
Linux® Application Tuning Guide

007–4639–005

CONTRIBUTORS

Written by Jean Wilson and Terry Schultz
Illustrated by Chrystie Danzer
Production by Karen Jacobson
Engineering and other contributions by Rich Altmaier, John Baron, Beverly Bernard, Ray Bryant, Gerardo Cisneros, Tom Elken, Martyn
Foster, Ayad Jassim, Kevin McMahon, Steve Neuner, Jean-Pierre Panziera, Arthur Raefsky

COPYRIGHT
© 2003, 2004, 2005, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, Altix, IRIX, and XFS are registered trademarks and NUMAflex, OpenMP, Performance Co-Pilot,
SGI Linux, SGI ProPack, and SHMEM are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.

Cray is a registered trademark of Cray, Inc. Dinkumware is a registered trademark of Dinkumware, Ltd. Intel, GuideView, Itanium,
KAP/Pro Toolset, and VTune are trademarks or registered trademarks of Intel Corporation, in the United States and other countries.
Java is a registered trademark of Sun Microsystems, Inc., in the United States and other countries. Linux is a registered trademark of
Linus Torvalds, used with permission by Silicon Graphics, Inc. Red Hat is a registered trademark of Red Hat, Inc. PostScript is a
trademark of Adobe Systems Incorporated. TotalView is a registered trademark of Etnus, LLC. Windows is a registered trademark of
Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.

New Features in This Manual

This rewrite of the Linux Application Tuning Guide supports the SGI ProPack 3 Service
Pack 6 and SGI ProPack 4 for Linux Service Pack 2 operating systems.

Major Documentation Changes
Updates throughout the manual to reflect differences between SGI ProPack 3 for
Linux and SGI ProPack 4 for Linux releases.

The runon(1) command is a deprecated package on the SGI ProPack 4 for Linux
Service Pack 2 release as described in "runon Command" on page 43. You can use
the taskset(1) command to retrieve or set the CPU affinity of a process.

Added information about using the dplace(1) thread placement command in
"dplace for Compute Thread Placement Troubleshooting Case Study" on page 47.

