq”, “/usr/lib/MineSet2/datamove/”;
}

#native connections to Informix and Sybase supported on IRIX only

Informix {
"learn_online", "/u5/informix";
}

Sybase {
"MINESET", "/usr/sybase/11.5.1";
}

Following parameter is relevant only if your database is in a
non-English locale. Default of TRUE allows database to perform
automatic translation of character encoding (if necessary) to
compensate for any mismatch in locale between the database and the
MineSet client. Setting parameter to FALSE disables this
adjustment, which is sometimes necessary with very old or
misconfigured databases.

enable_database_locale_adjustments = TRUE;

The enable_database_locale_adjustments is common to both platforms.

This configuration file lets the DataMover access the following:

• Three Oracle databases, one named v73 (installed in /usr/people/oracle/v73), another
named wrhse (installed in /opt/oracle), and a remote database named lifeseq.

• An INFORMIX Server.

• A Sybase SQL Server.

Each of the INFORMIX and Sybase servers can, in turn, contain multiple databases.

16

Chapter 2: Configuring and Setting Up MineSet

For Sybase, DataMover uses vendor-supplied shared libraries as its connection to the
databases. One of the purposes of the dm_config file is to specify where DataMover must
look for its shared libraries.

DataMover looks for the shared libraries libct.so, libcs.so, ibcomn.so, libintl.so, libtcl.so, and
libinsck.so on IRIX systems in the $SYBASE/lib/ directory.

The IRIX DataMover is compiled as an n32 program and therefore needs to load the n32
versions of the Sybase client libraries. n32 client libraries are included with Sybase
versions 11.5 or later. If MineSet will be used with an earlier version of Sybase, you will
need to install a recent version of the Sybase client.

A Windows example of the dm_config file shows:

Connection to a local Oracle database on Windows NT. First entry is
the Oracle sid, and second entry is the ORACLE_HOME. Note that if
’\' is used as a directory separator, it must be doubled.

Oracle{
 "mse", "F:\\Oracle\\Ora81";
}

3-tier access to remote Oracle databases via Oracle networking.
First argument is the name of the data source, as created by the
Net8 configuration assistant or listed in the tnsnames.ora file.
Second argument is the local ORACLE_HOME directory. At least a
client install of Oracle is required to connect to remote Oracle
databases.

Oracle_Remote {

 "uci_megamine", "F:/Oracle/Ora81";
 "MSE_NET8.ENGR.SGI.COM", "F:/Oracle/Ora81";
 "DEMO_MEGA", "F:/Oracle/Ora81";
 "mega_v72", "F:/Oracle/Ora81";
}

Using MineSet with Existing Data Files

Sometimes it is convenient to use MineSet with data that is already stored as a file, but
requires further processing before it can be mined or visualized. In this case, the data file
can be made available (with a modest effort) to the Tool Manager/DataMover.

Configuring the DataMover Server

17

First, the data file must be in a tab-delimited format, with the same number of fields in
each line. A numeric or string field with a single “?” character appearing between
delimiters is loaded as a Null value. You can import data files automatically, using the
MineSet Tool Manager as detailed in “Importing Data Files” on page 18. You can find a
detailed example of the MineSet .schema file format in Chapter 6, “Flat File Support for
MineSet.”

You must describe the contents of the data file to the Tool Manager/DataMover using a
file with the .schema extension. The format of the .schema file is as follows:

#
A line beginning with a "#" is a comment
#
input {

The first line lists the data file which is described. It
must be a simple filename, not a path.

 file "carmodels.data";

Fields are listed left to right in the line, legal
types are float, double, int, string, date, fixedString and
dataString
Be sure to end every line with a semicolon ";"

 float mpg;
 int cylinders;
 float cubicinches;
 int horsepower;
 int weightlbs;
 double timeaccelerate;
 date when_introduced;
 string origin;

 fixedString(3) manufacturer_code;
 dataString model;
}

The schema and data files must be located in the same directory. If you prepare a dataset
this way on the client machine, you can open it with the Tool Manager’s Find File dialog.
If the file requires any additional processing, it is copied to the server. Sometimes this is
not convenient, especially if the file already exists on the server, or is large. In this case,
the .schema and .data files must be copied (or symbolically linked) into your file_cache
directory on the server.

18

Chapter 2: Configuring and Setting Up MineSet

Importing Data Files

This section shows you how to import files from other formats using the Tool Manager.

To import a file, choose the Import option from the File menu. A file dialog appears,
allowing you to choose the file you wish to import, along with a number of import
options.

The format of the imported file may be selected from a box at the top of the options
portion of the file dialog. Table 2-3 lists the supported file formats.

Table 2-3 Importable Data File Types

File Type Description of Source

ASCII File - Delimited A text file with fields separated by a delimiter character.

ASCII File - Fixed Format A text file wherein each value for a particular column has the same
width.

1-2-3 Lotus 1-2-3.

dBase III dBase II, III+, IV, and compatible systems such as Clipper or Alpha
Four.

Epi Info Epi Info through version 6.

Excel 97 Microsoft Excel 97.

Microsoft Excel Microsoft Excel.

FoxPro Microsoft Visual FoxPro.

Gauss Either Gauss 89 or Gauss 96.

JMP SAS JMP statistics files.

Limdep

LIMDEP version 7 for
Windows

MATLAB MATLAB matrices.

MINITAB MINITAB versions 8 through 12.

Osiris Osiris type 1 data sets.

Importing Data Files

19

When importing ASCII files (both delimited and fixed format), you may specify the
following options:

• Maximum line width (default 4096): This is the maximum width for lines in the file
to be imported. If the file is wider than 4096 characters, you must specify the width
here.

• Maximum number of columns (default 255): This is the maximum number of
columns in the file. If the file has more than 255 columns, specify how many.

• Two-digit year cutoff (default 69): When processing date values from an ASCII file,
if a year is specified with only two digits, years greater than or equal to this number
are considered to be in the 20th century. For example, given the default value of 69,
the date 2/3/69 becomes 2/3/1969, but 2/3/68 becomes 2/3/2068.

Paradox

Quattro Pro

SAS data file SAS version 6.08 and above.

SAS transport file

SigmaPlot

S-PLUS 32-bit S-PLUS data sets.

SPSS data file

SPSS portable file

Stata Any version of Stata.

Statistica Statistica version 5.

SYSTAT Either double or single precision SYSTAT files.

Table 2-3 (continued) Importable Data File Types

File Type Description of Source

20

Chapter 2: Configuring and Setting Up MineSet

• Decimal separator: The character used as a decimal point when processing
numbers. The default value is taken from the current locale, for instance a period in
the USA and a comma in most European countries.

• Separator every three digits: Sometimes numbers have punctuation every three
digits, for instance, 1,000,000,345. This field allows you to specify that character. The
default value is taken from the current locale, for instance, a comma in the USA and
a period in most European countries.

When importing delimited ASCII files, you can also specify the delimiter between
columns. If you select the “Outshines delimiter” radio button, the delimiter will be
automatically detected from either comma, tab, semicolon, or space. If you select the
“Specify delimiter” radio button, you can enter a different delimiter character.

When importing fixed-width ASCII files, you must provide a .SCH file to indicate where
the fields begin and end. An example of the format follows:

[alcoholSample]
Filetype=Fixed
Date-Order=MDY
Date-Punctuation=/
Dec-Point=.
CharSet-asci
Field1=household_id,Float,16,0,0
Field2=pdate, Date,10,0,16
Field3=name,Char,255,0,26
Field4=age,Float,16,0,281

It starts with the name of the table, followed by the file type, date order, date punctuation,
decimal point, character set, and a list of field names, types, length, zero, and the starting
location for the field.

Exporting Files

Exporting files is possible from the Tool Manager Data File Destination panel, which has
three radio buttons:

• MineSet ASCII file

• MineSet binary file

• Other file types

Loading Sample Datasets

21

The first two buttons allow the user to specify whether the output file (on the client or
server) should use the ASCII or binary formats.

The third button, available only when creating client files, also converts the output client
file to a different data format specified in the combo box next to the “Other file types”
button. Available file types are the same as those in the Import dialog, with the exception
of Osiris.

Loading Sample Datasets

This section describes how to load the sample datasets included with the MineSet
distribution into one of the supported relational databases.

The following are installed on the server:

• All the sample data, along with a brief description of what it contains.

• Directions on how to load the data using the provided scripts.

Load the sample datasets into a database that has been set up on your server. Windows
users will find the data and directions (README.server) a in the directory in which
MineSet is installed, under \Examples\DBexamples. UNIX users find them in
/usr/lib/MineSet/DBexamples on the server.

This directory contains scripts for loading the complete set of data files into one of the
supported databases. To load the complete set of data, run one of the following loader
scripts, depending on which database you have. (This assumes your database and
environment are already set up.)

sh load_all_Oracle.sh <userid> <passwd>

sh load_all_Sybase.sh <userid> <passwd>

If you are going to work with an INFORMIX database, use the dbaccess interface to
select:

create_all_Informix.sql

Then select:

load_all_Informix.sql

22

Chapter 2: Configuring and Setting Up MineSet

Loading Individual Datasets

Alternatively, you can load, or reload, the sample data separately. Each data directory in
DBexamples on the server contains files necessary to load the data into any of the
supported databases. Windows users can find these files in the directory in which
MineSet is installed, under \Examples\DBexamples. UNIX users can find them in
/usr/lib/MineSet/DBexamples. These files are:

README (explains the data)

*.sql (sets up an Oracle table)
*.ctl (control file for loading into Oracle)

*_syb.sql (sets up a Sybase table)
*.bcf.fmt (Sybase format file)

*_inf.sql (sets up an INFORMIX table)
*_load.sql (loads the data into the INFORMIX table)

In the *.ctl file, the separator is declared in the following line:

" fields terminated by X'20' "

The separator is specified in ASCII hexadecimal; therefore:

X'20' is used for ‘ ’
X'2c' is used for ‘,’
X'09' is used for ‘\t’

Loading into Oracle

Perform the following steps on the server with an Oracle database:

1. Ensure the following environment variables are set correctly:

ORACLE_HOME

ORACLE_SID

Loading Sample Datasets

23

2. Type:

sqlplus <userid>/<passwd>
SQL> @<dataset>.sql

dataset is the name of the dataset being loaded. userid/passwd are your assigned
username and password for the Oracle database.

To delete an already existing table, type:

SQL> drop table <dataset>;

3. Type:

sqlload control = <dataset>.ctl userid = <userid>/<passwd>
log = /tmp/<dataset>.log direct = true

4. Check the resulting dataset.log to ensure the data was loaded correctly.

Loading Into Sybase

Perform the following steps on the server with a Sybase database:

1. Ensure that the following environment variables are set:

SYBASE
DSQUERY

2. To create the table, type:

isql -U<userid> -P<passwd> -i <dataset>_syb.sql

dataset is the name of the dataset being loaded. userid/passwd are your assigned
username and password for the Sybase database.

To delete an already existing table, type:

isql -U<userid> -P<passwd>
drop table <dataset>
go

3. To load the data, type:

bcp <dataset> in <dataset>.data -U<userid> -P<passwd> -f
<dataset>.bcp.fmt

dataset is the table name (created using <dataset>_syb.sql), in means
“load into the dbms,” <dataset>.data refers to the name of the ASCII data file, and
-f points to the format file that was already created. (When reading in from a file, the
data types are character.)

24

Chapter 2: Configuring and Setting Up MineSet

Loading Into INFORMIX

Perform the following steps on the server with an INFORMIX database:

1. Ensure the following environment variables are set:

ONCONFIG
INFORMIXSERVER
INFORMIXTERM

2. To create the table, type:

dbaccess

3. If necessary, log in to the appropriate database.

4. Choose Query-language, and then choose the appropriate database from those listed.

5. Choose <dataset>_inf.sql, and run it.

6. Choose <dataset>_load.sql, and run it (where <dataset> is the name of the dataset
being loaded).

Logging in to a DBMS

To verify that you have the proper configuration, start MineSet. From the Tool Manager
File menu, choose Open New DBMS Table.

1. Verify you have the correct server or change servers if necessary.

2. Click Change DBMS.

3. Select demo-Oracle from the DBMS menu.

login: demo

Password: demo

4. Click ΟΚ.

This loads the table from your selected list. You can then manipulate the table to develop
a classifier or visualization as detailed in the MineSet Enterprise Edition User’s Guide.

Running MineSet in Batch Mode

25

Running MineSet in Batch Mode

When running MineSet in batch mode, all actions from a MineSet.session file are
performed without user intervention. You can use the MineSet client Tool Manager to
prepare the MineSet.session file(s). Batch mode can be particularly useful in projects
requiring lengthy computations that need to be done frequently. For instance, multiple
or long running MineSet data mining algorithms can be run overnight so the data will be
ready the next morning.

Session Files

MineSet batch mode requires a session file, which consists of the following information:

• A single data source (a file, RDBMS table or query).

• One or more MineSet transformations.

• A single data destination (a mining tool, viz tool or file).

The following is an annotated example of a session file designed to run a Decision Tree
classifier:

MineSet 3.1
Starts with the Preferences options
preferences {use_binary_files, parallelize, num_threads -1, max_attr_vals 1000}

Next the single data source file, RDBMS table or query
datafile {localserv

"E:\\mineset_demos\\marketing\\mineset_mellon\\respond2.schema"}

Next one or more transformations
transformations {
remove_col { "owcustid"};
remove_col { "Cluster"};
}

Next single data destination (mining tool, viz tool or file)
classify classify_and_error decision_tree "foo" "foo"

Finally, all the OPTION settings
options {options_list "test_model_in:", "test_show_viz:0", "operation:predict",

"predictor:classifier", "name:respond2", "model_version:", }

26

Chapter 2: Configuring and Setting Up MineSet

Creating the saved_session.mineset File On NT

To create the saved_session.mineset file:

1. Use the MineSet Tool Manager to prepare the session file.

2. Do not click the Invoke Tool or Create File button.

3. Save the file with a descriptive name (for instance,
datafile-name_classifier-name.mineset).

Creating the saved_session.mineset File On IRIX or Linux

1. Use the MineSet Tool Manager to prepare the session file.

2. Do not click the Invoke Tool or Create File button.

3. Save the file with a descriptive name (for instance,
datafile-name-classifier-name.mineset).

4. Transfer the file to your UNIX $HOME/mineset_files directory.

Running MineSet in Batch Mode on NT

Running MineSet in batch mode on NT is similar to running it on IRIX (“Step-by-step
Example for Running MineSet Batch on IRIX” on page 27). If you want to run the batch
directly on the NT MineSet server, follow the steps in that example, except instead of
creating a shell script, create a MS-DOS .bat script:

mineset_batch -s USER_NAME -d RDBMS_LOGIN_NAME saved_session.mineset

For example:

mineset_batch -s NT_passwd -d Oracle_passwd saved_session.mineset

Running MineSet in Batch Mode on UNIX

To run MineSet in batch mode on IRIX or Linux, enter the following command at the
command line:

MIndUtil_p30 saved_session.mineset session.schema

Running MineSet in Batch Mode

27

Step-by-step Example for Running MineSet Batch on IRIX

To run MineSet in batch mode on IRIX:

1. Either save your dataset on the IRIX MineSet server or verify that your RDBMS
query will create the dataset you need for the visualization or data mining activity.
Use the naming conventions, DATAFILE.schema and DATAFILE.data.

For example, if contract is an Oracle table, then save the data file as contract.data on
the IRIX MineSet server.

2. On the MineSet Client, create all the MineSet session files for each type of analysis
or visualization you want to perform in batch. Use the naming convention,
datafilename-toolname.mineset.

For example:

• If you want to run Column Importance on the contract database in batch mode,
then save the MineSet session file as:

contract-import.mineset

• If you want to run Evidence on the contract database in batch mode, then save
the MineSet session file as contract-evi.mineset.

3. Transfer the *.mineset saved sessions to your $HOME/mineset_files directory on the
MineSet IRIX server:

• Verify that the contract.schema and contract.data files exist in your
$HOME/mineset_files directory.

• Transfer the datafilename-toolname.mineset file you created on the MineSet client
to this directory on the MineSet server.

4. Modify the batch.sh sample script below to match your file and MineSet tool names.

The batch.sh script performs Column Importance, Evidence, Decision Tree, and
Cluster analyses on the contract data file. See the instructions in the batch script for
more details.

28

Chapter 2: Configuring and Setting Up MineSet

5. Run the shell script.

$ nohup sh batch.sh &

This will run the shell script batch.sh in the background so you can log off the IRIX
MineSet server without killing the batch job.

6. Monitor the progress of the batch (optional).

$ tail -f results.out <--- this command will display the output as
it is generated

$ top <----- this command displays the top UNIX processes

Sample UNIX Shell Script

The following shell script, batch.sh, runs the Column Importance, Evidence, Decision
Tree, and Cluster analyses on the contract database:

#!/bin/sh
This is a UNIX shell script that runs and times MineSet batch.
This sample runs Column Importance, Evidence, Decision Tree, and
Cluster on the "contract" dataset.

Save the timings and any errors in results.out
RESULT="results.out"
echo > $RESULT

Make sure you have named the Mineset session filess contract-import.mineset,
contract-evi.mineset contract-dt.mineset, and contract-cluster.mineset and transfered them
to the IRIX MineSet server in the same directory as the datafiles.

Run the calculations using the MineSet analytics, /usr/sbin/MIndUtil_s (32-bit single
threaded) or # /usr/sbin/MIndUtil_p30 (64-bit parallel), and print the run times to the
results.out file. ("timex" is a UNIX utility to time how long the analysis took.)
timex /usr/sbin/MIndUtil_p30 contract-import.mineset contract.schema >>$RESULT 2>>$RESULT
timex /usr/sbin/MIndUtil_p30 contract-evi.mineset contract.schema >>$RESULT 2>>$RESULT
timex /usr/sbin/MIndUtil_p30 contract-dt.mineset contract.schema >>$RESULT 2>>$RESULT
timex /usr/sbin/MIndUtil_p30 contract-cluster.mineset contract.schema >>$RESULT 2>>$RESULT

29

Chapter 3

3. File Exchange between MineSet and SAS (IRIX only)

This chapter describes the support for file exchanges between MineSet and SAS on IRIX.
The subjects discussed are:

• “Converting MineSet Data Files to SAS Data Sets” on page 29

• “Converting SAS Data Sets to MineSet Data Files” on page 31

Systems other than IRIX and Windows must use third-party solutions for file exchange.

You can exchange data sets between MineSet and SAS with two utilities: mineset2sas and
sas2mineset. To convert a MineSet .schema and .data file pair to an SAS data set, use
mineset2sas. To convert an SAS data set to MineSet .schema and .data files, use sas2mineset.
Both mineset2sas and sas2mineset invoke the SAS executable. SAS must be installed on the
machine on which these conversion utilities are used.

Converting MineSet Data Files to SAS Data Sets

Use mineset2sas to convert MineSet data files to SAS data sets. The syntax for this is:

mineset2sas MineSet file SAS libref.datafile [options]

The two options are as follows:

• -svsc to save the script sent to SAS. The script is normally deleted after use.

• -names namefile to save trimmed column names in namefile. The script is normally
deleted after use.

For example:

mineset2sas cars sasuser.cars -svsc -names cars.names

30

Chapter 3: File Exchange between MineSet and SAS (IRIX only)

mineset2sas converts the MineSet .schema and .data files (in this case, cars.schema and
cars.data) to an SAS data file. Currently, only string and numeric data types are
supported. The MineSet .data file must be in ASCII format; binary format is not
supported. To save MineSet data files in ASCII, deselect Use binary data files in Tool
Manager Preferences.

SAS column names (or, in SAS terminology, variable names) can consist of only letters
and underscore characters. The first character in a column name cannot be a number.
Furthermore, SAS column names can be up to eight characters long. Because any
character string can be a legal MineSet column name, mineset2sas maps MineSet column
names to legal SAS column names. The rules for this mapping are:

• Any invalid character is replaced with an underscore.

• If the first character is a digit, an underscore is prepended to the column name.

• Column names are truncated to eight characters. If this truncation results in
non-unique column names, the ends of the conflicting column names are replaced
with sequential numbers, thus creating unique column names.

To preserve as many of the full column names as possible, mineset2sas also saves the first
40 characters of each column name as the column label.

-names namefile Command Line Option

To see a listing of the column names before and after conversion to SAS format, specify
the -names namefile command line option. When mineset2sas executes, it writes out a
mapping of the column name changes to the specified file. For example:

 `date of birth` -> `date_of_`
 `92census` -> `_92censu`
 `# of days to end of quarter` -> `__of_da0`
 `# of days to end of year` -> `__of_da1`
 `# of davenports` -> `__of_da2`

Converting SAS Data Sets to MineSet Data Files

31

-svsc Option

The mineset2sas utility reads the schema for the specified data file, and writes a
customized SAS script. SAS is invoked with this script to read and convert the data. The
script sent to SAS is normally deleted after use. With the -svsc option, the script is saved
as the file mineset2sas.sas. If there is an error in the script processing, the SAS error log is
saved as mineset2sas.log. The SAS script must be installed in /usr/sbin/sas.

Converting SAS Data Sets to MineSet Data Files

Use sas2mineset to convert SAS data sets to MineSet data files. The syntax for this is:

sas2mineset <SAS libref.datafile> <MineSet file> [options]

The options are as follows:

• -nodata creates only a .schema file, no .data file.

• -svsc saves the scripts sent to SAS.

• -nolabel indicates that you do not want labels used for column names.

• -names <namefile> restores long column names from <namefile>, created by
mineset2sas.

For example:

sas2mineset sasuser.houses -svsc -names houses.names

The sas2mineset utility converts a SAS data file into MineSet .schema and .data files.
Currently, this utility supports only string, numeric, and date data types.

-nolabel Option

SAS only supports eight-character column names, but allows optional 40 character labels
for each column. MineSet sets no limit on the column name length, so, by default,
sas2mineset uses the column labels to name the columns in the output file, if labels have
been defined. To force sas2mineset to use the SAS column name for each column, even if
a label is specified, add the -nolabel option to the command line.

32

Chapter 3: File Exchange between MineSet and SAS (IRIX only)

-names namefile Option

If you convert a MineSet data file to SAS with mineset2sas and then back to MineSet
format with sas2mineset, you can create a column name map file to keep track of the
original column names. To have sas2mineset use a name map file created by mineset2sas,
add the -names <namefile> option to the command line, and specify the same map file
as specified when the file was converted to SAS format with mineset2sas. This option is
useful only for data files with column names longer than 40 characters, since mineset2sas
saves up to 40 characters in the column label.

Note: The -name <namefile> option overrides the -nolabel option.

-nodata Option

To create only a MineSet schema file without downloading the data from an SAS data file,
add the -nodata option to the command line.

-svsc Option

The sas2mineset utility writes two customized SAS scripts to retrieve the specified data
file. The first script extracts column descriptions; the second extracts the data. The scripts
are normally deleted after use. With the -svsc option, the scripts are saved as
getschema.sas and getdata.sas, respectively. If there is an error in the script processing, the
SAS error logs are saved as getschema.log and getdata.log, respectively.

33

Chapter 4

4. MineSet Web Extensions

This chapter describes the MineSet extensions that are provided to let you create or view
visualizations or interact with MineSet over the Web. The following subjects are
discussed:

• “MineSet Web Extension Files” on page 34

• “MineSet Web Installation (Client)” on page 35

• “MineSet .mtr Files” on page 35

• “Publishing on the Web” on page 35

Overview

The MineSet Web extension allows the visualizing of files and data generated by MineSet
software over the Web. You can do this by using the MineSet .mtr extension. The MineSet
.mtr extension lets you place MineSet visualization, schema and data files into an archive
file, which you can embed in a Web page as an HTML tag.

Once the user clicks the hyperlink in Internet Explorer, the browser automatically
invokes the MineSet ActiveX control which brings up the visual tool within the
browser’s window. Any .viz or .mtr file embedded within an HTML document
seamlessly launches the ActiveX control within the rest of the web page. The user can
then click the hyperlink in Internet Explorer, or type the filename in the URL box, and the
ActiveX control will be launched as well.

The machine that the browser is running on must have the MineSet client software
installed.

34

Chapter 4: MineSet Web Extensions

MineSet Web Extension Files

Table 4-1 lists the MineSet Web Extension files, which are located in the /MineSet/examples
subdirectory.

Table 4-1 MineSet Web Extension Files

File Purpose

adult-salary.eviviz.mtr .mtr file of adult-salary.eviviz.Windows users find the file in the
directory in which MineSet is installed, under \examples. UNIX
users find the file in /usr/lib/MineSet/eviviz/examples.

nl.births.mapviz.mtr .mtr file of nl.births.mapviz. Windows users find the file in the
directory in which MineSet is installed, under \examples. UNIX
users find the file in /usr/lib/MineSet/mapviz/examples.

company.scatterviz.mtr .mtr file of company.scatterviz.Windows users find the file in the
directory in which MineSet is installed, under \examples. UNIX
users find the file in /usr/lib/MineSet/scatterviz/examples.

cars-dt.treeviz.mtr .mtr file of cars-dt.treeviz.Windows users find the file in the
directory in which MineSet is installed, under \examples. UNIX
users find the file in /usr/lib/MineSet/treeviz/examples.

cars-odt.treeviz.mtr .mtr file of cars-odt.treeviz.Windows users find the file in the
directory in which MineSet is installed, under \examples. UNIX
users find the file in /usr/lib/MineSet/treeviz/examples.

churn-dt.treeviz.mtr .mtr file of churn-dt.treeviz.Windows users can find the file in the
directory in which MineSet is installed, under \examples. UNIX
users find the file in /usr/lib/MineSet/treeviz/examples.

MineSet Web Installation (Client)

35

MineSet Web Installation (Client)

During the MineSet client installation the client part of the Web extension is
automatically installed. The system must have Internet Explorer 4.0 or greater installed
for full Web support. Netscape will launch the visualizer tool externally, not within its
browser window.

MineSet .mtr Files

MineSet .mtr files are archives of MineSet files generated by the viz tool. Once created,
the files can be used as a hyperlink in an HTML page. The .mtr files are very effective in
sharing multiple visualizations over the Web, eliminating the need for attaching huge
files in mails, remote copies, or file transfers (ftp). The .mtr files can also be launched
directly by dragging them into a browser, or by setting the File property in the HTML
PARAM tag.

Since .mtr files are in a compressed format and use the underlying HTTP protocol, the
transfer of an .mtr file is very fast and does not require an administrator to perform a
cumbersome setup.

You can create an .mtr file from any MineSet visualizer by selecting File > Publish on the
Web. This creates an .mtr file for the current visualization.

Publishing on the Web

Having created an .mtr file, you then can make it available on the Web in the following
ways:

1. Create a hyperlink to the .mtr file.

After you create the .mtr file, move it to the directory that contains all your .html
files. For Internet Explorer or Netscape Navigator to launch an .mtr file, you can
invoke it directly by entering the following in the Internet Explorer or Netscape
Location window:

http://yourserver/directory/foo.treeviz.mtr

Or you can create a link to it from a page by adding the following line in the .html
file for that page:

foo.treeviz.mtr

36

Chapter 4: MineSet Web Extensions

2. In Internet Explorer, you can set the OBJECT tag as follows:

• PARAM tag with CLASSID

You can set the File property of the ActiveX control directly:

<OBJECT CLASSID=clsid:911D5D2F-906D-11D2-9A61-00104BD33DDB
WIDTH=804 HEIGHT=627 ID=vizCompositeCtrl>
<PARAM NAME="File" VALUE="foo.scatterviz.mtr">
</OBJECT>

• Alternatively, you can use MIME type instead of CLASSID:

<OBJECT TYPE = "application/x-mineset-tar"
WIDTH = 804 HEIGHT = 627 ID=vizCompositeCtrl>
<PARAM NAME = "File" VALUE = "foo.scatterviz.mtr">
</OBJECT>
</P>

3. Embed the ActiveX control using an EMBED tag.

<EMBED SRC="cars.scatterviz">

You can also use these techniques c for embedding .viz and .mtr files.

37

Chapter 5

5. Data and Configuration File Basics

This chapter covers data and configuration file basics that are the same for all MineSet
tools. The following topics are discussed:

• “Data Types” on page 37

• “Variable Names” on page 41

• “Strings and Characters” on page 42

• “Comments” on page 42

• “MineSet Expression Language” on page 42

• “Keywords” on page 44

• “Configuration File Basics” on page 45

Data Types

MineSet supports integer, floating-point number, string, and date data types, as well as
arrays of these types. The following data types are supported:

• int represents a 32-bit signed integer.

• float represents a single-precision floating point number. The decimal point is
optional. Numbers in exponential “e” notation are also accepted.

• double represents a double-precision floating point number. The decimal point is
optional when representing a floating point number. Numbers in exponential “e”
notation are also accepted. The superior precision of double can be useful for
accurately representing large numbers, because float can represent only seven or
eight significant digits accurately. This superior accuracy, however, consumes twice
the memory space of float.

38

Chapter 5: Data and Configuration File Basics

• dataString represents a string that is unlikely to appear multiple times. If it appears
multiple times, several copies are made. A dataString can be used to store a
memory address. Addresses are unlikely to be compared, and each record can have
a different address.

• string represents a string of characters that can appear multiple times in the data
file. Unlike a dataString, only a single copy of a given string is stored in memory, no
matter how many times it appears in the data. This saves memory for strings
appearing many times.

Comparing strings is also much quicker than comparing dataStrings. Reading in
strings can be slower than reading in dataStrings because it is necessary to look for
duplications. An example of string use is a division name that appears once for each
department in the division. If you are unsure whether to use a string or a
dataString, use a string.

• fixed string represents a string of fixed length. Like a dataString, if a fixed string
appears multiple times, multiple copies are made. In general, fixed strings are used
internally for representations of data from data bases, and are generally better to
use than strings or dataStrings.

• date represents a date and time. In the data file, a date appears in the format
MM/DD/YYYY HH:MM:SS. Output from MineSet always represents dates with
four-digit years, although two-digit years are acceptable for input. MineSet follows
the X-OPEN standard for interpreting two-digit years. Fields with values 69 or
greater are considered to be from the 20th century (1969-1999), and values from 0 to
68 are considered to be from the 21st century (2000-2068).

Enumerations

The syntax for declaring an enumeration is:

enum type name { value, value...};

For example:

enum string state {
 "Alabama",
 "Alaska",
 ...
 “Wyoming"
};

Data Types

39

The word “string” indicates that the enumeration maps integers to strings; they can also
be mapped to other types.

Once you declare an enumeration, you can declare a column to be of that enumeration
using the following syntax:

enum enumname columnname;

For example, the following declares st to be a variable of state enumeration:

enum state st;

The input file corresponding to this column must contain values from 0-49 (or “?”
representing null); however, the output shows the state name.

You can also use Enumerations to declare enumerated arrays (see “Enumerated Arrays”
on page 49).

Arrays

In MineSet, you can use one-dimensional or two-dimensional arrays of fixed or variable
size.

In a fixed-sized array, all entries of the given type have the same number of values. For
example, the budgets of the 50 states can be represented by a separate float column for
each state, or by a single array with 50 floats.

A special form of a fixed array is an “enumerated array.” Like the normal fixed array,
there are a fixed number of values in the array; however, the values are associated with
an enumeration. For each value in the enumeration, there is a single entry in the array.
For example, if an enumeration represents the 50 states, an enumerated array based on
this enumeration has 50 values.

A variant of the enumerated array is the “null enumerated array,” which has an
additional entry at the beginning for null (represented as a “?”). For example, with the
enumeration of the 50 states, the null enumerated array has 51 values, one for NULL, and
the remaining 50 for the 50 states. The null array element could be used for entries where
the state is unknown.

The tree visualizer also supports variable length arrays (see Chapter 6, “Creating Data
and Configuration Files for the Tree Visualizer,” for details).

40

Chapter 5: Data and Configuration File Basics

As with the columns, arrays are represented as value separated by tabs or other
separators. For a fixed-sized array, you can use the same separator for columns and for
individual array elements (in which case, array elements are not visually distinguished
from separate columns). You can also define a different separator. In the sales example,
for instance, you can treat the location as a four-element array, rather than as four
columns. It then could be represented like this:

Eastern:Maryland:Baltimore:1816 appliances 72 115 138

In this example, the array is separated by colons, and the columns are separated by tabs.
(For clarity, the rest of this document uses this format.)

