
Memory Management Control
Programmer’s Manual

007–4533–001

CONTRIBUTORS

Written by Terry Schultz
Edited by Susan Wilkening
Illustrated by Chrystie Danzer
Production by Glen Traefald
Engineering contributions by Pat Donlin

COPYRIGHT
© 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any
manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, and Origin are registered trademarks and ccNUMA and NUMAflex are trademarks of Silicon
Graphics, Inc.

R10000 is a registered trademark of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc.

UNIX is a registered trademark and X Window system is a trademark of The Open Group.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 December 2002
Original publication. Supports the IRIX 6.5.18 release.

007–4533–001 iii

Contents

About This Manual . xi

Related Publications . xi

Conventions . xi

Obtaining Publications . xii

Reader Comments . xii

1. Using Memory Management Policy Modules 1

Policy Modules . 1

Policy Module Operations . 2

Creating a Policy Module . 4

Memory Management Control Interface 5

Available Policies . 6

Page Sizes . 7

Association of Virtual Address Space Sections to Policy Modules 8

Default Policies . 9

Destruction of a Policy Module 10

Policy Status of an Address Space 11

Setting the Page Size . 12

Using Locality Management . 12

The Placement Policy . 15

Memory Locality Domains . 16

Memory Locality Domain Sets 17

Linking Execution Threads to MLDs 22

Available Placement Policies 24

007–4533–001 v

Contents

Name Spaces for Memory Management Control 24

2. Using Multiple Page Sizes 27

Introduction . 27

User Interface to Multiple Page Sizes 28

Recommended Page Sizes . 30

Tunable Parameters . 30

Coalescing Parameters . 30

Reserving Large Pages . 31

Caveats . 32

Index . 33

vi 007–4533–001

Figures

Figure 1-1 Policy Module . 2

Figure 1-2 Scenario after Attaching Section of Address Space to Policy Module . . . 8

Figure 1-3 Basic Scenario . 12

Figure 1-4 Memory Access Reference Patterns 13

Figure 1-5 An Application Badly Mapped to Hardware 13

Figure 1-6 Chaotic Mapping to Hardware 14

Figure 1-7 Desired Placement, Physical View 15

Figure 1-8 Memory Locality Domains 16

Figure 1-9 Desired Placement Based on MLDs 17

Figure 1-10 Placement Hints Specifying a Topology 18

Figure 1-11 Memory Locality Domain Sets 18

Figure 1-12 MLDSET Placement 22

Figure 1-13 Policy Module, Memory Locality Domains, and Memory Locality Domain Sets 23

Figure 1-14 Processes Linked to MLDs 24

007–4533–001 vii

Tables

Table 1-1 Virtual Memory Operations with Selectable Policy 3

Table 1-2 Available Policy Types 7

007–4533–001 ix

About This Manual

This publication documents the IRIX 6.5.18 operating system running on SGI server
systems.

This manual is a reference document for people who run applications on SGI
computer systems running the IRIX operating system. It contains information about
how you can take advantage of memory management features in IRIX to increase the
performance of your application.

Related Publications
The following documents contain additional information that may be helpful:

• IRIX Admin: Resource Administration — Provides an introduction to system
resource administration and describes how to use and administer various IRIX
resource management features, such as IRIX process limits, IRIX job limits, the
Miser Batch Processing System, the Cpuset System, Comprehensive System
Accounting (CSA), IRIX memory usage, and Array Services.

• IRIX Admin: System Configuration and Operation — Lists good general system
administration practices and describes system administration tasks, including
configuring the operating system; managing user accounts, user processes, and
disk resources; interacting with the system while in the PROM monitor; and
tuning system performance.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

007–4533–001 xi

About This Manual

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs.sgi.com.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

xii 007–4533–001

Memory Management Control Programmer’s Manual

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

007–4533–001 xiii

Chapter 1

Using Memory Management Policy Modules

The ability of applications to control memory management is essential for systems
containing multiprocessors with a ccNUMA or NUMAflex memory system
architecture. For most applications, the IRIX operating system is capable of producing
acceptable levels of locality; however, in order to maximize performance, some
applications may need to fine tune the policies used by the operating system to
manage memory.

Note: The SGI Origin 3000 series of servers uses the NUMAflex interconnect fabric
and modular components, or "bricks," to isolate the CPU and memory, I/O, and
storage into separate bricks. A CPU brick, called a C-brick, contains four CPUs and
up to 8 Gbytes of local memory. The SGI 2000 series of servers uses the earlier
ccNUMA interconnect fabric. The smallest building block of the scalable ccNUMA
architecture is the node board, consisting of two CPUs with associated cache and
memory. The description of memory management control in this manual applies to
both the NUMAflex and ccNUMA architectures.

This chapter covers the following topics:

• "Policy Modules", page 1

• "Policy Module Operations", page 2

• "Creating a Policy Module", page 4

• "Using Locality Management", page 12

• "Name Spaces for Memory Management Control", page 24

Policy Modules
IRIX provides a memory management control interface based on the specification of
policies for different kinds of operations executed by the virtual memory management
system.