007–4639–005 iii

Record of Revision

Version Description

001 October 2003
Original publication.

002 May 2004
Updated to support the SGI ProPack 3 for Linux release.

003 August 2004
Updated to support the SGI ProPack 3 for Linux Service Pack 1
release.

004 January 2005
Updated to support the SGI ProPack 3 for Linux Service Pack 3
release.

005 August 2005
Updated to support the SGI ProPack 4 for Linux Service Pack 2
release.

007–4639–005 v

Contents

About This Document xi

Related Publications . xi

Related Operating System Documentation xi

Hardware Reference Manuals xii

Application Guides . xiii

Conventions . xiii

Obtaining Publications . xiv

Reader Comments . xiv

1. System Overview . 1

Scalable Computing . 1

An Overview of Altix Architecture 2

The Basics of Memory Management 3

2. The SGI Compiling Environment 5

Compiler Overview . 5

Modules . 6

Library Overview . 7

Static Libraries . 7

Dynamic Libraries . 7

C/C++ Libraries . 7

Shared Memory Libraries . 8

Other Compiling Environment Features 8

3. Performance Analysis and Debugging 11

007–4639–005 vii

Contents

Determining System Configuration 11

Sources of Performance Problems 12

Profiling with pfmon . 13

Profiling with profile.pl 13

profile.pl with MPI programs 14

Using histx . 14

histx Data Collection . 14

histx Filters . 17

histx Event Sources and Types of Sampling 17

Using VTune for Remote Sampling 18

Using GuideView . 18

Other Performance Tools . 19

Debugging Tools . 20

Using ddd . 21

4. Monitoring Tools . 25

System Monitoring Tools . 25

Hardware Inventory and Usage Commands 25

hinv(1) Command . 26

topology(1) Command 26

gtopology(1) Command 28

Performance Co-Pilot Monitoring Tools 30

pmshub(1) Command . 31

shubstats(1) Command 31

linkstat(1) Command 32

Other Performance Co-Pilot Monitoring Tools 32

System Usage Commands . 34

viii 007–4639–005

Linux
®

Application Tuning Guide

5. Data Placement Tools 41

Data Placement Tools Overview 41

runon Command . 43

dplace Command . 43

Using the dplace Command 44

dplace for Compute Thread Placement Troubleshooting Case Study 47

dlook Command . 50

Using the dlook Command 50

Installing NUMA Tools . 56

6. Performance Tuning 57

Single Processor Code Tuning 57

Getting the Correct Results 58

Managing Heap Corruption Problems 58

Using Tuned Code . 60

Determining Tuning Needs 60

Using Compiler Options Where Possible 61

Tuning the Cache Performance 62

Managing Memory . 64

Multiprocessor Code Tuning . 64

Data Decomposition . 65

Parallelizing Your Code . 66

Use MPT . 67

Use OpenMP . 67

Use Compiler Options . 68

Identifying Parallel Opportunities in Existing Code 68

Fixing False Sharing . 68

Using dplace and runon . 69

007–4639–005 ix

Contents

Environment Variables for Performance Tuning 70

Understanding Parallel Speedup and Amdahl’s Law 71

Adding CPUs to Shorten Execution Time 71

Understanding Parallel Speedup 72

Understanding Superlinear Speedup 73

Understanding Amdahl’s Law 73

Calculating the Parallel Fraction of a Program 74

Predicting Execution Time with n CPUs 74

Floating-point Programs Performance 75

7. Suggested Shortcuts and Workarounds 77

Determining Process Placement 77

Example Using pthreads . 78

Example Using OpenMP . 80

Combination Example (MPI and OpenMP) 81

Resetting System Limits . 84

Resetting the File Limit Resource Default 85

Resetting the Default Stack Size 86

Index . 87

x 007–4639–005

About This Document

This publication provides information about tuning application programs on the SGI
Altix 3000 family of servers and superclusters and the SGI Altix 350 systems, running
the Linux operating system. Application programs includes Fortran and C programs
written with the Intel-provided compilers on SGI Linux systems.

This document does not include information about configuring or tuning your system.
For details about those topics, see the Linux Configuration and Operations Guide.

This guide is written for experienced programmers, familiar with Linux commands
and with either the C or Fortran programming languages. The focus in this document
is on achieving the highest possible performance by exploiting the features of your
SGI Altix system. The material assumes that you know the basics of software
engineering and that you are familiar with standard methods and data structures. If
you are new to programming or software design, this guide will not be of use.

Related Publications
The following publications provide information that can supplement the information
in this document.

Related Operating System Documentation

The following documents provide information about IRIX and Linux implementations
on SGI systems:

• Linux Installation and Getting Started

• Linux Configuration and Operations Guide

Provides information on how to perform system configuration and operations for
SGI ProPack servers.

• Linux Resource Administration Guide

Provides a reference for people who manage the operation of SGI ProPack servers
and contains information needed in the administration of various system resource
management features such as Comprehensive System Accounting (CSA), Array
Services, CPU memory sets and scheduling, and the Cpuset System.

007–4639–005 xi

About This Document

• SGI ProPack for Linux Start Here

Provides information about the SGI ProPack 3 for Linux Service Pack x release.

• Message Passing Toolkit: MPI Programmer’s Manual

This publication documents the SGI implementation of the Message Passing
Interface (MPI) supported on Linux systems. MPI consists of a library, a profiling
library, and commands that support the MPI interface. MPI is a component of the
SGI Message Passing Toolkit (MPT).

• Message Passing Toolkit (MPT) User’s Guide

Describes industry-standard message passing protocol optimized for SGI
computers.

See the release notes which are shipped with your system for a list of other
documents that are available. All books are available on the Tech Pubs Library at
http://docs.sgi.com.

Release notes for Linux systems are stored in
/usr/share/doc/sgi-scsl-versionnumber/README.relnotes.

Hardware Reference Manuals

The following documents provide information about Altix system hardware.

• SGI Altix 350 System User’s Guide

Provides an overview of the Altix 350 system components, and it describes how to
set up and operate this system.

• SGI Altix 3000 User’s Guide

Provides an overview of the architecture and describes the major components of
the SGI Altix 3000 family of servers and superclusters. It also describes the
standard procedures for powering up and powering down the system, provides
basic troubleshooting information, and includes important safety and regulatory
specifications.

• SGI Altix 3700 Bx2 User’s Guide

This guide provides an overview of the architecture and descriptions of the major
components that compose the SGI Altix 3700 Bx2 family of servers. It also provides

xii 007–4639–005

Linux
®

Application Tuning Guide

the standard procedures for powering on and powering off the system, basic
troubleshooting information, and important safety and regulatory specifications.

Application Guides

The following documentation is provided for the compilers and performance tools
which run on SGI Linux systems:

• http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html

• http://intel.com/software/perflib; documentation for Intel compiler products can
be downloaded from this website.

• http://developer.intel.com/software/products/vtune/vtune61/index.htm/

• Information about the OpenMP Standard can be found at
http://www.openmp.org/specs.

Conventions
The following conventions are used in this documentation:

[] Brackets enclose optional portions of a command or
directive line.

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

... Ellipses indicate that a preceding element can be
repeated.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

variable Italic typeface denotes variable entries and words or
concepts being defined.

007–4639–005 xiii

About This Document

manpage(x) Man page section identifiers appear in parentheses after
man page names.

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, enter infosearch at a command line or select Help >
InfoSearch from the Toolchest.

• On IRIX systems, you can view release notes by entering either grelnotes or
relnotes at a command line.

• On Linux systems, you can view release notes on your system by accessing the
README.txt file for the product. This is usually located in the
/usr/share/doc/productname directory, although file locations may vary.

• You can view man pages by typing man title at a command line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

xiv 007–4639–005

Linux
®

Application Tuning Guide

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.

007–4639–005 xv

Chapter 1

System Overview

Tuning an application involves making your program run its fastest on the available
hardware. The first step is to make your program run as efficiently as possible on a
single processor system and then consider ways to use parallel processing.

Application tuning is different from system tuning, which involves topics such as
disk partitioning, optimizing memory management, and configuration of the system.
The Linux Configuration and Operations Guide discusses those topics in detail.

This chapter provides an overview of concepts involved in working in parallel
computing environments.

Scalable Computing
Scalability is computational power that can grow over a large number of CPUs.
Scalability depends on the time between nodes on the system. Latency is the time to
send the first byte between nodes.