For a variable-length array, you must use different separators for the array and for the
columns; otherwise, it is impossible to determine where the variable-length array ends
and the other columns begin.

Any field or array element in the data file can also have the value “?” (question mark),
indicating an unknown or null value (see the discussion of nulls in Chapter 12, “Nulls in
MineSet.”)

Fixed Arrays

You can also declare arrays using data declarations. The simplest form is the fixed array.
The declaration syntax is:

type name [number] ;

For example:

float revenue [50];

You can also override the separator by declaring it as follows:

type name [number] separator ‘char’;

For example:

float revenue [50] separator ‘:’;

If no separator is specified, the default column separator (usually a tab) is used.

Variable Names

41

Enumerated Arrays

To declare an enumerated array, first declare the enumeration (see “Enumerations” on
page 47). Then declare the array using one of the following syntaxes:

type name [enum keyname];

type name [enum keyname] separator ‘char’;

For example:

float revenue [enum state];

As with the normal fixed array, you can also specify a separator. To declare a null
enumerated array, use one of the following syntaxes:

type name [null enum keyname];

type name [null enum keyname] separator `char';

For example:

float revenue [null enum state];

This indicates that the array contains one additional value at the beginning,
corresponding to null.

Variable Names

A variable name can appear in two formats:

• In the first format, it is a letter followed by a number of letters, digits, or
underscores. It cannot be a keyword, and should not be quoted.

• In the alternate format, the variable name should be surrounded by back quotes (‘).
The variable name can match a keyword and can contain non-alphanumeric
characters. This second format is primarily for .schema files generated automatically
by the Tool Manager.

There is no scoping of variable names; a given variable name can only be declared once
in the .schema file.

42

Chapter 5: Data and Configuration File Basics

Strings and Characters

Strings and characters in the .schema file follow C-language conventions. Strings are in
double quotation marks ("), and characters are in single quotation marks (’). All standard
backslash conventions are followed (for example, \n represents a new line).

Comments

Comments begin with a pound (#) symbol at the beginning of a line; anything after this
symbol is ignored, up to the end of the line.

MineSet Expression Language

The expression language used in the Filter and Add Column panels is similar to
expressions in C, C++, and Java. The basic operators are the same, as listed in Table 5-2:

Table 5-1 Operators Used With Expressions

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

== Equals

!= Not equals

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

&& AND

MineSet Expression Language

43

The expression language also provides the functions listed in Chapter 5, “ Expression
Language Functions”:

Also, the following functions are available:

• modulus(x, y, z) is similar to divide, but for modulus.

• hierarchy(string) is valid only within a hierarchy. It produces a string describing the
components of the hierarchy, separated by string. For example:

hierarchy(":")

This might produce:

Western:California:Mountain View

The hierarchy function is most useful in the execute statement, passing the
hierarchy information to the command being executed.

• isSummary() returns 1 if the expression is being applied to base information;
otherwise, it returns zero. Often, this is useful with the ?: operator, particularly in
message and execute statements.

|| OR

! NOT

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

A?B:C If (A), then B else C

Table 5-2 Expression Language Functions

Function Description

isNull() Determines if the value in parentheses is null

if () then () else () Standard if/then/else

() ? () : () C syntax if/then/else

divide(x, y, z) Divide x by y, and give value z if y is 0

Table 5-1 Operators Used With Expressions

Operator Description

44

Chapter 5: Data and Configuration File Basics

Type handling is similar to that in C. Expressions using int and float promote both sides
to float. Expressions using int and double, or float and double, promote both sides to
double. The result of a relational expression (for example, ==, <) is always an int. Type
casting is also supported.

Unlike in C, strings can be compared using relational expressions; the strings are
compared lexicographically.

Keywords

The currently recognized keywords are listed in Table 5-1. Variables cannot have these
names unless they are surrounded by back quotes (‘). Tokens appearing only in option
statements are not keywords, and can be used for variable names.

Table 5-3 Keywords for the Tree Visualizer

aggregate disk int normalize

any divide isSummary off

ascending double key on

average enum label options

back execute landscape scale

base expressions legend separator

buckets file levels sort

color filter max string

colors float message sum

count height min view

dataString hierarchy modulus

descending input none

Configuration File Basics

45

Configuration File Basics

This section discusses the various parts that make up a MineSet configuration file.

Sections

The configuration file consists of a series of sections, each of which has this syntax:

sectionKeyword
{
 statements...
}

sectionKeyword names the section. A semicolon (;) can follow the closing brace (}) but is
not required. The order of the sections is significant, since sections can refer to variables
defined in previous sections. The sections found in a treeviz configuration file are “Input
Section,” “Expressions Section,” “Hierarchy Section,” and “View Section.”

Options Files

As each section is encountered, a special configuration file (referred to as an “options
file”) is also read in. Options files have names in the following form:

sectionName.treeviz.options

Options files normally contain options statements. These files are read in the following
order:

1. The directory containing system defaults.

■ For Windows: from the directory in which MineSet is installed, under
\config\treeviz.

■ For UNIX: /usr/lib/MineSet/treeviz.

2. Your home directory, where you set up personal defaults.

3. The current directory, which lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section

46

Chapter 5: Data and Configuration File Basics

in the configuration file is read after all the options files have been read in; thus, options
in the configuration file override those in the options files.

Statements

A statement has the following syntax:

statementKeyword info;

statementKeyword defines the statement, and info varies according to the keyword. A
statement can be another section (using the brace format defined under “Sections”).

Option Statements

Many sections have options statements, which have this syntax:

options key info, key info...;

key defines the specific option, and info depends on the key. In some cases, the key can be
more than one word. To maximize the number of allowable variable names, most option
keys are meaningful only within the appropriate option statement; keys do not conflict
with variable names. You can declare several options on the same line, separating them
by commas or placing them in several options statements. For example, the following
two examples are equivalent:

options home angle 30, shrinkage 10.0;

options home angle 30;
options shrinkage 10.0;

If two conflicting values for the same option appear, the last value is taken.

Include Statements

The configuration file can contain lines of the following form:

include "filename"

These lines can appear anywhere in the configuration file, but each must be on its own
line. The filename must be in quotation marks; anything after the closing quotation mark
is ignored. Include statements can be nested. If a relative pathname (one not beginning
with a slash) is specified, the file is first sought relative to the directory containing the
current configuration file. (If include statements are present, this might not be the same

47

as the initially loaded configuration file.) If it is not found in the directory containing the
current configuration file, the include file is sought in the current directory. If the file is
not found, an error message appears.

Sinclude Statements

A statement similar to an include is sinclude, which has the syntax:

sinclude "filename"

This is identical to the include statement, except that no error appears if the file does not
exist; instead, the sinclude statement is ignored.

Input Options

The input section of a data file has several options. All options statements begin with the
word options and have one or more comma-separated options.

• The separator option defines the separator between columns in the data file. The
default separator is a tab. The syntax is:

options separator ‘char’;

For example:

options separator ‘:’;

Note: Arrays can override the separator.

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

 options backslash off;
 options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than separators.
Also, within strings, standard C-style backslash processing is done.

49

Chapter 6

6. Flat File Support for MineSet

This chapter describes the .schema and the .data files that are required to define the
MineSet flat files. The following subjects are discussed:

• “Data File” on page 49

• “.schema File” on page 50

• “Exceptions” on page 52

The Tool Manager also generates .schema files to include the .schema files for Tree
Visualizer, Map Visualizer, Scatter Visualizer, and Splat Visualizer.

Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields,
each separated by one tab. (Other separators are also allowed but only one, per file, can
separate each field.) All lines must contain the same fields. (The interpretation of the
fields is specified by the .schema file, described in the next section.) For example, the first
few lines of retail store data might look like this:

Eastern Maryland Baltimore 1816 appliances 72 115 138
Eastern Maryland Baltimore 1816 clothing 355 344 395
Eastern Maryland Baltimore 1816 electronics 156 182 209
Eastern Maryland Baltimore 1816 furniture 78 75 82
Eastern Massachusetts Boston 1331 appliances 48 68 81
Eastern Massachusetts Boston 1331 clothing 307 258 296
Eastern Massachusetts Boston 1331 electronics 38 183 210
Eastern Massachusetts Boston 1331 furniture 52 69 75
Eastern Massachusetts Boston 1220 appliances 37 63 75
Eastern Massachusetts Boston 1220 clothing 233 240 276
Eastern Massachusetts Boston 1220 electronics 175 208 239
Eastern Massachusetts Boston 1220 furniture 35 53 58

50

Chapter 6: Flat File Support for MineSet

In this example, the first five columns are strings: region, state, city, store ID, and product.
These are followed by three numbers, representing current sales, last year’s sales, and the
sales target.

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; this generates blank fields. You can use other characters, such
as a colon (:), as a separator. In this case, the first line appears as follows:

Eastern:Maryland:Baltimore:1816:appliances:72:115:138

The order of the columns must match the format of the .schema file. For some visual tools,
the order of the rows can affect the layout of the final graphic. See the tool-specific
chapters for details.

Any field in the data can also be a “?”, indicating that the data is null (unknown). See
Chapter 13, “Nulls in MineSet.”

Note: MineSet also supports a binary format, which currently is not documented.

.schema File

The .schema file consists of an input section, which defines the name and format of the
file. The .schema files generated by the Tool Manager can also contain a history section,
which is a copy of the .mineset file. This section is used by drill through and would
normally not be present in manually generated .schema files.

A typical input section might look like this:

input {
 file "store";

 string region;
 string state;
 string city;
 string storeId;
 string product;

.schema File

51

 float sales;
 float lastYear;
float target;

 options separator ‘:’;
}

This example states that the input file is called store, and that there are eight fields: five of
type string and three of type float.

File Statements

The file statement names the data file to be read. This statement is required. Its syntax is:

file "filename";

Filename must be in double quote marks. If it is a relative pathname (no leading slash), it
is first sought in the directory containing the current .schema file. If it is not found in the
current .schema file’s directory, the file is sought in the current directory.

Data Statements

The data statements declare the columns in the data file. The columns must be declared
in the order they appear in the data file. The format of most data statements is:

type name;

Type is int, float, double string, dataString, date, and fixedString(n), where n is an
integer representing the width of the string, and name is the variable name. Unlike in C,
only one variable can be declared per statement.

Other supported types include enumerations, fixed arrays, and enumerated arrays. You
must declare these data types must inside the input section, before the declaration of the
specific column.

52

Chapter 6: Flat File Support for MineSet

You can also override the separator by declaring it as follows:

type name [number] separator ‘char’;

For example:

float revenue [50] separator ‘:’;

If no separator is specified, the default column separator (usually a tab) is used.

Exceptions

The following exceptions apply to the .schema and .data files:

• The Tree Visualizer supports only one-dimensional arrays.

• The Tree Visualizer supports variable-length arrays.

• The Map Visualizer and the Scatter Visualizer support a special enum format for
dates.

• The Tree Visualizer and the Map Visualizer support the Monitor option.

Note: These exceptions are discussed in detail in the respective viz tool’s chapters.

53

Chapter 7

7. Creating Data and Configuration Files for the Tree
Visualizer

This chapter describes the types and formats of data supported by the Tree Visualizer
and how the Tree Visualizer reads in and graphically displays the data file. The topics
discussed are:

• “Data File” on page 53

• “Configuration File Overview” on page 55

• “Configuration File Input Section” on page 55

• “Configuration File Expressions Section” on page 57

• “Configuration File Hierarchy Section” on page 58

• “Configuration File View Section” on page 67

Both the data and configuration files can be generated automatically by the Tool
Manager. Read the Tree Visualizer chapter in the MineSet Enterprise Edition User’s Guide.
before reading this chapter.

Data File

Data input to the Tree Visualizer must be provided as a single file containing raw data,
usually in ASCII text form. An example of this data file is described in Chapter 6, “Flat
File Support for MineSet.” Special conditions for the Tree Visualizer are noted here.

The only restrictions on data files for the Tree Visualizer are in the use of arrays. With the
Tree Visualizer, you can use one-dimensional arrays of fixed or variable size.

With the Tree Visualizer, variable length arrays are particularly useful for describing the
tree organization. Often this can represent organizations in which different parts have
different depths. For example, one department could be represented by
Gomez:Shapiro:Lacy (three entries), while another is Gomez:Wong:McMartin:Singe
(four entries).

54

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

A variable-length entry with zero values can also be declared by passing an empty string.
This can be used to specify data for the top level of a hierarchy.

When representing an organization with variable-length arrays, be careful. The Tree
Visualizer computes the height for each level of the hierarchy separately, giving the
highest bar on each level a user-specified height and normalizing the other bars
accordingly.

For example, imagine a U.S.-based organization with a domestic and an international
sales force. Domestic sales are divided into amounts for each state, which are further
divided into amounts for each city. International sales are divided into amounts for each
continent, which are then divided into amounts for each country and city.

You can have sales amounts for locations such as domestic:California:Mountain View,
and international:Europe:Italy:Rome. When displaying organizational hierarchies of this
type, it is best to normalize heights at each level. Otherwise, small parts of the
organization (for example, Mountain View) would be dwarfed by large parts of the
organization (for example, domestic).

When the system tries to match up the levels, the normalization process might introduce
anomalies. Usually, this is not the case at the highest level (domestic is matched with
international); however, at lower levels this correspondence is no longer valid. Domestic
cities (for example, Mountain View) are at the third level, but the third level for
international is a country (for example, Italy). Comparing domestic cities against foreign
countries usually has little validity. In this case, you might introduce artificial levels to
balance the hierarchies (for example, domestic:USA:California:Mountain View), thus
matching cities to cities.

Variable-length arrays might also be useful when some of the regions being compared
are subdivided further than others. For example, an organization might have
USA:California:San Francisco and USA:California:Los Angeles, but only USA:Wyoming.
There is no need to construct an artificial third level(such as a city in Wyoming) just to
keep the arrays balanced, as long as each level in the array matches the same level in
other arrays.

Starting the Tree Visualizer takes longer when variable-length arrays are read in than
when fixed-length arrays or individual columns are read in. Unless the data is variable
length, it is best not to use variable-length arrays.

Configuration File Overview

55

Configuration File Overview

The configuration file format is flexible. Words in it must be separated by spaces, and it
is case-sensitive. Except for the include statement and text within quoted strings, spacing
and line breaks are irrelevant. See Chapter 5, “Data and Configuration File Basics,” for
basic information about configuration files.

Configuration File Input Section

The first section of a configuration file is normally the input section. It defines the name
and format of the file. A typical input section might look like this:

input {
 file "store";

 string region;
 string state;
 string city;
 string storeId;
 string product;
 float sales;
 float lastYear;
 float target;

 options separator ‘:’;
}

This example states that the input file is called store, and that there are eight fields: five of
type string and three of type float.

When the input section is entered, the options file, input.treeviz.options, is read in.

The syntax for the input section is the same as that for .schema files and is described in
Chapter 6, “Flat File Support for MineSet.” For treeviz configuration files generated by
the MineSet Tool Manager, the .schema file is used for the input section using an include
statement.

56

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

Input Options

Treeviz does support one option not found in the standard input section of a .schema file.
All options statements begin with the word options and have one or more
comma-separated options.

• The monitor option allows a dynamic update of the data displayed. When the
specified file is changed (for example, through the touch command), the data file
(not the configuration file) is reread. The data file should not be used to trigger the
updates. This prevents the data file from being read at the same time it is being
updated.

The syntax of the monitor option is:

options monitor "filename";
options monitor "filename" timeout;

filename is the file to watch, and the optional timeout specifies the number of seconds
to wait after the file changes. If the user interacts with the application in any way
during this timeout (via the mouse or keyboard), the timeout restarts. Updating the
file can take a few seconds. If you specify a timeout, the chances of an update
occurring while the user is interacting with the tool are minimized (but the update
is delayed). If you do not specify a timeout, the update occurs immediately.

The file being monitored must exist at the start of the program. When this file is
being updated, you must not remove and re-create it. Instead, you should update
only its modify time (for example, through the touch command). If the file is deleted,
subsequent updates are not shown.

Suppose a program extractor extracts data from a database into a data file. If you
want the program to update the data file every 10 minutes, the script might look
like this:

extractor > dataFile; # create first data file
touch trigger; # create the trigger file
while (sleep 600) # sleep 10 minutes
do
 extractor > dataFile; # create new data file
 touch trigger; # force a reread
done & # this loop goes in the
 # background
treeviz configFile; # run treeviz
kill $! # when treeviz exits, kill the
 # update loop

Configuration File Expressions Section

57

You can use the monitor option only if the file alteration monitor /usr/etc/fam is
installed. This can be found in the subsystem desktop_eoe.sw.fam.

The input section of a configuration file might look like this:

input
{
 file "dataFile"
 #data declarations here
 options monitor "trigger" 15;
}

Configuration File Expressions Section

The expressions section of a data file lets you define additional columns that are
expressions of existing columns. For example, you can define one column as the sum of
two other columns. The expressions are calculated before the definition of the hierarchy.
In many cases, it is more appropriate to apply the expressions after creating the hierarchy.
You should then define the expressions within the hierarchy section (see “Configuration
File Hierarchy Section” on page 58), and you can omit the expressions section.

The following is a sample expressions section. This section assumes two existing
columns of type float, “male” and “female”; these represent spending by males and
females on various goods. Two columns are added: “total” represents the total dollars
spent, and “pctFemale” represents the percentage of dollars spent by females.

expressions
{
float total = male+female;
float pctFemale = divide (female*100, total, 50.0);
}

Note: The pctFemale calculation uses “total,” defined in the previous statement. Also,
note the use of the divide function rather than the / operator. This results in 50% for the
case in which no dollars are spent at all; using the / operator generates an error, because
it results in division by zero.

58

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

The format of the expressions section is:

expressions
{
 expressionDeclaration;
 ...
}

expressionDeclaration has the following syntax:

type name = expression;

Because the expressions section has no options, no options file is read in for it.

Configuration File Hierarchy Section

The hierarchy section of a data file describes how the previously read table is converted
into a hierarchy. The following is a sample hierarchy section:

hierarchy
{
 levels region, state, city, storeId;
 key product;
 aggregate
 {
 sum sales;
 sum lastYear;
 sum target;
 }
 expressions
 {
 float pctLastYear = divide(sales*100, lastYear, 100.0);
 float pctTarget = divide(sales*100, target, 100.0);
 }
}

When entering the hierarchy section, the hierarchy.treeviz.options options file is read in.

The parts of the hierarchy section are described in subsequent sections.

Configuration File Hierarchy Section

59

Levels Statements

The levels statement defines how the table is converted into a hierarchy. The format is:

levels name, name...;

name represents a column previously defined in the input or the expressions section.
How the hierarchy is created depends on the types of the columns defined.

If the columns represent simple types (for example, strings or numbers), each column is
converted into a single level of the hierarchy. The top level of the hierarchy is a single,
all-inclusive node. The next level contains one node for each unique value in the first
column. The third level contains one node for each unique value in the second column,
and so on. Hierarchies created in this way are always balanced: all branches in the
hierarchy go to the same depth (namely one greater than the number of columns
specified in the levels statement).

If the column is an array, you can specify only a single column in the levels statement.
Each value in the array is mapped to one level in the hierarchy. The top level is a single
node representing the total aggregation. The next level contains one node for each
unique value of the first value in the array; the third level contains one node for each
unique value of the first two values of the array, and so on.

If the array is of fixed type, this hierarchy is balanced. If a variable array is used, the
hierarchy is not necessarily balanced (some branches can go deeper than others).

You can use a variable-length array to specify the hierarchy, even if the hierarchy is
balanced to a fixed depth. When using columns or fixed arrays to specify the levels, you
can specify data associated only with those levels at the bottom (or leaf) nodes. In this
case, all higher nodes in the hierarchy must be aggregated. However, rather than relying
on automatic aggregation, you might want to supply your own data for each level of the
hierarchy (if, for example, the calculation cannot be performed automatically by the Tree
Visualizer). In that case, use variable-length arrays to specify levels and provide separate
data for each level.

60

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

For example, the data file might contain lines such as:

Domestic:Western 43
Domestic:Eastern 57
Domestic 85
Intl:Europe 52
Intl:Asia 39
Intl 94

 133

Note: The last line has an empty value for the location; the number 133 is translated to
the top of the hierarchy.

Key Statements

The key statement specifies those keys that are used to select the bars at each node in the
hierarchy. The key corresponds to the bars displayed in the final view. The syntax of the
key statement is:

key name [sort [ascending|descending]};

name is the name of one of the previously defined columns. It cannot be the name of a
column used in the levels statement. Only a single key statement can be made.

By default, the bars generated by the key statement appear in the order first encountered.
If the key is an enumerated array, the bars appear in the order of the enumeration;
otherwise they appear in the order in which values are first encountered in the data file.

Adding the word sort at the end of the key statement sorts the bars. Sorting depends on
the type: strings are sorted alphabetically, and numbers are sorted numerically.
Enumerations are sorted on the index of the enumeration, not the string to which the
enumeration refers. If, however, the key is an enumerated array, the sorting occurs
according to the enumeration string. To sort based on the enumeration index, leave it
unsorted. Optionally, the word sort can be followed by ascending or descending to
specify the sort order; the default is ascending.

If the key column is a simple type (for example, a string), the unique values of that key
are looked up in the original table. The order of the values is the same as the one in which
the key values appear in the original input table. Although it is not required, the same
keys are often repeated in the same order. For example, in the following table, the fifth
column is the key, and has the values “appliances,” “clothing,” “electronics,” and
“furniture.”

Configuration File Hierarchy Section

61

Eastern Maryland Baltimore 1816 appliances 72 115 138
Eastern Maryland Baltimore 1816 clothing 355 344 395
Eastern Maryland Baltimore 1816 electronics 156 182 209
Eastern Maryland Baltimore 1816 furniture 78 75 82
Eastern Massachusetts Boston 1331 appliances 48 68 81
Eastern Massachusetts Boston 1331 clothing 307 258 296
Eastern Massachusetts Boston 1331 electronics 38 183 210
Eastern Massachusetts Boston 1331 furniture 52 69 75
Eastern Massachusetts Boston 1220 appliances 37 63 75
Eastern Massachusetts Boston 1220 clothing 233 240 276
Eastern Massachusetts Boston 1220 electronics 175 208 239
Eastern Massachusetts Boston 1220 furniture 35 53 58

The key can also be any column of the enumerated array type. In this case, the
enumeration is used as the key for specifying the bars. Other columns in the input can
also be enumerated array types, as long as they use the same enumeration. For example,
this table can also be input as:

Eastern Maryland Baltimore 1816
 72:355:156:78 115:344:182:75 138:395:209:82
Eastern Massachusetts Boston 1331
 48:307:38:52 68:258:183:69 81:296:210:75
Eastern Massachusetts Boston 1200
 837:233:175:35 63:240:208:53 75:276:239:58

For clarity, each line has been wrapped onto two lines; however, in the file these should
be on single lines. The input section for this data appears as:

input
{
 file "...";
 key string product {
 "appliances", "clothing", "electronics", "furniture"
 }
 string region;
 string state;
 string city;
 string storeId;
 float sales [enum product] separator ‘:’ ;
 float lastYear [enum product] separator ‘:’ ;
 float target [enum product] separator ‘:’ ;
}

Note: Because the arrays are fixed, the use of a colon separator for the arrays is not
required; however, it might make it easier for the user to read the input.

62

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

In this example, the hierarchy section appears as follows:

hierarchy
{
 levels region, state, city, storeId;
 key sales;
 ...
}

Because sales is an enumerated array, it used its key type (product) as the key to
generating the bars; thus, each graph in the final view has four bars. Note that lastYear
and target must use the same key type for their arrays.

Arrays other than enumerated arrays cannot be specified as the key.

Aggregate Subsection

The aggregate subsection of the hierarchy section describes how values are aggregated at
higher levels of the hierarchy. An example is:

aggregate
{
 sum sales;
 sum lastYear;
 sum target;
}

This indicates that sales, lastYear, and target are to be summed at higher levels of the
hierarchy (each level summing the values in the level below it). In addition to the sum
aggregation, the aggregations average, min, max, count, and any are allowed. All are
self-explanatory, except for any, which indicates that any of the values can be used. This
aggregation is used if you expect the same value (for example, a string) to appear
everywhere in the hierarchy and if you just want it to populate the entire hierarchy.

A special case is when the key is an enumerated array. Here, the key is normally also
aggregated.

IF a variable-length array specifies data for all levels of the hierarchy simultaneously (as
opposed to merely specifying the data at the leaf nodes), the aggregate section cannot be
used.

Configuration File Hierarchy Section

63

An aggregate statement can take either of the following two forms:

agg name;
name1 = agg name2;

In both cases, the aggregate (agg) is one of sum, average, min, max, count, and any. The
first form is illustrated in the preceding paragraphs; it aggregates a column, and the
result is given the same name as the original column being aggregated. The second form
aggregates the column name2, but names the result name1. This second form is useful if
the same value is being aggregated multiple times. Because using the first form creates
two aggregations with the same name, the second form can be used to differentiate the
aggregations.

For example, if you have a column named expenses and want to aggregate it to show the
maximum and minimum expenses, you can use:

aggregate
{
 maxExpenses = max expenses;
 minExpenses = min expenses;
}

Aggregate Base Subsection

This subsection specifies how values in the base are aggregated. It can be used only if the
aggregate subsection is not present. If the aggregate section is present, the base is
aggregated using the aggregations specified in it.

A sample aggregate base subsection is:

aggregate base
{
 sum sales;
 sum lastYear;
}

64

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

An aggregate statement takes the form:

agg name;

where the aggregate (agg) is one of sum, average, min, max, count, and any, (similar to
the aggregate section). The aggregation is applied to all the bars on that base to give the
appropriate value for the base. After the base is aggregated, its values correspond to all
of the columns used in specifying the bars. Any column not specified in the aggregate
base section has a value of zero. Because the base values correspond to the bar values,
the second form of the aggregate statement (using the =) cannot be used in the aggregate
base section.

Expressions Subsection

An expressions subsection of the hierarchy section is similar to the expressions section
described previously, except that it is applied after the hierarchy is created and
aggregated. The syntax is identical, but it is declared within the hierarchy section, not
external to it.

To give an example of the difference between calculating the expressions before and after
creating the hierarchy, take the example of male and female dollars spent. Assume you
want to calculate the percentage of dollars spent by women. The expressions might be:

expressions
{
 float total = male+female;
 float pctFemale = divide (female*100, total, 50.0);
}

Assume you calculated these variables before creating the hierarchy. Then, when
aggregating the data up the hierarchy, summing the percentages is not useful. Averaging
the percentages results in a believable number; however, it averages percentages of large
dollars with percentages of small dollars, and produces incorrect results. (To make this
clearer, suppose that on one product, males spent $99 and females spent $0. On another
product, males spent $0 and females spent $1. On the first product females spent 0%, and
on the second they spent 100%. Averaging these gives 50%, but in reality, females spent
only 1% of the dollars spent on the two products combined.)

The base data should be aggregated first, and then the expressions should be applied. (In
the example, after aggregating, the result is a combined spending of $99 for males and $1
for females; if the percentage is calculated after the aggregation, the correct value of 1%
results.)

Configuration File Hierarchy Section

65

Sort Statements

By default, the order of the nodes within each level of the hierarchy is based on the order
of the data in the input file. However, sometimes it is desirable to sort the hierarchy. The
sort statement can appear in one of two forms:

sort name [, ascending|descending];
sort key [, ascending|descending];

In the first form, one column name (not used in the level statement) is used for sorting.
The column can be the result of an aggregation or an expression. In the second form, the
value used in the level statement is the one used in laying out the hierarchy.

The hierarchy can be sorted in ascending or descending order. If neither option is
specified, the default is descending order if the first form of the sort is used (this places
the largest columns on the left); the default is ascending order if the second form is used
(this typically sorts alphabetically).

sort statements affect the sorting of only the branches of the hierarchy; they do not affect
the bars within each node of the hierarchy.

Hierarchy Options

There are two options in the hierarchy section: skipMissing and organization. The format
for the skipMissing option is:

options skipMissing;

If this option is off (the default) and some values of the key are not present for a given
hierarchy node, dummy entries are created with values of 0. This guarantees that all
graphs in the hierarchy have the same number of bars, and the same layout. If this option
is on, no such entries are generated. This results in variable-length tables in the hierarchy,
and bars exist only for items in the input. The position of these bars, however, is not
meaningful. This option is not useful if the key is an enumerated array (for which all
values are supplied).

The skipMissing option increases memory usage and should be avoided, if possible.

66

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

The format for the organization option is:

options organization same;

options organization contains;

options organization unknown;

The organization option provides hints about the hierarchy organization that allow for
more efficient algorithms. This option is most useful if no hierarchy aggregation is done.
The possible values for this option are as follows:

• same: specifies that all nodes in the hierarchy contain entries for the same item (for
example, all nodes could contain “appliances,” “clothing,” “electronics,” and
“furniture”).

• contains: indicates that a parent node contains entries for all values that its children
contain. For example, if a node contains “appliances,” its parent node must also
contain “appliances,” although not all of its child nodes must contain appliances.

• unknown: indicates that no assumptions should be made regarding the contents of
individual nodes.

If you do not specify an organization, the Tree Visualizer determines the organization as
follows:

• If there is no aggregate subsection, unknown is used.

• If there is an aggregate section, but the skipMissing option is provided, contains is
used; otherwise, same is used. Because this is normally correct when an aggregate
subsection is provided (unless skipMissing is used but nothing is missing), there
normally is no need to provide an organization if the aggregate subsection is
present.

If the organization specified does not match the data, the results are unspecified. For
example, you should not specify same unless all nodes have the same entries.

Configuration File View Section

67

Configuration File View Section

The view section of a data file describes how the hierarchy is displayed, including the
mapping of heights, colors, labels, and so forth. A sample view section is:

view hierarchy landscape
{
 height sales, normalize levels, max 2.0;
 height legend label "Height: Total sales";
 base height max 1.0;
 disk height target, legend label "Disk height: Target
 sales";
 color pctTarget, scale 0 100 200 500;
 color colors "red" "gray" "green" "blue";
 color legend label "Color: % of target" "0%" "100%"
 "200%" "500%";
 options columns 4;
 message "$%,.2f, %.0f%% of target, %.0f%% of last year",
 sales, pctTarget, pctLastYear;
}

The first words of the view section (before the opening brace) describe the type of view.
The only view type supported is view hierarchy landscape; therefore, these words must
introduce the view section.

When entering the view section, the viewHierarchyLandscape.treeviz.options options file is
read in.

Note: There is not a simple view.treeviz.options options file; you must use the full name,
viewHierarchyLandscape.

68

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

Height Statements

The height statement describes how the columns are mapped to the height of objects. It
consists of a series of clauses separated by commas. Alternatively, you can specify
multiple height statements. The following three examples are equivalent:

• height sales, normalize levels, max 2.0;

• height sales;
height normalize levels;
height max 2.0;

• height sales, normalize levels;
height max 2.0;

The first clause normally contains the name of a column to be mapped to height (“sales,”
in the example). The column must be of a number type (int, float, or double); float is the
most efficient. If you do not specify a height column, all bars are flat, and the remaining
height clauses have no effect.

Normalize Clause

The normalize clause determines the maximum value of the height variable; it
normalizes all values relative to that height. Therefore, if the maximum value is 30.0, and
that bar was given a height of 1.0 (in arbitrary units), a value of 15.0 would be mapped
to a value of 0.5.

The syntax of the normalize clause can be any of the following:

normalize

This normalizes all values against one another, throughout the hierarchy.

normalize levels

This performs independent normalization at each level of the hierarchy.

normalize none

This performs no normalization, and is the default.

Configuration File View Section

69

The second form is particularly useful if the data is aggregated up the hierarchy. For
example, assume the sales data is aggregated up the company. Comparing the sales of
the company as a whole to the sales of a single individual has little meaning; in a large
company, the heights of the bars for the individuals are so small as to be
indistinguishable from zero. It makes more sense to compare salespeople to salespeople,
offices to offices, regions to regions, and so on. Normalizing levels does this.

Regardless of which form of normalization is used, the base (if shown) is always
normalized independently of the bars. By default, the same normalization mechanism
for the bars is used for the base.