The set of virtual memory operations with user selectable policies are as follows:

• Memory placement

007–4533–001 1

1: Using Memory Management Policy Modules

• Page size

• Placement and page-size fall back

• Migration

• Replication

• Paging

You can select a policy from a set of available policies for each one of the virtual
memory operations listed above.

Any portion of a virtual address space, down to the level of a page, may be
connected to a specific policy using a policy module. A policy module is simply an
instantiation of a policy, as shown in Figure 1-1, page 2.

Address
space

Address
range

Policy
module

Placement
policy

Fallback
policy

Page
size

Figure 1-1 Policy Module

Policy Module Operations
A policy module (PM) contains the policy methods used to handle each of the
operations shown in Table 1-1, page 3.

2 007–4533–001

Memory Management Control Programmer’s Manual

Table 1-1 Virtual Memory Operations with Selectable Policy

Operation Policy Description

Initial memory allocation Placement policy Determines what
physical memory
node to use when
memory is
allocated.

Page size policy Determines what
virtual page size
to use to map
physical memory.

Fallback policy Determines the
relative
importance
between
placement and
page size.

Migration policy Not used.

Replication policy Not used.

Paging policy Not used.

When the operating system needs to execute an operation to manage a section of an
address space of a process, it uses the methods provided by memory policies. The
memory policies are specified by the policy module connected (attached) to that
virtual address space section.

To allocate a physical page, the first action of the virtual memory system’s physical
memory allocator is to call the method provided by the placement policy that
determines from where the page should be allocated. Internally, this method returns a
handle identifying the node memory from which the page should be allocated. Some
of the selectable placement policies are as follows:

• First touch. The page comes from the node where the allocation is taking place.

• Fixed. The page comes from some predetermined node or set of nodes

007–4533–001 3

1: Using Memory Management Policy Modules

• Round-robin. The source node is selected from a predetermined set of nodes
following a round-robin algorithm.

The second action of the physical memory allocator is to determine the page size to
be used for the current allocation. This page size is acquired using a method
provided by the page-size policy. Using the source node and the page size
information, the physical memory allocator calls a per-node memory allocator
specifying both parameters. If the system finds memory on this node that meets the
page size requirement, the allocation operation finishes successfully; if not, the
operation fails, and a fall back method from the fall back policy is called. The fall
back method provided by this policy determines whether to try the same page size on
a different node, a smaller page size on the same source node, sleep, or just fail.

The fall back policy to use depends on the kind of memory access patterns an
application exhibits. If the application tends to generate many cache misses, giving
locality precedence over the page size may be necessary; otherwise, in the situation
where the application’s working set is large, but has reasonable cache behavior, giving
the page size higher precedence may be more efficient.

Once a page has been placed, it stays on its source node until it is either migrated to
a different node, or paged out and faulted back in. Migration of a page to a different
node can be performed explicitly by the user application or during a dynamic cpuset
move.

Creating a Policy Module
This section describes how to create a policy module and covers the following topics:

• "Memory Management Control Interface", page 5

• "Available Policies", page 6

• "Page Sizes", page 7

• "Association of Virtual Address Space Sections to Policy Modules", page 8

• "Default Policies", page 9

• "Destruction of a Policy Module", page 10

• "Policy Status of an Address Space", page 11

• "Setting the Page Size", page 12

4 007–4533–001

Memory Management Control Programmer’s Manual

Memory Management Control Interface

A policy module can be created using the following memory management control
interface call:

#include <sys/pmo.h>

typedef struct policy_set {

char* placement_policy_name;

void* placement_policy_args;

char* fallback_policy_name;

void* fallback_policy_args;
char* replication_policy_name;

void* replication_policy_args;

char* migration_policy_name;

void* migration_policy_args;

char* paging_policy_name;
void* paging_policy_args;

size_t page_size;

} policy_set_t;

pmo_handle_t pm_create(policy_set_t* policy_set);

The policy_set_t structure contains all the data required to create a policy
memory module. For each selectable policy listed in Table 1-1, page 3, this structure
contains a field to specify the name of the selected policy and the list of possible
arguments that the selected policy may require. The page size policy is the exception,
for which the specification of the wanted page size suffices. For example:

policy_set.placement_policy_name = "PlacementFixed";

policy_set.placement_policy_args = NULL;

policy_set.recovery_policy_name = "RecoveryDefault";
policy_set.recovery_policy_args = NULL;

policy_set.replication_policy_name = "ReplicationDefault";

policy_set.replication_policy_args = NULL;

policy_set.migration_policy_name = "MigrationDefault";

policy_set.migration_policy_args = NULL;
policy_set.paging_policy_name = "PagingDefault";

policy_set.paging_policy_args = NULL;

policy_set.page_size = PM_PAGESZ_DEFAULT;

This example shows populating the policy_set_t structure with policy arguments
to create a policy module with a placement policy called PlacementFixed that takes

007–4533–001 5

1: Using Memory Management Policy Modules

no arguments. All other policies are set to be the default policies, including the page
size.

Since populating this structure with mostly default values is a common operation, the
IRIX operating system provides a special call to pre-fill this structure with default
values as follows:

void pm_filldefault(policy_set_t* policy_set);

The pm_create call returns a handle to the policy module just created, or a negative
long integer in case of error, in which case errno is set to the corresponding error
code.