A Symmetric Multiprocessor (SMP) is a parallel programming environment in which
all processors have equally fast (symmetric) access to memory. These types of systems
are easy to assemble and have limited scalability due to memory access times.

Another parallel environment is that of arrays, or clusters. Any networked computer
can participate in a cluster. These are highly scalable, easy to assemble, but are often
hard to use. There is no shared memory and there are frequently long latency times.

Massively Parallel Processors (MPPs) have a distributed memory and can scale to
thousands of processors; they have large memories and large local memory
bandwidth.

Scalable Symmetric Multiprocessors (S2MPs), as in the ccNUMA environment,
combine qualities of SMPs and MPPs. They are logically programmable like an SMP
and have MPP-like scability.

007–4639–005 1

1: System Overview

An Overview of Altix Architecture
In order to optimize your application code, some understanding of the SGI Altix
architecture is needed. This section provides a broad overview of the system
architecture.

The SGI Altix 3000 family of servers and superclusters can have as many as 256
processors and 2048 gigabytes of memory. It uses Intel’s Itanium 2 processors and
uses nonuniform memory access (NUMA) in SGI’s NUMAflex global shared-memory
architecture. An SGI Altix 350 system can have as many as 16 processors and 96
gigabytes of memory.

The NUMAflex design permits modular packaging of CPU, memory, I/O, graphics,
and storage into components known as bricks. The bricks can then be combined and
configured into different systems, based on customer needs.

On Altix 3700 systems, two Itanium processors share a common frontside bus and
memory. This constitutes a node in the NUMA architecture. Access to other memory
(on another node) by these processors has a higher latency, and slightly different
bandwidth characteristics. Two such nodes are packaged together in each computer
brick. For a detailed overview, see the SGI Altix 3000 User’s Guide.

On an SGI Altix 3700 Bx2 system, the CR-brick contains the processors (8 processors
per CR-brick) and two internal high-speed routers. The routers connect to other
system bricks via NUMAlink cables and expand the compute or memory capacity of
the Altix 3700 Bx2. For a detailed overview, see the SGI Altix 3700 Bx2 User’s Guide.

All Altix 350 systems contain at least one base compute module that contains the
following components:

• One or two Intel Itanium 2 processors; each processor has integrated L1, L2, and
L3 caches

• Up to 24 GB of local memory

• Four PCI/PCI-X slots

• One IO9 PCI card that comes factory-installed in the lowermost PCI/PCI-X slot
For a detailed overview, see the SGI Altix 350 System User’s Guide.

The system software consists of a standard Linux distribution (Red Hat) and
SGI ProPack, which is an overlay providing additional features such as optimized
libraries and enhanced kernel support. See Chapter 2, "The SGI Compiling
Environment" on page 5, for details about the compilers and libraries included with
the distribution.

2 007–4639–005

Linux
®

Application Tuning Guide

The Basics of Memory Management
Virtual memory (VM), also known as virtual addressing, is used to divide a system’s
relatively small amount of physical memory among the potentially larger amount of
logical processes in a program. It does this by dividing physical memory into pages,
and then allocating pages to processes as the pages are needed.

A page is the smallest unit of system memory allocation. Pages are added to a
process when either a validity fault occurs or an allocation request is issued. Process
size is measured in pages and two sizes are associated with every process: the total
size and the resident set size (RSS). The number of pages being used in a process and
the process size can be determined by using either the ps(1) or the top(1) command.

Swap space is used for temporarily saving parts of a program when there is not
enough physical memory. The swap space may be on the system drive, on an
optional drive, or in a filesystem. To avoid swapping, try not to overburden memory.
Lack of adequate swap space limits the number and the size of applications that can
run simultaneously on the system, and it can limit system performance.

Linux is a demand paging operating system, using a least-recently-used paging
algorithm. On a validity fault, pages are mapped into physical memory when first
referenced and pages are brought back into memory if swapped out.

007–4639–005 3

Chapter 2

The SGI Compiling Environment

This chapter provides an overview of the SGI compiling environment on the SGI
Altix family of servers and superclusters and covers the following topics:

• "Compiler Overview" on page 5

• "Modules" on page 6

• "Library Overview" on page 7

• "Other Compiling Environment Features" on page 8

The remainder of this book provides more detailed examples of the use of the SGI
compiling environment elements.

Compiler Overview
The Intel Fortran and C/C++ compilers are provided with the SGI Altix distribution.
The Fortran compiler supports OpenMP 2.0 and the C/C++ compiler is compatible
with gcc and the C99 standard.

In addition, the GNU Fortran and C compilers are available on Altix systems.

The following is the general form of the compiler command line (note that the
Fortran command is used in this example):

% ifort [options] filename.extension

An appropriate filename extension is required for each compiler, according to the
programming language used (Fortran, C, C++, or FORTRAN 77).

Some common compiler options are:

• -o filename: renames the output to filename.

• -g: produces additional symbol information for debugging.

• -O[level]: invokes the compiler at different optimization levels, from 0 to 3.

• -ldirectory_name: looks for include files in directory_name.

• -c: compiles without invoking the linker; this options produces an a.o file only.

007–4639–005 5

2: The SGI Compiling Environment

Many processors do not handle denormalized arithmetic (for gradual underflow) in
hardware. The support of gradual underflow is implementation-dependent. Use the
-ftz option with the Intel compilers to force the flushing of denormalized results to
zero.