Scale Clause

The scale clause scales the height of all objects; all values are multiplied by the scale. The
syntax of the scale clause is:

scale float

float is a floating point number (the decimal point is optional). For example, to double the
heights, specify:

scale 2

Filter Clause

Large datasets can contain many graphics. This results in poor performance. In many
cases, the data values are small and of little informative value. The filter clause prefilters
the data based on the height variable, so that only the nodes with the highest bars are
shown. The syntax of the filter clause is:

filter > float%

You must type in the > and % characters. For example:

filter > 5%

This example filters out all charts containing no bars greater than 5% of the maximum
bar height, except for those containing descendants in the hierarchy containing such
bars. If a chart contains just one bar that meets this criterion, the entire chart is shown.

70

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

You can also change the filter value interactively through the Filter panel.

You can use the filter clause only on the height statement.

Legend Clause

The legend clause defines the meaning of the height mappings. Any string can be placed
in the height legend. The legend clause has the following syntaxes:

• legend off

This turns off the height legend (this is the default).

• legend on

This turns on the height legend.

• legend label labelstring

This changes the legend. If legend label is used, legend on is unnecessary.

By default, the legend has the following syntax:

• legend:varname

varname is the name of the variable that is mapped to height.

You can declare separate legends for the height, the base height, and the disk height.

Base Height Statements

The base height statement specifies how the height of the base is calculated. The format
is similar to the height statement, except that it is preceded by the word base. If you omit
the base height statement, the height of the base is calculated using the same values as
in the height statement (the same variable, normalization mechanism, max value, and so
on). You also can specify only some of the clauses for the base, in which case everything
else is the same as the height statement. For example:

height sales, normalize levels, max 2.0;
base height max 1.0;

In this case, the base height is based on sales, and it is normalized by levels. The maximum
height, however, is only 1.0 instead of 2.0. Usually, the visual effect is better if the base
height max is less than the max for the bars. You cannot use the filter clause with the base
height statement.

Configuration File View Section

71

The On and Off Clauses

You can turn the initial value of the base height on and off via the on and off clauses. To
turn it off, use:

base height off

To turn it on, use the default:

base height on

You can change the base height interactively using the Base Height option in the Display
menu. The on and off clauses are valid only with base height. Do not use them with the
height or disk height statements.

Disk Height Statements

With the disk height statement, you can place a disk on each bar to indicate an additional
item of data. The syntax of the disk height statement is similar to that of the height
statement, but it is preceded by the word disk. For a disk to be displayed, there must be
a clause specifying the column to be mapped to the disk. Other clauses are optional; if
you omit these, the height statement’s defaults are used.

If the height statement has a normalize clause, and the disk height statement has no
normalize or max clause, then the disks are normalized with the bars (they are drawn to
the same scale). If the disk height statement has either a normalize clause or a max clause,
the disks are normalized independently of the bars. For example:

height sales, normalize levels, max 2.0;
disk height target;

In this case, the bars are mapped to the variable “sales,” and the disks are mapped to
“target.” Both are normalized, with the maximum value of sales or target on each level
mapped to a value of 2.0. If instead this example is written as:

height sales, normalize levels, max 2.0;
disk height target, normalize levels;

In this case, the bars are mapped so the highest bar at each level is 2.0, and the highest
disk on each level is 2.0, but the bars and disks are not mapped to the same scale. You can
use this, for example, if the bars represent dollars and the disks represent head count.

You cannot use the filter clause with the disk height statement.

72

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

Color Statements

The color statement describes how values are mapped to colors. The format is similar to
that of the height statement, consisting of several clauses that you can separate by
commas or enter as multiple statements.

Color Naming

Color names follow the conventions of the X Window System™, except that the names
must be in quotation marks. Examples of valid colors are “green,” “Hot Pink,” and
“#77ff42.” The last one is in the form “#rrggbb”, in which the red, green, and blue
components of the color are specified as hexadecimal values. Pure saturation is
represented by ff, a lack of color by 00. For example, “#000000” is black, “#ffffff” is white,
“#ff0000” is red, and “#00ffff” is cyan. (A list of available colors is found in the file rgb.txt.)

• Windows users should only use the “#ff0000” form, as only some of the named
colors are supported (for example, white, black, gray, red, yellow, green, and so on.).

• UNIX users can find the color list file at /usr/lib/X11/rgb.txt.

Color Variable

As with height, you also can specify a single column to be mapped to a color. The column
must be a number type. Unlike for height, there is no normalization of colors.

Key Clause

Instead of specifying a variable, you can specify the word key. This assigns a different
color based on each key, normally for each bar. For example, if the 50 states were the keys,
key assigns a different color to the bar for each state. Because the base is not keyed, when
the key clause is used, the base is always gray.

Colors Clause

The colors clause specifies the colors to be used. The colors clause syntax is:

colors "colorname" "colorname"...

The format for colorname is described under “Color Naming” on page 72. There are no
commas between the colors. This is because commas are used to separate clauses in the
color statement. A sample colors clause is:

colors "red" "gray" "blue"

Configuration File View Section

73

Colors in the list are subsequently referred to by their index, starting at zero. In the
preceding example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly; however, if there is a colors
statement, you must specify at least as many colors as are to be mapped. If you use a key,
you must specify one color for each key value.

Scale Clause

The scale clause allows assignment of values to a continuous range of colors. For
example, when displaying a percentage, red can be assigned to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example, 25% is pinkish, and 55% is a
slightly bluish gray.

The syntax for the scale clause is:

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as are to be mapped to the largest index.

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale column indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

74

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

Buckets Clause

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is:

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

If, in the pctFemale example, you used the buckets clause instead of the scale clause, the
statement would be:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater than or equal to 100 are colored red. Values greater than or equal to 50,
but less than 100, are gray. All other values are blue.

Legend Clause

The legend clause creates a legend of the colors. By default, a legend is on for the bar
colors, and off for base and disk colors, although separate legends are permitted for each.
The legend clause syntax can be any of the following:

legend off
legend on
legend "string" "string" ...
legend label "string"
legend "string" "string" ... label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. You
can omit it if you include other legend statements. Specifying only legend on generates
the default legend.

The default legend includes a single label to the left (with the name of the column that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, the buckets clause, or from the keys). To override the strings in the colored
labels, specify the strings as:

legend "string" "string.

Configuration File View Section

75

To override the label on the left, specify it following the word label. To eliminate this
label, specify an empty string as follows:

legend label ""

Base Color Statements

The base color statement controls the color of the base. Its syntax is similar to the color
statement, except that it is preceded by the word base. If this word is omitted, the base
has the same color as the bars. If you include the base color statement, any omitted
clauses default to the values of the color statement.

Disk Color Statements

The disk color statement controls the color of the disk. The syntax is similar to the color
statement, except that it is preceded by the word disks. If you omit the disk color
statement, the disk has the same color as the bars. If you include the statement, any
omitted clauses default to the values of the color statement.

Because disks are drawn only if a disk height statement is present, a disk color statement
has no effect without a disk height statement.

Label Statements

Label statements specify the labels used when labeling objects in the scene. Normally,
you can omit these statements. By default, each bar is labeled with its key; each base is
labeled with its position in the hierarchy. The types of syntax for the label statements are:

label name
base label name
line label name
back label name

name is the name of the column to be used as the label. The first form is used as the label
on the bars. The second form is the label on the bases. The third form labels the lines
connecting the bases. The fourth places labels behind the bases. (Note that bases often
obscure the back labels, so this form is less useful; however, there might be occasions
when it is appropriate.)

76

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

Message Statements

The message statement specifies the message displayed when the pointer is moved over
an object or when an object is selected. The syntax is similar to that of the C printf
statement. A sample message statement is:

message "%s: $%f, %.0f%% of target, %.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

This could produce the following message:

furniture: $2425.37, 23% of target, 87% of last year

The formats must match the type of data being used:

• Strings must use %s.

• Ints must use integer formats (such as %d).

• Floats and doubles must use floating point formats (such as %f).

For details of the printf format, see the printf (1) reference (man) page (type man printf

at the shell prompt).

A special format type has been added to printf. If the percent sign is followed by a
comma (for example, “%,f”), commas are inserted in the number for clarity. Currently,
only the U.S. convention of d,ddd,ddd.dddd is supported, with the decimal point
represented by a period, and commas separating every three places to the left of the
decimal point. For example:

message "%s: $%,f, %,.0f%% of target, %,.0f%% of last year”,
 product, sales, pctTarget, pctLastYear;

In this case, it would produce the following message:

furniture: $2,425.37, 23% of target, 87% of last year

The $, *, h, l, ll, L, and n printf format options are not supported.

All values, including the format string, are expressions. Therefore, if you had a pctFemale
column, but wanted a more gender-neutral message, you could use:

message pctFemale>50?"%f%% females":"%f%% males",
 pctFemale>50?pctFemale:100-pctFemale;

Configuration File View Section

77

If pctFemale is 70, the message “70% females” is displayed; if pctFemale is 30, the
message “70% males” is displayed. In this case, you can also achieve the same result with
a single format string:

message "%f%% %s", pctFemale>50?pctFemale:100-pctFemale,
 pctFemale>50?"females":"males";

By default, the same message is used for the base as for the bars. You can specify a
different message by using a base message statement, which has the same syntax.

If no message is specified, a default message containing the names and values of all the
columns is used.

Execute Statement

The execute statement lets you execute a shell command by double-clicking an object.
The syntax is similar to that of the message statement; however, because hierarchy
information is not displayed on a separate line, it is useful to include the hierarchy
information and to pass the key information as arguments.

The following is a sample execute statement that uses xconfirm to show a window with
information about the item. The first line, the string, is broken into multiple lines to fit on
a single page. In an actual file, it should be on a single line. Multi-line strings are not
supported.

execute "xconfirm -t ‘%s’ -t ‘sales of %s’ -t ‘$%,.0f’
 -t ‘target $%,.0f (%.0f%% of target)’
 -t 'last year $%,.0f, %.0f%% of last year'>/dev/null",
 hierarchy(" "), isSummary()?"everything":product,
 sales, target, pctTarget, lastYear, pctLastYear;

This might produce a dialog with the following message:

Eastern Connecticut Milford
sales of clothing
$348
target $427 (81% of target)
last year $372 (94% of target)

Note the use of hierarchy (" ") to produce a blank-separated description of the hierarchy.
Also note the isSummary()?”everything”:product; this produces the word
“everything” if the base was selected, but otherwise produces the product. An
alternative to this is using separate execute and base execute statements.

78

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

If there is no execute statement, double-clicking an object has the same effect as
single-clicking it.

This sample execute statement will work on Windows as well as UNIX, because a simple
xconfirm utility is provided with the installation on Windows.

View Options

The view section has many options. Like other options statements, the options can be
separated by commas, or they can appear on separate lines.

Sky and Ground Colors

You can specify the sky and ground color using the following syntax:

options sky color colorname
options sky color colorname colorname
options ground color colorname
options ground color colorname colorname

The syntax for color names is the same as that for color naming.

For both the sky and the ground, you can specify either one or two colors. If you specify
only one color, the sky or ground is solid. If you specify two colors, the sky or ground is
shaded between the colors. For the sky, the first color is for the top of the sky, the second
for the bottom. For the ground, the first color is for the far horizon, the second for the near
ground.

For example, to have a solid black background, specify:

options sky color "black", ground color "black";

Bar Layout

By default, bars in each chart are laid out as close to a square as possible. You can override
this by using either the rows or the columns option:

options rows number
options columns number

You can specify only one of these.

Configuration File View Section

79

Overview

Although you can use the Show menu to see the overview, you can also configure it to
display automatically at startup. The overview syntax is:

options overview on
options overview off

The first form causes the overview to be displayed at startup. The second form (the
default) turns the overview off.

Shrinkage

Hierarchies normally have a large aspect ratio, having greater width than depth. In their
unaltered form, it is impossible to view the entire hierarchy, except from such a far
distance that no detail would be visible. To see the hierarchy more clearly, distant objects
can be shrunk more than perspective normally dictates. The shrinkage option lets you
control the shrinkage for a given graph. The shrinkage option syntax is any of the
following:

options shrinkage auto
options shrinkage float
options shrinkage off

The first form (the default) automatically calculates a shrinkage value. Its results are
usually reasonable, but not necessarily optimal in unusual hierarchical layouts. Thus,
you might want to explicitly set the shrinkage using the second form. For hierarchies in
which some parts are deeper than others, automatic calculation does not work well. The
best shrinkage value depends on the graph being displayed, as well as various layout
options such as margins. You should experiment with each graph. Start with a value of
10.0, and then make adjustments. Smaller values result in a narrower hierarchy and
increased distortion. The shrinkage value must be positive; avoid values smaller than 5.0.

Shrinkage can be turned off. This is recommended only for very small hierarchies, as it
produces hierarchies with very large aspect ratios.

Root Label

By default, the root node of the hierarchy receives a label based on the name of the
configuration file. You can override this by using the root label option. The format is:

options root label string

80

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

This option also affects the string displayed when an object is selected, as well as the
result of the hierarchy() function.

Note: The root label option has no effect if the base label statement was used (that
statement defines the base label for the root as well as for all other bases).

Font

The font option controls the font used for drawing the labels. The syntax is:

options font "fontname"

fontname can be any font in the directory /usr/lib/DPS/outline/base.

It also can be the string default. This attempts to use Helvetica, or the default Inventor font
(if Helvetica is not available). Different systems can have different fonts installed.

Base Label Color

The base label color option controls the color of the labels in front of the bases. The
syntax is:

options base label color "color"

Bar Label Color

The bar label color option controls the color of the labels in front of the bars. The syntax
is:

options bar label color "color"

Line Color

The line color option controls the color of the lines connecting the nodes in the hierarchy.
The syntax is:

options line color "color"

Configuration File View Section

81

Zero

The zero option lets you determine whether bars, disks, and bases of height zero are
drawn solid, as an outline, or hidden completely. In the last case, space is left for the
object, but it is not drawn. The default value is solid. You can change this option at run
time by using the Display menu.

The syntax for the zero option is:

options zero solid
options zero outline
options zero hidden

Null

The null option lets you determine whether bars, disks, and bases of height null (see
Chapter 13, “Nulls in MineSet”) are drawn solid, drawn outline, or hidden completely.
In the last case, space is left for the object, but it is not drawn. The default value is outline.
You can change this option at run time by using the Display menu. The syntax is:

options null solid
options null outline
options null hidden

Other Options

There are 10 other options to control the layout of the display, level of detail, and other
parameters. Generally, it is not necessary to adjust these parameters. The values of many
of the options are in arbitrary units. Adjust the options by increasing or decreasing the
value. For the default values of these parameters, see the file viewHierarchyLandscape.
Windows users find this file in Program Files\Sgi\MineSet\config\treeviz. UNIX users
find this file in /usr/lib/MineSet/treeviz.

• options speed floatvalue

Controls the speed during free-form (middle-mouse) horizontal navigation
(forward, backward, and side to side). The larger the value, the faster the motion.

• options climb speed floatvalue

Controls the speed when moving up and down using Shift + middle mouse. The
larger the value, the faster the motion.

82

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

• options leaf leaf margin floatvalue

Controls the distance between adjacent nodes in the hierarchy. Larger values move
the nodes farther away.

• options root leaf margin floatvalue

Controls the distance between a node and its children. Larger values move the
nodes farther away.

• options leaf edge margin floatvalue

Adds margin space next to nodes at the edge of a subhierarchy.

• options initial position floatvalue1 floatvalue2 floatvalue3

Provides the initial x, y, and z position from which the scene is viewed. A value of 0
0 0 positions the viewer at the root of the hierarchy; because the user is looking
forward, the root probably is not visible. Increasing x, y, and z moves the camera to
the right, up, and back, respectively. A typical position has a zero x, positive y, and
positive z. If unspecified, the initial position depends on the layout of the hierarchy.

• options initial angle floatvalue

Provides the initial angle, measured in degrees, from which the hierarchy is viewed.
The value must be between 0 and 90. A value of 0 looks at the scene horizontally; a
value of 90 looks straight down.

• options bar label size floatvalue

Specifies the size of the labels in front of the bars. Larger values result in larger
labels.

• options base label size floatvalue

Specifies the size of the labels in front of the bases. Larger values result in larger
labels.

• options lod [bar floatvalue floatvalue] [bar label floatvalue
[floatvalue]] [base float floatvalue] [base label floatvalue
[floatvalue]] [disk floatvalue] [motion floatvalue]

Controls the level of detail. The parameters can appear in any order, be omitted, or
placed in multiple lod options. These options control the changing form, or
disappearance of, objects, thus providing better system performance.

Configuration File View Section

83

Except for the motion parameter, all float values represent the size of the object when the
form change or disappearance occurs. The smaller the value specified, the smaller and
farther away the object is when the change occurs. Smaller values provide nicer graphics
but slower system performance. The numbers of the different parameters cannot be
compared directly because the size of the object also determines when the change occurs.
A value of 0.0 means no level of detail changes for that parameter. This setting can
significantly slow the rendering process.

bar controls when a bar is drawn with less detail. The first value specifies when the object
is drawn as a pair of planes; the second value specifies when the object is drawn as a
single line.

bar label controls when the labels on the bars disappear. If two values are specified, the
first value specifies when the label is drawn in a lower-quality, fast font; the second value
controls when it disappears.

base controls when the bases, and the bar charts in front on top of them, disappear. The
first number is based on the width of the base; the second on the height of the base plus
the tallest bar on it.

base label controls when the label in front of the base disappears. If two values are
specified, the first value specifies when the label is drawn in a lower-quality, fast font; the
second value controls when it disappears.

initial depth controls the initial depth to which the hierarchy is viewed. At the top of the
hierarchy, you see only the number of hierarchical levels specified by the slider. The
nodes in the rows are arranged to optimize their visibility. When the user is navigating
to nodes lower in the hierarchy, additional rows become visible automatically. The nodes
above them automatically adjust their locations to accommodate the newly added nodes;
thus, some nodes might seem to move. Note that the overview shows all nodes in the
hierarchy, not just the top nodes, so the layout of the overview might not match the
layout of the main view. The X in the overview approximates the corresponding location
in the main view; there is no exact mapping between the two layouts.

An initial depth of zero, or one greater than the depth of the hierarchy, shows the entire
hierarchy. Once the Tree Visualizer is running, you can change the depth the Filter panel.

84

Chapter 7: Creating Data and Configuration Files for the Tree Visualizer

disk controls when the disk disappears.

motion controls changes in some of the level of detail calculations when the scene is
animated. A value greater than 1.0 defaults to 1.0. A value of 1.0 specifies that motion has
no effect on the level of detail. Smaller values change the level of detail at a proportional
distance. For example, a value of 0.5 means that during animation, level of detail changes
occur at half the normal distance.

85

Chapter 8

8. Creating Data, Configuration, Hierarchy, and .gfx Files
for the Map Visualizer

This chapter describes the data and configuration files that are required for the Map
Visualizer. You can also generate these files automatically by using the Tool Manager. The
subjects discussed are:

• “Data File” on page 85

• “Configuration File Overview” on page 87

• “Configuration File Input Section” on page 88

• “Configuration File Expressions Section” on page 94

• “Configuration File View Section” on page 95

• “Hierarchy File” on page 103

• “.gfx File” on page 105

Read the Map Visualizer chapter of the MineSet Enterprise User’s Guide for Windows before
reading this chapter.

Data File

Data input to the Map Visualizer must be provided as a single file containing raw data,
usually in ASCII text form. In its simplest form, the data file consists of a list of lines, each
containing a set of fields separated by one tab. Other separators are also allowed, but
only one can separate each field. See “Input Options” on page 92. All lines must contain
the same fields. The interpretation of the fields is specified by the configuration file,
described in “Configuration File Overview” on page 87. Using the U.S. population data
in the examples directory (the population.usa.data file), provided as part of the Map
Visualizer package, the first few lines of this input file appear as follows:

AL 0 0 0 1000 9000 127901 309527 590756 771623 964201 996992 1262505
1513401 1828697 2138093 2348174 2646248 2832961 3061743 3266740 3444354
3894025 4040587 51705

86

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

AR 0 0 0 0 1000 14000 30000 98000 210000 435000 484000 803000
1128000 1312000 1574000 1752000 1854000 1949000 1910000 1786000 1923000
2286000 2351000 53187
AZ 0 0 0 0 0 0 0 0 0 0 10000 40000 88000 123000 204000 334000 436000
499000 750000 1302000 1775000 2717000 3665000 114000
CA 0 0 0 0 0 0 0 0 93000 380000 560000 865000 1213000 1485000
2378000 3427000 5677000 6907000 10586000 15717000 19971000 23668000
29760021 158706

In this example, the first column is a two-character string identifying the graphical
object—the state. (This string locates a record in a .gfx file containing information about
the shape of the graphical object.) The tab separator is followed by a grouping of 23
numeric values, which represent the state’s population from 1770 through 1990, in
10-year increments. The next tab separator is followed by a single numeric value, which
specifies the state’s area in square miles.

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; this generates blank fields. The order of the columns must
match the format specified by the configuration file.

Any field in the data can also be a “?”, indicating that the data is null (unknown). See
Chapter 13, “Nulls in MineSet.”

Data Types

The Map Visualizer supports integer, floating point number, and string data types, as
well as arrays of these types. See Chapter 5, “Data and Configuration File Basics,” for
details about data types.

Fixed Arrays

With the Map Visualizer, you can use one- or two-dimensional arrays of fixed size. In a
fixed-sized array, all entries of the given type have the same number of values. Arrays
contain the data values across one or two independent variables, that is, those
dimensions controlled by the sliders.

Configuration File Overview

87

A variant of the enumerated array is the “null enumerated array.” This is a variant of the
enumerated array with an additional entry at the beginning for null, which is
represented by “?”.

Configuration File Overview

The configuration file format is flexible. You must separate words in it by spaces, and it
is case-sensitive. Except for the include statement and text within quoted strings, spacing
and line breaks are irrelevant.

Comments begin with a pound (#) symbol at the beginning of a line; anything after this
symbol to the end of the line is ignored.

The configuration file’s structure and grammar are explained in the following sections.

As each section is encountered, a special configuration file (referred to as a defaults file) is
also read in. The defaults file has the same name as the section. Defaults files contain
options statements. These files are searched in the following order:

1. Windows searches for all the files in the directory in which MineSet is installed,
under \config\mapviz.

UNIX searches for the files as specified by the X-resource Mapviz*configPath in the
Mapviz file, in the directory X11/app-defaults, for example in /usr/lib/MineSet.

2. The mapviz directory. This directory contains system defaults.

3. The ~/.MineSet directory (the tilde, ~, indicates your home directory). You can set up
personal defaults in this directory.

4. The current directory, which lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section
in the configuration file is read after all the defaults files; thus, options in the
configuration file override those in the defaults files.

88

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

Configuration File Input Section

The first section of a data file is normally the input section. It defines the name and
format of the data file. A typical IRIX input section might look like this:

input
 {
 file
 "/usr/lib/MineSet/mapviz/examples/population.usa.data";
 enum int Year from 1770 to 1990 by 10;
 string states;
 float population[enum Year] separator ' ';
 float sqMiles;
 }

This example specifies that the input data file is called population.usa.data, and that there
are three tab-separated (the default) fields as follows:

• Type string.

• Fixed-length vector of type float, with each value separated by a space.

• Scalar value of type float.

When the input section is entered, the defaults file, input.mapviz.options, is read in.

• For Windows users this file is in the directory in which MineSet is installed, in
\config\mapviz\input.mapviz.options.

• For UNIX users the file is in /usr/lib/MineSet/mapviz/input.mapviz.options.

File Statements

The file statement names the data file to be read. This statement is required. Its syntax is:

file "filename";

The file name must be in double quotation marks. If it is a relative pathname (no leading
slash), it is first sought in the directory containing the current configuration file. If
include statements are present, this might not be the same as the initially loaded
configuration file. If it is not found in the current configuration file’s directory, the file is
sought in the current directory.

Configuration File Input Section

89

Enum Statements

enum statements declare enumeration variables that index into array fields. The enum
statement has three forms:

• enum type name from value1 to value2 by increment;

This declares an enum with values starting at value1 and incremented by increment
until they reach or exceed value2. For example, the following statement declares age
as an array dimension with the values 20, 30, 40, 50, 60, and 70:

enum int age from 20 to 70 by 10;

Type must be a number type (int, float, or double) or date (see “Dates” on page 89).

• enum type name from value1 to value2 across numberOfValues;

This declares an enum with values ranging from value1 to value2. The
numberOfValues is an integer specifying the number of values. For example, the
following statement declares age as an enum with the values 20, 30, 40, 50, 60,
and 70:

enum int age from 20 to 70 across 6;

Type must be a number type (int, float, or double) or date (see “Dates” on page 89).

• enum type name {value1, value2, ..., valueN};

Type can be any type or date (see “Dates” on page 89).

Dates

The enum statement includes special support for a date type that handles date and time
values starting January 1, 1753. The date type is valid only within enum statements. A
date enum statement can have the following types of syntax:

enum date “format” name from “value1” to “value2” across
 numberOfValues;
enum date “format” name { value1, value2, ..., valueN };
enum date “format” name from “value1” to “value2” by
 “increment”;

90

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

The format string specifies the format of the values; it is useful for controlling how dates
are displayed in the animation control panel. The syntax of the format string is similar to
the scanf function in C. Various units of time are represented by special characters
preceded by the percent symbol (%). For example:

enum date cq “Calendar Q%Q, %Y” from “Calendar Q1, 1980” to “Calendar
Q3, 1985” by “1 quarter”;

The “Calendar Q” in the format string matches the “Calendar Q” in value1 and value2. The
%Q in the format string indicates that the next number in value1 and value2 is the calendar
quarter. The comma and space in the format string match the commas and spaces in the
values. Finally, the %Y in the format string specifies that the year values are next.

Table 8-1 lists the characters that can follow the percent symbol and the units of time they
represent.

With the exception of N, each character matches an integer of the specified precision. N
matches 3 or more characters giving the English name of the month.

Table 8-1 Characters That Can Follow the Percent Symbol in the Format String

Character Time Unit Precision

Y year 4

Q calendar quarter 1

M month 2

N month name >= 3

D day 2

h hour 2

m minute 2

s second 2

Configuration File Input Section

91

The from-to-by form of the enum statement includes an increment value. For dates, the
increment is a quoted string containing an integer, an optional space, and one of the
special characters in Table 8-1 or one of the symbols year, quarter, month, day, hour,
minute, and second. The plural forms of these symbols are also accepted. Note that these
symbols are not keywords, because they have special meaning only in the increment
string. The following are examples of valid increments:

“1 year”
“7 days”
“4h”

Data Statements

The data statements declare the columns in the data file. You must declare the columns
must in the order they appear in the data file. The format of most data statements is:

type name;

type is int, float, double string, dataString, date, or fixedString(n); n is an integer
representing the width of the string; name is the variable name. Unlike in C, you can
declare only one variable per statement.

Fixed Arrays

You can also declare fixed arrays by using simple numeric data declarations; however, if
you also are going to declare a slider, you must use the enum declaration form. The
declaration syntax is:

type name [number];

For example:

float revenue [50];

You can also override the separator by declaring it as:

type name [number] separator ’char’;

For example:

float revenue [50] separator ’:’;

If no separator is specified, the default separator (usually a tab) is used.

92

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

Fixed arrays can also be two-dimensional, such as the following which might be used for
an array of prices for a set of 10 products over a 20-year period.

enum string products {“bread”,“milk”,”cheese”,”cereal”,
”apples”,”lettuce”,”juice”,”toothpaste”,”soap”,”eggs”};

enum year from 1985 to 1994 by 1;

float prices[enum products][enum year];

or

float prices[10][20];

Using the prices array, for example, if you specified in the Tool Manager that data was to
be retrieved from the database in “wide” mode (with a bin for null values), the
enumerated products are declared as:

float prices[null enum products][enum year];

The first column contains the prices for unknown products (products not in the
enumerated list of ten known products) declared in the enum string products statement.

Input Options

The input section of a data file has several options. All options statements begin with the
word options and have one or more comma-separated options.

• The separator option defines the separator between columns in the data file. The
default separator is a tab. The syntax is:

options separator ’char’;

For example:

options separator ’:’;

Note: Arrays can override the separator.

Configuration File Input Section

93

• The monitor option allows a dynamic update of the data displayed. When you
change the specified file (for example, through the UNIX touch command), the data
file (not the configuration file) is reread. Although the data file could be used to
trigger the updates, it is better to use a different file so that the data file is not read
while it is being updated. The syntax of the monitor option is:

options monitor "filename";
options monitor "filename" timeout;

filename is the file to watch, and the optional timeout specifies the number of seconds
to wait after the file changes. If the user interacts with the application in any way
during this timeout (via the mouse or keyboard), the timeout restarts. Updating the
file can take a few seconds. If you specify a timeout, the chances of an update
occurring while the user is interacting with the tool are minimized. This might
delay the update. If you do not specify a timeout, the update occurs immediately.

On Windows, the timeout value has no effect. In other words, the monitor update
always occurs immediately.

The file being monitored must exist at the start of the program. When this file is
being updated, you must not remove and re-create it; instead, you should only
update only its modify time (for example, through the touch command). If the file is
deleted, subsequent updates are not shown.

Suppose a program extractor extracts data from a database into a data file. If you
want the program to update the data file every 10 minutes, the script you write
might look like this:

extractor > dataFile; # create first data file
touch trigger; # create the trigger file
while (sleep 600) # sleep 10 minutes
do
extractor > dataFile; # create new data file
touch trigger; # force a reread
done & # this loop goes in the
background
mapviz configFile; # run mapviz
kill $! # when mapviz exits, kill
 # the update loop

The monitor option on UNIX systems can be used only if the file alteration monitor
/usr/etc/fam is installed (this can be found in the subsystem desktop_eoe.sw.fam).

94

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

The input section of configuration file might look like this:

input
{
 file "dataFile:
 #data declarations here
 options monitor "trigger" 15;
}

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

 options backslash off;
 options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than as separators.
Also, within strings, standard C-style backslash processing is done.

Configuration File Expressions Section

The expressions section of a data file lets you define additional columns that are
expressions of existing columns. For example, you can define one column as the sum of
two other columns.

The following is a sample expressions section. This section assumes two existing
fixed-length columns of type double: male and female. These represent spending by
males and females on various goods over time (one independent dimension). Two
columns are added: total represents the total dollars spent, and pctFemale represents the
percentage of dollars spent by females.

expressions
{
double total[enum month] = male+female;
double pctFemale[enum month] = divide(female*100,total,50.0);
}

Note: The pctFemale calculation uses total, defined in the previous section. Also, the use
of the divide function rather than the / operator. This results in 50% for the case in which
no dollars are spent; using the / operator generates an error because it results in division
by zero. (The divide function is described in Chapter 5, “Data and Configuration File
Basics,” in “MineSet Expression Language” on page 42.)

Configuration File View Section

95

The format of the expressions section is:

expressions
{
 expressionDeclaration;
 ...
}

expressionDeclaration has the following syntax:

type name = expression;

Because the expressions section has no options, no defaults file is read in for it.

Configuration File View Section

The view section of a data file describes how the graphic objects are displayed, including
the mapping of heights, colors, labels, and so forth. The following is a sample view
section:

view map
{
 map objects "usa.states.hierarchy";
 slider Year;
 height population;
 height legend label "Height: U.S. Population (1770-1990)";
 color density, scale 0 250 500 750 1000;
 color colors "white" "#ffc0c0" "#ff8080" "#ff4040" "red";
 color legend label "Color: Pop. Density" "0/sq-mile"
 "250/sq-mile" "500/sq-mile" "750/sq-mile"
 "1000/sq-mile";
 message "population %,.0f %,.1f per sq mile",
 population, density;
 execute "xconfirm -t 'Population %,.0f'
 -t 'averaging %,.1f per sq mile'
 -t 'across %,.0f sq-miles' > /dev/null",
 population, density, sqMiles;
 }

The first words of the view section (before the opening brace) describe the type of view.
The only view type supported is view map; therefore, these words must introduce the
view section.

96

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

When entering the view section, the viewMap.mapviz.options defaults file is read in.

Note: There is no simple view defaults file, so you must use the full name
viewMap.mapviz.options.