The handle returned by the pm_create function is of the type pmo_handle_t. The
policy management object (PMO) is a type common for all handles returned by all the
memory management control interface calls. These handles are used to identify the
different memory control objects created for an address space, much in the same way
as file descriptors are used to identify open files or devices. Every address space
contains one independent PMO table. A new table is created only when a process
issues an exec call.

A simpler way to create a policy module is to use the restricted policy module
creation call (pm_create) as follows:

pmo_handle_t pm_create_simple(char* plac_name,
void* plac_args,

char* repl_name,

void* repl_args,

size_t page_size);

This call allows for the specification of only the placement policy, the replication
policy, and the page size. Defaults are automatically chosen for the fall back policy,
the migration policy, and the paging policy.

Available Policies

The current list of available policies is shown in Table 1-2, page 7.

6 007–4533–001

Memory Management Control Programmer’s Manual

Table 1-2 Available Policy Types

Policy Type Policy Name Arguments

Placement policy PlacementDefault No arguments

PlacementFixed Memory locality
domain

PlacementFirstTouch No arguments

PlacementRoundRobin Round robin Mldset

PlacementThreadLocal Application Mldse

Fall back policy FallbackDefault No arguments

FallbackLargepage No arguments

FallbackLocal No arguments

Replication policy ReplicationDefault No arguments

ReplicationOne No arguments

Migration policy MigrationDefault No arguments

MigrationControl Migration parameters
(migr_policy_uparms_t)

Paging policy PagingDefault No arguments

Page Sizes

The list of possible page sizes is as follows:

• 16 KB

• 64 KB

• 256 KB

• 1 MB

• 4 MB

• 16 MB

007–4533–001 7

1: Using Memory Management Policy Modules

Association of Virtual Address Space Sections to Policy Modules

The memory management control interface (MMCI) allows you to select different
policies for different sections of a virtual address space at the page level of
granularity. To associate a virtual address space section with a set of policies, you
need to first create a policy module with the wanted policies, as described in the
"Available Policies", page 6, and then use the following MMCI call:

int pm_attach(pmo_handle_t pm_handle, void* base_addr, size_t length);

The pm_handle call identifies the policy module you previously created; base_addr
is the base virtual address of the virtual address space section you want to associate
to the set of policies; and length is the length of the section.

After creating a policy module, and attaching a section of the virtual address space of
a process to this new policy module, you end up with the scenario depicted in Figure
1-2, page 8.

Address
space

Selected
address
space
range

New
policy

module

Placement
policy

Fallback
policy

Page
size

Migration
policy

Replication
policy

Paging
policy

Default
policy

module

Placement
policy

Fallback
policy

Page
size

Migration
policy

Replication
policy

Paging
policy

Figure 1-2 Scenario after Attaching Section of Address Space to Policy Module

8 007–4533–001

Memory Management Control Programmer’s Manual

Default Policies

A new default policy module is created and inserted in the PMO name space every
time a process issues an exec call. This default policy module is used to define
memory management policies for all freshly created memory regions. This default
policy module can later be overridden by users using the pm_attach MMCI call.

This default policy module is created with the following policies:

• PlacementDefault

• FallbackDefault

• ReplicationDefault

• MigrationDefault

• PagingDefault

• 16-KB Pages

The default policy module is used in the following situations:

• At exec time, when IRIX creates the basic memory regions for the stack, text, and
heap

• At fork time, when IRIX creates all the private memory regions

• At sproc time, when IRIX creates all the private memory regions (at least the
stack when the complete address space is shared)

• When memory mapping a file or a device

• When growing the stack and IRIX finds that the stack’s region has been removed
by the user using unmap, or you have done a setcontext, moving the stack to a
new location

• When using an sbreak call and IRIX finds that the user has removed the
associated region using munmap, or the region was not growable, anonymous, or
copy-on-write

• When a process attaches a portion of the address space of a “monitored” process
via procfs, and a new region needs to be created

• When you attach an System V shared memory region

007–4533–001 9

1: Using Memory Management Policy Modules

The default policy module is also stored in the per-process group PMO name space,
and therefore follows the same inheritance rules as all policy modules. It is inherited
at fork or sproc time, and a new one is created at exec time. For more
information, see "Name Spaces for Memory Management Control", page 24.

You can select a new default policy module for the stack, text, and heap as follows:

pmo_handle_t

pm_setdefault(pmo_handle_t pm_handle, mem_type_t mem_type);

The pm_handle argument is the handle returned by pm_create. The mem_type
argument is used to identify the memory section for which you want to change the
default policy module and it can take any of the following values:

• MEM_STACK

• MEM_STACK

• MEM_DATA

You can also obtain a handle to the default policy module using the following call:

pmo_handle_t pm_getdefault(mem_type_t mem_type);

This call returns a PMO handle referring to the address space of the calling process
default policy module for the specified memory type. The handle is greater or equal
to zero when the call succeeds, and it’s less than zero when the call fails, and errno
is set to the appropriate error code.

Destruction of a Policy Module

Policy modules are automatically destroyed when all the members of a process group
or a shared group have died. However, you can explicitly ask the operating system to
destroy policy modules that are not in use anymore, using the following call:

int pm_destroy(pmo_handle_t pm_handle);

The pm_handle argument is the handle returned by pm_create.