Note that frequent gradual underflow arithmetic in a program causes the program to
run very slowly, consuming large amounts of system time (this can be determined
with the time command). In this case, it is best to trace the source of the underflows
and fix the code; gradual underflow is often a source of reduced accuracy anyway..
prctl(1) allows you to query or control certain process behavior. In a program,
prctl tracks where floating point errors occur.

Modules
A module is a user interface that provides for the dynamic modification of a user’s
environment. By changing the module a user does not have to change environment
variables in order to access the correct compilers, loader, libraries, and utilities.

Modules can be used in the SGI compiling environment to customize the
environment. If the use of modules is not available on your system, its installation
and use is highly recommended.

To view which modules are available on your system, use the following command
(for any shell environment):

% module avail

To load modules into your environment (for any shell), use the following commands:

% module load intel-compilers-latest mpt-1.7.1rel

% module load scsl-1.4.1-1

Note: The above commands are for example use only; the actual release numbers
may vary depending on the version of the software you are using. See the release
notes that are distributed with your system for the pertinent release version numbers.

For details about using modules, see the module man page (you must have the
module man page loaded).

6 007–4639–005

Linux
®

Application Tuning Guide

Library Overview
Libraries are files that contain one or more object (.o) files. Libraries are used to
simplify local software development by hiding compilation details. Libraries are
sometimes also called archives.

The SGI compiling environment contains several types of libraries; an overview about
each library is provided in this subsection.

Static Libraries

Static libraries are used when calls to the library components are satisfied at link time
by copying text from the library into the executable. To create a static library, use the
ar(1), or an archiver command.

To use a static library, include the library name on the compiler’s command line. If
the library is not in a standard library directory, be sure to use the -L option to
specify the directory and the -l option to specify the library filename.

To build an appplication to have all static versions of standard libraries in the
application binary, use the -static option on the compiler command line.

Dynamic Libraries

Dynamic libraries are linked into the program at run time and when loaded into
memory can be accessed by multiple programs. Dynamic libraries are formed by
creating a Dynamic Shared Object (DSO).

Use the link editor command (ld(1)) to create a dynamic library from a series of
object files or to create a DSO from an existing static library.

To use a dynamic library, include the library on the compiler’s command line. If the
dynamic library is not in one of the standard library directories, use the -rpath
compiler option during linking. You must also set the LD_LIBRARY_PATH
environment variable to the directory where the library is stored before running the
executable.

C/C++ Libraries

The following C/C++ libraries are provided with the Intel compiler:

007–4639–005 7

2: The SGI Compiling Environment

• libguide.a, libguide.so: for support of OpenMP-based programs.

• libsvml.a: short vector math library

• libirc.a: Intel’s support for Profile-Guided Optimizations (PGO) and CPU
dispatch

• libimf.a, libimf.so: Intel’s math library

• libcprts.a, libcprts.so: Dinkumware C++ library

• libunwind.a, libunwind.so: Unwinder library

• libcxa.a, libcxa.so: Intel’s runtime support for C++ features

Shared Memory Libraries

The Shared Memory Access Library (libsma) is part of the Message Passing Toolkit
(MPT) product on SGI Altix systems. The library routines operate on remote and
local memory. Unlike message passing, shared memory (shmem) routines do not
require the sender-receiver pair and have minimal overhead and latency, while
providing maximum data bandwidth.

The shmem routines have the following supported operations:

• Remote data transfer

• Atomic swap

• Atomic increment

• Work-shared broadcast and reduction

• Synchronization

For details about using the shmem routines, see the intro_shmem man page or the
Message Passing Toolkit: MPI Programmer’s Manual.

Other Compiling Environment Features
The SGI compiling environment includes several other products as part of its
distribution:

8 007–4639–005

Linux
®

Application Tuning Guide

• idb: the Intel debugger (available if your system is licensed for the Intel
compilers). This is a fully symbolic debugger and supports Fortran, C, and C++
debugging.

• gdb: the GNU project debugger, which supports C, C++ and Modula-2. It also
supports Fortran 95 debugging when the gdbf95 patch is installed.

• ddd: a graphical user interface to gdb and the other debuggers.

• TotalView: a licensed graphical debugger useful in an MPI environment (see
http://www.entus.com/

These and other performance analysis tools are discussed in Chapter 3, "Performance
Analysis and Debugging" on page 11.

007–4639–005 9

Chapter 3

Performance Analysis and Debugging

Tuning an application involves determining the source of performance problems and
then rectifying those problems to make your programs run their fastest on the
available hardware. Performance gains usually fall into one of three categories of
mesured time:

• User CPU time: time accumulated by a user process when it is attached to a CPU
and is executing.

• Elapsed (wall-clock) time: the amount of time that passes between the start and
the termination of a process.

• System time: the amount of time performing kernel functions like system calls,
sched_yield, for example, or floating point errors.

Any application tuning process involves:

1. Analyzing and identifying a problem

2. Locating where in the code the problem is

3. Applying an optimization technique

This chapter describes the process of analyzing your code to determine performance
bottlenecks. See Chapter 6, "Performance Tuning" on page 57, for details about tuning
your application for a single processor system and then tuning it for parallel
processing.