Title Statement

The title statement inserts a title string at the bottom of the main window. The syntax is:

title string;

string is a string enclosed by double quotation marks.

Map Statement

The map statement specifies how the graphical objects will be drawn in the main
window. The map statement has three possible types of syntax: one required, the other
two optional. The required syntax is:

map objects hierarchy_filename;

objects is a keyword, and hierarchy_filename is a filename enclosed in double quotation
marks. This statement names the .hierarchy file that describes the 3D graphical objects
that exhibit heights and colors.

The following map statements are optional:

• map outlines hierarchy_filename;

This declares graphical objects that are drawn as flat lines on which the map objects
are placed. See the samples provided in the examples directory,
population.usa.cities.mapviz.

• map level column_name;

This specifies an alternative level of the geographical hierarchy for initial display.
For example, in the examples directory, the population.usa.mapviz file, the unstated
default is:

map level states;

Configuration File View Section

97

The main window initially displays individual states. If, instead, the configuration
file specifies the following, the main window initially displays the United States as
two halves: East and West:

map level eastWest;

Slider Statement

The slider statement identifies a key to be used as a slider dimension. Its syntax is:

slider [enum] enumName;

enumName is the name of an enum variable declared in the input section. The enum
keyword is optional.

There can be 0, 1, or 2 slider statements. The first slider statement applies to the
horizontal slider. The second applies to the vertical slider. If there is no slider statement,
the resulting display does not include animation.

No slider statement is required if height and color map to non-array variables. One
slider statement can be included if height and color map to one-dimensional arrays. Two
slider statements can be included if height and color map to either of the following:

• Two-dimensional arrays.

• One-dimensional arrays, where the dimensions are enum variable names that one
of the sliders controls.

Height Statement

The height statement describes how the columns of data are mapped to the height of
objects. It consists of a series of clauses separated by commas. The first clause normally
contains the name of a column to be mapped to height (such as population in the
example in “Configuration File View Section” on page 95). The column must be of a
number type (int, float, or double), of which float is the most memory-efficient. If the
column is a fixed-length array, the view section also must contain at least one, and no
more than two, slider statements.

If no height column is specified, all bars are flat, and the remaining height clauses have
no effect.

98

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

The scale clause lets you scale the height values. Normally, the height variable is mapped
directly to the height of the graphical objects, so that the tallest object (with the largest
numeric value) rises toward the top of the view window. With the optional scale clause,
all values are multiplied by the scale. The scale clause syntax is:

scale float

The legend clause defines the meaning of the height mappings. Any string can be placed
in the height legend. The legend clause has the following types of syntax:

• legend off

This turns off the height legend (this is the default).

• legend on

This turns on the height legend. The legend can be changed by using the legend
label form, in which case legend on is unnecessary. The legend’s default syntax is:

height:varname

varname is the name of the variable that is mapped to height.

• legend label string

string is the name of the variable that is mapped to height. You can change the
legend by using the legend label form. If legend label is used, legend on is
unnecessary.

Color Statement

The color statement describes how values are mapped to colors. The format is similar to
that of the height statement, consisting of several clauses that can be separated by
commas or entered as multiple statements.

Color naming follows the conventions of the X Window System, except that the names
must be in quotation marks. Examples of valid colors are “green,” “Hot Pink,” and
“#77ff42.” The last one is in the form “#rrggbb,” in which the red, green, and blue
components of the color are specified as hexadecimal values. Pure saturation is
represented by ff, a lack of color by 00. For example, “#000000” is black, “#ffffff” is white,
“#ff0000” is red, and “#00ffff” is cyan.

• Windows users should use only the “#ff0000” form, as only some of the named
colors are supported (for example, white, black, gray, red, yellow, green, and so on.)

• UNIX users can find the color list file at /usr/lib/X11/rgb.txt.

Configuration File View Section

99

The color variable lets you specify a single column to be mapped to a color (as with
height). The column must be a number type.

The colors clause specifies the colors to be used. The colors clause’s syntax is:

colors "colorname" "colorname"...

This is the format for colorname. There are no commas between the colors. This is because
commas are used to separate clauses in the color statement. A sample colors clause is:

colors "red" "gray" "blue"

Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly; however, if there is a colors
statement, you must specify at least as many colors as will be mapped.

The scale clause allows assignment of values to a continuous range of colors. For
example, when displaying a percentage, red can be assigned to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example, 25% is pinkish, and 55% is a
slightly bluish gray.

The syntax for the scale clause is:

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as will be mapped to the largest index.

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale column indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

100

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is:

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

If, in the pctFemale example, you used the buckets clause instead of the scale clause, the
statement would be:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater than or equal to 100 are colored red. Values greater than or equal to 50,
but less than 100, are gray. All other values are blue.

The normalize clause controls a form of color normalization, analogous to height
normalization. By default, color normalization is off. The syntax is:

normalize off;
normalize on;

When color normalization is on, the color scale (or buckets) list of values must range
between 0 and 100. These color values then represent relative percentages of the range
from the minimum to the maximum for a given viewed scene. For example, the
following generates colors in the range of “white” to “red,” where “white” corresponds
to the minimum “totalSales” and “red” corresponds to the maximum “totalSales” for the
particular set of graphical objects being viewed:

color totalSales;legend off
color scale 0 100, colors “white” “red”, normalize on;

See the file variations.articles.france.mapviz for a more elaborate example.

Windows users can find the file in the directory in which MineSet is installed, under
Examples\mapviz\examples, and UNIX users can find the file in
/usr/lib/MineSet/mapviz/examples/variations.articles.france.mapviz.

Configuration File View Section

101

The legend clause creates a legend of the colors. By default, the color legend is off. The
legend clause syntax can be any of the following:

legend off
legend on
legend "string" "string" ...
legend label "string"
legend "string" "string" ... label "string"

The legend off clause turns the legend off. The legend on clause turns the legend on. You
can omit it if other legend statements are included. Specifying only legend on generates
the default legend.

The default legend includes a single label to the left (with the name of the column that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, the buckets clause, or from the keys). To override the strings in the colored
labels, specify the strings as:

legend "string" "string

To override the label on the left, specify it following the word label. To eliminate this
label, specify an empty string as follows:

legend ""

Message Statement

The message statement specifies the message displayed when an object is selected. The
syntax is similar to the C printf statement. A sample message statement is:

message "%s: $%f, %.0f%% of target, %.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

This could produce the following message:

furniture: $2425.37, 23% of target, 87% of last year

The formats must match the type of data being used:

• Strings must use %s.

• Ints must use integer formats (such as %d).

• Floats and doubles must use floating point formats (such as %f).

102

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

For details of the printf format on UNIX systems, see the printf (1) man page (type man
printf at the shell prompt).

A special format type has been added to printf. If the percent sign is followed by a
comma (for example, “%,f”), commas are inserted in the number for clarity. Currently,
only the U.S. convention of d,ddd,ddd.dddd is supported, with the decimal point
represented by a period, and commas separating every three places to the left of the
decimal point. For example, the preceding format could be:

message "%s: $%,f, %,.0f%% of target, %,.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

In this case, it would produce the following message:

furniture: $2,425.37, 23% of target, 87% of last year

The $, *, h, l, ll, L, and n printf format options are not supported.

All values, including the format string, are expressions. Therefore, if you had a pctFemale
column, but wanted a more gender-neutral message, you could use:

message pctFemale>50?"%f%% females":"%f%% males",
 pctFemale>50?pctFemale:100-pctFemale;

If pctFemale is 70, the message “70% females” is displayed; if pctFemale is 30, the
message “70% males” is displayed. In this case, you can also achieve the same result with
a single format string:

message "%f%% %s", pctFemale>50?pctFemale:100-pctFemale,
 pctFemale>50?"females":"males";

If no message is specified, a default message containing the names and values of all the
columns is used.

Execute Statement

The execute statement lets you execute a shell command by double-clicking an object.
The syntax is similar to that of the message statement.

Hierarchy File

103

The following is a sample UNIX execute statement that uses xconfirm to show a window
with information about the item. The command line entry is shown as three lines. In an
actual file, this should be on a single line. Multi-line strings are not supported.

execute "xconfirm -t '%s' -t 'population %,.0f' -t '%,.0f per
 sq mile' -t '%,.0f sq-miles' > /dev/null", states,
 population, density, sqMiles;

This might produce a dialog with the following message:

CA
64 per sq mile
266,807 sq-miles

If there is no execute statement, double-clicking an object has the same effect as
single-clicking it.

This sample execute statement will work on Windows as well as UNIX, because a simple
xconfirm utility is provided with the installation on Windows.

Summary Statement

The summary statement specifies the initial setting of the Show Data Points pulldown
menu option. The syntax is:

summary datapoints on;

summary datapoints off;

The summary statement is optional, and the default setting is off.

Hierarchy File

The hierarchy file defines the object hierarchy, allowing objects to be displayed at
different levels of aggregation. It enables the drill up and drill down capabilities of the
Map Visualizer. The hierarchy file is specified in the .mapviz configuration file with the
map object hierarchy_filename statement (see “Configuration File View Section” on
page 95 and “Map Statement” on page 96).

104

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

These are the first few lines of the usa.states.hierarchy file:

states regions eastWest USA
usa.states.gfx usa.states.gfx
 usa.states.gfx usa.states.gfx
AL E_S_CENTRAL USA_E USA_ALL
AR W_S_CENTRAL USA_W USA_ALL
AZ MOUNTAIN USA_W USA_ALL
CA PACIFIC USA_W USA_ALL
CO MOUNTAIN USA_W USA_ALL
CT NEW_ENGLAND USA_E USA_ALL
DE MID_ATLANTIC USA_E USA_ALL

This defines how states combine into regions, sectors, and into a single object
encompassing all states.

The first record is a list of column names of the hierarchy; each name must be separated
by a single tab (‘\t’) character. One of the column names must match a type string
column in the data file, as declared in the configuration file’s input section in
“Configuration File Input Section” on page 88. In this example, the first column name,
states, is also the name of a data column in the example population.usa.mapviz. The
number of column names in this record must be the same as the number of columns of
hierarchy data, beginning at the third record of the .hierarchy file. If there is only one
column name (for example, gfx_files/canada.provinces.hierarchy), then there are only two
records in the .hierarchy file.

The second record is a list of .gfx file pathnames, where each pathname is separated by a
single tab (‘\t’) character. Each column name in the first record must have a matching .gfx
file pathname.

If there is a single column name (and .gfx file pathname), then only these two records
must be in the file. If there are multiple column names and pathnames, then starting at
the third record in the .hierarchy file is an N-column table of keywords of graphical
objects, where N is the number of column names in the first record. Looking at the
sample file, the first column contains “states” keywords, the second contains “regions”
keywords, the third contains the “eastWest” keywords, and the fourth contains the
“USA” keyword. The matching .gfx files contain the positions and shapes of each
column’s graphical objects.

The third and remaining records in the hierarchy file are the hierarchy data. These
records define how objects at one level correspond to objects at other levels.

.gfx File

105

.gfx File

The .gfx files define the geometry of each object used by the Map Visualizer when
displaying the objects. Each .gfx file contains multiple records, one for each object being
displayed. Each record contains the following:

• gfx keyword name

• gfx full name

• vertex pair count

• shape hint

• vertex pairs

The following steps explain how to build .gfx files on UNIX systems. On Windows, an
application for generating your own .gfx files, including instructions for using the utility
to create maps, is downloadable from the MineSet Web page: http://mineset.sgi.com.

1. Using a digitizing scanner, convert a geographical image into an RGB image file
format. Note that the image itself is not used by the Map Visualizer; it is just used as
a template for defining the graphical objects in step 5.

2. Launch the i3dm application in /usr/demos/bin/. (If this application is not currently
installed, it can be installed from the IRIX 5.3 or 6.2 distribution, in the subsystem
demos.sw.tools.) This creates windows on your screen: a Menu window on the left, an
Input window across the bottom, and four windows (labeled TOP, Pers, Front, and
Right) on the right. All i3dm windows must remain displayed (not iconified) for
i3dm to work.

3. Right-click the Front window to display options. Hold down the right mouse
button, scroll to the Image Background option, and then scroll to the Load Image
option. The Input window (at the bottom of your screen) prompts you for a name to
apply to this image.

4. Enter the name of the RGB image file. The image appears in the Front window.

106

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

5. Delineate the shape of each object in the image by clicking significant points on the
boundary of each object. Do this in a clockwise sequence for each object. Each
identified point is called a “vertex” and is represented by numeric x- and y-axis
values. These values are assigned by the i3dm application and exist in a relative
frame of reference for that RGB image file. The follow these steps to delineate each
object’s shape:

■ Use the middle mouse button to drag the image in the Front window so that the
object you will delineate is completely exposed. If this is not possible, see step 7.

■ Go to the Menu window, and right-click the Create pulldown menu.

■ Choose the Line option.

■ Start clicking vertices in the Front window. The more vertices you select, the
more accurate the resulting graphical image will be.

■ Note the red line crosshairs as you move the cursor over the image. As you click
each vertex, a small red box appears at that point. The box of the previous
vertex changes to a small “x,” and a yellow line connects the new vertex to the
previous vertices. As you move clockwise around the object, stop selecting
vertices immediately before you are about to close the shape (that is, before
clicking the first vertex you selected when starting to delineate the object).

■ Go to the Menu window, and right-click the Attrib pulldown menu.

■ Scroll to the Name option. The Input window (at the bottom of your screen)
prompts you for a name.

■ Enter a unique identifier for the object you have just delineated. Do not use
spaces. The becomes the object’s gfx keyword name. For example, in
population.usa.mapviz the gfx column is specified as the first column in the data
file. This first column contains strings such as “CA” and “NY.” These are the
keyword names for the states. These keyword names are the gfx keyword
names in the associated gfx file.

■ Go to the Menu window, and click the right mouse button on Done.

.gfx File

107

6. Repeat step 5 for every other object in the same image. If the object adjoins a
previously identified object, you must reuse common vertices by selecting them
with the middle mouse button instead of with the left mouse button. Using the
middle mouse button while the crosshairs are positioned close to a previously
selected vertex ensures that the newly selected vertex will be identical to the
previously selected one.

Caution: If a graphical object is too large to fit into the Front window, you must
select the vertices in sections. After all the objects are declared and the vertex
information is written to an ASCII file, you must edit this output file to join the
sections of each subdivided object.

7. When all objects are identified, save the recorded vertices in a file as follows:

■ Go to the Menu window and right-click the File pulldown menu.

■ Scroll down to the File i3dm format option and choose it. The Input window (at
the bottom of your screen) prompts you for a filename.

■ Enter a filename, specifying the .i3dm suffix.

8. Exit the i3dm application as follows:

■ Go to the Menu window, and choose the File pulldown menu.

■ Scroll to the Exit option, and choose it.

9. Convert the i3dm format file into a .gfx file format by using the convert.i3dm utility,
using the following syntax:

/usr/lib/MineSet/mapviz/convert.i3dm inputFilename
outputFilename.gfx

For each object, the utility prompts you to do the following:

• Confirm the object’s keyword name (which defaults to the Attrib name you
supplied in step 5, substep 8, when selecting the vertices).

108

Chapter 8: Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer

• Declare the object’s full name (which is the name the user sees in the Map
Visualizer’s Selection window when using the mouse to select a geographical
object).

• Declare if the object has a concave shape that requires special handling.

Note: Declaring an object to be concave results in an accurate graphical display, but
at the cost of slower performance. One strategy is to declare no objects as concave,
examine the display to determine which objects are inaccurately drawn, and then
manually edit the .gfx files for those objects, changing the string “convex” to
“concave.” Another strategy is to declare all objects as “concave” (assuming there are
few objects), and then determine if the resulting performance is acceptable.

109

Chapter 9

9. Creating Data and Configuration Files for the Scatter
Visualizer

This chapter describes the data and configuration files that are required for the Scatter
Visualizer. You can also generate these files automatically by using the Tool Manager. The
subjects discussed are:

• “Data File” on page 109

• “Configuration File Overview” on page 111

• “Configuration File Input Section” on page 112

• “Configuration File Expressions Section” on page 118

• “Configuration File View Section” on page 119

 Read about the Scatter Visualizer in the MineSet Enterprise Edition User’s Guide before
using this chapter.

Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields,
each separated by one tab. (Other separators are also allowed, but only one per file can
separate each field. See “Input Options” on page 117.) All lines in the file must contain
the same fields. The interpretation of the fields is specified by the configuration file,
described in the next sections.

Sample data files are provided as part of the Scatter Visualizer package. For Windows
these are in the directory in which MineSet is installed, under the Examples\scatterviz
directory. For UNIX, they are in the /usr/lib/MineSet/scatterviz/examples/ directory. One
such file is the store sales data file. In this file the first few lines appear as:

LIQUOR STORE 4300,4460,4800,4900,4700,4200,4250,4200
2700,2800,2750,3000,2900,2600,2500,2650
1600,1650,1900,1950,2000,2200,2300,2300

110

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

GROCERY STORE 700,900,600,800,877,755,800,600
3000,2900,3100,2800,2899,2950,3400,3300
10000,11000,9000,9800,9700,9650,9770,9700

In this file listing, each line consists of four fields, separated by tabs. The first field is a
string that identifies a store type. The second field is an array of eight numbers, separated
by commas, which might be sales of alcohol over an eight-day period. The third and
fourth fields are also arrays of eight numbers that could represent sales of tobacco and
food, respectively, over the same eight-day period.

The sample data file has other fields in the same format, but these are not shown. These
additional fields correspond to sales of other products (see the configuration file
store-type.scatterviz for a listing of all the fields). Windows users find this file in the
directory in which MineSet is installed, under \Examples\scatterviz\. UNIX users find
the file in /usr/lib/MineSet/scatterviz/examples/store-type.scatterviz.

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; this generates blank fields. The order of the fields must match
the format specified by the configuration file.

Data Types

The Scatter Visualizer supports integer, floating-point number, and string data types, as
well as arrays of these types. See Chapter 5, “Data and Configuration File Basics,” for
more information on data types.

Arrays

With the Scatter Visualizer, you can use fields that are one- or two-dimensional arrays of
fixed size. In a fixed-sized array field, all entries of the given field are arrays with the
same number of values. Arrays contain the data values across one or two independent
variables (those dimensions controlled by the sliders). In the listing from the file
store-type.data, the second, third, and fourth fields are arrays.

Configuration File Overview

111

Null Values

Any field or array element in the data file can also have the value “?” (question mark),
indicating an unknown or null value.

Configuration File Overview

The configuration file format is flexible. You must separate the words with spaces, and
the file is case-sensitive. Except for the include statement and text within quoted strings,
spacing and line breaks are irrelevant.

Defaults Files

As each section is encountered, a special configuration file (referred to as a defaults file) is
also read in. Defaults files normally contain options statements. These files are read in
the following order:

1. The scatterviz directory which usually contains system defaults. Windows users can
find this in the directory in which MineSet was installed, under \config\scatterviz.
UNIX users can find the directory in /usr/lib/MineSet/scatterviz.

2. The ~/.MineSet directory in which you can set up personal defaults (the tilde, ~,
indicates your home directory).

3. The current directory, which lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section
in the configuration file is read after all the defaults files; thus, options in the
configuration file override those in the defaults files.

112

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

Configuration File Input Section

The first section of a configuration file is normally the input section. It defines the name
and format of the data file. A typical input section might appear as follows:

input {
 file "company.data";
 string company;
 slider int income from 20000 to 60000 by 10000;
 slider date “%N %Y” purchaseDate from “Jan 1990” to “Dec
 1992” by “1 month”;
 options array separator ‘,’;
 float lifeSales[income][purchaseDate];
 float autoSales[income][purchaseDate];
 float homeSales[income][purchaseDate];
 string location;
 }

This example states that the input file is called company.data, and that there are five fields:
company, lifeSales, autoSales, homeSales, and location. The company and location fields are of
type string, and the other three fields are two-dimensional arrays of type float. Two
slider dimensions are declared:

• income, which is of type int, ranges from 20000 to 60000 in increments of 10000.

• purchaseDate, which is of type date and ranges from January 1990 to December 1992
in increments of one month.

The arrays lifeSales, autoSales, and homeSales contain values for each income and purchase
date. Individual values within the arrays are separated by commas.

When the input section is entered, the defaults file inputDefaults is read in.

Configuration File Input Section

113

File Statements

The file statement names the data file to be read. This statement is required. Its form is as
follows:

file "filename";

filename must be in double quotation marks. If it is a relative pathname (no leading slash),
it is first sought in the directory containing the current configuration file. If include
statements are present, this might not be the same as the initially loaded configuration
file. If it is not found in the current configuration file’s directory, the file is sought in the
current directory.

Enumeration Statements

Enumeration statements declare enumerations, or enums, that index into array fields.
The enum statement has three forms:

• enum type name from value1 to value2 by increment;

This declares an enum with values starting at value1 and incremented by increment
until they reach or exceed value2. For example, the following statement declares age
as an enum with the values 20, 30, 40, 50, 60, and 70:

enum int age from 20 to 70 by 10;

Type must be a number type (int, float, or double) or date (see “Dates” on page 114).

• enum type name from value1 to value2 across numberOfValues;

This declares an enum with values ranging from value1 to value2. The
numberOfValues is an integer specifying the number of values. For example, the
following statement declares age as an enum with the values 20, 30, 40, 50, 60, and
70:

enum int age from 20 to 70 across 6;

Type must be a number type (int, float, or double) or date (see “Dates” on page 114).

• enum type name {value1, value2, ..., valueN};

Type can be any type or date (see “Dates”).

114

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

Dates

The enum statement includes special support for a date type that handles date and time
values from January 1, 1753 forward. The date type is valid only within enum
statements. A date enum statement can have the following types syntax:

enum date “format” name from “value1” to “value2” across
 numberOfValues;
enum date “format” name { value1, value2, ..., valueN };
enum date “format” name from “value1” to “value2” by
 “increment”;

The format string specifies the format of the values; it is useful for controlling how dates
are displayed in the animation control panel. The syntax of the format string is similar to
the scanf function in C. Various units of time are represented by special characters
preceded by the percent symbol (%). For example:

enum date cq “Calendar Q%Q, %Y” from “Calendar Q1, 1980” to “Calendar
Q3, 1985” by “1 quarter”;

The “Calendar Q” in the format string matches the “Calendar Q” in value1 and value2. The
%Q in the format string indicates that the next number in value1 and value2 is the calendar
quarter. The comma and space in the format string match the commas and spaces in the
values. Finally, the %Y in the format string specifies that the year values are next.

Table 9-1 lists the characters that can follow the percent symbol and the units of time they
represent.

Table 9-1 Characters That Can Follow the Percent Symbol in the Format String

Character Time Unit Precision

Y year 4

Q calendar quarter 1

M month 2

N month name >= 3

D day 2

h hour 2

Configuration File Input Section

115

With the exception of N, each character matches an integer of the specified precision. N
matches 3 or more characters giving the English name of the month.

The from-to-by form of the enum statement includes an increment value. For dates, the
increment is a quoted string containing an integer, an optional space, and one of the
special characters in Table 9-1 or one of the symbols year, quarter, month, day, hour,
minute, or second. The plural forms of these symbols are also accepted. These symbols
are not keywords, because they have special meaning only in the increment string. The
following are examples of valid increments:

“1 year”
“7 days”
“4h”

Data Statements

The data statements declare the fields in the data file. You must declare the fields in the
order they appear in the data file. The format of most data statements is as follows:

type name;

type is int, float, double string, dataString, date, or fixedString(n), where n is an integer
representing the width of the string; name is the variable name. Unlike in C, you can
declare only one variable per statement.

You can also base a data field an enumeration. The syntax is as follows:

enum enumName name;

The field must contain ints corresponding to the values of the enum. You can declare the
enum ageGroup as:

enum string ageGroup {"below 30", "30-39", "40-49", "50-59",
"60 or above"};

m minute 2

s second 2

Table 9-1 Characters That Can Follow the Percent Symbol in the Format String

Character Time Unit Precision

116

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

In this case, you can declare the field age:

enum ageGroup age;

The field should contain ints between 0 and 4, where 0 is displayed as “below 30,” 1 as
“30-39,” and so forth.

You can declare only one variable per statement.

Arrays

Arrays are also declared using data declarations. The declaration syntax for
one-dimensional arrays is one of the following:

type name [number] ;
type name [enumName] ;
type name [null enumName] ;

For example:

float revenue [50];

The declaration syntax for two-dimensional arrays is one of the following:

type name [number1][number2] ;
type name [enumName1][enumName2] ;
type name [null enumName1][null enumName2] ;

For example:

float revenue [50][10];

When enums are used, the number of values in the array is taken from the declaration of
the enum. For example, given the following statements, the array clothingPurchases must
have six values, corresponding to the enum values 20, 30, 40, 50, 60, and 70:

enum int age from 20 to 70 by 10;
float clothingPurchases[age];

The keyword null indicates an extra value at the beginning of the array, corresponding
to null. Thus, the following statements declare clothingPurchases as an array with seven
values: the first value corresponding to null or unknown age values, and the remaining
six values corresponding to age values 20, 30, 40, 50, 60, and 70:

enum int age from 20 to 70 by 10;
float clothingPurchases[null age];

Configuration File Input Section

117

You can override the separator between values in an array by declaring it as:

type name [number] separator ‘char’;

For example:

float revenue [50][10] separator ‘:’;

If you do not specify a separator, the default separator (usually a tab) is used.

Input Options

All options statements begin with the word “options” and have one or more
comma-separated options.

• The separator option defines the separator between fields in the data file. The
default separator is a tab. The syntax is:

options separator ‘char’;

For example:

options separator ‘:’;

Note: The separator is used also to separate values within arrays; however, arrays
can override the separator.

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

options backslash off;

options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than separators.
Within strings, this causes standard C-style backslash processing.

118

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

Configuration File Expressions Section

The expressions section of a configuration file lets you define additional fields that are
expressions of existing fields. For example, you can define a new field as the sum of two
other fields.

The format of the expressions section is:

expressions
{
expressionDeclaration;
...
}

expressionDeclaration has the following form:

type name = expression ;

The following is a sample expression section. This section assumes two existing array
fields of type double: “male” and “female”. These represent spending by males and
females on various goods over time (one independent dimension). Two fields are added:
“total” represents the total dollars spent, and “pctFemale” represents the percentage of
dollars spent by females.

expressions
{
double total[36] = male+female;
double pctFemale[36] = divide (female*100, total, 50.0);
}

Note: The pctFemale calculation uses “total,” defined in the previous statement. Also,
note the use of the divide function rather than the / operator. Using the / operator
generates an error due to an attempted division by zero.

The expressions section has no options; thus, no defaults file is read in for it.

Configuration File View Section

119

Configuration File View Section

The view section of a configuration file describes how the data is displayed, including
the mapping of sizes, colors, axes, and so on. The default values for these options are in
view.scatterviz.options. The Windows options are in the directory in which MineSet is
installed under \Programs\scatterviz\view.scatterviz.options. UNIX users can find the file
in /usr/lib/MineSet/scatterviz/view.scatterviz.options. The syntax is as follows:

view
{
viewStatement;
...
}

A sample view section is:

view {
 slider month;
 entity brand;
 axis male$, color “blue”;
 axis female$, color “red”;
 size total$, max 5;
 color pctFemale, scale 0 50 100, colors “blue” "gray"
 "red";
 message "brand %s, total sales %,.0f",brand, total$;
 }

When entering the view section, the viewDefaults file is read in.

Slider Statement

The slider statement identifies an enum to be used as a slider dimension. Its syntax is one
of the following:

slider enumName;
slider null enumName;

The enum name is declared in the input section. If the keyword null is present, the slider
includes a position at the beginning that corresponds to null or unknown values of the
enum. You must declare arrays indexed by the slider to match the null in the slider
statement.

120

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

There can be one, two or no slider statements. The first slider statement applies to the
horizontal slider, the second applies to the vertical slider. If there is no slider statement,
the resulting display does not include animation.

Entity Statement

The entity statement lets you specify a variable that uniquely identifies the entities in the
display. The entity statement consists of a series of clauses, separated by commas:

entity clause1, clause2,...

Alternatively, the clauses can be given in separate entity statements.

Entity Variable

The first clause of the entity statement normally contains the name of the entity variable
(for instance, brand in the example on page 119).

Label Clause

This clause defines how the entities are labeled. It has the following forms:

• label off

This turns off the labels.

• label on

This turns on the labels. The default labels use the entity variable as the label for
each entity.

• label variable

This turns on the labels and uses the given variable to label the entities. When this
form is used, it is not necessary to specify label on.

Configuration File View Section

121

Label Color Clause

This clause turns on the labels and specifies their color. It has the following form:

label color “colorname”

colorname is the name of a color in a special format. (Color naming is explained in “Color
Statement” on page 123.) The default label color is gray.

Legend Clause

The legend clause explains what the entities are. Any string can be placed in the entity
legend. The legend clause has the following forms:

• legend off

This turns off the entity legend.

• legend on

This turns on the entity legend (this is the default). The default legend is:

Entity: varname

varname is the name of the entity variable.

• legend label “string”

This turns on the legend and explicitly sets the legend string. If this form is used,
legend on is unnecessary.

Size Statement

The size statement describes how a field of data is mapped to the sizes of entities. The
size statement consists of a series of clauses, separated by commas:

size clause1, clause2,...

Alternatively, the clauses can be given in separate size statements.

122

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

Size Variable

The first clause normally contains the name of a field to be mapped to size (for instance,
total$, in the view example in “Configuration File View Section” on page 119). The field
must be of a number type (int, float, or double), of which float is the most efficient. The
field can be an array that is indexed by slider dimensions. If no size field is specified, all
entities are the same size.

Max Clause

Normally, the size variable is mapped to the size of the entities, so that the biggest entity
has a size of 5. You can change this size by specifying a different value. If there is no size
variable, the default maximum size is 5. The max clause has the form:

max float

Scale Clause

Instead of the max clause, you can use the scale clause to scale size values; all values are
multiplied by the scale. The scale clause’s syntax is:

scale float

Legend Clause

The legend clause defines the meaning of the size mappings. You can place any string in
the size legend. The legend clause has the following forms:

• legend off

This turns off the size legend.

• legend on

This turns on the size legend (this is the default). The default legend is:

size:varname

varname is the name of the variable that is mapped to size.

• legend label “string”

This turns on the legend and explicitly sets the legend string. If you use this form,
legend on is unnecessary.

Configuration File View Section

123

Color Statement

The color statement describes how values are mapped to colors. The format is similar to
the size statement, consisting of several clauses that you can separate with commas, or
enter as multiple statements. The syntax is:

color clause1, clause2,...

Color Naming

Color names follow the conventions of the X Window system, except that the names
must be in quotes. Examples of valid colors are “green,” “hot pink,” and “#77ff42.” The
latter is in the form “#rrggbb,”, in which the red, green, and blue components of the color
are specified in hexadecimal value. Pure saturation is represented by ff, a lack of color by
00. For example, “#000000” is black, “#ffffff” is white, “#ff0000” is red, and “#00ffff” is
cyan.

• Windows users should only use the “#ff0000”form, as only some of the named
colors are supported (for example, white, black, gray, red, yellow, green, and so on).

• UNIX users can find the color list file at /usr/lib/X11/rgb.txt.

Color Variable

As with size, you can specify a single field to be mapped to an entity color. The field can
be an array that is indexed by slider dimensions. If the field is an array, it must be a
number type. If the field is a number type, you can use the scale and buckets clauses
described below to map a range of colors to the values of the field. If the field is not a
number type, it is sorted, and each unique value is assigned a color.

Colors Clause

The colors clause specifies the colors to be used. The syntax is:

colors "colorname" "colorname"...

The format for colorname is described in “Color Naming” on page 123. There are no
commas between the colors, because commas are used to separate clauses in the color
statement. A sample colors clause is:

colors "red" "gray" "blue"

124

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly. If there is a colors statement,
at least as many colors must be specified as will be mapped.

The scale Clause

The scale clause allows assignment of values to a continuous range of colors. For
example, when percentage is displayed, you can assign red to 0%, gray to 50%, and blue
to 100%. Intermediate values are interpolated; for example 25% is pinkish, and 55% is a
slightly bluish gray.

The syntax for the scale clause is:

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as will be mapped to the largest index.