Any association to this policy module that already exists will remain effective, and
the policy module will only be destroyed when the section of the address space that
is associated with this policy module is also destroyed (unmapped), or when the
association is overridden using a pm_attach call.

10 007–4533–001

Memory Management Control Programmer’s Manual

Policy Status of an Address Space

You can obtain the list of policy modules currently associated with a section of a
virtual address space by using the following call:

typedef struct pmo_handle_list {

pmo_handle_t* handles;

uint length;

} pmo_handle_list_t;

int pm_getall(void* base_addr,

size_t length,
pmo_handle_list_t* pmo_handle_list);

The base_addr argument is the base address for the section that you are inquiring
about; length is the length of the section, and pmo_handle_list is a pointer to a
list of handles as defined by the structure pmo_handle_list_t.

On success, this call returns the effective number of policy modules that are being
used by the specified virtual address space range. If this number is greater than the
size of the list to be used as a container for the policy module handles, you can infer
that the specified virtual address space range is using more policy modules than can
fit on the list.

On failure, this call returns a negative integer, and errno is set to the corresponding
error code.

Users also have read-only access to the internal details of a policy module, using the
following call:

char placement_policy_name[PM_NAME_SIZE + 1];

char fallback_policy_name[PM_NAME_SIZE + 1];

char replication_policy_name[PM_NAME_SIZE + 1];
char migration_policy_name[PM_NAME_SIZE + 1];

char paging_policy_name[PM_NAME_SIZE + 1];

size_t page_size;

int policy_flags;

pmo_handle_t pmo_handle;
} pm_stat_t;

int pm_getstate(pmo_handle_t pm_handle, pm_stat_t* pm_stat);

The pm_handle argument identifies the policy modules about which the user needs
information, and pm_stat is an output parameter of the form defined by the
structure pm_stat_t.

007–4533–001 11

1: Using Memory Management Policy Modules

On success, this call returns a nonnegative integer and the policy module internal
data in pm_stat. On error, the call returns a negative integer and errno is set to the
corresponding error code.

Setting the Page Size

You can modify the page size of a policy module by using the following memory
management control interface (MMCI) call:

int pm_setpagesize(pmo_handle_t pm_handle, size_t page_size);

The pm_handle argument identifies the policy module for which you are changing
page size. The page_size argument is the requested page size.

On success, this call returns a nonnegative integer. On error, it returns a negative
integer with errno set to the corresponding error code.

Using Locality Management
One of the most important goals of memory management in a ccNUMA system like
the SGI 2000 or a NUMAflex system like the SGI Orgin 3000 series of systems is the
maximization of locality.

The scenario presented in Figure 1-3, page 12 shows a shared memory application
using 4 processes that you want to run on an SGI 2000 system.

Application ccNUMA system

Address
space

Processes

R R

R R

R R

R R

Figure 1-3 Basic Scenario

12 007–4533–001

Memory Management Control Programmer’s Manual

Figure 1-4, page 13, shows the kind of memory access patterns produced by this
application. The memory accesses issued by each process produce 90% of the cache
misses of a process to a an almost unshared section of memory, 5% to a section of
memory shared with another process, and another 5% to a section of memory shared
with a third process.

Application ccNUMA system

Address
space

Processes

R R

R R

R R

R R

5
90

90

90

90

5
5

5
5

5
5

5

Figure 1-4 Memory Access Reference Patterns

If you do not pay attention to locality, you may end up with memory and processors
mapped to hardware, as shown in Figure 1-5. A couple of processes may end up
running on one corner of the machine and the other processes may end up running in
the exact opposite corner, causing the memory section shared by the second and third
process to present very long latencies for one of the pairs.

Application ccNUMA system

Address
space

Processes

R R

R R

5
90

90

90

90

5
5

5
5

5
5

5

R R

R R

Figure 1-5 An Application Badly Mapped to Hardware

007–4533–001 13

1: Using Memory Management Policy Modules

And it turns out, this is not all that bad in that you could potentially end up with
each process running on different distant nodes and memory mapped on another set
of completely different distant nodes. This chaotic mapping is shown in Figure 1-6,
page 14.

Application ccNUMA system

Address
space

Processes

5
90

90

90

90

5
5

5
5

5
5

5

R R

R R

R R

R R

Figure 1-6 Chaotic Mapping to Hardware

The IRIX operating system uses several mechanisms to manage locality and avoid the
scenarios preceding:

• It schedules memory in such a way that applications can allocate large amounts of
relatively close memory pages.

• It performs topology-aware initial memory placement.

• It provides a topology-aware process scheduler fully cognizant of the memory
affinity exhibited by processes.

• It allows and encourages application writes to provide initial placement hints,
using high level tools, environment variables, or direct system calls.

• It allows users to select different policies for the most important memory
management operations.

The following sections of this manual describe each one of these items.

14 007–4533–001

Memory Management Control Programmer’s Manual

The Placement Policy

The placement policy defines the algorithm used by the physical memory allocator to
decide what memory source to use to allocate a page in a multinode ccNUMA or
NUMAflex machine. The goal of this algorithm is to place memory in such a way
that local accesses are maximized.