Determining System Configuration
One of the first steps in application tuning is to determine the details of the system
that you are running. Depending on your system configuration, different options may
or may not provide good results.

To determine the details of the system you are running, you can browse files from the
/proc pseudo-filesystem (see the proc(5) man page for details). Following is some
of the information you can obtain:

• /proc/cpuinfo: displays processor information, one entry per processor. Use
this to determine clock speed and processor stepping.

007–4639–005 11

3: Performance Analysis and Debugging

• /proc/meminfo: provides a global view of system memory usage, such as total
memory, free memory, swap space, and so on.

• /proc/discontig: shows memory usage (in pages).

• /proc/pal/cpu0/cache_info: provides detailed information about L1, L2, and
L3 cache structure, such as size, latency, associativity, line size, and so on. Other
files in /proc/pal/cpu0 provide information about the Translation Lookaside
Buffer (TLB) structure, clock ratios, and other details.

• /proc/version: provides information about the installed kernel.

• /proc/perfmon: if this file does not exist in/proc (that is, if it has not been
exported), performance counters have not been started by the kernel and none of
the performance tools that use the counters will work.

• /proc/mounts: provides details about the filesystems that are currently mounted.

• /proc/modules: contains details about currently installed kernel modules.

You can also use the uname command, which returns the kernel version and other
machine information. In addition, the topology command displays system
configuration information. See Chapter 4, "Monitoring Tools" on page 25 for more
information.

Sources of Performance Problems
There are usually three areas of program execution that can have performance
slowdowns:

• CPU-bound processes: processes that are performing slow operations (such as
sqrt or floating-point divides) or non-pipelined operations such as switching
between add and multiply operations.

• Memory-bound processes: code which uses poor memory strides, occurrences of
page thrashing or cache misses, or poor data placement in NUMA systems.

• I/O-bound processes: processes which are waiting on synchronous I/O, formatted
I/O, or when there is library or system level buffering.

Several profiling tools can help pinpoint where performance slowdowns are
occurring. The following sections describe some of these tools.

12 007–4639–005

Linux
®

Application Tuning Guide

Profiling with pfmon

The pfmon tool is a performance monitoring tool designed for Linux. It uses the
Itanium Performance Monitoring Unit (PMU) to count and sample unmodified
binaries. In addition, it can be used for the following tasks:

• To monitor unmodified binaries in its per-CPU mode.

• To run system-wide monitoring sessions. Such sessions are active across all
processes executing on a given CPU.

• Launch a system-wide session on a dedicated CPU or a set of CPUs in parallel.

• Monitor activities happening at the user level or at the kernel level.

• Collect basic hardware event counts (There are 477 hardware events.)

• Sample program or system execution, monitoring up to four events at a time.

To see a list of available options, use the pfmon -help command. You can only run
pfmon one CPU or conflict at a time.

Profiling with profile.pl

The profile.pl script handles the entire user program profiling process. Typical
usage is as follows:

% profile.pl -c0-3 -x6 command args

This script designates processors 0 through 3. The -x6 option is necessary only for
OpenMP codes. The x-6 option is used for ProPack 2.4 using glibc 2.2.4 and
linuxthreads. If the application is built on SGI ProPack 3 for Linux using the Native
Posix Thread Library (NPTL), use the -x2 option. In ProPack 3, to revert to the to old
Linux threads behavior, set the following kernel parameter;

setenv LD_ASSUME_KERNEL 2.4.19

The result is a profile taken on the CPU_CYCLES PMU event and placed into
profile.out. This script also supports profiling on other events such as
IA64_INST_RETIRED, L3_MISSES, and so on; see pfmon -l for a complete list of
PMU events. The script handles running the command under the performance
monitor, creating a map file of symbol names and addresses from the executable and
any associated dynamic libraries, and running the profile analyzer.

007–4639–005 13

3: Performance Analysis and Debugging

See the profile.pl(1), analyze.pl(1), and makemap.pl(1) man pages for details.
You can run profile.pl one at a time per CPU or conflict. Profiles all processes on
the specified CPUs.

profile.pl with MPI programs

For MPI programs, use the profile.pl command with the -s1 option, as in the
following example:

% mpirun -np 4 profile.pl -s1 -c0-3 test_prog </dev/null

The use of /dev/null ensures that MPI programs run in the background without
asking for TTY input.

Using histx

The histx software is a set of tools used to assist with application performance
analysis. It includes three data collection programs and three filters for performance
data post-processing and display. The following sections describe this set of tools.

histx Data Collection

Three programs can be used to gather data for later profiling:

• histx: A profiling tool that can sample either the program counter or the call
stack.

The histx data collection programs monitors child processes only, not all
proccesses on a CPU like pfmon. It will not show the profile conflicts that the
pfmon command shows.

The syntax of the histx command is as, as follows:

histx [-b width] [-f] [-e source] [-h] [-k] -o file [-s type] [-t signo] command args...

The histx command accepts the following options:

-b width Specifies bin bits when using instruction pointer
sampling: 16,32 or 64 (default: 16).

-e source Specifies event source (default: timer@1).

-f Follow fork (default: off).

14 007–4639–005

Linux
®

Application Tuning Guide

-h This message (command not run).

-k Also count kernel events for program source
(default: off).

-o file Sends output to file.prog.pid. (REQUIRED).