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale field indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

Use the scale clause only in conjunction with a numeric color variable.

Buckets Clause

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is:

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

Configuration File View Section

125

If, in the previous example, you used the buckets clause instead of the scale clause, the
statement would be:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater than or equal to 100 are colored red. Values greater than, or equal to,
50 but less than 100, are gray. All other values are then blue.

Use the buckets clause only with a numeric color variable.

Legend Clause

The legend clause creates a legend of the colors. The legend clause syntax can be any of
the following:

legend off
legend on
legend "string" "string" ...
legend label "string"

The legend off clause turns the off legend. The legend on clause turns on the legend.
You can omit it if other legend statements are included. Specifying only legend on

generates the default legend.

The default legend includes a single label to the left (with the name of the field that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, the buckets clause, or from the field). To override the strings in the colored
labels, specify the strings as:

legend "string" "string"

To override the label on the left, specify it following the word label. To eliminate this
label, specify an empty string; as follows:

legend label ""

126

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

Axis Statement

The axis statement causes a variable to be used as an axis in the 3D landscape. The
variable’s values determine where the entities are positioned on the axis. There can be up
to three axis statements. Like the size and color statements, the axis statement contains
a series of comma-separated clauses, but you must specify all of them in a single
statement.

axis clause1, clause2,...

The Axis Variable

As with size and color, you can specify a field to be used as an axis. The field can be an
array that is indexed by slider dimensions. If the field is an array, it must be of numeric
type. If the field is non-numeric, it is sorted, and each unique value is assigned a position
along the axis.

Label Clause

The label clause has the following form:

label "string"

The string is used to label the axis. It appears in the landscape, at the end of the axis line.
The default label is the name of the axis variable.

Max Clause

Normally, the axis variable is mapped directly to the position of the entities along the
axis. The max clause lets you normalize the values of the axis variable, so that the
maximum value is mapped to the specified max. The max clause’s syntax is:

max float

Scale Clause

Instead of using the max clause to affect position values, you can use the scale clause to
scale the values. All values are multiplied by the scale. The scale clause syntax is:

scale float

Configuration File View Section

127

Color Clause

The color clause specifies the color used for the axis line and label. It has the following
form:

color "colorname"

Extend Clause

The extend clause specifies whether the axis should be extended automatically to include
the value zero. It has the following form:

extend on
extend off

Orderby Clause

The orderby clause forces a particular order by string values on an axis. By default, the
strings are arranged to correspond with the color variable. The only alternative ordering
offered currently is alphabetical (orderby alpha).

Summary Statement

The summary statement specifies a summation to be calculated over all the entities. You
can use the summary to color the drawing window in the animation control panel. Like
the size and color statements, the summary statement has several clauses that you can
specify in one statement, separated by commas, or in separate statements as follows:

summary clause1, clause2,...

Summary Variable

You can specify the variable to be used in the summary. This variable must be of numeric
type. Typically, the summary variable is an array indexed by slider dimensions, so that
the summary value varies across the slider dimensions.

128

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

Color Clause

The color clause specifies the color used to display the summary values in the drawing
window. It has the following form:

color “colorname”

Various shades of the color, from white to the specified color, are used to represent
summary values. The minimum summary value is mapped to white, while the
maximum summary value is mapped to the specified color. The default summary color
is red.

The Legend Clause

The legend clause creates a legend of the summary colors. The legend clause syntax can
be any of the following:

legend off
legend on
legend label "string"

The legend off clause turns off the legend. The legend on clause turns on the legend.
You can omit it if other legend statements are included. Specifying only legend on

generates the default legend.

The legend includes a single label to the left (which defaults to the aggregation function
and variable used in the summary), and two colored labels on the right (with the
minimum and maximum summary values). To override the label on the left, specify it
following the word label. To eliminate this label, specify an empty string as follows:

legend label ""

Drillthrough Statement

The drillthrough statement specifies a column to be used to define the drill through
expression. This column must be string valued, and should specify an expression that
defines the object when selected (assuming each row defines an object).

The syntax for this statement is of the following form:

drillthrough stringColumnName;

Configuration File View Section

129

Drill through mapping is used in the .scatterviz file generated by the associations mining
algorithm. It is used here because the table in the datafile contains rules and properties
of the rules, not the columns in the original dataset.

The Selections > Drill Through Columns menu in the Scatter Visualizer has no effect
when a specific drill through column has been mapped.

Message Statement

The message statement specifies the message displayed when an entity is selected. The
syntax is similar to that of the C printf statement. A sample message statement is:

message "%s: $%f, %.0f%% of target, %.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

This could produce the following message:

furniture: $2425.37, 23% of target, 87% of last year

The formats must match the type of data being used:

• Strings must use %.

• Ints must use integer formats (such as %d).

• Floats and doubles must use floating point formats (such as %f).

For details of the printf format, UNIX users can see the printf (1) reference (man) page
(type man printf at the shell prompt).

A special format type has been added to printf. If the percent sign is followed by a
comma (for example, “%,f”), commas are inserted in the number for clarity. Only the U.S.
convention of d,ddd,ddd.dddd is supported, with the decimal point represented by a
period, and commas separating every three places to the left of the decimal point. For
example, the format could be:

message "%s: $%,f, %,.0f%% of target, %,.0f%% of last year",
 product, sales, pctTarget, pctLastYear;

In this case, it would produce this message:

furniture: $2,425.37, 23% of target, 87% of last year

The $, *, h, l, ll, L, and n printf format options are not supported.

130

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

All values, including the format string, are expressions. Therefore, if you had a pctFemale
field, but wanted a more gender-neutral message, you could use the following:

message pctFemale>50?"%f%% females":"%f%% males",
 pctFemale>50?pctFemale:100-pctFemale;

If pctFemale is 70, the message “70% females” is displayed; if pctFemale is 30, the
message “70% males” is displayed. In this case, you can also achieve the same result with
a single format string:

message "%f%% %s", pctFemale>50?pctFemale:100-pctFemale,
 pctFemale>50?"females":"males";

If you do not specify a message, a default message containing the names and values of
all the fields is used.

Execute Statement

The execute statement lets you execute a shell command by double-clicking an object.
The syntax is similar to that of the message statement.

The following is a sample execute statement you can use on UNIX that uses xconfirm to
show a window with information about the item. The command line (string) is shown as
three lines. In an actual file, this should be on a single line. Multi-line strings are not
supported.

execute "xconfirm -t '%s' -t 'population %,.0f' -t '%,.0f per
sq mile' -t '%,.0f sq-miles' > /dev/null", states, population,
density, sqMiles;

This might produce a the following message:

CA
64 per sq mile
266,807 sq-miles

Configuration File View Section

131

The following is a sample Windows execute statement (a simple xconfirm utility is
provided with the installation):

execute "xconfirm -t ’%s has a population of %,.0f’ -t ’averaging %,
.1f per sq mile’ -t ’across %,.0f sq-miles’",provinces,
population, density, sqMiles;

If there is no execute statement, double-clicking an object has the same effect as
single-clicking it.

Filter Statement

The filter statement specifies that only entities meeting certain filter criteria are displayed
initially. The filter criteria are in the form of expressions whose values must all be true or
nonzero for an entity to be displayed (expressions are described Chapter 5, “Data and
Configuration File Basics,” in “MineSet Expression Language” on page 42).

The syntax of the filter statement is:

filter expression, expression,...

For example, the following statement specifies that only records from California or
Washington, with sales greater than 9000 and a pctTarget value greater than or equal to
90, should be displayed initially:

filter state == "CA" || state == "WA", sales > 9000, pctTarget >= 90;

After the Scatter Visualizer is invoked, you can change or remove the filter criteria
interactively by using the filter panel.

View Options

The view section of the configuration file has several options for controlling parameters
of the display. These options can appear in a single options statement, separated by
commas, or in separate options statements. The syntax of the options statement is:

options option, option,...

132

Chapter 9: Creating Data and Configuration Files for the Scatter Visualizer

The following options are available:

• entity label size float

Controls the size of the entity labels.

• axis label size float

Controls the size of the axis labels.

• hide entity label distance float

Controls the distance at which entity labels become invisible. Smaller distances
might improve performance, but the labels disappear more quickly.

• grid color “colorname”

Controls the color of the grid.

• grid size float float float

Controls the spacing between grid lines. It applies the three values to grid lines
along the x, y, and z axes, respectively.

• entity shape shapeName

Specifies the shape used to display entities. shapeName can be “cube,” “bar,” or
“diamond.”

• background color “colorname”

Specifies the initial background color.

• orientation top right front float float float

Specifies the initial orientation of the scene. You may use three floating point values
to specify an arbitrary orientation vector.

• perspective on off

Specifies whether or not to use perspective initially. The default is to use it.

• upvector float float float

Specifies a camera upvector for defining a frame of reference. The default is 0.10.1.
This option combined with the orientation option allows any initial viewing
orientation.

133

Chapter 10

10. Creating Data and Configuration Files for the Splat
Visualizer

This chapter describes the data and configuration files that are required for the Splat
Visualizer. You can also generate these files automatically by using the Tool Manager. The
subjects discussed are:

• “Data File” on page 133

• “Configuration File Overview” on page 135

• “Configuration File Input Section” on page 135

• “Configuration File View Section” on page 140

Read the about the Splat Visualizer in the MineSet Enterprise Edition User’s Guide
before using this chapter.

Data File

In its simplest form, the data file consists of a list of lines, each containing a set of fields,
each separated by one tab. (Other separators are also allowed, but only one per file can
separate each field. See “Input Options” on page 139.) All lines must contain the same
fields. The interpretation of the fields is specified by the configuration file, described in
the next sections. These sections use examples from the adultJobs data file provided as
part of the Splat Visualizer package. Windows users can find the file in the directory in
which MineSet is installed, under Examples\splatviz\examples. UNIX users can find the
file in /usr/lib/MineSet/splatviz/examples.

The first few lines of the input file appear as:

Bachelors Adm-clerical 3 3 51189.4869565217 115
Bachelors Exec-managerial 2 5 70722.6271186441 59
Bachelors Adm-clerical 2 3 37876.328358209 134
Bachelors Exec-managerial 3 0 34436.8 5
Bachelors Tech-support 1 2 37583.66667 3

134

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

Bachelors Tech-support 1 3 13711.33333 3
Bachelors Tech-support 1 4 29878.74193 31

In this sample file listing, each line consists of six fields, separated by tabs. The first field
is a string that identifies level of education. The second field is a string which identifies
occupation. The third field identifies the age bin. The fourth field identifies the number
of hours per week worked bin. The fifth field quantifies the average gross income. The
sixth field is the weight of records in the aggregate (i.e. the record count, unless record
weighting has been used).

This data file was derived from adult94.data by performing Tool Manager operations
(specifically binning and aggregation). Windows users can find the file in the directory
in which MineSet was installed, under \Examples\data\adult94.data. UNIX users can find
the file in /usr/lib/MineSet/data/adult94.data.

The data file cannot contain blank lines or comments. Missing or extra data on a line
causes an error.

Note: One tab (the default separator) separates each field. Do not insert multiple tabs to
line up the fields visually; this generates blank fields. The order of the fields must match
the format specified by the configuration file.

Data Types

The Splat Visualizer supports data of types the int, float, double, string, dataString, fixed
string, and date. See Chapter 5, “Data and Configuration File Basics,” for more
information about data types.

Null Values

Any field element in the data file can also have the value “?” (question mark), indicating
an unknown or null value.

Configuration File Overview

135

Configuration File Overview

The configuration file format is flexible. You must separate words in it with spaces, and
the file is case-sensitive. Except for the include statement and text within quoted strings,
spacing and line breaks are irrelevant.

Defaults Files

As each section is encountered, a special configuration file (referred to as a defaults file) is
also read in. Defaults files normally contain options statements. These files are read in the
following order:

1. The splatviz directory which usually contains system defaults. Windows users can
find this in the directory in which MineSet is installed, under \config\splatviz. UNIX
users can find the directory in /usr/lib/MineSet/splatviz.

2. The ~/.MineSet directory in which you can set up personal defaults (the tilde, ~],
indicates your home directory).

3. The current directory, which lets you set up defaults for each directory.

Files with the same name can appear in more than one of the above-named directories;
in this case, the order given is the one in which the directories are read. If the same option
is found in multiple files, the last option read is used. Note that the appropriate section
in the configuration file is read after all the defaults files; thus, options in the
configuration file override those in the defaults files.

Configuration File Input Section

The first section of a configuration file is normally the input section. It defines the name
and format of the data file. A typical input section might appear as follows:

input {
 file "adultJobs.data";
 enum string `age_bin_k` {"- 20", "20-30", "30-40",
"40-50", "50-60", "60-70", "70+"};
 enum string `hours_per_week_bin_k` {"- 20", "20-25", "25-30",
"30-35", "35-40", "40-45", "45-50", "50-55", "55-60", "60-65", "65-70",
"70+"};
 string `education`;
 string `occupation`;

136

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

 enum `age_bin_k` `age_bin`;
 enum `hours_per_week_bin_k` `hours_per_week_bin`;
 double `avg_gross_income`;
 int `count_gross_income`;
}

This example states that the input file is called adultJobs.data, and that there are six fields:
education, occupation, age_bin, hours_per_week_bin, avg_gross_income, and
count_gross_income. The education and occupation fields are of type string. The age_bin
and hours_per_week_bin are of type enum, where the values of these enums are defined
by age_bin_k and hours_per_week_bin_k respectively. The column avg_gross_income is
of type double and the field count_gross_income is of type int.

When the input section is entered, the defaults file inputDefaults is read in.

File Statements

The file statement names the data file to be read. This statement is required. Its form is as
follows:

file "filename";

filename must be in double quotation marks. If it is a relative pathname (no leading slash),
it is first sought in the directory containing the current configuration file. If include
statements are present, this might not be the same as the initially loaded configuration
file. If it is not found in the current configuration file’s directory, the file is sought in the
current directory.

Enumeration Statements

Enumeration statements declare enumerations, or enums. The enum statement has three
forms.

• enum type name from value1 to value2 by increment;

This declares an enum with values starting at value1 and incremented by increment
until they reach or exceed value2. For example, the following statement declares age
as an enum with the values 20, 30, 40, 50, 60, and 70:

enum int age from 20 to 70 by 10;

Type must be a number type (int, float, or double) or date (see “Dates” on page 137).

Configuration File Input Section

137

• enum type name from value1 to value2 across numberOfValues;

This declares an enum with values ranging from value1 to value2. The
numberOfValues is an integer specifying the number of values. For example, the
following statement declares age as an enum with the values 20, 30, 40, 50, 60, and
70:

enum int age from 20 to 70 across 6;

Type must be a number type (int, float, or double) or date (see “Dates”).

• enum type name {value1, value2, ..., valueN};

This explicitly lists the enum values.

Type can be any type or date (see “Dates”).

Dates

The enum statement includes special support for a date type that handles date and time
values from January 1, 1753 forward. The date type is valid only within enum
statements. A date enum statement can have any if the following types of syntax:

enum date “format” name from “value1” to “value2” across
 numberOfValues;
enum date “format” name { value1, value2, ..., valueN };
enum date “format” name from “value1” to “value2” by

“increment”;

The format string specifies the format of the values; it is useful for controlling how dates
are displayed in the animation control panel. The syntax of the format string is similar to
the scanf function in C. Various units of time are represented by special characters
preceded by the percent symbol (%). For example:

enum date cq “Calendar Q%Q, %Y” from “Calendar Q1, 1980” to “Calendar
Q3, 1985” by “1 quarter”;

The “Calendar Q” in the format string matches the “Calendar Q” in value1 and value2. The
%Q in the format string indicates that the next number in value1 and value2 is the calendar
quarter. The comma and space in the format string match the commas and spaces in the
values. Finally, the %Y in the format string specifies that the year values are next.

138

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

Table 10-1 lists the characters that can follow the percent symbol and the units of time
they represent.

With the exception of N, each character matches an integer of the specified precision. N
matches 3 or more characters giving the English name of the month.

The from-to-by form of the enum statement includes an increment value. For dates, the
increment is a quoted string containing an integer, an optional space, and one of the
special characters in Table 10-1 or one of the symbols year, quarter, month, day, hour,
minute, or second. The plural forms of these symbols are also accepted. These symbols
are not keywords, because they have special meaning only in the increment string. The
following are examples of valid increments:

“1 year”
“7 days”
“4h”

Data Statements

The data statements declare the fields in the data file. You must declare the fields in the
order they appear in the data file. The format of most data statements is:

type name;

Table 10-1 Characters That Can Follow the Percent Symbol in the Format String

Character Time Unit Precision

Y year 4

Q calendar quarter 1

M month 2

N month name >= 3

D day 2

h hour 2

m minute 2

s second 2

Configuration File Input Section

139

type is int, float, double string, dataString, date, or fixedString(n), where n is an integer
representing the width of the string; name is the variable name. Unlike in C, you can
declare only one variable per statement.

You can also base a data field on an enumeration. The syntax is:

enum enumName name;

The field must contain ints corresponding to the values of the enums. For example, you
could declare the enum ageGroup as follows:

enum string ageGroup {"below 30", "30-39", "40-49", "50-59",
"60 or above"};

In this case, you can declare the field age as follows:

enum ageGroup age;

The field should contain ints between 0 and 4, where 0 is displayed as “below 30,” 1 as
“30-39,” and so forth.

You can declare only one variable per statement.

Input Options

All options statements begin with the word “options” and have one or more
comma-separated options.

• The separator option defines the separator between fields in the data file. The
default separator is a tab. The syntax is:

options separator ‘char’;

For example:

options separator ‘:’;

• The backslash option controls whether backslashes in the input data are treated
specially or like other characters. The syntax is:

options backslash off;

options backslash on;

The default is off. If backslash processing is on, separators in the input data
preceded by backslashes are treated as regular characters rather than as separators.
Within strings, this causes standard C-style backslash processing.

140

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

Configuration File View Section

The view section of a configuration file describes how the data is displayed, including
the mapping of sizes, colors, axes, and so on. The default values for these options are in
view.splatviz.options. The Windows options are in the directory in which MineSet is
installed, under config\scatterviz\view.splatviz.options. The UNIX options are in
/usr/lib/MineSet/splatviz/view.splatviz.options. The syntax is:

view
{
viewStatement;
...
}

A sample view section is as follows:

view {
 slider `age_bin`;
 opacity `count_gross_income`;
 color `avg_gross_income`;
 axis `education`, color "grey";
 axis `occupation`, color "grey";
 axis `hours_per_week_bin`, max 100, color "grey";
 options grid size 0 0 0;
 summary `count_gross_income`, color "red";
}

When entering the view section, the viewDefaults file is read in.

Slider Statement

The slider statement identifies an enum column to be used as a slider dimension. Its
syntax is one of the following:

slider columnName;

Declare the columnName name in the input section. If this column contains nulls, the
slider includes a beginning position corresponding to those null values.

There can be one, two, or no slider statements. The first slider statement applies to the
horizontal slider, and the second applies to the vertical slider. If there is no slider
statement, the resulting display does not include animation.

Configuration File View Section

141

Opacity Statement

In the Splat Visualizer, the opacity is based on counts or, more generally, record weights.
If you map a column to this requirement, it is used to weight each record (rather than
using 1) when computing a value for the opacity. Therefore, if you had a column with
values for population, density, or the result of a count aggregation, you might want to
map this column to the opacity (weight) requirement. If you had no such column, you
can leave the requirement unmapped, and a column of 1’s is used by default.

The opacity statement describes how a field of data is mapped to the opacity of the splats.
The opacity statement consists of a series of clauses, separated by commas:

opacity clause1, clause2,...

Alternatively, you can put the clauses in separate opacity statements.

Opacity Variable

The first clause normally contains the name of a field to be mapped to opacity. The field
must be of a number type, int, float, or double, of which float is the most efficient.

Max Clause

The max clause allows you to alter the initial opacity setting for the scene. The most
opaque splat in the scene will match the value specified in this max clause. The default
is 1. The max clause has the following form:

max float

Legend Clause

The legend clause defines the meaning of the opacity mapping. The legend clause has
the following forms:

• legend off

This turns off the opacity legend.

142

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

• legend on

This turns on the opacity legend (this is the default). The default legend is:

opacity:count

count is a column that the tool has created by counting the number of records in
each aggregate. If a column is mapped to opacity, the name of this column,
prepended with “sum_”, is shown in the legend. This new column is computed by
sum aggregating the column mapped to the opacity requirement.

• legend label “string”

This turns on the legend and explicitly sets the legend string. If you use this form,
legend on is unnecessary.

Color Statement

The color statement describes how values are mapped to colors. The format is similar to
the opacity statement, consisting of several clauses that you can separate with commas,
or enter as multiple statements. The syntax is:

color clause1, clause2,...

Color Naming

Color names follow the conventions of the X Window System, except that the names
must be in quotes. Examples of valid colors are “green,” “hot pink,” and “#77ff42.” The
latter is in the form “#rrggbb,” in which the red, green, and blue components of the color
are specified in hexadecimal value. Pure saturation is represented by ff, a lack of color by
00. For example, “#000000” is black, “#ffffff” is white, “#ff0000” is red, and “#00ffff” is
cyan.

• Windows users should only use the “#ff0000” form, as only some of the named
colors are supported (for example, white, black, gray, red, yellow, green, and so on.)

• UNIX users can find the color list file in /usr/lib/X11/rgb.txt.

Color Variable

As with opacity, you can also specify a column to be mapped to splat color. If the column
is a number type, you can use the scale and buckets clauses described in the following
paragraphs to map a range of colors to the values of the field.

Configuration File View Section

143

Colors Clause

The colors clause specifies the colors to be used. The syntax is:

colors "colorname" "colorname"...

The format for colorname is described in “Color Naming” on page 142. There are no
commas between the colors, because commas are used to separate clauses in the color
statement. A sample colors clause is:

colors "red" "gray" "blue"

Colors in the list are subsequently referred to by their index, starting at zero. In the above
example, red is color 0, gray is color 1, and blue is color 2.

If there is no colors statement, colors are chosen randomly. If there is a colors statement,
at least as many colors must be specified as will be mapped.

Scale Clause

The scale clause allows assignment of values to a continuous range of colors. For
example, when a percentage is displayed, red can be assigned to 0%, gray to 50%, and
blue to 100%. Intermediate values are interpolated; for example 25% is pinkish, and 55%
is a slightly bluish gray.

The syntax for the scale clause is:

scale float float ...

The first value is mapped to color 0, the second to color 1, and so forth. The colors
statement must contain at least as many colors as will be mapped to the largest index.

Values in this statement must be in increasing order. Any value less than the first color is
assigned the value of the first color. Any value greater than the last value is assigned the
last color. Intermediate values are interpolated.

For example, assume the pctFemale field indicates what percentage of the group is
female, and you want to map a group that is 100% female to red, 100% male to blue, and
50% each to gray. The colors statement for this is:

colors pctFemale, colors "blue" "gray" "red", scale 0 50 100;

Use the scale clause only in conjunction with a numeric color variable.

144

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

Buckets Clause

The buckets clause is similar to the scale clause without interpolation. All values are
rounded down to the highest value in the clause, and that exact color is used. Values less
than the first value use the first color.

The syntax for the buckets clause is:

buckets float float ...

The syntax and assignment of colors is the same as for the scale clause.

If, in the above example, you used the buckets clause instead of the scale clause, the
statement would be:

colors pctFemale, colors "blue" "gray" "red", buckets 0 50 100;

All values greater than or equal to 100 are colored red. Values greater than, or equal to,
50, but less than 100, are gray. All other values are then blue.

Use the buckets clause only with a numeric color variable.

Legend Clause

The legend clause creates a legend of the colors. The legend clause syntax can be any of
the following:

legend off
legend on
legend "string" "string" ...
legend label "string"

The legend off clause turns off the legend. The legend on clause turns on the legend. You
can omit it if you include other legend statements. Specifying only legend on generates
the default legend.

Configuration File View Section

145

The default legend includes a single label to the left (with the name of the field that is
mapped to color), and a list of colored labels on the right (with values obtained from the
scale clause, buckets clause, or from the field). To override the strings in the colored
labels, specify the strings as:

legend "string" "string"

To override the label on the left, specify it following the word label. To eliminate this
label, specify an empty string as follows:

legend label ""

Axis Statement

The axis statement causes a variable to be mapped to an axis in the 3D landscape. The
variable’s values determine where the entities are positioned on the axis. There can be up
to three axis statements. Like the size and color statements, the axis statement contains
a series of comma-separated clauses, but you must specify all of them in a single
statement.

axis clause1, clause2,...

Axis Variable

As with size and color, you can specify a field to be used as an axis. The field can be an
array that is indexed by slider dimensions. If the field is an array, it must be of numeric
type. If the field is not numeric, it is sorted, and each unique value is assigned a position
along the axis.

Label Clause

The label clause has the following form:

label "string"

The string is used to label the axis. It appears in the landscape, at the end of the axis line.
The default label is the name of the axis variable.

146

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

Color Clause

The color clause specifies the color used for the axis line and label. It has the following
form:

color "colorname"

Summary Statement

The summary statement specifies aggregate information to be calculated for all data
defined by the slider position. The summary is used to color the drawing window in the
animation control panel. Like the opacity and color statements, the summary statement
has several clauses that you can specify in one statement, separated by commas, or in
separate statements as follows:

summary clause1, clause2,...

Summary Variable

You can specify the variable to be used in the summary. This variable must be of numeric
type. If you do not specify a summary variable, sum of counts is used. If you do specify a
variable, then the weighted average of that variable (for all the data at the slider location)
is used.

Color Clause

The color clause specifies the color used to display the summary values in the drawing
window. It has the following form:

color “colorname”

Various shades of the color, from white to the specified color, are used to represent
summary values. The minimum summary value is mapped to white, while the
maximum summary value is mapped to the specified color. The default summary color
is red. If you do not specify a slider variable, this statement has no effect.

Configuration File View Section

147

Legend Clause

The legend clause creates a legend of the summary colors. The legend clause syntax can
be any of the following:

legend off
legend on
legend label "string"

The legend off clause turns off the legend. The legend on clause turns on the legend. You
can omit it if you include other legend statements. Specifying only legend on generates
the default legend.

The legend includes a single label to the left (which defaults to the aggregation function
and variable used in the summary), and two colored labels on the right (with the
minimum and maximum summary values). To override the label on the left, specify it
following the word label. To eliminate this label, specify an empty string; as follows:

legend label ""

View Options

The view section of the configuration file has several options for controlling parameters
of the display. These options can appear in a single options statement, separated by
commas, or in separate options statements. The syntax of the options statement is:

options option, option,...

The following options are available:

• axis label size float

Controls the size of the axis labels.

• background color “colorname”

Controls the initial color of the background.

• hide label distance float

Controls the distance at which axis labels become invisible. Smaller distances might
improve performance, but the labels disappear more quickly.

• grid color “colorname”

Controls the color of the grid.

148

Chapter 10: Creating Data and Configuration Files for the Splat Visualizer

• grid size float float float

Controls the spacing between grid lines. It applies the three values to grid lines
along the x, y, and z axes, respectively.

• orientation top right front float float float

Specifies the initial orientation of the scene. You may use three floating point values
to specify an arbitrary orientation vector.

• perspective on off

Specifies whether or not to use perspective initially. The default is to use it.

• shape splatType

Specifies the type of splat used. The shapeName can be “constant,” “linear,”
“gaussian,” “texture,” or “sphere.”

149

Chapter 11

11. Creating Data and Configuration Files for the Decision
Table Visualizer

This chapter describes the Decision Table Visualizer's data and configuration files. The
*.dtableviz files contain a schema and an optional history section, and the *.data files
contain the data. The format of these two files is almost exactly that described in
Chapter 6, “Flat File Support for MineSet.”

The Decision Table Visualizer's *.dtableviz file must contain a schema of the following
form: some number of columns of type string or enum; followed by a float column
containing the weight of records; followed by a vector column, indexed by an enum
containing possible classes, and containing the proportion of the weight of records in
each class. The *.dtableviz and *.data files are automatically generated by the Tool
Manager, and you should not normally need to modify them.

The schema in the *.dtableviz file uses two extra keywords that are not present in other
schemas. They are auto, and nominal. The Decision Table Visualizer must be able to
differentiate between different types of enums. For example, enums that are
automatically rendered discrete by mining are handled differently in drill through than
enums that are binned by the user in the Tool Manager. Therefore, the keyword auto is
used to distinguish columns that have been binned by mining.

The label may be a binned column or a string column. Either way it appears as an enum
in the schema, so that the final probs[] column can be indexed by it. If the label is string
valued, the enum keyword is predicated with nominal to distinguish it.

150

Chapter 11: Creating Data and Configuration Files for the Decision Table Visualizer

The following is an example configuration file created from the adult dataset:

MineSet
input {
 file "adult-tmbin-dtab.dtableviz.data";
 enum string `hours_per_week_bin_k` {"- 20", "20-28", "28-36",
"36-44", "44-52", "52-60", "60+"};
 enum `hours_per_week_bin_k` `hours_per_week_bin`;
 auto enum string `gross_income_k` {"- 9598", "9598-14579",
"14579-24794.5", "24794.5-24806", "24806-29606", "29606-42049.5",
"42049.5-46306.5", "46306.5-64885", "64885+"};
 enum `gross_income_k` `gross_income`;
 auto enum string `final_weight_k` {"- 223033", "223033+"};
 enum `final_weight_k` `final_weight`;
 float `weight`;
 nominal enum string `label` {"Female ", "Male "};
the label values
 float `probs[]`[enum `label`]; # and probabilities
}
history {
:
:
}

In this example, the name of the data file is adult-tmbin-dtab.dtableviz.data, and # denotes
a comment line. The first three columns are attributes from the data. The first one,
hours_per_week_bin was binned by the user using the Tool Manager. The second two,
gross_income and final_weight were binned automatically by the mining algorithm.
Note the use of the auto keyword in their enum definitions. The fourth column gives the
weight of records that have the values given by the first three columns.

The last column, probs[], is a vector-valued column that gives the probability of each
class. It is computed by dividing the number of records for each class by the value in the
weight column. The sum of the entries of this vector must add to 1. The definition of the
index label includes the keyword nominal to show that the class values are not numeric,
and therefore do not have an implied ordering. The nominal keyword would not be
present had the label been a binned numeric attribute.

151

Chapter 12

12. Format of the Evidence Visualizer’s Data File

This chapter describes the input data file of the Evidence Visualizer. This file is a textual
representation of the Evidence Classifier. The data file is generated automatically
through the Tool Manager. In some instances you may want to edit this file in order to
change label, attribute, or value names.

The Evidence Visualizer requires a data file containing the label and attributes, along
with weights and probabilities. These are used to create the graphics. The data file is
created when you run the Evidence Inducer using the Tool Manager. The format of the
data file is:

#MineSet

<type> "<label>" <L>
"<label1>" <weight1> <probability1>
"<label2>" <weight2> <probability2>
:
"<labelL>" <weightL> <probabilityL>

<M>

<type> "<attrib1>" <N1> <importance1>
"<value1_1>" <weight1_1_1> <prob1_1_1> ... <weight1_1_L> <prob1_1_L>
"<value1_2>" <weight1_2_1> <prob1_2_1> ... <weight1_2_L> <prob1_2_L>
:
"<value1_N1>" <weight1_N1_1> <prob1_N1_1> ... <weight1_N1_L> <prob1_N1_L>

<type> "<attrib2>" <N2> <importance2>
"<value2_1>" <weight2_1_1> <prob2_1_1> ... <weight2_1_L> <prob2_1_L>
"<value2_2>" <weight2_2_1> <prob2_2_1> ... <weight2_2_L> <prob2_2_L>
:
"<value2_N2>" <weight2_N2_1> <prob2_N2_1> ... <weight2_N2_L> <prob2_N2_L>

:
:
:

152

Chapter 12: Format of the Evidence Visualizer’s Data File

"<attribM>" <NM> <importanceM>
"<valueM_1>" <weightM_1_1> <probM_1> ... <weightM_1_L> <probM_1_L>
"<valueM_1>" <weightM_2_1> <probM_2_2> ... <weightM_2_L> <probM_2_L>
:
"<valueM_NM>" <weightN1_NM_1> <probM_NM_1> ... <weightM_NM_L> <probM_NM_L>

history {
:
:
}

L is the number of label values, M is the number of attributes, and N is the number of
values or bins for attribute i. The <>’s indicate variables. The actual file has numbers or
strings. A NULL is considered a unique value if it is present in an attribute. If NULLs
exist for an attribute, they always appear as the first value (that is, the first line following
the attribute header) and are represented by “?”.