The optimal placement algorithm would have pre-knowledge of the exact number of
cache misses triggered by each thread sharing the page it is about to place. Using this
knowledge, the algorithm would place the page on the node where the thread
generating the most cache misses is running, assuming that thread always runs on the
same node.

Unfortunately, the placement algorithm does not have perfect previous knowledge.
The algorithm has to be based on heuristics that predict the memory access patterns
and cache misses on a page or on user provided hints.

For example, Figure 1-7, page 15 shows a placement policy that maximizes access.
Two processes are executed on the 2 CPUs in a node, the other 2 processes are
executed on the CPUs of adjacent nodes; and memory for the first pair of processes is
allocated from the first node, and memory for the second pair of processes is
allocated from the second node.

Application ccNUMA system

Address
space

Processes

5
90

90

90

90

5
5

5
5

5
5

5

Node A

Node B

R R

R R

R R

R R

Figure 1-7 Desired Placement, Physical View

All placement policies are based on two abstractions of physical memory nodes:

• Memory locality domains (MLDs)

• Memory locality domain sets (MLD sets)

007–4533–001 15

1: Using Memory Management Policy Modules

Memory Locality Domains

An MLD with center c and radius r is a source of physical memory composed of all
memory nodes within a “hop distance” r of a center node c.

Figure 1-8, page 16, shows two MLDs. The left MLD has a radius of 0, meaning that
no network hops are needed in order to access memory from a processor attached to
its center node. The right MLD has a radius of 1, indicating that at most one network
hop is needed to access memory from a processor attached to its center node.

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Mld of radius 0
mapped to a
physical memory
node

Mld of radius 1
mapped to two
phys nodes
connected to
a router

Figure 1-8 Memory Locality Domains

MLDs may be interpreted as virtual memory nodes. Normally, the application writer
defining MLDs specifies the MLD radius, and lets the operating system decide where
it will be centered. The operating system tries to choose a center according to current
memory availability and other placement parameters that the user may have specified
such as device affinity and topology.

You can create MLDs using the following MMCI call:

pmo_handle_t mld_create(int radius, long size);

The radius argument defines the MLD radius and the argument size is a hint
specifying approximately how much physical memory will be required for this MLD.

16 007–4533–001

Memory Management Control Programmer’s Manual

On success, this call returns a handle for the newly created MLD. On failure, this call
returns a negative long integer and errno is set to the corresponding error code.

MLDs are not placed when they are created. The MLD handle returned by the
constructor cannot be used until the MLD has been placed by making it part of an
MLDSET.

For this example application, you would create two MLDs as shown in Figure 1-9,
page 17.

Application

Address
space

Processes

5
90

90

90

90

5
5

5
5

5
5

5

MLD 0

MLD 1

Fixed

Fixed

Figure 1-9 Desired Placement Based on MLDs

You can also destroy MLDs that are no longer being used with the following call:

int mld_destroy(pmo_handle_t mld_handle);

The argument mld_handle is the handle returned by the mld_create function. On
success, this call returns a non-negative integer. On failure, it returns a negative
integer and errno is set to the corresponding error code.

Memory Locality Domain Sets

Memory locality domain sets (MLD sets) address the issue of placement topology and
device affinity. For this example application, you could create two MLDs, but if no
topological information is specified, the system would be free to place them anywhere
(see Figure 1-10, page 18). You want the two MLDs to be placed as close as possible.

007–4533–001 17

1: Using Memory Management Policy Modules

Application

Address
space

Processes

5
90

90

90

90

5
5

5
5

5
5

5

MLD 0

MLD 1

Fixed

Fixed

Shape?

Figure 1-10 Placement Hints Specifying a Topology

An MLDSET is a group of MLDs with an associated topology and device (resource, in
general) affinity, as shown in Figure 1-11, page 18.

Application

Address
space

Processes

5
90

90

90

90

5
5

5
5

5
5

5

MLD 0

MLD 1

Fixed

Fixed

1-D cube Graphics

MLDSET

Figure 1-11 Memory Locality Domain Sets

You can create MLDSETs using the following MMCI call:

pmo_handle_t mldset_create(pmo_handle_t* mldlist, int mldlist_len);

The mldlist argument is an array of MLD handles containing all the MLDs you
want to make part of the new MLDSET, and the mldlist_len argument is the
number of MLD handles in the array.

18 007–4533–001

Memory Management Control Programmer’s Manual

On success, this call returns an MLDSET handle. On failure, this call returns a
negative long integer and errno is set to the corresponding error code.

This call creates only a basic MLDSET without any placement information. An
MLDSET in this state is useful just to specify groups of MLDs that have already been
placed. In order to have the operating system place this MLDSET, and therefore place
all the MLDs that are now members of this MLDSET, you have to specify the desired
MLDSET topology and device affinity, using the following MMCI call:

int mldset_place(pmo_handle_t mldset_handle,

topology_type_t topology_type,
raff_info_t* rafflist,

int rafflist_len,

rqmode_t rqmode);

The mldset_handle argument is the MLDSET handle returned by the
mldset_create function and it identifies the MLDSET that the user is placing. The
topology_type argument specifies the topology the operating system should
consider in order to place this MLDSET, which can be one of the following:

• TOPOLOGY_FREE

This topology specification allows the operating system to determine what shape
to use to allocate the set. The operating system tries to place this MLDSET on a
cluster of physical nodes as compact as possible, depending on the current system
load

• TOPOLOGY_CUBE

This topology specification is used to request a cube-like shape.