-s type Includes line level counts in instruction pointer
sampling report (default: off).

-t signo ‘Toggles’ signal number (default: none).

• lipfpm: Reports counts of desired events for the entire run of a program.

The syntax of the lipfpm command is as, as follows:

lipfpm [-c name] [-e name]* [-f] [-i] [-h] [-k] [-l] [-o path] [-p] command args...

The lipfpm command accepts the following options:

-c name Requests named collection of events; may not be
used with -i or -e arguments.

-e name Specifies events to monitor (for event names see
Intel documents).

-f Follow fork (default: off).

-i Specify events interactively, as follows:

– Use space bar or Tab key to display next event.

– Use Backspace key to display previous event.

– Use Enter key to select event.

– Type letters to skip to events starting with the
same letters

– Note that Ctrl - c, and so on, are treated as
letters.

– Use the Esc key to finish.

-h This message (command not run)

-k Counts at privilege level 0 as well (default: off)

-l Lists names of all events (other arguments are
ignored).

007–4639–005 15

3: Performance Analysis and Debugging

-o path Send output to path.cmd.pid instead of standard
output.

-p Produces easier to parse output.

When using the lipfpm command, you can specify up to four events at a time. For
MPI codes, the -f option is required. Event names are specified slightly differently
than in the pfmon command.The -c options shows the named collection of events, as
follows:

Event Description

mi Retired M and I type instructions

mi_nop Retired M and I type NOP instructions

fb Retired F and B type instructions

fb_nop Retired F and B type NOP instructions

dlatNNN Times L1D miss latency exceeded NNN

dtlb DTLB misses

ilatNNN Times L1I miss latency exceeded NNN

itlb ITLB misses

bw Counters associated with (read) bandwidth

Sample output from the lipfpm command is, as follows:

% lipfpm -c bw stream.1

Function Rate (MB/s) Avg time Min time Max time

Copy: 3188.8937 0.0216 0.0216 0.0217

Scale: 3154.0994 0.0218 0.0218 0.0219

Add: 3784.2948 0.0273 0.0273 0.0274

Triad: 3822.2504 0.0270 0.0270 0.0272

lipfpm summary

====== =======

L1 Data Cache Read Misses -- all L1D read misses will be

counted.. 10791782
L2 Misses.. 55595108

L3 Reads -- L3 Load Misses (excludes reads for ownership

used to satisfy stores).................................... 55252613

CPU Cycles... 3022194261

Average read MB/s requested by L1D......................... 342.801

16 007–4639–005

Linux
®

Application Tuning Guide

Average MB/s requested by L2............................... 3531.96
Average data read MB/s requested by L3..................... 3510.2

• samppm: Samples selected counter values at a rate specified by the user.

histx Filters

Three programs can be used to generate reports from the histx data collection
commands:

• iprep: Generates a report from one or more raw sampling reports produced by
histx.

• csrep: Generates a butterfly report from one or more raw call stack sampling
reports produced by histx.

• dumppm: Generates a human-readable or script-readable tabular listing from
binary files produced by samppm.

histx Event Sources and Types of Sampling

The following list describes the event sources and types of sampling for the histx
program.

Event Sources Description

timer@N Profiling timer events. A sample is recorded every N
ticks.

pm:event@N Performance monitor events. A sample is recorded
whenever the number of occurrences of event is N
larger than the number of occurrences at the time of the
previous sample.

dlatM@N A sample is recorded whenever the number of loads
whose latency exceeded M cycles is N larger than the
number at the time of the previous sample. M must be
a power of 2 between 4 and 4096.

Types of sample are, as follows:

Types of Sampling Description

ip Sample instruction pointer

007–4639–005 17

3: Performance Analysis and Debugging

callstack[N] Sample callstack. N, if given, specifies the maximum
callstack depth (default: 8)

Using VTune for Remote Sampling
The Intel VTune performance analyzer does remote sampling experiments. The
VTune data collector runs on the Linux system and an accompanying GUI runs on an
IA-32 Windows machine, which is used for analyzing the results. The version of
VTune that runs on Linux does not have the full set of options of the Windows GUI.

For details about using VTune, see the following URL:

http://developer.intel.com/software/products/vtune/vpa/

Note: VTune may not be available for this release. Consult your release notes for
details about its availability.

Using GuideView
GuideView is a graphical tool that presents a window into the performance details of
a program’s parallel execution. GuideView is part of the KAP/Pro Toolset, which also
includes the Guide OpenMP compiler and the Assure Thread Analyzer. GuideView is
not a part of the default software installation with your system. GuideView is part ot
Intel compilers.

GuideView uses an intuitive, color-coded display of parallel performance bottlenecks
which helps pinpoint performance anomalies. It graphically illustrates each
processor’s activity at various levels of detail by using a hierarchical summary.

Statistical data is collapsed into relevant summaries that indicate where attention
should be focused (for example, regions of the code where improvements in local
performance will have the greatest impact on overall performance).