The <type> can be:

• nominal, which is used for the label and currently implies a string-valued attribute
(or an integer attribute).

• enum, which is used for attributes binned in Tool Manager.

• auto-enum, which is used for attributes that are discretized automatically by the
inducer. If a type is not present, auto-enum is assumed.

Lines beginning with # are comments (and ignored by the program).

You can include an optional history section at the end of the file. It is used by the Tool
Manager for drill through. Without this section, drill through is not possible (in the
Evidence Visualizer or any other MineSet tool).

The weights are the number of records (or sum of weights) in the table with that particular
attribute value (or range of values). Therefore, the sum of the weights for each attribute
equals the total number of records in the table (unless record weighting was used). The
probability is the number of weights for that attribute value divided by the total number
of weights. If the data file was generated with Laplace correction turned on, the probability
is only approximately the number of weights for that attribute value divided by the total
number of weights. Thus, the probability value indicates the proportion of records with
a particular label that have this attribute value instead of another value.

153

Data files must have an .eviviz extension. When starting the Evidence Visualizer, or when
opening a file, you must specify the data file.

The following is a sample Evidence Visualizer data file, cars.eviviz. Windows users can
find the file in the directory in which MineSet is installed, under the
Examples\eviviz\examples directory. UNIX users find the file in
/usr/lib/MineSet/eviviz/examples/cars.eviviz.

#MineSet
#automatically generated
NOMINAL "origin" 3
"Europe" 73 0.179803
"Japan" 79 0.194581
"US" 254 0.625616
6
AUTO_ENUM "mpg" 5 25.448
"?" 3 0.0410959 0 0 5 0.019685
"- 16.1" 0 0 0 0 87 0.34252
"16.1-21.05" 10 0.136986 5 0.0632911 77 0.30315
"21.05-30.95" 43 0.589041 28 0.35443 67 0.26378
"30.95+" 17 0.232877 46 0.582278 18 0.0708661
NOMINAL "cylinders" 5 29.1759
"8" 0 0 0 0 108 0.425197
"4" 66 0.90411 69 0.873418 72 0.283465
"6" 4 0.0547945 6 0.0759494 74 0.291339
"3" 0 0 4 0.0506329 0 0
"5" 3 0.0410959 0 0 0 0
AUTO_ENUM "horsepower" 4 22.3514
"?" 2 0.0273973 0 0 4 0.015748
"- 78.5" 40 0.547945 46 0.582278 25 0.0984252
"78.5-134" 31 0.424658 33 0.417722 131 0.515748
"134+" 0 0 0 0 94 0.370079
AUTO_ENUM "weightlbs" 4 28.5157
"- 2379.5" 43 0.589041 57 0.721519 30 0.11811
"2379.5-2959.5" 18 0.246575 22 0.278481 57 0.224409
"2959.5-3274" 9 0.123288 0 0 29 0.114173
"3274+" 3 0.0410959 0 0 138 0.543307
AUTO_ENUM "time_to_60" 3 10.0055
"- 13.45" 3 0.0410959 3 0.0379747 78 0.307087
"13.45-19.45" 52 0.712329 75 0.949367 162 0.637795
"19.45+" 18 0.246575 1 0.0126582 14 0.0551181
AUTO_ENUM "year" 1 2.84217e-14
"ignore" 73 1 79 1 254 1

154

Chapter 12: Format of the Evidence Visualizer’s Data File

Note that the sum of the probabilities corresponding to a particular label value for a
given attribute always equals 1. Consider the attribute weightlbs, for label value US (the
first one), we have .11811+.224409+.114173+.543307=1.0 . Also note that attributes mpg
and horsepower have NULL values.

The eviviz datafile (*.eviviz) also accommodates loss matrices and optionally included
Laplace factor. The next example .eviviz file contains both of these.
MineSet
MLC++ generated file for MineSet Evidence Visualizer.
NOMINAL “edibility” 2
“edible” 5 0.621212121212
“poisonous” 3 0.378787878788

TOTAL 8

LAPLACE yes 0

LOSS
10 0 20
10 10000 0

3

NOMINAL “cap-shape” 6 47.6129309656
“bell” 1 0.195652173913 0 0.0333333333333
“conical” 0 0.0217391304348 0 0.0333333333333
“convex” 2 0.369565217391 2 0.566666666667
“flat” 2 0.369565217391 0 0.0333333333333
“knobbed” 0 0.0217391304348 1 0.3
“sunken” 0 0.0217391304348 0 0.0333333333333

NOMINAL “cap-surface” 4 27.8397591211
“fibrous” 2 0.386363636364 0 0.0357142857143
“grooves” 0 0.0227272727273 0 0.0357142857143
“scaly” 1 0.204545454545 2 0.607142857143
“smooth” 2 0.386363636364 1 0.321428571429

NOMINAL “cap-color” 10 47.6129309656
“brown” 1 0.18 1 0.264705882353
“buff” 0 0.02 0 0.0294117647059
“cinnamon” 0 0.02 0 0.0294117647059
“gray” 0 0.02 1 0.264705882353
“green” 0 0.02 0 0.0294117647059
“pink” 1 0.18 0 0.0294117647059

155

“purple” 0 0.02 0 0.0294117647059
“red” 1 0.18 0 0.0294117647059
“white” 1 0.18 1 0.264705882353
“yellow” 1 0.18 0 0.0294117647059

The Laplace matrix follows the form shown in the graphical user interface (GUI). See the
description in the MineSet Enterprise Edition Reference Guide.

157

Chapter 13

13. Nulls in MineSet

Nulls represent unknown data. MineSet supports nulls in the data access tools, the
mining tools, and the visualization tools. This chapter will help you understand how
MineSet handles nulls.

Semantics of Nulls

Unknown data values are often represented as nulls in data sources. While you can
associate different semantics with nulls, usually nulls represent missing or unknown
values. For example, if a data record consists of fields representing firstname, middlename,
and lastname, and if a person’s middlename is not known, it can be represented by the null
value.

Nulls can occur in data for a various reasons. For example, they can be a way of
representing unknown data, or they can result from doing certain kinds of aggregations.
For example, if there are no flights between San Francisco and MineSet City, a query such
as “find the average flight time from San Francisco to MineSet City” yields a null value.

MineSet generally follows the semantics of relational databases when dealing with nulls,
and treats them as unknown values.

Some databases, such as Oracle RDBMS, do not distinguish between null and empty
strings. In such a case, it is not possible to distinguish between an unknown middle name
and a person who does not have a middle name. On the other hand, Sybase RDBMS
distinguishes between null and empty strings. Therefore, MineSet can distinguish empty
and null strings when reading from Sybase, but not from Oracle.

158

Chapter 13: Nulls in MineSet

Representation of Nulls

In data files, as well as in the visual tools, nulls are represented by the string “?” (question
mark). Thus, if Joe Miner’s middle name is unknown, his name is represented in our
example data file (with schema firstname, middlename, lastname) as:

Joe ? Miner

In general, the color gray is often associated with null values in the visualizations. The
graphical representation of nulls varies from tool to tool. See the chapters on individual
tools in the MineSet Enterprise Edition Reference Guide for this information.

Operations on Nulls

Given that nulls represent unknown values, it is straightforward to give meaning to
expressions involving nulls.

Arithmetic Expressions

Arithmetic operations with nulls always give a null result. For example:

• (5 + ?) evaluates to ? (adding 5 to an unknown yields yet another unknown).

• (6 / ?) evaluates to ?.

Boolean Expressions

Boolean variables can also be null. If a Boolean-valued variable has a null (unknown)
value, the result of combining it with another Boolean variable in an expression is also
unknown, unless it is possible to determine the result just from the known value. For
example:

• “? AND FALSE” is FALSE (because FALSE ANDed with anything is always
FALSE).

• “? AND TRUE” is ?.

Operations on Nulls

159

• “? OR FALSE” is ?

• "? OR TRUE” is TRUE (because TRUE ORed with anything is always TRUE).

• “NOT ?” is ?

Relational Operations

Relational operations (==, !=, <, >, <=, and >=) involving nulls always evaluate to null.
Some particular cases worth emphasizing are:

• “? == ?” evaluates to ?, not TRUE.

• “? != ?” evaluates to ?, not FALSE.

Given two unknown values, it is unknown whether the two are equal or unequal. This
can be confusing when you are using a search panel. For example, if you search for all
values not equal to 0, nulls do not appear, yet neither do they appear if you search for
values equal to 0. Because of this, search panels allow you to search explicitly for nulls.
(Some search panels allow you to treat nulls as zeros; see the individual tool discussions
in the MineSet Enterprise Edition Reference Guide for more information.)

Testing for Nulls

The function isNull() can determine whether or not a variable has the value null. For
example:

• isNull(X) evaluates to TRUE if variable X has the null value.

• isNull(X) evaluates to FALSE if variable X has a non-null value.

160

Chapter 13: Nulls in MineSet

Aggregations in the Presence of Nulls

MineSet stays close to the semantics of SQL and relational databases when aggregating
columns that might have null values. Therefore, null values are ignored when SUM,
AVG, MIN, MAX, and COUNT are computed. For example, consider a data file with
records representing the number of pets a person has. The schema of this record is name,
num_pets. Null (unknown) values are represented by “?.”

The computations are as follows:

• SUM(NUM_PETS) = 4.

• COUNT(NUM_PETS) = 3 (not 5, even though there are 5 rows of data).

• AVG(NUM_PETS) = 1.33.

• MAX(NUM_PETS) = 3.

• MIN(NUM_PETS) = 0.

In these aggregations, null values are basically ignored (the value 0 is different from ?,
and is not ignored).

A special case is an aggregation in which all the values being aggregated are themselves
null. An even more specialized case is if there are no values being aggregated: for
example, when summing an empty column. In both these cases, the SUM, AVERAGE,
MIN, and MAX are ?, while the COUNT is 0.

Name NUM_PETS

Tesler 3

Rathmann ?

Haber 1

Bhargava 0

Sangudi ?

Sort Order for Nulls

161

Sort Order for Nulls

In an ascending sorted sequence, null values always appear before non-null values. In a
descending sorted sequence, null values always appear after non-null values.

Bins and Arrays with Nulls

MineSet lets you bin numeric data into bins or discrete intervals. It also lets you (via the
aggregation panel in the Tool Manager) create arrays on these bins. When a column of
values is binned, all null values are put in a bin labeled “?”. Such a bin label is always
created, whether or not the data being binned contains nulls.

You can choose whether to use this bin for nulls in your application. You can do so by
allowing arrays to ignore or keep bins for nulls by setting the desired option in the Tool
Manager’s Preferences dialog (on IRIX), or by checking the “Use nulls in aggregation”
checkbox at the bottom of the aggregation operator (on Windows). For example, if you
know that the column being binned has no nulls, or you intend to study only the data
corresponding to non-null values, you can choose to ignore the bin for nulls.

163

Chapter 14

14. ActiveX Visualization Control API for MineSet
Visualizers

If you are a developer who wants to integrate MineSet visualization tools into your
ActiveX applications, this chapter provides helpful information. The topics discussed are
as follows:

• “API Overview” on page 163

• “ActiveX Controls” on page 165

API Overview

Eight ActiveX controls are included in the MineSet distribution. They are automatically
registered on your system when you install MineSet. Once they are registered, you can
browse them using the ActiveX test container in Microsoft Developer Studio.

Basics of Component Object Model

The Component Object Model, or COM provides an efficient methodology for modular
application development. You can build stand-alone components (servers). Users or
clients of COM servers, can use pre-built functionality in server objects without intimate
knowledge of the server object during development. Previously, you were required to
link to a component’s functionality at design time, or provide a path to the component in
the source code. Instead, COM can now ask the registry for the object’s location. This
means that as long as the registry knows where to find the server object, your client
application can use the object.

COM objects are implemented either within executables (EXEs) or Dynamic Link
Libraries (DLLs). COM objects implemented in EXEs are called local servers, while those
implemented in DLLs are called in-process servers. An in-process COM server exposes
its functions so that outside applications can use the functionality of its DLL. The
visualization controls described in this chapter are of the latter type.

164

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

The COM library uses a class identifier (a CLSID value) to uniquely identify each COM
object. An application then uses this identifier to determine which object the application
wants to use. For example, suppose you create and register a COM object that provides
functionality similar to the Windows 95 tree-view control—showing, for example, a Web
site hierarchy. Once you register this object, other applications can call the functions you
expose in it.

Because ActiveX controls are COM objects, this control is provided as an ActiveX control
(with appropriate documentation). You can integrate it into your applications using a
development environment and call methods, and you can set properties on the control.

ActiveX Architecture

ActiveX controls have become the primary architecture for developing programmable
software components for use in containers ranging from software development tools to
end-user productivity tools. For a control to operate well in a variety of containers, it
must be able to assume some minimum level of functionality that it can rely on in all
containers. This minimum level of functionality is defined in the COM and ActiveX
Control specifications, published by Microsoft Corporation. These guidelines have been
rigorously followed so that MineSet visualization controls would be reliable and
interoperable, and, and so that they would be better and more usable for building
component-based solutions.

MineSet’s Visualization Controls

MineSet visualization controls consist of eight separate ActiveX controls implemented as
in-process DLLs. As a developer of a client application that will incorporate the MineSet
visualizations, the you only have to be concerned about the VizComposite control. The
VizComposite control is an actual composite control that dynamically creates and
manages the other seven ActiveX controls based on the visualization file being loaded. A
client application only needs to create an instance of the VizComposite control, either
during design or at run-time, in order to embed MineSet visualization capabilities within
its application. Once instantiated, you can call methods and set or get property values
from the control to alter its behavior and to access certain functionality.

ActiveX Controls

165

Recommended Requirements

You can develop your client application using MineSet visualization controls in any
development environment, including Visual C++, Visual Basic, and Visual J++. While
Windows 95, Windows 98, or Windows NT can be your development platform, SGI
highly recommends developing on Windows NT 4.0 Workstation for any serious DCOM
work. Using Windows NT, you can examine processes and shut down the system with
somewhat more stability and ease than with Windows 95 or Windows 98.

If you are a novice at programming in COM, consider reading some entry-level books,
such as:

• Inside COM, by Dale Rogerson (Microsoft Press).

• Understanding ActiveX and OLE, by David Chappell (Microsoft Press).

Some very good books on the details of COM and ActiveX/ATL include:

• Essential COM, by Don Box (Addison Wesley).

• Beginning ATL COM Programming, by Grimes and Stockton (Wrox Press).

• Professional ATL COM Programming, by Richard Grimes (Wrox Press).

Note: This document does not cover detailed semantics of the OLE interfaces; these are
covered by the Microsoft Platform SDK documentation.

ActiveX Controls

The ActiveX control names are in the form of MineSet ControlName Control, (for example,
MineSet VizComposite Control). The controls are:

• VizComposite (the only one of interest to the application developer).

• SyncServer (used for synchronizing visualizations).

• VizAnimation (used for the animation panel).

• VizLegend (used for the legend).

• VizMain (contains the 3D viewer).

• VizPane (auxiliary viewer used by some visualizers).

166

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

• VizPlaneViewer (viewer inside VizPane).

• VizSelection—shows pick/select information.

The VizComposite control contains and manages some or all the other controls as
needed. This composite control implements several ActiveX interfaces.

The interface you obtain from the composite control should be one of the following:

• IVizCommon

• IVizCommon2

• IScatterviz

• IScatter2

• ISplatviz

• ISplatviz2

• IMapviz

• IEviviz

• IDtableviz

• IDtableviz2

• ITreeviz

IVizCommon contains methods that are common to all the other interfaces. Also, all the
other interfaces include IVizCommon, so methods of IVizCommon may be called
directly from any of the other interfaces.

After you have loaded a file into VizComposite, you can use GetVizType() (a method of
IVizCommon) to determine which of the specific tool interfaces you need to obtain, or
you can just decide based on the configuration file extension.

The following tables describe all the interface methods and properties. Each description
includes the C++ style declaration exposed via a COM vtable interface. When you load
the control into Visual Studio and it becomes a class, the IScatterviz and IVizCommon
interfaces from which it derives are exposed. These Automation interfaces are slightly
different than the COM vtable interfaces, so the two interfaces are described in separate
tables. If you load the control into a Java or Visual Basic environment, the resulting class
will have Java or Visual Basic style declarations instead.

ActiveX Controls

167

After inserting the VizComposite control into the Visual Studio workspace, a member
variable representing the control can be created. The COM vtable interfaces may then be
accessed via this member variable. For example, if the member variable is named
m_vizCompositeCtrl, the following code shows how to pass a file to the control using the
COM vtable interface for IVizCommon (the file atlbase.h is included in order to use the
USES_CONVERSION and A2W macros.):

#import "d:\sdkıib\VizComposite.dll" no_namespace
#include "atlbase.h"

...

USES_CONVERSION;

IVizCommon *pVizCommon = NULL;
IUnknown *pUnk = NULL;

pUnk = m_vizcompositectrl.GetControlUnknown();

if(pUnk)
{

pUnk->QueryInterface(__uuidof(IVizCommon), (void **)&pVizCommon);
if(pVizCommon)
{

pVizCommon->put_File(A2W("c:\\examples\\adult-salary-evi.eviviz"));
pVizCommon->Release();

}
}

Note: You can view online documentation for the methods in each control by using
oleview.

168

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

IVizCommon

Table 14-1 lists the IVizCommon methods for the COM vtable interface. These methods
and properties are common to all viz tools, although their behavior for a particular tool
may vary. (In rare cases, behavior has not yet been implemented for some tools, in which
case E_NOTIMPL is returned. Otherwise S_OK is returned.)

Table 14-1 IVizCommon Methods—COM vtable Interface

Declaration Description

void PutFile(_bstr_ _arg1); Creates the right tool based on the configuration file extension.
This is probably the single most important method. You can
create an application using only this method.

VIZCODE GetVizType(); Returns an enum indicating the type of visualization tool. It
returns VIZ_UNKNOWN if no configuration file has been
opened yet. Other values are: VIZ_MAP, VIZ_SCATTER,
VIZ_SPLAT, VIZ_EVI, VIZ_DTABLE, and

VIZ_TREE (in the VizCommon.idl file this is the VizType
property).

HRESULT SetScale(float s); In the Tree Visualizer, Evidence Visualizer, Decision Table
Visualizer, and Map Visualizer, this function scales the heights of
objects in the scene. In the Scatter Visualizer, it scales the size of
the entities. In the Splat Visualizer it scales the opacity. For the
MineSet Visualizer application the scale is adjusted by the slider
on the left trim of the viewer.

HRESULT ShowDecoration(long on); Turns on or off (TRUE/FALSE) the Inventor window decoration
based on the value of on.

HRESULT ShowBackgroundColorDialog(); Brings up the color selector dialog, so the user can select a desired
background color.

HRESULT SetBackgroundColor(float r,
float g,
float b);

Explicitly sets a specific background color.

HRESULT ShowFilterDialog(); Brings up a filter panel of some type that can be used to reduce the
amount of geometry in the scene. The Scatter Visualizer, Splat
Visualizer, Decision Table Visualizer, and Map Visualizer use the
same style of filter dialog. The Tree Visualizer and Evidence
Visualizer have their own variations.

ActiveX Controls

169

HRESULT DoIdle(long lCount); Makes Inventor run smoothly. It should be called in your
application’s OnIdle member function.

For example:

BOOL CVizApp::OnIdle(LONG lCount) {

if (m_bIsProcessing) {

m_pVizView->m_vizCompositeCtrl.Idle(lCount)
;

}

return CWinApp::OnIdle(lCount);

}

m_bIsProcessing must be set to true in the view’s OnInitialUpdate:

((CVizApp *)AfxGetApp())->m_bIsProcessing = TRUE;

HRESULT ShowSelectionDialog(); Brings up a table showing information about all the objects in the
scene which are currently selected. For the visualization
application supplied with MineSet, this method is called when
the user selects Show Values from the Selection menu.

HRESULT SetLegendHeight(short numLegends); Sets the height of the legend control at the bottom of the
visualization tool. If the numLegends argument is 3, then the
height of the legend control will be enough to show three legends
without the help of a vertical scrollbar.

HRESULT EnableSound(long on); Turns the sound effects on or off (TRUE or FALSE respectively.)

VIEWINGCODE GetViewingMode(); Returns the Inventor viewing mode, either VIEWING_PICK
(viewer turned on) or VIEWING_GRASP (viewer turned off).
When the viewer is turned on (pick mode), events are consumed
by the viewer. When viewing is off, events are processed by the
viewer’s render area. This means events will be sent to the scene
graph for processing (that is, picking can occur). These methods
have no meaning for Tree Visualizer, which does not use a model
viewer.

void PutViewingMode(VIEWINGCODE pVal); Establishes the desired viewing mode (either VIEWING_PICK or
VIEWING_GRASP). In grasp mode, the cursor appears as a hand,
and viewing transformations are performed. In pick mode, no
navigation is possible, but you can pick and select objects in the
scene. These methods have no meaning for Tree Visualizer, which
does not use a model viewer.

Table 14-1 (continued) IVizCommon Methods—COM vtable Interface

Declaration Description

170

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

long GetSupportsAnimation(); Returns TRUE if the visualization tool currently instantiated
supports animation. In other words, returns TRUE if sliders are
present. Some tools such as the Evidence Visualizer, Decision
Table Visualizer, and Tree Visualizer never have animation in
their current implementations. For these visualizers
GetSupportsAnimation always return FALSE.

_bstr_t GetSelectionExpression(); Returns the selection expression which has been created based on
the current selection of objects in the scene. This string is typically
used to drill through to the underlying data in some manner, but
there are other potential uses. If nothing has been selected the
expression is an empty string (“”).

_bstr_t GetHistoryString(); Returns the history from the configuration file. This history
contains everything that the Tool Manager needs to recreate its
state at the time the current visualization was created.

_bstr_t GetTitleString(); Returns an appropriate application title including the application
name and current configuration file base name.

HRESULT EnableStereo(long on); Turns on stereo rendering in the 3D viewer. It may be necessary to
set hardware specific settings, and/or have certain peripherals
like Crystal Eyes glasses before stereo is actually useful.

HRESULT SetStereoOffset(float offset); Sets the amount of eye separation for the left and right stereo
views.

HRESULT SetSelectionsHeight(short height); Sets the height (in pixels) of the selection control which appears at
the top of all tools and displays pick information.

HRESULT EnableWarnOnExecute(long on); Specifies whether the user should be warned when a user-defined
execute statement is invoked (this occurs when an object is double
clicked and such an execute statement has been defined). The
warning might be useful if you are concerned about security.

HRESULT EnableQuiet(long on); Turns off the display of all error and warning popup messages. In
most cases this option should be off (FALSE). See also
SetErrorFile.

Table 14-1 (continued) IVizCommon Methods—COM vtable Interface

Declaration Description

ActiveX Controls

171

HRESULT SetErrorFile(_bstr_t fileName); Specifies a file where all error messages should be sent. If an error
file is set, error messages will still appear in dialogs on the screen.
If you do not want the dialogs to appear on the screen you should
use EnableQuiet(TRUE). This method is primarily used for
debugging and testing of applications made using the composite
control.

HRESULT SetHideDistance(float distance); Sets the distance at which level of detail is hidden. The most
common use of this distance factor is in changing the level of
detail on 3D text displayed in a scene. This option could also
change detail thresholds in other circumstances. Sometimes the
text has three or four levels of detail (hidden, bounding box, wire
frame, full 3D), the distance parameter sets the first threshold,
and the other thresholds are scalar multiples.

void PutNullStyle(DRAW_STYLE style); Allows you to set how Null Values are displayed in the scene.
Possible values are SOLID, HIDDEN and OUTLINE. Outline
behaves the same as hidden for all tools except the Tree Visualizer.

DRAW_STYLE GetNullStyle(); Returns current setting for how Null values are displayed.

HRESULT SetFont(_bstr_t fontName); Sets a desired font. This might be particularly useful for certain
locales.

HRESULT SaveSceneGraph(_bstr_t fileName); Outputs the current scenegraph to a file in Inventor format. This
.iv file cannot be loaded directly into another application,
however, without having the right DLL’s installed. This method
is primarily used for debugging and testing.

HRESULT SaveCompositeImage(_bstr_t fileName,
long hWnd);

Outputs the current scenegraph to a file in Inventor format. This
saves an image of the whole composite control to a file. An
offscreen renderer is not used to save the scene, so if you want
improved resolution, a better choice might be SaveViewerImage.

HRESULT SaveViewerImage(_bstr_t fileName,
float desiredXinches,
float desiredYinches,
short printerDPI);

Saves the main viewer image to a file. An offscreen renderer is
used for this, so the resolution is better. If the last three arguments
are not specified (or are 0), then values are chosen based on the
current screen size and resolution.

HRESULT HasLegend(long *HasLegend); Returns TRUE or FALSE depending on whether or not a legend is
present at the bottom.

Table 14-1 (continued) IVizCommon Methods—COM vtable Interface

Declaration Description

172

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

HRESULT SaveLegendImage(_bstr_t fileName); Takes a snapshot of the legend control and saves it to a file. This
method is primarily used for debugging and testing.

HRESULT SaveDataTable(_bstr_t fileName); Stores the tools internal data table to a file. This method is
primarily used for debugging and testing.

HRESULT PrintCompositeImage(long hDC,
long hWnd;

Prints an image of the window pointed to by hWnd to a file. An
offscreen rendered is not used for saving the scene, so
SaveViewerImage might be better for improved resolution. If
hWnd is NULL, only the main rendering window image is saved.

HRESULT SetMouseButtonStyle(MBUTTON_STYLR
style);

Selects the desired mouse mapping mode. Possible values are,
MINESET_TWO_BUTTON_STYLE and
MINESET_THREE_BUTTON_STYLE

Since many users do not have a three-button mouse, MineSet now
allows for two-button operation. For those familiar with previous
versions of MineSet on the IRIX platform, three-button style offers
the same controls as before. The default, two-button style, is more
consistent between tools and has less dependence on the use of
modifier keys. However, no functionality is lost with either a
three- or a two-button mouse. See the Navigation entry in the
MineSet Enterprise Edition Reference Guide for mouse button
navigation details.

HRESULT SetCameraPosition(float x,
float y,
float z);

HRESULT GetCameraPosition(float *v);

Provides methods of manipulating the camera viewpoint.
Normally, the user interacts with the scene using the mouse, but
an application may require alternative methods for setting or
getting the viewpoint and orientation. Possible uses are setting up
or running animations, saving or restoring interesting
viewpoints, alternative input devices, and so forth.

HRESULT SetCameraOrientation(float x,
float y,
float z,
float angle);

HRESULT GetCameraOrientation(float *v);

Changes camera orientation. In SetCameraOrientation, x, y, z are
the components of the axis, and angle is the rotation of the camera
around that axis of orientation in radians.

In GetCameraOrientation, x, y, and z are the components of the
axis orientation, angle gives the orientation of the camera about
that axis in radians.

Table 14-1 (continued) IVizCommon Methods—COM vtable Interface

Declaration Description

ActiveX Controls

173

Table 14-2 lists the IVizCommon methods for the Automation interface.

Table 14-2 IVizCommon Methods—Automation Interface

Declaration Description

void SetFile(LPCTSTR fileName); Creates the right tool based on the configuration file extension.
This is probably the single most important method. You can
create an application using only this method.

long GetVizType(); Returns an enum indicating the type of visualization tool. It
returns VIZ_UNKNOWN if no configuration file has been
opened yet. Other values are: VIZ_MAP, VIZ_SCATTER,
VIZ_SPLAT, VIZ_EVI, VIZ_DTABLE, and

VIZ_TREE (in the VizCommon.idl file this is the VizType
property).

void SetScale(float s); In the Tree Visualizer, Evidence Visualizer, Decision Table
Visualizer, and Map Visualizer, this function scales the heights of
objects in the scene. In the Scatter Visualizer, it scales the size of
the entities. In the Splat Visualizer it scales the opacity. For the
MineSet Visualizer application the scale is adjusted by the slider
on the left trim of the viewer.

void ShowDecoration(long on); Turns on or off (TRUE/FALSE) the Inventor window decoration
based on the value of on.

void ShowBackgroundColorDialog(); Brings up the color selector dialog, so the user can select a desired
background color.

void SetBackgroundColor(float r,
float g,
float b);

Explicitly sets a specific background color.

void ShowFilterDialog(); Brings up a filter panel of some type that can be used to reduce the
amount of geometry in the scene. The Scatter Visualizer, Splat
Visualizer, Decision Table Visualizer, and Map Visualizer use the
same style of filter dialog. The Tree Visualizer and Evidence
Visualizer have their own variations.

174

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

void DoIdle(long lCount); Makes Inventor run smoothly. It should be called in your
application’s OnIdle member function.

For example:

BOOL CVizApp::OnIdle(LONG lCount) {

if (m_bIsProcessing) {

m_pVizView->m_vizCompositeCtrl.Idle(lCount)
;

}

return CWinApp::OnIdle(lCount);

}

m_bIsProcessing must be set to true in the view’s OnInitialUpdate:

((CVizApp *)AfxGetApp())->m_bIsProcessing = TRUE;

void ShowSelectionDialog(); Brings up a table showing information about all the objects in the
scene which are currently selected. For the visualization
application supplied with MineSet, this method is called when
the user selects Show Values from the Selection menu.

void SetLegendHeight(short numLegends); Sets the height of the legend control at the bottom of the
visualization tool. If the numLegends argument is 3, then the
height of the legend control will be enough to show three legends
without the help of a vertical scrollbar.

void EnableSound(long on); Turns the sound effects on or off (TRUE or FALSE respectively.)

long GetViewingMode(); Returns the Inventor viewing mode, either VIEWING_PICK
(viewer turned on) or VIEWING_GRASP (viewer turned off).
When the viewer is turned on (pick mode), events are consumed
by the viewer. When viewing is off, events are processed by the
viewer’s render area. This means events will be sent to the scene
graph for processing (that is, picking can occur). These methods
have no meaning for Tree Visualizer, which does not use a model
viewer.

void SetViewingMode(long nNewValue); Establishes the desired viewing mode (either VIEWING_PICK or
VIEWING_GRASP). In grasp mode, the cursor appears as a hand,
and viewing transformations are performed. In pick mode, no
navigation is possible, but you can pick and select objects in the
scene. These methods have no meaning for Tree Visualizer, which
does not use a model viewer.

Table 14-2 (continued) IVizCommon Methods—Automation Interface

Declaration Description

ActiveX Controls

175

Long GetSupportsAnimation(); Returns TRUE if the visualization tool currently instantiated
supports animation. In other words, returns TRUE if sliders are
present. Some tools such as the Evidence Visualizer, Decision
Table Visualizer, and Tree Visualizer never have animation in
their current implementations. For these visualizers
GetSupportsAnimation always return FALSE.

CString GetSelectionExpression(); Returns the selection expression which has been created based on
the current selection of objects in the scene. This string is typically
used to drill through to the underlying data in some manner, but
there are other potential uses. If nothing has been selected the
expression is an empty string (“”).

CString GetHistoryString(); Returns the history from the configuration file. This history
contains everything that the Tool Manager needs to recreate its
state at the time the current visualization was created.

CString GetTitleString(); Returns an appropriate application title including the application
name and current configuration file base name.

void EnableStereo(long on); Turns on stereo rendering in the 3D viewer. It may be necessary to
set hardware specific settings, and/or have certain peripherals
like Crystal Eyes glasses before stereo is actually useful.

void SetStereoOffset(float offset); Sets the amount of eye separation for the left and right stereo
views.

void SetSelectionsHeight(short height); Sets the height (in pixels) of the selection control which appears at
the top of all tools and displays pick information.

void EnableWarnOnExecute(long on); Specifies whether the user should be warned when a user-defined
execute statement is invoked (this occurs when an object is double
clicked and such an execute statement has been defined). The
warning might be useful if you are concerned about security.

void EnableQuiet(long on); Turns off the display of all error and warning popup messages. In
most cases this option should be off (FALSE). See also
SetErrorFile.