• TOPOLOGY_CUBE_FIXED

This topology specification is used to request a perfect cube.

• TOPOLOGY_PHYSNODES

This topology specification is used to request that the MLDs in an MLDSET be
placed in the exact physical nodes enumerated in the device affinity list, described
in the following topology_type_t type:

/*

* Topology types for mldsets
*/

typedef enum {

007–4533–001 19

1: Using Memory Management Policy Modules

TOPOLOGY_FREE,
TOPOLOGY_CUBE,

TOPOLOGY_CUBE_FIXED,

TOPOLOGY_PHYSNODES,

TOPOLOGY_LAST

} topology_type_t;

The topology_type_t type is defined in the sys/pmo.h file.

The rafflist argument is used to specify resource affinity. It is an array of resource
specifications using the structure shown below:

/*
* Specification of resource affinity.

* The resource is specified via a

* file system name (dev, file, etc).

*/

typedef struct raff_info {
void* resource;

ushort reslen;

ushort restype;

ushort radius;

ushort attr;

} raff_info_t;

The resource, reslen, and restype fields define the resource. The resource
field is used to specify the name of the resource, the reslen field must always be set
to the actual number of bytes to which the resource pointer points, and the restype
field specifies the kind of resource identification being used, which can be any of the
following:

• RAFFIDT_NAME

This resource identification type should be used for the cases where a hardware
graph pathname is used to identify the device.

• RAFFIDT_FD

This resource identification type should be used for the cases where a file
descriptor is being used to identify the device.

The radius field defines the maximum distance from the actual resource where you
want the MLDSET to be placed. The attr field specifies whether you want the
MLDSET to be placed closed or far from the resource:

20 007–4533–001

Memory Management Control Programmer’s Manual

• RAFFATTR_ATTRACTION

The MLDSET should be placed as close as possible to the specified device.

• RAFFATTR_REPULSION

The MLDSET should be placed as far as possible from the specified device.

The rafflist_len argument in the mldset_place call specifies the number of
raff structures the process is passing via rafflist.

Finally, the rqmode argument is used to specify whether the placement request is
ADVISORY or MANDATORY:

/*

* Request types

*/

typedef enum {

RQMODE_ADVISORY,
RQMODE_MANDATORY

} rqmode_t;

On success, the mldset_place call returns a nonnegative integer on success. On
failure, it returns a negative integer and errno is set to the corresponding error code.

The IRIX operating system places the MLDSET by finding a section of the machine
that meets the requirements of topology, device affinity, and expected physical
memory used, as shown in Figure 1-12.

007–4533–001 21

1: Using Memory Management Policy Modules

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Compact
group, close
to graphics

1-D cube,
close to disk

3-D cube, with
no resource

affiliation

Figure 1-12 MLDSET Placement

Users can destroy MLDSETs using the following call:

int mldset_destroy(pmo_handle_t mldset_handle);

The mldset_handle argument identifies the MLDSET to be destroyed.

On success, this call returns a nonnegative integer. On failure, it returns a negative
integer and errno is set to the corresponding error code.

Linking Execution Threads to MLDs

After creating MLDs and placing them using an MLDSET, you can create a policy
module that makes use of these memory sources and attach sections of a virtual
address space to this policy module, as shown in Figure 1-13, page 23.

22 007–4533–001

Memory Management Control Programmer’s Manual

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Compact
group, close
to graphics

1-D cube,
close to disk

3-D cube, with
no resource

affiliation

Figure 1-13 Policy Module, Memory Locality Domains, and Memory Locality Domain Sets

You still need to make sure that the application threads will be executed on the nodes
where you are allocating memory. To ensure this, you need to link threads to MLDs
using the following call:

int process_mldlink(pid_t pid, pmo_handle_t mld_handle);

The pid argument is the process ID of the process to be linked to the MLD specified
by the mld_handle argument. On success, this call return a nonnegative integer. On
failure, it returns a negative integer and errno is set to the corresponding error code.

After using this call on the example application, linking the first two processes to
MLD0 and the last two processes to MLD1, you end up with the scenario shown in
Figure 1-14, page 24.

007–4533–001 23

1: Using Memory Management Policy Modules

MLD 0

MLD 1

MLDSET
ccNUMA system

R R

R R

R R

R R

Plac

PSZ

Fbck

Migr

Repl

Paging

Plac

PSZ

Fbck

Migr

Repl

Paging

How? Where?