To gather programming statistics, use the -O3, -openmp, and -openmp_profile
compiler options. This causes the linker to use libguide_stats.a instead of the
default libguide.a. The following example demonstrates the compiler command
line to produce a file named swim:

% efc -O3 -openmp -openmp_profile -o swim swim.f

18 007–4639–005

Linux
®

Application Tuning Guide

To obtain profiling data, run the program, as in this example:

% export OMP_NUM_THREADS=8

% ./swim < swim.in

When the program finishes, the swim.gvs file is produced and it can be used with
GuideView. To invoke GuideView with that file, use the following command:

% guideview -jpath=your_path_to_Java -mhz=998 ./swim.gvs.

The graphical portions of GuideView require the use of Java. Java 1.1.6-8 and Java
1.2.2 are supported and later versions appear to work correctly. Without Java, the
functionality is severely limited but text output is still available and is useful, as the
following portion of the text file that is produced demonstrates:

Program execution time (in seconds):

cpu : 0.07 sec

elapsed : 69.48 sec

serial : 0.96 sec
parallel : 68.52 sec

cpu percent : 0.10 %

end

Summary over all regions (has 4 threads):

Thread #0 #1 #2 #3
Sum Parallel : 68.304 68.230 68.240 68.185

Sum Imbalance : 1.020 0.592 0.892 0.838

Sum Critical Section: 0.011 0.022 0.021 0.024

Sum Sequential : 0.011 4.4e-03 4.6e-03 1.6e-03

Min Parallel : -5.1e-04 -5.1e-04 4.2e-04 -5.2e-04
Max Parallel : 0.090 0.090 0.090 0.090

Max Imbalance : 0.036 0.087 0.087 0.087

Max Critical Section: 4.6e-05 9.8e-04 6.0e-05 9.8e-04

Max Sequential : 9.8e-04 9.8e-04 9.8e-04 9.8e-04

end

Other Performance Tools
The following performance tools also can be of benefit when you are trying to
optimize your code:

• Guide OpenMP Compiler is an OpenMP implementation for C, C++, and Fortran
from Intel.

007–4639–005 19

3: Performance Analysis and Debugging

• Assure Thread Analyzer from Intel locates programming errors in threaded
applications with no recoding required.

For details about these products, see the following website:

http://developer.intel.com/software/products/threading

Note: These products have not been thoroughly tested on SGI systems. SGI takes no
responsibility for the correct operation of third party products described or their
suitability for any particular purpose.

Debugging Tools
Three debuggers are available to help you analyze your code:

• gdb: the GNU project debugger. This is useful for debugging programs written in
C, C++, and Fortran 95. When compiling with C and C++, include the -g option
on the compiler command line to produce the dwarf2 symbols database used by
gdb.

When using gdb for Fortran debugging, include the -g and -O0 options. Do not
use gdb for Fortran debugging when compiling with -O1 or higher.

The debugger to be used for Fortran 95 codes can be downloaded from
http://sourceforge.net/project/showfiles.php?group_id=56720 . (Note that the
standard gdb compiler does not support Fortran 95 codes.) To verify that you
have the correct version of gdb installed, use the gdb -v command. The output
should appear similar to the following:

GNU gdb 5.1.1 FORTRAN95-20020628 (RC1)

Copyright 2002 Free Software Foundation, Inc.

For a complete list of gdb commands, see the gdb user guide online at
http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html or use the help option.
Note that current instances of gdb do not report ar.ec registers correctly. If you
are debugging rotating, register-based, software-pipelined loops at the assembly
code level, try using idb instead.

• idb: the Intel debugger. This is a fully symbolic debugger for the Linux platform.
The debugger provides extensive support for debugging programs written in C,
C++, FORTRAN 77, and Fortran 90.

20 007–4639–005

Linux
®

Application Tuning Guide

Running idb with the -gdb option on the shell command line provides gdb-like
user commands and debugger output.

• ddd: a GUI to a command line debugger. It supports gdb and idb. For details
about usage, see the following subsection.

• TotalView: a licensed graphical debugger useful in an MPI environment (see
http://www.entus.com/

Using ddd

The DataDisplayDebugger ddd(1) tool is a GUI to an arbitrary command line
debugger as shown in Figure 3-1 on page 22. When starting ddd, use the
--debugger option to specify the debugger used (for example, --debugger
"idb"). The default debugger used is gdb.

007–4639–005 21

3: Performance Analysis and Debugging

Figure 3-1 DataDisplayDebugger(ddd)(1)

When the debugger is loaded the DataDisplayDebugger screen appears divided into
panes that show the following information:

• Array inspection

• Source code

• Disassembled code

• A command line window to the debugger engine

These panes can be switched on and off from the View menu.

Some commonly used commands can be found on the menus. In addition, the
following actions can be useful:

22 007–4639–005

Linux
®

Application Tuning Guide

• Select an address in the assembly view, click the right mouse button, and select
lookup. The gdb command is executed in the command pane and it shows the
corresponding source line.

• Select a variable in the source pane and click the right mouse button. The current
value is displayed. Arrays are displayed in the array inspection window. You can
print these arrays to PostScript by using the Menu>Print Graph option.

• You can view the contents of the register file, including general, floating-point,
NaT, predicate, and application registers by selecting Registers from the Status
menu. The Status menu also allows you to view stack traces or to switch OpenMP
threads.

007–4639–005 23

Chapter 4

Monitoring Tools

This chapter describes several tools that you can use to monitor system performance.
The tools are divided into two general categories: system monitoring tools and
nonuniform memory access (NUMA) tools.