Table 14-2 (continued) IVizCommon Methods—Automation Interface

Declaration Description

176

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

void SetErrorFile(LPCTSTR fileName); Specifies a file where all error messages should be sent. If an error
file is set, error messages will still appear in dialogs on the screen.
If you do not want the dialogs to appear on the screen you should
use EnableQuiet(TRUE). This method is primarily used for
debugging and testing of applications made using the composite
control.

void SetHideDistance(float distance); Sets the distance at which level of detail is hidden. The most
common use of this distance factor is in changing the level of
detail on 3D text displayed in a scene. This option could also
change detail thresholds in other circumstances. Sometimes the
text has three or four levels of detail (hidden, bounding box, wire
frame, full 3D), the distance parameter sets the first threshold,
and the other thresholds are scalar multiples.

void PutNullStyle(long nNewValue); Allows you to set how Null Values are displayed in the scene.
Possible values are SOLID, HIDDEN and OUTLINE. Outline
behaves the same as hidden for all tools except the Tree Visualizer.

long GetNullStyle(); Returns current setting for how Null values are displayed.

void SetFont(LPCTSTR fontName); Sets a desired font. This might be particularly useful for certain
locales.

void SaveSceneGraph(LPCTSTR fileName); Outputs the current scenegraph to a file in Inventor format. This
.iv file cannot be loaded directly into another application,
however, without having the right DLL’s installed. This method
is primarily used for debugging and testing.

void SaveCompositeImage(LPCTSTR fileName,
long hWnd);

Outputs the current scenegraph to a file in Inventor format. This
saves an image of the whole composite control to a file. An
offscreen renderer is not used to save the scene, so if you want
improved resolution, a better choice might be SaveViewerImage.

void SaveViewerImage(LPCSTR fileName,
float desiredXinches,
float desiredYinches,
short printerDPI0);

Saves the main viewer image to a file. An offscreen renderer is
used for this, so the resolution is better. If the last three arguments
are not specified (or are 0), then values are chosen based on the
current screen size and resolution.

void HasLegend(long *HasLegend); Returns TRUE or FALSE depending on whether or not a legend is
present at the bottom.

Table 14-2 (continued) IVizCommon Methods—Automation Interface

Declaration Description

ActiveX Controls

177

void SaveLegendImage(LPCTSTR fileName); Takes a snapshot of the legend control and saves it to a file. This
method is primarily used for debugging and testing.

void SaveDataTable(LPCTSTR fileName); Stores the tools internal data table to a file. This method is
primarily used for debugging and testing.

void PrintCompositeImage(long hDC,
long hWnd;

Prints an image of the window pointed to by hWnd to a file. An
offscreen rendered is not used for saving the scene, so
SaveViewerImage might be better for improved resolution. If
hWnd is NULL, only the main rendering window image is saved.

void SetMouseButtonStyle(long style); Selects the desired mouse mapping mode. Possible values are,
MINESET_TWO_BUTTON_STYLE and
MINESET_THREE_BUTTON_STYLE

Since many users do not have a three-button mouse, MineSet now
allows for two-button operation. For those familiar with previous
versions of MineSet on the IRIX platform, three-button style offers
the same controls as before. The default, two-button style, is more
consistent between tools and has less dependence on the use of
modifier keys. However, no functionality is lost with either a
three- or a two-button mouse. See the Navigation entry in the
MineSet Enterprise Edition Reference Guide for mouse button
navigation details.

void SetCameraPosition(float x,
float y,
float z);

void GetCameraPosition(float *v);

Provides methods of manipulating the camera viewpoint.
Normally, the user interacts with the scene using the mouse, but
an application may require alternative methods for setting or
getting the viewpoint and orientation. Possible uses are setting up
or running animations, saving or restoring interesting
viewpoints, alternative input devices, and so forth.

void SetCameraOrientation(float x,
float y,
float z,
float angle);

void GetCameraOrientation(float *v);

Changes camera orientation. In SetCameraOrientation, x, y, z are
the components of the axis, and angle is the rotation of the camera
around that axis of orientation in radians.

In GetCameraOrientation, x, y, and z are the components of the
axis orientation, angle gives the orientation of the camera about
that axis in radians.

Table 14-2 (continued) IVizCommon Methods—Automation Interface

Declaration Description

178

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

IVizCommon2

Table 14-3 lists the IVizCommon2 methods for the COM vtable interface.

Table 14-3 IVizCommon2 Methods—COM vtable Interface

Declaration Description

HRESULT SetSelectionExpression(_bstr_t selectionExp); Changes the set of currently selected objects in the
scene.

_bstr_t GetFilterExpression(); Returns the filter expression.

HRESULT SetFilterExpression(_bstr_t filterExp); Specifies the filter expression and filters the scene
objects appropriately.

HRESULT EnableDynamicBrushing(long on); Specifies whether selection events should be
propagated between multiple visualization
windows. If turned on, the selection expression of an
object selected in one window is propagated to all
other visualization window, and the corresponding
objects are highlighted.

HRESULT PublishOnWeb(_bstr_t fileName); Compresses visualization, data, and schema files
into a single MTR archive for publishing on the web.

HRESULT GenerateReport(_bstr_t fileName); Generates a HTML based report for the current
visualization.

HRESULT ShowDrillThroughDialog(); Brings up a dialog which allows the user to set
options for drill through and then invoke it. Uses the
method SendDrillThroughRequest of ISyncServer
to process the drill through request (that is,
communication with Tool Manager). Alternatively,
the plugin viz tool may wish to do its own drill
through handling. It is up to the plugin viz tool to
implement the drill through dialog and interprocess
communication. VizMain implements a default that
can be used in conjunction with Tool Manager.

ActiveX Controls

179

Table 14-4 lists the IVizCommon2 methods for the Automation interface.

Table 14-4 IVizCommon2 Methods—Automation Interface

Declaration Description

void SetSelectionExpression(LPCTSTR selectionExp); Changes the set of currently selected objects in the
scene.

CString GetFilterExpression(); Returns the filter expression.

void SetFilterExpression(LPCTSTR filterExp); Specifies the filter expression and filters the scene
objects appropriately.

void EnableDynamicBrushing(long on); Specifies whether selection events should be
propagated between multiple visualization
windows. If turned on, the selection expression of an
object selected in one window is propagated to all
other visualization window, and the corresponding
objects are highlighted.

void PublishOnWeb(LPCSTR fileName); Compresses visualization, data, and schema files
into a single MTR archive for publishing on the web.

void GenerateReport(LPCSTR fileName); Generates a HTML based report for the current
visualization.

void ShowDrillThroughDialog(); Brings up a dialog which allows the user to set
options for drill through and then invoke it. Uses the
method SendDrillThroughRequest of ISyncServer
to process the drill through request (that is,
communication with Tool Manager). Alternatively,
the plugin viz tool may wish to do its own drill
through handling. It is up to the plugin viz tool to
implement the drill through dialog and interprocess
communication. VizMain implements a default that
can be used in conjunction with Tool Manager.

180

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

IScatterviz

Table 14-5 lists the methods for the COM vtable interface that are available to
interactively modify the Scatter Visualizer.

Table 14-5 IScatterviz Methods—COM vtable Interface

Declaration Description

HRESULT ShowDrillThroughColumnDialog(); Brings up a dialog that allows you to select which
columns you want to be significant on drill through.
In other words you use the dialog to specify which
columns could potentially be in the selection
Expression (see GetSelectionExpression on
page 170).

HRESULT SetTrailType(TRAILCODE trailtype); Specifies what type of trails to use if any. Possible
values of TRAILCODE are NO_TRAILS,
LINE_TRAILS, FADE_OUT_TRAILS, and
TUBE_TRAILS.

HRESULT ShowAnimationPanel(long on); Indicates that if the argument is TRUE show the
animation panel, otherwise hide it. If there is no
animation panel, it cannot be shown.

HRESULT CreateBoxSelection(); Creates a bounding box which can be used to select
entities.

HRESULT UseSliderOnDrillThough(long on(); Specifies whether or not the animation slider position
should be used in constructing the drill through
expression when you drill through.

HRESULT Set2DSliderPositions(float slider1Pos,
float slider2Pos);

Allows you to programmatically alter the slider
position. If the slider is one dimensional then the
second argument is ignored.

void PutShape(SHAPECODE pVal); Refers to the current entity shape type. Possible
values for the Scatter Visualizer are: SHAPE_CUBE
SHAPE_SPHERE SHAPE_DIAMOND SHAPE_BAR

SHAPECODE GetShape(); Returns the current shape type.

ActiveX Controls

181

HRESULT EnableSpinAnimation(long on); Specifies whether or not the automatic spin animation
should be enabled in the viewer. If on is set to TRUE,
then it is possible to set the animation continuously
spinning by doing a rotation and releasing the left
mouse before you are done dragging.

HRESULT SetLabelSize(float size); Sets the scale size of object labels that appear in the
scene. The larger the value of size the bigger the label.

HRESULT SetAxisLabelSize(float size); Sets the scale size of axis labels that appear in the
scene. This applies to the labels at the ends of the axes
in Scatter and Splat Visualizers.

HRESULT SetGridColor(float r, float g, float b); Sets the color for the grid.

HRESULT SetGridSize(float axis1,
float axis2,
float axis3);

Sets the grid spacing in each of the 3 dimensions.
Larger values indicate wider grid line spacing. A
value of 0 means do not draw any grid lines in that
axis dimension. If the value of all axes is 0, then no
grid is drawn.

HRESULT SetOrientation(ORIENTATIONCODE orientation); Specifies which of the three available orthogonal
orientations the view should be set to. Possible values
are: ORIENTATION_FRONT
ORIENTATION_RIGHT ORIENTATION_TOP
ORIENTATION_DEFAULT
ORIENTATION_DEFAULT allows the viz tool to
choose the orientation.

HRESULT EnablePerspective(long on); Sets whether or not to use perspective in the 3D
viewer. If TRUE then use perspective projection if
FALSE then use orthogonal projection.

HRESULT SaveAnimationPaneImage(_bstr_t filename); Takes a snapshot of the animation control and saves it
to a file. This method is primarily used for debugging
and testing.

Table 14-5 (continued) IScatterviz Methods—COM vtable Interface

Declaration Description

182

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

Table 14-6 lists the methods for the Automation interface that are available to
interactively modify the Scatter Visualizer.

Table 14-6 IScatterviz Methods—Automation Interface

Declaration Description

void ShowDrillThroughColumnDialog(); Brings up a dialog that allows you to select which columns
you want to be significant on drill through. In other words
you use the dialog to specify which columns could
potentially be in the selection Expression (see
GetSelectionExpression on page 170).

void SetTrailType(long trailtype); Specifies what type of trails to use if any. Possible values of
TRAILCODE are NO_TRAILS, LINE_TRAILS,
FADE_OUT_TRAILS, and TUBE_TRAILS.

void ShowAnimationPane(long on); Indicates that if the argument is TRUE show the animation
panel, otherwise hide it. If there is no animation panel, it
cannot be shown.

void CreateBoxSelection(); Creates a bounding box which can be used to select entities.

void UseSliderOnDrillThough(long on(); Specifies whether or not the animation slider position should
be used in constructing the drill through expression when
you drill through.

void Set2DSliderPositions(float slider1Pos,
float slider2Pos);

Allows you to programmatically alter the slider position. If
the slider is one dimensional then the second argument is
ignored.

void SetShape(long nNewValue); Refers to the current entity shape type. Possible values for the
Scatter Visualizer are: SHAPE_CUBE SHAPE_SPHERE
SHAPE_DIAMOND SHAPE_BAR

void GetShape(); Returns the current shape type.

void EnableSpinAnimation(long on); Specifies whether or not the automatic spin animation should
be enabled in the viewer. If on is set to TRUE, then it is
possible to set the animation continuously spinning by doing
a rotation and releasing the left mouse before you are done
dragging.

void SetLabelSize(float size); Sets the scale size of object labels that appear in the scene. The
larger the value of size the bigger the label.

ActiveX Controls

183

IScatter2

Table 14-7 lists two methods that are available to interactively modify the Scatter
Visualizer.

void SetAxisLabelSize(float size); Sets the scale size of axis labels that appear in the scene. This
applies to the labels at the ends of the axes in Scatter and
Splat Visualizers.

void SetGridColor(float r, float g, float b); Sets the color for the grid.

void SetGridSize(float axis1,
float axis2,
float axis3);

Sets the grid spacing in each of the 3 dimensions. Larger
values indicate wider grid line spacing. A value of 0 means
do not draw any grid lines in that axis dimension. If the value
of all axes is 0, then no grid is drawn.

void SetOrientation (long orientation); Specifies which of the three available orthogonal orientations
the view should be set to. Possible values are:
ORIENTATION_FRONT ORIENTATION_RIGHT
ORIENTATION_TOP ORIENTATION_DEFAULT
ORIENTATION_DEFAULT allows the viz tool to choose the
orientation.

void EnablePerspective(long on); Sets whether or not to use perspective in the 3D viewer. If
TRUE then use perspective projection if FALSE then use
orthogonal projection.

void SaveAnimationPaneImage(LPCTSTR filename); Takes a snapshot of the animation control and saves it to a
file. This method is primarily used for debugging and testing.

Table 14-7 IScattert2 Methods—Automation Interface

Declaration Description

HRESULT EnableShadows(long on); Specifies whether to use projective shadow rendering.

HRESULT SetShadowColor(float r,
float g,
float b);

Specifies the overall color for shadows.

Table 14-6 (continued) IScatterviz Methods—Automation Interface

Declaration Description

184

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

ISplatviz

Table 14-8 lists the methods that are available to interactively modify the Splat Visualizer.

Table 14-8 ISplatviz Methods

Declaration Description

void ShowPickDragger(long on); Specifies whether the Splat Visualizer pick-dragger is
shown, otherwise it is hidden (on=TRUE—shown,
on=FALSE—hidden).

long GetShowingPickDragger(); Returns TRUE if the pick dragger is currently
showing.

HRESULT ShowAnimationPanel(long on); Specifies whether the animation panel is shown
(on=TRUE—shown, on=FALSE—hidden). If there is
no animation panel, it cannot be shown.

HRESULT CreateBoxSelection(); Creates a bounding box which can be used to select
splats.

HRESULT UseSliderOnDrillThrough(long on); Specifies whether the animation slider position
should be used in constructing the drill through
expression.

HRESULT Set2DSliderPositions(float slider1Pos,
float slider2Pos);

Allows you to programmatically alter the slider
position. If the slider is one dimensional then the
second argument is ignored.

void PutShape(SHAPECODE pVal); Sets the shape type for splats: SHAPE_CUBE,
SHAPE_SPHERE, SHAPE_DIAMOND,
SHAPE_BAR, SHAPE_LINEAR,
SHAPE_GAUSSIAN, or SHAPE_TEXTURE

SHAPECODE GetShape(); Returns the current shape type.

HRESULT EnableSpinAnimation(long on); Specifies whether the automatic spin animation
should be enabled in the viewer. If on is set to TRUE,
then it is possible to set the animation continuously
spinning by doing a rotation and releasing the left
mouse before you are done dragging.

HRESULT SetAxisLabelSize(float size); Sets the scale size of axis labels that appear in the
scene. This applies to the labels at the ends of the axes
in Scatter Visualizer and Splat Visualizer and similar
tools.

ActiveX Controls

185

ISplatviz2

Table 14-9 describes a method that is available to interactively modify the Scatter
Visualizer.

HRESULT SetGridColor(float r, float g, float b); Sets the color for the grid.

HRESULT SetGridSize(float axis1,
float axis2,
float axis3);

Sets the grid spacing in each of the three dimensions.
Larger values indicate wider grid line spacing. A
value of 0 means do not draw any grid lines in that
axis dimension. If the value of all axes is 0, then no
grid is drawn.

HRESULT SetOrientation(ORIENTATIONCODE orientation); Specifies to which of three orthogonal orientations
the view should be set Possible values are
ORIENTATION_FRONT, ORIENTATION_RIGHT,
ORIENTATION_TOP, and
ORIENTATION_DEFAULT, where
ORIENTATION_DEFAULT uses the orientation that
the visualization tool thinks best.

HRESULT EnablePerspective(long on); Sets whether to use perspective in the 3D viewer. If
TRUE use perspective projection, if FALSE use
orthogonal projection.

HRESULT SaveAnimationPaneImage(_bstr_t fileName); Takes a snapshot of the animation control and saves it
to a file. This method is primarily used for debugging
and testing.

Table 14-9 IScattert2 Methods

Declaration Description

HRESULT GetUsingNominalSplats(); Returns TRUE if a string valued attribute is mapped to color.
In this case the splats will show a distribution of colors
corresponding to unique string values. The type of splat used
to show this distribution is called a nominal splat.

Table 14-8 (continued) ISplatviz Methods

Declaration Description

186

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

IMapviz

Table 14-10 lists the methods that are available to interactively modify the Map
Visualizer.

Table 14-10 IMapviz Methods

Declaration Description

HRESULT ShowXYCoords(long on); Specifies whether (TRUE) or not (FALSE) to display the XY
Coordinate grid.

HRESULT UseRandomColors(long on); Specifies whether (TRUE) or not (FALSE) to assign a
random color to each distinct geographical entity.

HRESULT ShowAnimationPanel(long on); Specifies whether (TRUE) or not (FALSE) to show the
animation panel. If there is no animation panel, it cannot be
shown.

HRESULT UseSliderOnDrillThrough(long on); Specifies whether (TRUE) or not (FALSE) the animation
slider position should be used in constructing the drill
through expression.

HRESULT Set2DSliderPositions(float slider1Pos,
float slider2Pos);

Allows you to programmatically alter the slider position. If
the slider is one dimensional, the second argument is
ignored.

HRESULT EnableSpinAnimation(long on); Specifies whether or not the automatic spin animation
should be enabled in the viewer. If on is set to TRUE, then it
is possible to set the animation continuously spinning by
doing a rotation and releasing the left mouse before you are
done dragging.

HRESULT EnablePerspective(long on); Sets whether or not to use perspective in the 3D viewer.
TRUE specifies perspective projection. FALSE specifies
orthogonal projection.

HRESULT SaveAnimationPaneImage(_bstr_ fileName); Takes a snapshot of the animation control and saves it to a
file. This method is primarily used for debugging and
testing.

ActiveX Controls

187

IEviviz

Table 14-11 lists the methods that are available to interactively modify the Evidence
Visualizer.

Table 14-11 IEviviz Methods

Declaration Description

HRESULT SetAttributeOrder(ORDERCODE on); Allows you to programmatically change the way the
attributes are listed in the evidence visualizer. Possible values
are: ORDER_BY_IMPORTANCE (the default) and
ORDER_BY_DATABASE (use the database ordering).

HRESULT SubtractMinEvidence(long on); Specifies whether to subtract the minimum amount of
evidence from each value in the bars mode (see the MineSet
Enterprise Edition Reference Guide.)

HRESULT SelectAttributeValue(_bstr_t attribute,
_bstr_t value);

Programmatically selects one of the attribute values and
resulting probabilities.

HRESULT EnableEvidenceMode(long on); Sets whether to show an evidence representation, or a
probability representation. For the Evidence Visualizer, this
means switching between showing the evidence cakes on the
left, or the probability pies. See the MineSet Enterprise Edition
Reference Guide for additional information about these modes.

long GetEvidenceMode(); Returns TRUE if the classifier visualizer is in the Evidence
mode.

HRESULT SetNominalOrder(ORDERCODE ordercode); Specifies how to order attribute values. Possible values are:
ORDER_ALPHABETICALLY ORDER_BY_WEIGHT,
ORDER_BY_LABEL

HRESULT SetViewerType(VIEWERCODE type); Specifies whether to use the landscape style viewer or
examiner viewer to display the scene. VIEWERCODE values
are LANDSCAPE.VIEWER and EXAMINER.VIEWER

Drilling up and down is not available in the landscape viewer
mode.

HRESULT SetLaplace(long on, float value); Specifies whether or not to use Laplace correction. The
second argument is the amount of Laplace correction to use.
If the second argument is -1, then a default based on the data
is used.

188

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

HRESULT SaveLabelPaneImage(_bstr_t fileName); Takes a snapshot of the label probability pane and saves it to
a file. This method is primarily used for debugging and
testing.

HRESULT SelectLabelValue(_bstr_t value); Programmatically selects one of the label values. After this
method has been invoked, one of the classes in the
probability pane on the right should be selected.

HRESULT SetWeightThresh(float percent); Filters out objects with low weight. When the threshold is 0%
all values are shown, no matter how small their weight; if
value is set to 100% all values are removed from the scene.

HRESULT SetDetailThresh(float percent); Changes the amount of detail in the scene. As the threshold
is lowered, all attributes with lower importance values are
removed from the scene.

Table 14-11 (continued) IEviviz Methods

Declaration Description

ActiveX Controls

189

IDtableviz

Table 14-12 lists the methods that are available to interactively modify the Decision Table
Visualizer.

Table 14-12 IDtableviz Methods

Declaration Description

HRESULT EnableEvidenceMode(long on); Specifies whether to show an evidence representation, or a
probability representation. In the Decision Table Visualizer,
this determines whether the cakes show evidence (normalized
conditional probabilities), or straight probabilities. See the
MineSet Enterprise Edition Reference Guide for additional
information about these modes.

HRESULT SetNominalOrder(ORDERCODE ordercode); Specifies how to order attribute values. Possible values are:
ORDER_ALPHABETICALLY, ORDER_BY_WEIGHT, and
ORDER_BY_LABEL

HRESULT SetViewerType(VIEWERCODE type); Specifies whether to use the landscape style viewer or
examiner viewer to display the scene. Possible VIEWERCODE
values are LANDSCAPE.VIEWER and EXAMINER.VIEWER.

HRESULT SetLaplace(long on, float value); Specifies whether or not to use the Laplace correction. The
second argument is the amount of Laplace correction to use.

HRESULT SaveLabelPaneImage(_bstr_t fileName); Takes a snapshot of the label probability pane and saves it to a
file. This method is primarily used for debugging and testing.

HRESULT SelectLabelValue(_bstr_t value); Programmatically selects one of the label values. After this
method has been invoked, one of the classes in the probability
pane on the right should be selected.

HRESULT SetWeightThresh(float percent); Filters out objects with low weight. When the threshold is 0%
all values are shown, no matter how small their weight; if value
is set to 100% all values are removed from the scene.

HRESULT SetDetailThresh(float percent); Changes the amount of detail in the scene. As the threshold is
increased, more detail is achieved through globally drilling
down on all the cake charts until the maximum level of detail
is reached at 100%.

190

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

IDtableviz2

Table 14-13 describes a method that is available to interactively modify the Scatter
Visualizer.

Table 14-13 IScattert2 Methods

Declaration Description

HRESULT ShowHierarchyDialog(); Causes the Hierarchy Dialog box to be displayed. This is
relevant only for decision tables and regression tables.

ActiveX Controls

191

ITreeviz

Table 14-14 lists the methods that are available to interactively modify the Tree
Visualizer.

Table 14-14 ITreeviz Methods

Declaration Description

HRESULT ShowMarksDialog(); Brings up a dialog which allows you to mark nodes in the
tree with colored flags.

HRESULT ShowOverviewDialog(); Brings up a dialog which shows a two dimensional view
of the entire tree.

HRESULT ShowSearchDialog(); Brings up a dialog which lets you search for different
attribute values for all the nodes in the tree hierarchy.

HRESULT Navigate(TREE_GOCODE code); The equivalent of the navigation buttons on the
right-hand strip of the Tree Visualizer Viewer. Code can
take on any of the following values:

TREE_HOME—Resets the camera to the home position.
TREE_SETHOME—Sets a new home position.
TREE_VIEWALL—Positions the camera so the entire
scene is in view.
TREE_BACK—Moves the position one step back in the
navigation history (undo).
TREE_FORWARD—Moves the position one step forward
in the navigation history (redo).
TREE_PARENT—Updates the selection to be the parent of
the currently selected node, repositioning the camera to
view it.
TREE_LEFT—Updates the selection to be the left sibling of
current node.
TREE_RIGHT—Updates the selection to be the right
sibling of current node.
TREE_FIRST—Updates selection to be the first (left) child
of current node.
TREE_LAST—Updates selection to be the last (right) child
of current node.

HRESULT IsValidNavigation(TREE_GOCODE c,
long *enabled);

Sets enabled to TRUE if the corresponding
TREE_GOCODE is currently available. Otherwise sets it
to FALSE.

192

Chapter 14: ActiveX Visualization Control API for MineSet Visualizers

HRESULT ShowBaseHeights(long on); Toggles whether or not to show the base heights in the
scene. If base heights are not shown, they appear simply as
a flat box on the ground plane.

HRESULT ShowMarksFlags(long on); Specifies whether to show the marks flags, if there are any.

void SetZeroStyle(DRAW_STYLE style); Allows you to set how zero values are displayed.
DRAW_STYLE style can take one of the following values:
SOLID, HIDDEN or OUTLINE.

DRAW_STYLE GetZeroStyle(); Returns the current setting for how zero values are
displayed using the variable DRAW_STYLE *style. This
value will be either SOLID, HIDDEN, or OUTLINE.

HRESULT NormalizeSubtree(); Recomputes the heights for all nodes in the tree using the
currently selected node as the 1.0 value.

HRESULT SaveInitialHierarchy(b_str_t fileName); Primarily used for debugging and testing.

HRESULT SaveViewedHierarchy(b_str_t fileName); Primarily used for debugging and testing.

HRESULT SaveOverviewImage(_bstr_t fileName); Saves a snapshot of the overview dialog image. This
method is primarily used for debugging and testing.

HRESULT SaveSearchPaths(_bstr_t fileName); Saves a list of all the currently shown search paths. This
method is primarily used for debugging and testing.

Table 14-14 (continued) ITreeviz Methods

Declaration Description

193

Appendix A

A. Further Reading and Acknowledgments

Some datasets were taken from the UCI repository (Merz, C. J., and Murphy, P. M. (1996).
UCI Repository of machine learning databases, Irvine, CA: University of California,
Department of Information and Computer Science) found at:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Further Reading

Several papers describing the technology used in MineSet are available at:
http://www.sgi.com/software/mineset/mineset_data.html.

An excellent, non-technical introduction to data mining techniques is:

• Michael Berry and Gordon Linoff. Data Mining Techniques. New York: John Wiley &
Sons, 1997. ISBN 0-471-17980-9. See http://www.data-miners.com/.

A comparative study of data mining tools, including MineSet, was done by the Two
Crows Corporation. It contains a good introduction to data mining.

• Two Crows Corporation. Data Mining: Products, Applications & Technologies.
Ordering information is available at http://www.twocrows.com.

A paper describing MLC++, the underlying analytical engine used in MineSet, is
described in:

• Kohavi, R., Sommerfield, D., Dougherty, J., Data Mining using MLC++, a Machine
Learning Library in C++. International Journal of Artificial Intelligence Tools, Vol. 6,
No. 4, 1997, p. 537-566. See http://robotics.stanford.edu/users/ronnyk/.

194

Appendix A: Further Reading and Acknowledgments

A general and easy-to-read introduction to machine learning is:

• Weiss, S. M., and C. A. Kulikowski. Computer Systems that Learn. San Mateo, CA:
Morgan Kaufmann Publishers, Inc., 1991.

A general comparison of algorithms and descriptions is provided in:

• Taylor, C., D. Michie, and D. Spiegalhalter. Machine Learning, Neural and Statistical
Classification. Paramount Publishing International, 1994.

An easy-to-read introduction to decision tree induction is:

• Quinlan, J. R. C4.5: Programs for Machine Learning. Los Altos, CA: Morgan Kaufmann
Publishers, Inc., 1993.

An excellent book on decision trees from a statistical perspective is:

• Breiman, L., J. H. Friedman, R. A. Olshen, and C.J. Stone. Classification and Regression
Trees. Wadsworth International Group, 1984.

A good edited volume of machine learning techniques is:

• Dietterich, T. G. and J. W. Shavlik (Eds). Readings in Machine Learning. Morgan
Kaufmann Publishers, Inc., 1990.

A summary of accuracy estimation techniques is given in:

• Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, edited by C. S. Mellish. Morgan Kaufmann Publishers, Inc., 1995.
Available at http://robotics.stanford.edu/users/ronnyk/.

The following papers describes the decision table metaphor:

• Kohavi, R., The Power of Decision Tables. In The European Conference on Machine
Learning, 1995.

• Becker, B. Visualizing Decision Tables. In IEEEs Proceedings of Information
Visualization, 1998.

Further Reading

195

A good reference to a paper explaining that no classifier can be “best” is:

• Schaffer, C. A conservation law for generalization performance. In Machine Learning:
Proceedings of the Eleventh International Conference, 259-265. Morgan Kaufmann
Publishers, Inc., 1994. Available at
http://wwwcs.hunter.cuny.edu/faculty/schaffer/papers/list.html.

Further Readings About Option Trees

MineSet uses an advanced version of the Option Trees described in:

• Ron Kohavi and Clayton Kunz. Option Decision Trees with Majority Votes. Machine
Learning: Proceedings of the Fourteenth International Conference”, Morgan
Kaufmann Publishers, Inc., 1997. (See http://robotics.stanford.edu/users/ronnyk).
The option trees used in MineSet average the predictions and do not simply vote
them as described in this paper. Option Trees were first introduced by Wray Buntine
in his thesis A Theory of Learning Classification Rules, 1992, School of Computing
Science, University of Technology, Sydney.

Further Readings About the Evidence Inducer

The following paper describes the wrapper method used to select the features for the
Evidence Classifier:

• Kohavi, R., Sommerfield, D. (1995). Feature Subset Selection Using the Wrapper Model:
Overfitting and Dynamic Search Space Topology. The First International Conference on
Knowledge Discovery and Data Mining, pp. 192-197. Available at:
http://robotics.stanford.edu/users/ronnyk/.

An excellent introduction to the Evidence Classifier (Naive-Bayes) is:

• Kononenko, I. (1993). Inductive and Bayesian Learning in Medical Diagnosis. Applied
Artificial Intelligence, pp. 7:317-337.

The following paper describes conditions under which the Evidence Inducer is optimal:

• Domingos, P., Pazzani, M., Beyond Independence: Conditions for the Optimality of the
Simple Bayes Classifier. Machine Learning, Volume 29, No. 2/3, Nov/Dec 1997,
pp. 103-130.

196

Appendix A: Further Reading and Acknowledgments

The following paper describes the use of the wrapper method in the Evidence Inducer:

• Kohavi, R., John, G., Wrappers for Feature Subset Selection. In Artificial Intelligence
Journal, special issue on relevance, Vol. 97, Nos 1-2, pp. 273-324.

The following paper describes the Laplace correction option:

• Cestnik, B. (1990). Estimating Probabilities: A Crucial Task in Machine Learning.
Proceedings of the Ninth European Conference on Artificial Intelligence,
pp. 147-149.

The following paper describes the automatic Laplace correction used in MineSet:

• Kohavi R., Becker B., and Sommerfield D., Improving Simple Bayes, European
Conference on Machine Learning, 1997 (poster). Available at:
http://robotics.stanford.edu/users/ronnyk/.

The following paper describes the Evidence Classifier (Naive-Bayes):

• Langley, P., Iba, W., Thompson, K. (1992). An Analysis of Bayesian Classifiers.
Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 223-228.
Available at: http://www.isle.org/~langley/pubs.html.

Simple Bayesian Classifier. To appear in Lecture Notes in Computer Science: Issues in the
Integration of Data Mining and Data Visualization, Springer Verlag, 1998.

The following books describe the Evidence Classifier:

• Good, I. J. The Estimation of Probabilities: An Essay on Modern Bayesian Methods. MIT
Press, 1965.

• Duda, R., Hart, P. Pattern Classification and Scene Analysis, Wiley, 1973.

The following paper shows that while the conditional independence assumption can be
violated, the classification accuracy of the evidence classifier (called Simple Bayes in this
paper) can be good:

• Domingos P., Pazzani M (1996). Beyond Independence: Conditions for the Optimality of
the Simple Bayesian Classifier. Machine learning, Proceedings of the 13th International
Conference (ICML ’96), pp. 105-112. Available at
http://www.ics.uci.edu/~pedrod/.