1-D cube

Graphics

PM

PM

Fixed

Application

Address
space

Processes

5
90

90

90

90

5
5

5
5

5
5

5

Figure 1-14 Processes Linked to MLDs

Available Placement Policies

Currently, the following placement policies are supported:

• PlacementDefault

• PlacementRoundRobin

• PlacementFixed

• PlacementFirstTouch

• PlacementThreadLocal

Name Spaces for Memory Management Control
The memory management control module uses two name spaces as follows:

• Policy name space

This is a global system name space that contains all the policies that have been
exported and therefore are available to users. The domain of this name space is

24 007–4533–001

Memory Management Control Programmer’s Manual

the set of exported policy names, strings of characters such as
PlacementDefault, and its range is the corresponding set of policy constructors.

Internally, the operating system searches for each name in the policy name space
thereby obtaining the constructors for each of the specified policies, which are
used to initialize the actual internal policy module object.

• Policy management object name space

This is a per-process group, either shared (sproc processes) or not shared (fork
processes), name space used to store handles for all the policy management objects
that have been created within the context of any of the members of the process
group.

The domain of this name space is the set of policy management object (PMO)
handles and its range is the set of references (internal kernel pointers) to the PMOs.

PMO handles can refer to any of several kinds of policy management objects:

– Policy modules

– Memory locality domains (MLDs)

– Memory locality domain sets (MLDSETs

The PMO name space is inherited at fork or sproc time and is created at exec time.

007–4533–001 25

Chapter 2

Using Multiple Page Sizes

This chapter describes how to use the multiple page size support provided by the IRIX
kernel to improve the performance of an application. It covers the following topics:

• "User Interface to Multiple Page Sizes", page 28

• "Recommended Page Sizes", page 30

• "Tunable Parameters", page 30

• "Caveats", page 32

Introduction
The IRIX operating system maps the virtual memory of a process into physical
memory in chunks called pages. Whenever a process accesses its address space, the
virtual memory address is translated to a physical memory address by the processor.
The recently used translations are cached in a table inside the processor called the
translation lookaside buffer (TLB).

Each TLB entry maps a page. The number of TLB entries for a processor is limited. If
a translation is not found in the TLB, the processor raises a TLBMISS exception to the
software. The number of TLBMISS exceptions a process can withstand depends upon
its working set.

The working set is the range of address space the process needs to run. If the
working set is large or if the process has a poor locality of reference, the process will
incur more TLBMISS exceptions. Each TLBMISS exception has a small overhead and
if a process has a lot of TLBMISS exceptions, the overhead can significantly affect the
performance of the process.

Tools such as perfex(1) can be used to measure the number of TLB misses a process
incurs during its run. The range of memory that can be mapped by a TLB depends
on the page size. By increasing the page size, a larger range of memory can be
mapped by the TLB. This results in a reduction in TLB misses and improves the
performance of an application.

007–4533–001 27

2: Using Multiple Page Sizes

User Interface to Multiple Page Sizes
The policy module (PM) interface can be used to set a page size for an address range
in the address space of a process. For more information on policy modules, see
Chapter 1, "Using Memory Management Policy Modules", page 1. The following
example illustrates a how to set a page size for a piece of an address space of a
process. The program sets a 64K page size to its text and it allocates a buffer in its
BSS (that is, how much space the kernel should allocate for uninitialized data,
historically called bss for “block started by symbol”). The program is as follows:

#define PAGE_SIZE 65536

#define BUFSIZE 6*PAGE_SIZE

char buf[BUFSIZE];

policy_set_t policy = {

PlacementDefault, (void *)1,
FallbackLargepage, NULL,

ReplicationDefault, NULL,

MigrationDefault, NULL,

PagingDefault, NULL,

PAGE_SIZE

};

/*

* Creates a PM with a particular page size and attaches it to a specific

* address range.
*/

int

set_page_size(int size, char *vaddr, int len)

{
pmo_handle_t pm;

/*

* Set the page size.

*/

policy.page_size = size;

28 007–4533–001

Memory Management Control Programmer’s Manual

/*

* Create a PM.

*/

pm = pm_create(&policy);

if (pm < 0) {

perror("pm_create");

return -1;

}

/*

* Attach the PM to the virtual address range.

*/

if (pm_attach(pm, vaddr, len) < 0) {

perror("pm_attach");
return -1;

}

return 0;

}

main()

{

extern int _ftext[];

extern int etext[];

int len;
char *ftext;

volatile char *vaddr;

/*

* Compute text start and length.
*/

ftext = (char *)_ftext;

ftext = (char *)((long)ftext & (~(0x4000 -1)));

len = ((char *)etext - ftext);

/*
* Set the page size as 64K for the process text and

* the buffer buf.

007–4533–001 29

2: Using Multiple Page Sizes

*/

if (set_page_size(PAGE_SIZE, ftext, len) == -1) {

exit(1);

}

if (set_page_size(PAGE_SIZE, buf, sizeof(buf)) == -1) {

exit(1);

}

}

Recommended Page Sizes
The page sizes supported depends on the base page size of the system. The base page
size can be obtained by using the getpagesize(2) system call. Currently, IRIX
supports two page sizes, 16 KB and 4 KB.

On systems with 16K page size, the following page sizes are supported: 16 KB, 64 KB,
256 KB, 1 MB, 4 MB, and 16 MB.

On systems with 4K page size, the following page sizes are supported: 4 KB, 16 KB,
256 KB, 1 MB, 4 MB, and 16 MB.

In general, for most applications, 4 KB, 16 KB, and 64 KB page sizes are sufficient to
eliminate TLBMISS overhead.

Tunable Parameters
To adjust page sizes for your system adjust the following parameters:

• "Coalescing Parameters", page 30

• "Reserving Large Pages", page 31

Coalescing Parameters

The IRIX kernel attempts to keep a percentage of total free memory in the system at a
certain page size. It periodically attempts to coalesce a chunk of adjacent pages to
form a larger page. The following tunable parameters specify the upper limit for the

30 007–4533–001

Memory Management Control Programmer’s Manual

number of free pages at a particular page size. If your system does not need large
page sizes, you can set these tunable parameters to zero. The tunables parameters are
as follows:

• percent_totalmem_16k_pages

• percent_totalmem_64k_pages

• percent_totalmem_256k_pages

• percent_totalmem_1m_pages

• percent_totalmem_4m_pages

• percent_totalmem_16m_pages

These parameters specify the percentage of total memory that can be used as an
upper limit for the number of pages in a specific page size. For example, setting the
percent_totalmem_64k_pages parameter to 20, implies that the coalescing
mechanism will try to limit the number of free 64 KB pages to 20% of the total
memory in the system. These tunable parameters can be tuned dynamically at run
time. Note that very large pages, greater or equal to 1 MB, are harder to coalesce
dynamically during run time on a busy system. It is recommended that these tunable
parameter be set during boot time in such cases. Setting these tunable parameters to a
high value can result in high coalescing activity. If the system runs low on memory,
the large pages can be split into lower sized pages as needed. The default value for
all these parameters is zero.

Reserving Large Pages

As said earlier, it is hard to coalesce very large pages, greater than 1 MB, at run time
due to fragmentation of physical memory. Applications, which need such pages, can
set tunable parameters to reserve large pages during boot time. They are specified as
the number of pages. The tunables parameters are as follows:

• nlpages_64k

• nlpages_256k

• nlpages_1m

• nlpages_4m

• nlpages_16m

007–4533–001 31

2: Using Multiple Page Sizes

For example, setting nlpages_4m to 4 will result in the system reserving four 4
Mybes pages to be reserved during boot time. If the system runs low on memory, the
reserved pages can be split down to lower sized pages for use by other applications.
You can use the osview(1) command to view the number of free pages available at a
particular page size. The default value for all these parameters is zero.

Caveats
If the kernel fails to allocate a large page for the process, it uses a page of the lowest
page size. The same is true if the virtual address range is smaller than the page size.
For the best performance, the starting virtual address should be aligned at
2*page_size boundary and should be of a length that is a multiple of 2*page_size.
This is mostly due to the R4000 and R10000 processor limitations.

32 007–4533–001

Index

A

available memory policies, 6

B

block started by symbol (BSS), 28

C

creating a policy module, 4

D

destroying a policy module, 10

G

getpagesize system call, 30

L

linking execution threads to MLDs, 22
locality management, 12

M

memory architecture, 1
memory locality domain sets (MLDSETs), 17
memory locality domains (MLD), 16
memory management control interface, 5, 8

memory placement, 2
memory placement policies

first touch, 3
fixed, 3
round-robin, 3

migration, 2
MMCI

See "memory management control interface ", 8

N

name spaces for memory management control, 24
NUMAflex memory architecture, 1

P

page size, 2
page size caveats, 32
page sizes, 7, 28
paging, 2
placement and page-size fall back, 2
placement policies

description
PlacementDefault, 24
PlacementFirstTouch, 24
PlacementFixed, 24
PlacementRoundRobin, 24
PlacementThreadLocal, 24

placement policy, 15
policy module, 4

creating, 4
policy modules, 1
policy status of an address space, 11
policy_set_t structure, 5

007–4533–001 33

Index

R

recommended page sizes, 30
replication, 2

S

setting the page size, 12

T

TLBMISS exception, 27
translation lookaside buffer (TLB), 27
tunable parameters

coalescing parameters, 30
large page reservation, 30

U

uninitialized data, 28
user interface to multiple page sizes, 28

V

virtual address space, 2
virtual memory operations

memory placement, 1
migration, 1
page size, 1
paging, 1
placement and page-size fall back, 1
replication, 1

34 007–4533–001

	Table of Contents
	List of Figures
	List of Tables

	About This Manual
	Related Publications
	Conventions
	Obtaining Publications
	Reader Comments

	1. Using Memory Management Policy Modules
	Policy Modules
	Policy Module Operations
	Creating a Policy Module
	Memory Management Control Interface
	Available Policies
	Page Sizes
	Association of Virtual Address Space Sections to Policy Modules
	Default Policies
	Destruction of a Policy Module
	Policy Status of an Address Space
	Setting the Page Size

	Using Locality Management
	The Placement Policy
	Memory Locality Domains
	Memory Locality Domain Sets
	Linking Execution Threads to MLDs
	Available Placement Policies

	Name Spaces for Memory Management Control

	2. Using Multiple Page Sizes
	Introduction
	User Interface to Multiple Page Sizes
	Recommended Page Sizes
	Tunable Parameters
	Coalescing Parameters
	Reserving Large Pages

	Caveats

	Index