Acknowledgments

197

Further Readings About the Splat Visualizer

The following paper describes and provides further references for the technical details of
the Splat Visualizer.

• Becker, Barry G, Volume Rendering for Relational Data, to appear in Proceedings of
Information Visualization '97, IEEE Computer Society Press, Los Alamitos CA,
October 19-24, 1997.

The following paper explains how to use Gaussian splats for volume rendering.

• Westover, Lee, Footprint Evaluation for Volume Rendering in Proceedings of
SIGGRAPH ‘90, Vol. 24, No. 4, pages 367-376).

Acknowledgments

The iris database was originally used in Fisher, R. A. 1936. The use of multiple
measurements in taxonomic problems. Annals of Eugenics 7(1):179-188. It is a classical
problem in many statistical texts.

The breast cancer database was obtained from Dr. William H. Wolberg, L. Mangasarian,
and W. H. Wolberg. Cancer diagnosis via linear programming. SIAM News 23(5):1 & 18.
University of Wisconsin Hospitals, Madison, September 1990.

The data for the mushroom sample file comes from: Audubon Society Field Guide to North
American Mushrooms. New York: Alfred A. Knopf, 1981.

The data on congressional voting was taken from the Congressional Quarterly Almanac,
98th Congress, 2nd session 1984, Volume XL, Congressional Quarterly Inc.: Washington,
D.C., 1985.

The adult dataset was derived from the US Census Bureau survey in 1994
(http://www.census.gov/ftp/pub/DES/www/welcome.html).

199

Index

Symbols

symbol (configuration files), 42, 87
% (percent) character, 69
% symbol (configuration files)

enum statements, 90, 114, 137
message statements, 76, 102, 129

; symbol (configuration files), 45
> (greater than) symbol, 69
? character, 158
\ (backslash) sequences, 42
\ characters, 47
} symbol (configuration files), 45
’ (single closing quotation) characters, 44

Numbers

2-dimensional arrays, 86, 92, 110
declaring, 112

3D charts, 126, 145
64-bit support

systune parameters, 8

A

ActiveX, 164, 165
ActiveX Visualization Control API, 163-192
adding plug-ins, 4
addresses, 38

aggregate keyword, 62
aggregation

bases, 63
hierarchies, 59, 62, 66, 69
null values and, 157, 160

aligning fields in data files, 50
alphabetical comparisons, 44
AND operator, 42
animation control panel (Map Visualizer)

displaying dates, 90
animation control panel (Scatter Visualizer)

summary window
coloring, 127

viewing dates, 114
animation control panel (Splat Visualizer)

summary window
coloring, 146

viewing dates, 137
animations, 1
any keyword, 62, 64
arithmetic operators, 42

null values and, 158
arrays, 39-40, 53-54, 86, 110

declaring, 40, 54, 91, 112, 116
defining keys, 60, 62, 113, 116, 136
enumerating, 39
hierarchies and, 59, 62, 65
null values and, 39, 41, 87, 161
separators, 40

overriding, 40, 52, 91, 117
zero values and, 54

200

Index

ascending keyword, 60
ascending sort order

hierarchies, 65
keys, 60
null values, 161

aspect ratios, 79
attaching to servers, 6
avg keyword, 62, 64

null values and, 160
axes

assigning values, 126-127, 145
labeling, 126, 132, 145, 147

color options, 127, 146
normalizing, 126
scaling values, 126
zero values and, 127

axis keyword, 126, 145
axis statements, 126-127, 145-146
axis variable, 126, 145

B

backslash characters, 47
backslash keyword, 117, 139
backslash sequences, 42
bars

color options
based on keys, 72
labels, 80

equalizing, 65
generating, 60
heights

adjusting, 68
normalizing, 68, 70

labeling, 75
colors, 80
size, 82

laying out, 78

null values and, 81
sorting, 60
zero values and, 81

base color statements, 75
base height statements, 70
base keyword, 63, 75
base message statements, 77
bases

aggregation and, 63
color options, 75

labels, 80
heights, 70

legends and, 70
labeling, 80

size, 82
null values and, 81
zero values and, 81

batch processing, 25-28
example, 27
on NT, 26
on UNIX, 26
session files, 25

bibliography, 194
binary formats, 50
bins

null values and, 161
bitwise operators, 43
blank fields, 50, 86, 110, 134
blank lines, 50, 86, 110, 134
Boolean expressions, 158
buckets keyword, 74, 100, 124, 144

C

calculated columns, 57, 94, 118
calendar quarters, 90, 114, 138
character strings, 38

201

Index

configuration files, 42
charts

labeling, 126, 127, 132, 145, 146, 147
normalizing axes, 126
plotting values, 126-127, 145
zero values and, 127

CLSID, 164
color keyword, 121, 123, 142
color mappings

Map Visualizer, 98
overriding, 99

Scatter Visualizer, 123-125
overriding, 124

Splat Visualizer, 142-145
overriding, 143

Tree Visualizer, 72-75
overriding, 73

color names, 72, 98, 123, 142
colors

bars
based on keys, 72
labels, 80

bases, 75
labels, 80

continuous ranges, 73, 124, 143
disks, 75
filling by key, 72
grids, 132, 147
ground, 78
labels, 121, 127, 146

bars, 80
bases, 80

legends, 74, 101, 125
displaying for, 144

nodes, 80
normalizing, 100
sky, 78
summary values, 128, 146

colors keyword, 72, 99, 123, 143
color statements

Map Visualizer, 98-101
Scatter Visualizer, 123-125
Splat Visualizer, 142-145
Tree Visualizer, 72-75

color variable, 72, 99, 123, 142
columns, 91, 115, 138

aggregation options, 62
calculated, 57, 94, 118
defining, 47, 49, 53
mapping to, 68, 97

commas, adding to numbers, 76, 102, 129
comments

configuration files, 42, 87
data files, 50, 86, 110, 134

comparing
locations, 54
regions, 54
strings

alphabetically, 44
dataString vs. string types, 38

Component Object Model, 163
configuration files, 6

comments, 42, 87
data files and, 50
DataMover, 10-13
mandatory, 13
Map Visualizer, 87
naming variables, 41
option files and, 46
Scatter Visualizer, 111

formatting, 111
Splat Visualizer, 135

formatting, 135
Tree Visualizer, 55

configuring
DataMover, 10-17
Map Visualizer, 87-103
Scatter Visualizer, 111-132, 135-148
Splat Visualizer, 135
Tree Visualizer, 55-84

202

Index

connections, 6, 14
copying data files, 17
count keyword, 62, 64

null values and, 160

D

database mining tools, 1
database servers

connecting to, 6
data exchanges, 29
data files, ??-40, 49

aligning fields, 50
comments, 50, 86, 110, 134
configuration files and, 50
copying, 17
Evidence Visualizer, 151
Map Visualizer, 85-87

naming, 88
reading, 88

null values and, 158
pre-existing, 16
reading, 51
Scatter Visualizer, 109

naming, 112
reading, 113

Splat Visualizer, 133-134
naming, 135
reading, 136

Tree Visualizer, 53-??
naming, 55

.datamove files, 10
DataMover, 1, 10-17

connecting to, 6
pre-existing data files and, 16

datasets
filtering, 69
loading sample, 21
SAS formats and, 29-32

updating, 56, 93
data sources

null values and, 157
data statements

flat file support, 51
Map Visualizer, 91-92
Scatter Visualizer, 115-117
Splat Visualizer, 138
supported types, 51

dataString types, 38
data types, 37

Map Visualizer, 86, 91
Scatter Visualizer, 110, 115
Splat Visualizer, 134, 139
Tree Visualizer, 44

dates, 89-91, 114-115, 137-138
formatting, 90, 114, 137
incrementing, 89, 114, 137

date types, 89, 114, 137
days, 90, 114, 138
decimal points, 76, 102, 129

double types, 37
float types, 37

declaring
arrays, 40, 54, 91, 112, 116
data types, 91, 115, 139
enumerations, 38
keys, 60, 62, 113, 116, 136

sliders and, 97
variables, 91, 115, 139

default directories, 45, 87, 111, 135
defaults files, 45, 87, 111, 135

views, 96, 119, 140
default sort order, 65
descending keyword, 60
descending sort order

hierarchies, 65
keys, 60
null values, 161

203

Index

disk color statements, 75
disk height statements, 71
disk keyword, 71, 75
disks

color options, 75
heights, 71

legends and, 70
normalizing, 71

null values and, 81
zero values and, 81

displaying
data

overhead projections, 79
entities, 132
hierarchies, 67, 79
labels, 120, 126, 145
messages

Map Visualizer, 101
Scatter Visualizer, 129
Tree Visualizer, 76

display options
Scatter Visualizer, 131
Splat Visualizer, 147
Tree Visualizer, 78

divide by zero errors, 57, 94
divide function

/ operator vs., 57, 94, 118
dm_config file, 16
documentation, xvi

typographic conventions, xvii
double-precision floating-point numbers, 37
double types, 37
.dtableviz file, 149
Dynamic Link Libraries, 163

E

empty strings, 54

null values vs., 157
e notation, 37
entities, 120

displaying, 132
filtering, 131
labeling, 120, 132
legends, 122
selecting, 129
size, 121-122

entity keyword, 120
entity statements, 120-121
entity variable, 120
enumerated arrays, 39

declaring, 41
hierarchies and, 65
keys as, 60, 62

enumerated values, 89, 113, 136
dates, 89, 114, 137

enumerations
declaring, 38
sliders and, 119, 140

enum keyword, 38, 89, 113, 114, 136, 137
enum statements, 89-91, 113-115, 136-138
equality, 42
Evidence Visualizer, 151

history logs, 152
.eviviz filename extensions, 153
example files

loading, 21
exceptions, 52
exchanging data, 29
execute keyword, 77
execute statements

Map Visualizer, 102
Scatter Visualizer, 130
Tree Visualizer, 77

executing shell commands, 77, 102, 130
exponential notation, 37

204

Index

expressions, 42
defining, 57, 94, 118
hierarchies and, 64
null values and, 158-159

expressions keyword, 58, 95, 118
expressions sections

Map Visualizer, 94
Scatter Visualizer, 118
Tree Visualizer, 57-58

extend keyword, 127
extension files (Web), 34

F

fields, 85, 109, 133
aligning, 50
assigning colors, 72, 99, 123, 142
charts and, 126, 145
data files, 47, 49, 53
defining, 57, 94, 118

data type, 91, 115, 138
input sections, 51, 55

entity size and, 121-122
field separators, 85, 109, 133

default, 50
file_cache setting, 11
file alteration monitor, 57, 93
file keyword, 51, 88, 113, 136
filenames

include statements, 46
option files, 45

files, including, 46, 47
file statements, 51
filtering

data, 69
entities, 131

filter keyword, 69, 131
filter statement, 131

Find File dialog box, 17
fiscal year quarters, 90, 114, 138
fixed-sized arrays, 39, 86, 110

declaring, 40, 91, 112, 116
hierarchies and, 59
separators, 40

fixed strings, 38
flat file support

data statements, 51
floating-point numbers, 37
float types, 37
fonts, 80
formats

configuration files, 55, 87, 111, 135
data files, 49, 53, 85, 151
numbers, 76, 102, 129

format strings
dates/time, 90, 114, 137
messages, 76, 101, 129

functions
adding, 3

further readings, 194

G

geographic regions, 96
displaying, 105
legends, 98
scaling, 98

gfx files, 105-108
graphs

labeling, 126, 127, 132, 145, 146, 147
normalizing axes, 126
plotting values, 126-127, 145
zero values and, 127

greater than symbol (>), 69
grids

205

Index

color options, 132, 147
ground colors, 78

H

height keyword, 68
height statements

Map Visualizer, 97
Tree Visualizer, 68-70

hexadecimal color values, 72, 98, 123, 142
hiding

labels, 120
hierarchies, 58

aggregating, 62, 66, 69
defining keys, 60, 65
displaying, 67, 79
getting descriptions, 77
normalizing heights, 68
populating, 62
setting options, 65
sorting, 65

hierarchy files, 103-104
hierarchy function, 43, 80
hierarchy keyword, 58
hierarchy sections, 58-66

key statements, 60-62
levels statements, 59-60
options, 65
sort statements, 65

hierarchy.treeviz.options, 58
history sections, 152
horizontal sliders, 97, 120, 140
hours, 90, 114, 138

I

Importing, 18

include keyword, 46
include statements

Tree Visualizer, 46
incrementing dates, 89, 114, 137
incrementing numeric values, 89, 113, 136
indexes

color values and, 73, 99, 124, 143
defining keys, 60, 65, 113, 116, 136

INFORMIX tables, 13, 14, 22
loading, 24

input keyword, 50, 55, 88, 112, 135
input sections, ??-47, 50

Map Visualizer, 88-94
data statements, 91-92
enum statements, 89-91
file statements, 88
options, 92

Scatter Visualizer, 112-117
data statements, 115-117
enum statements, 113-115
file statements, 113
options, 117

Splat Visualizer, 135-139
data statements, 138
enum statements, 136-138
file statements, 136
options, 139

Tree Visualizer, 55-57
options, 56

integers, 37
int types, 37
invoking

Tool Manager, 6
isNull function, 159
isSummary function, 43

206

Index

K

keep_classifier_files setting, 11
keep_client_download setting, 11
keep_client_upload setting, 11
keep_mlc_input setting, 11
key keyword, 60, 116

color statements and, 72
keys

arrays, 60, 62, 65, 113, 116, 136
coloring bars and, 72
hierarchies, 60, 65
setting options, 46
sliders, 97

key statements, 60-62
keywords, 44, 149

L

label keyword, 145
Scatter Visualizer, 120, 126
Tree Visualizer, 75

labels
axes, 126, 127, 132, 145, 146, 147
bars, 75

colors, 80
size, 82

bases, 80
size, 82

color options, 121, 127, 146
bars, 80
bases, 80

entities, 120, 132
main windows, 96
nodes, 79
setting fonts, 80
size, 132
splats, 145

label statements
Tree Visualizer, 75

large memory support
systune parameters, 8

large numbers, 37
legend keyword, 98, 101

Scatter Visualizer, 121, 122, 125, 128
Splat Visualizer, 141, 144, 147
Tree Visualizer, 70, 74

legends
color values, 74, 101, 125, 144
entities, 121, 122
geographic regions, 98
height mappings, 70
splats, 141, 144, 147
summary, 128, 147

levels keyword, 59
levels statements, 59-60
libraries, 16
line breaks, 55
loading example files, 21
loading tables

sample, 22, 23, 24
locations

comparing, 54
lod options, 82

M

main windows
Map Visualizer

labeling, 96
map keyword, 96
mappings, 67

entity size and, 121-122
legends and, 70
table columns, 68, 97

207

Index

Map Visualizer
animation control panel

displaying dates, 90
color mappings, 98
configuring, 87-103
data files, 85-87

naming, 88
reading, 88

data input, 85
data types, 86

declaring, 91
displaying data, 95

gfx files and, 105
main window

labeling, 96
max clause

Scatter Visualizer, 122
Splat Visualizer, 141
syntax, 122, 141

max keyword, 62, 64
null values and, 160
Scatter Visualizer, 126

memory, 38
message keyword, 76, 101, 129
messages

Map Visualizer, 101
Scatter Visualizer, 129
Tree Visualizer, 76

message statements
Map Visualizer, 101-102
Scatter Visualizer, 129-130
Tree Visualizer, 76-78

MineSet, 1
batch mode, 25-28
setting up, 7-16
tools

overview, 1-6
mineset2sas command-line option, 29
mineset2sas utility, 29

running, 29
startup options, 30

MineSet mtr extension, 33, 35
mining tools

adding, 4
min keyword, 62, 64

null values and, 160
minutes, 90, 115, 138
missing data values, 157
modulus function, 43
monitor keyword, 56, 93
months, 90, 114, 138
mtr files, 35

N

-names command-line option, 32
naming

data files, 55, 88, 112, 135
variables, 41

keywords and, 44
nesting include statements, 46
network connections, 6
-nodata command-line option, 32
nodes

distance between, 82
labeling, 79
line options, 80
populating, 66

-nolabel command-line option, 31
normalize keyword, 68, 100
normalizing axes values, 126
normalizing colors, 100
normalizing heights

bars, 68, 70
disks, 71

normalizing trees, 54

208

Index

NOT operator, 43
null enumerated arrays, 39, 87

declaring, 41
null values, 40, 157

arrays and, 39, 41, 87
binning, 161
defining, 158
display options, 81
empty strings vs., 157
in expressions, 158-159
sorting, 161
testing for, 159

numbers, 37
formatting, 76, 102, 129
incrementing, 89, 113, 136
sorting, 60

O

objects
displaying messages

Map Visualizer, 101
Scatter Visualizer, 129
Tree Visualizer, 76

one-dimensional arrays, 53, 86, 110
declaring, 116

Opacity, 141
opacity statement

Splat Visualizer, 141
syntax, 141

opacity variable
Splat Visualizer, 141

operators, 42
options files, 45

hierarchies, 58, 67
options keyword, 47

Map Visualizer, 92
Scatter Visualizer, 117, 131

Splat Visualizer, 139, 147
Tree Visualizer, 46, 56, 78

options statements, 45, 46, 47
defaults files and, 87, 111, 135
tokens and, 44
views, 78, 131, 147

Oracle tables, 13, 14, 22
loading, 22

organizational hierarchies, 54
organization option, 66
OR operator, 43
Overview window (Tree Visualizer), 79

P

parameters
mineset2sas command-line options, 30
sas2mineset command-line options, 31

pathnames, 88, 113, 136
data files, 51
include files, 46

percentages, 69
percent symbol (%) in configuration files

enum statements, 90, 114, 137
message statements, 76, 102, 129

plug-in capability, 3
Plug-in Ops button, 3
pound symbol (#) in configuration files, 42, 87
pre-existing data files, 16
printed documentation, xvi

typographic conventions, xvii
printf manual page, 76, 102, 129

Q

quarters (calendar), 90, 114, 138

209

Index

question mark (?), 158

R

random colors, 73, 99, 124, 143
raw data, 53, 85
reading

arrays, 54
strings, 38

README files, 22
references, 194
regions, comparing, 54
relational expressions, 44

null values and, 159
strings, 44

relative pathnames, 88, 113, 136
data files, 51
include files, 46

root nodes
labeling, 79

running MineSet in batch mode, 25-28
creating saved session files

on NT, 26
on UNIX, 26

example, 27
on NT, 26
on UNIX, 26
session files, 25

running shell commands, 77, 102, 130

S

sample files
Decision Table, 150
loading, 21

sas2mineset command-line option, 31
sas2mineset utility, 29

running, 31
SAS datasets, 29-32
SAS executables, 29
scale keyword, 69, 98, 99

Scatter Visualizer, 122, 124, 126
Splat Visualizer, 143
Tree Visualizer, 73

scaling
axes values, 126
colors, 73, 99, 124, 143
entities, 122
geographic regions, 98

Scatter Visualizer
animation control panel

summary window, 127
viewing dates, 114

color mappings, 123-125
configuring, 111-132, 135-148
data files, 109

naming, 112
reading, 113

data types, 110
declaring, 115

displaying data, 119
filtering data, 131
max clause, 122

syntax, 122
.schema files, 17, ??-47, 50
search paths

data files, 51, 88, 113, 136
defaults files, 111, 135
include files, 46
options files, 45, 87

seconds, 90, 115, 138
sections (configuration files), 45
selecting entities, 129
semicolons (;) in configuration files, 45
separator keyword, 40, 47, 52, 139

Map Visualiser, 91, 92

210

Index

Scatter Visualizer, 117
separators, 92

arrays, 40
overriding, 40, 52, 91, 117

data files, 47, 49, 53, 85, 109, 133
default character, 50
fields, 85, 109, 133
numeric formats, 76, 102, 129

server connections, 14
servers

connecting to, 6
session files, batch processing, 25
shared libraries, 16
shell commands, 77, 102, 130
Show Data Points command

specifying initial settings, 103
shrinking aspect ratios, 79
signed integers, 37
sinclude keyword, 47
sinclude statements

Tree Visualizer, 47
single closing quotation marks, 44
size keyword, 121
size statements, 121-122
size variable, 122
skipMissing option, 65, 66
sky colors, 78
slider controls

Map Visualizer
declaring, 91

slider keyword, 97, 119, 140
sliders

assigning keys, 97
defining dimensions, 97, 110, 112, 119, 140

sorting, 60
hierarchies, 65

sort keyword, 65

sort order, 60
null values, 161

sort statements, 65
Spat Visualizer

opacity variable, 141
splats

labeling, 145
legends, 141, 144, 147

Splat Visualizer
animation control panel

summary window, 146
viewing dates, 137

color mappings, 142-145
configuring, 135
data files, 133-134

naming, 135
reading, 136

data types, 134
declaring, 139

displaying data, 140
max clause, 141

syntax, 141
opacity statement, 141

syntax, 141
starting

Tool Manager, 6
statements (configuration files), 46
storing

strings, 38
string function, 43
strings, 38

comparing
alphabetically, 44
dataString vs. string types, 38

configuration files, 42
empty, 54, 157
hierarchies and, 43
sorting, 60
storing, 38

211

Index

zero values and, 54
string types, 38
sum keyword, 62, 64

null values and, 160
summary keyword, 103, 127, 146
summary legends, 128, 147
summary statements

Map Visualizer, 103
Scatter Visualizer, 127-128
Splat Visualizer, 146-147

summary values
color options, 128, 146
hierarchies, 62

summary variable, 127, 146
-svsc command-line option, 31, 32
Sybase tables, 13, 14, 22

loading, 23
shared libraries and, 16

syntax (configuration files), 45, 46, 87, 111, 135
axis statements, 126, 145
base color statements, 75
base height statements, 70
color statements, 72, 98, 123, 142

buckets clause, 74, 100, 124, 144
colors clause, 72, 99, 123, 143
key clause, 72
legend clause, 74, 101, 125, 144
normalize clause, 100
scale clause, 73, 99, 124, 143

disk color statements, 75
disk height statements, 71
entity statements, 120
enum statements, 113, 136
expressions sections, 58, 95, 118
filter statements, 131
height statements, 68, 97

filter clause, 69
legend clause, 70, 98
normalize clause, 68
scale clause, 69, 98

hierarchy sections, 58, 65
aggregate statements, 62, 63
key statements, 60
levels statements, 59
sort statements, 65

include statements, 46
input sections, 50, 55, 88, 112, 135

data statements, 91, 115, 138
enum statements, 89, 114, 137
file statements, 51, 88, 113, 136
options, 92

label statements, 75
message statements, 76, 101, 129

execute clause, 77
options statements, 46, 92

input sections, 47, 56
sinclude statements, 47
size statements, 121
summary statements, 103, 127, 146
view sections, 67, 95, 119, 140

map statements, 96
options, 78, 79, 80, 81, 131, 147
slider statements, 97, 119, 140
title statements, 96

syntax (data files), 50, 85, 109, 133, 151
system defaults, 45, 87, 111, 135
systune parameters

64-bit support and, 8
rlimit__nofile_cur, 8
rlimit__rss_cur, 8
rlimit__vmem_cur, 8
rlimit_pthread_cur, 8

T

tab character, 50
tables

hierarchies and, 59, 65
loading

sample, 22, 23, 24

212

Index

mapping to columns, 68, 97
variable-length, 65

three-dimensional charts, 126, 145
time, 89-91, 114-115, 137-138

formatting, 90, 114, 137
timeout options, 56
title keyword, 96
tokens, 44
Tool Manager, 2

starting, 6
tools

overview, 1-6
transforming plug-ins, 3
Tree Visualizer

color mappings, 72-75
configuring, 55-84
data files, 53-??

naming, 55
data input, 53
data types, 44
displaying hierarchies, 67, 79
filtering data, 69
keywords, 44
manipulating views, 81, 82

two-dimensional arrays, 86, 92, 110
declaring, 112, 116

type casting, 44
typographic conventions, xvii

U

unknown data values, 157
updating data, 56, 93
usa.states.hierarchy, 104
use_ascii_mlc_input, 11
usr/lib/MineSet/mapviz, 87
usr/lib/MineSet/scatterviz, 111

usr/lib/MineSet/splatviz, 135
usr/lib/MineSet/treeviz, 45

V

variable-length arrays, 53-54
hierarchies and, 59, 62
separators, 40

variables, 45
axes values and, 126, 145
axis, 126, 145
color, 72, 99, 123, 142
declaring, 91, 115, 139
entity, 120
naming, 41

keywords and, 44
null values and, 159
size, 122
summary, 127, 146

variants, 39
vertical sliders, 97, 120, 140
viewHierarchyLandscape.treeviz.options, 67
view keyword, 67
viewMap.mapviz.options, 96
viewpoints

manipulating, 81, 82
views

Scatter Visualizer
display options, 131

Splat Visualizer
display options, 147

Tree Visualizer, 67
display options, 78
overhead projections, 79

view.scatterviz.options, 119
view sections

Map Visualizer, 95-103
color statements, 98-101

213

Index

execute statements, 102
height statements, 97
map statements, 96-97
message statements, 101-102
slider statements, 97
title statements, 96

Scatter Visualizer, 119-132
axis statements, 126-127
color statements, 123-125
entity statements, 120-121
execute statements, 130
message statements, 129-130
options, 131-132
size statements, 121-122
slider statements, 119
summary statements, 127-128

Splat Visualizer, 140-148
axis statements, 145-146
color statements, 142-145
opacity statements, 141-142
options, 147-148
slider statements, 140
summary statements, 146-147

Tree Visualizer, 67-84
base color statements, 75
base height statements, 70
color statements, 72-75
disk color statements, 75
disk height statements, 71
height statements, 68-70
label statements, 75
message statements, 76-78
options, 78-84

view.splatviz.options, 140
visualization tools, 2

W

Web environments, 33-36
client installation, 35

extension files, 34
overview, 33

X

xconfirm command, 77, 103, 130

Y

years, 90, 114, 138

Z

zero values, 54
display options, 81
graphing, 127
returning, 43

	List of Tables
	About This Guide
	Structure of This Document
	Typographical Conventions
	Reader Comments

	MineSet Overview
	MineSet Tools Suite Overview
	About the Tool Manager
	Understanding DataMover
	MineSet Plug-in Capability
	Plug-in Functions
	Plug-In Transformations
	Plug-in Mining Tools

	Basic Tool Execution Scenario

	Configuring and Setting Up MineSet
	Configuring MineSet
	IRIX Systems
	Configuring Systune Parameters

	Linux Systems
	Configuring MineSet on Windows Systems

	Configuring the DataMover Server
	User Configuration File
	Global Configuration File
	Using MineSet with Existing Data Files

	Importing Data Files
	Exporting Files
	Loading Sample Datasets
	Loading Individual Datasets
	Loading into Oracle
	Loading Into Sybase
	Loading Into INFORMIX

	Logging in to a DBMS
	Running MineSet in Batch Mode
	Session Files
	Creating the saved_session.mineset File On NT
	Creating the saved_session.mineset File On IRIX or Linux
	Running MineSet in Batch Mode on NT
	Running MineSet in Batch Mode on UNIX
	Step-by-step Example for Running MineSet Batch on IRIX

	Sample UNIX Shell Script

	File Exchange between MineSet and SAS (IRIX only)
	Converting MineSet Data Files to SAS Data Sets
	-names namefile Command Line Option
	-svsc Option

	Converting SAS Data Sets to MineSet Data Files
	-nolabel Option
	-names namefile Option
	-nodata Option
	-svsc Option

	MineSet Web Extensions
	Overview
	MineSet Web Extension Files
	MineSet Web Installation (Client)
	MineSet .mtr Files
	Publishing on the Web

	Data and Configuration File Basics
	Data Types
	Enumerations
	Arrays
	Fixed Arrays
	Enumerated Arrays

	Variable Names
	Strings and Characters
	Comments
	MineSet Expression Language
	Keywords
	Configuration File Basics
	Sections
	Options Files
	Statements
	Option Statements
	Include Statements
	Sinclude Statements

	Input Options

	Flat File Support for MineSet
	Data File
	.schema File
	File Statements
	Data Statements

	Exceptions

	Creating Data and Configuration Files for the Tree Visualizer
	Data File
	Configuration File Overview
	Configuration File Input Section
	Input Options

	Configuration File Expressions Section
	Configuration File Hierarchy Section
	Levels Statements
	Key Statements
	Aggregate Subsection
	Aggregate Base Subsection
	Expressions Subsection
	Sort Statements
	Hierarchy Options

	Configuration File View Section
	Height Statements
	Normalize Clause
	Scale Clause
	Filter Clause
	Legend Clause
	Base Height Statements
	The On and Off Clauses

	Disk Height Statements
	Color Statements
	Color Naming
	Color Variable
	Key Clause
	Colors Clause
	Scale Clause
	Buckets Clause
	Legend Clause

	Base Color Statements
	Disk Color Statements
	Label Statements
	Message Statements
	Execute Statement
	View Options
	Sky and Ground Colors
	Bar Layout
	Overview
	Root Label
	Font
	Base Label Color
	Bar Label Color
	Line Color
	Zero
	Null
	Other Options

	Creating Data, Configuration, Hierarchy, and .gfx Files for the Map Visualizer
	Data File
	Data Types
	Fixed Arrays

	Configuration File Overview
	Configuration File Input Section
	File Statements
	Enum Statements
	Dates
	Data Statements
	Fixed Arrays
	Input Options

	Configuration File Expressions Section
	Configuration File View Section
	Title Statement
	Map Statement
	Slider Statement
	Height Statement
	Color Statement
	Message Statement
	Execute Statement
	Summary Statement

	Hierarchy File
	.gfx File

	Creating Data and Configuration Files for the Scatter Visualizer
	Data File
	Data Types
	Arrays
	Null Values

	Configuration File Overview
	Defaults Files

	Configuration File Input Section
	File Statements
	Enumeration Statements
	Dates

	Data Statements
	Arrays

	Input Options

	Configuration File Expressions Section
	Configuration File View Section
	Slider Statement
	Entity Statement
	Entity Variable
	Label Clause
	Label Color Clause
	Legend Clause

	Size Statement
	Size Variable

	Max Clause
	Scale Clause
	Legend Clause

	Color Statement
	Color Naming
	Color Variable
	Colors Clause
	The scale Clause
	Buckets Clause
	Legend Clause

	Axis Statement
	The Axis Variable
	Label Clause
	Max Clause
	Scale Clause
	Color Clause
	Extend Clause
	Orderby Clause

	Summary Statement
	Summary Variable
	Color Clause
	The Legend Clause

	Drillthrough Statement
	Message Statement
	Execute Statement
	Filter Statement
	View Options

	Creating Data and Configuration Files for the Splat Visualizer
	Data File
	Data Types
	Null Values

	Configuration File Overview
	Defaults Files

	Configuration File Input Section
	File Statements
	Enumeration Statements
	Dates

	Data Statements
	Input Options

	Configuration File View Section
	Slider Statement
	Opacity Statement
	Opacity Variable
	Max Clause
	Legend Clause

	Color Statement
	Color Naming
	Color Variable
	Colors Clause
	Scale Clause
	Buckets Clause
	Legend Clause

	Axis Statement
	Axis Variable
	Label Clause
	Color Clause

	Summary Statement
	Summary Variable
	Color Clause
	Legend Clause

	View Options

	Creating Data and Configuration Files for the Decision Table Visualizer
	Format of the Evidence Visualizer’s Data File
	Nulls in MineSet
	Semantics of Nulls
	Representation of Nulls
	Operations on Nulls
	Arithmetic Expressions
	Boolean Expressions
	Relational Operations
	Testing for Nulls

	Aggregations in the Presence of Nulls
	Sort Order for Nulls
	Bins and Arrays with Nulls

	ActiveX Visualization Control API for MineSet Visualizers
	API Overview
	Basics of Component Object Model
	ActiveX Architecture
	MineSet’s Visualization Controls
	Recommended Requirements

	ActiveX Controls
	IVizCommon
	IVizCommon2
	IScatterviz
	IScatter2
	ISplatviz
	ISplatviz2
	IMapviz
	IEviviz
	IDtableviz
	IDtableviz2
	ITreeviz

	Further Reading and Acknowledgments
	Further Reading
	Further Readings About Option Trees
	Further Readings About the Evidence Inducer
	Further Readings About the Splat Visualizer

	Acknowledgments

	Index