System monitoring tools include the hinv(1), topology(1), top(1) commands and
the Performance Co-Pilot pmchart(1) commmand and other operating system
commands such as the vmstat(1) , iostat(1) command and the sar(1) commands
that can help you determine where system resources are being spent.

The gtopology(1) command displays a 3D scene of the system interconnect using
the output from the topology(1) command.

System Monitoring Tools
You can use system utilities to better understand the usage and limits of your system.
These utilities allow you to observe both overall system performance and
single-performance execution characteristics. This section covers the following topics:

• "Hardware Inventory and Usage Commands" on page 25

• "Performance Co-Pilot Monitoring Tools" on page 30

• "System Usage Commands" on page 34

Hardware Inventory and Usage Commands

This section descibes hardware inventory and usage commands and covers the
following topics:

• "hinv(1) Command" on page 26

• "topology(1) Command" on page 26

• "gtopology(1) Command" on page 28

007–4639–005 25

4: Monitoring Tools

hinv(1) Command

The hinv(1) command displays the contents of the system’s hardware inventory. The
information displayed includes brick configuration, processor type, main memory
size, and disk drive information, as follows:

[user1@profit user1]# hinv

1 Ix-Brick

4 R-Brick

8 C-Brick

32 1500 MHz Itanium 2 Rev. 5 Processor
Main memory size: 121.75 Gb

Broadcom Corporation NetXtreme BCM5701 Gigabit Ethernet (rev 21). on pci01.04.0

Integral SCSI controller pci01.03.0: QLogic 12160 Dual Channel Ultra3 SCSI (Rev 6) pci01.03.0

Disk Drive: unit 1 lun 0 on SCSI controller pci01.03.0 0

Disk Drive: unit 2 lun 0 on SCSI controller pci01.03.0 0
Disk Drive: unit 1 lun 0 on SCSI controller pci01.03.0 0

Disk Drive: unit 2 lun 0 on SCSI controller pci01.03.0 0

SCSI storage controller: QLogic Corp. QLA2200 (rev 5). pci03.01.0

Disk Drive: unit 10 lun 0 on SCSI controller pci03.01.0 0

Disk Drive: unit 11 lun 0 on SCSI controller pci03.01.0 0
Disk Drive: unit 12 lun 0 on SCSI controller pci03.01.0 0

Disk Drive: unit 13 lun 0 on SCSI controller pci03.01.0 0

Disk Drive: unit 14 lun 0 on SCSI controller pci03.01.0 0

Disk Drive: unit 15 lun 0 on SCSI controller pci03.01.0 0

Disk Drive: unit 16 lun 0 on SCSI controller pci03.01.0 0

Disk Drive: unit 17 lun 0 on SCSI controller pci03.01.0 0
Disk Drive: unit 18 lun 0 on SCSI controller pci03.01.0 0

Disk Drive: unit 19 lun 0 on SCSI controller pci03.01.0 0

Co-processor: Silicon Graphics, Inc. IOC4 I/O controller (rev 79). on pci01.01.0

CD-ROM MATSHITADVD-ROM SR-8588 7Z20 on pci01.01.0 target0/lun0

Use the hinv -b command to display partition number, metarouter, and node
information.

topology(1) Command

The topology(1) command provides topology information about your system.

Applications programmers can use the topology command to help optimize
execution layout for their applications. For more information, see the topology(1)
man page.

26 007–4639–005

Linux
®

Application Tuning Guide

Output from the topology command is similar to the following: (Note that the
following output has been abbreviated.)

% topology

Machine parrot.americas.sgi.com has:

64 cpu’s

32 memory nodes

8 routers

8 repeaterrouters

The cpus are:

cpu 0 is /dev/hw/module/001c07/slab/0/node/cpubus/0/a

cpu 1 is /dev/hw/module/001c07/slab/0/node/cpubus/0/c

cpu 2 is /dev/hw/module/001c07/slab/1/node/cpubus/0/a
cpu 3 is /dev/hw/module/001c07/slab/1/node/cpubus/0/c

cpu 4 is /dev/hw/module/001c10/slab/0/node/cpubus/0/a

...

The nodes are:

node 0 is /dev/hw/module/001c07/slab/0/node
node 1 is /dev/hw/module/001c07/slab/1/node

node 2 is /dev/hw/module/001c10/slab/0/node

node 3 is /dev/hw/module/001c10/slab/1/node

node 4 is /dev/hw/module/001c17/slab/0/node

...

The routers are:
/dev/hw/module/002r15/slab/0/router

/dev/hw/module/002r17/slab/0/router

/dev/hw/module/002r19/slab/0/router

/dev/hw/module/002r21/slab/0/router

...
The repeaterrouters are:

/dev/hw/module/001r13/slab/0/repeaterrouter

/dev/hw/module/001r15/slab/0/repeaterrouter

/dev/hw/module/001r29/slab/0/repeaterrouter

/dev/hw/module/001r31/slab/0/repeaterrouter
...

The topology is defined by:

/dev/hw/module/001c07/slab/0/node/link/1 is /dev/hw/module/001c07/slab/1/node

/dev/hw/module/001c07/slab/0/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter

/dev/hw/module/001c07/slab/1/node/link/1 is /dev/hw/module/001c07/slab/0/node

/dev/hw/module/001c07/slab/1/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter

007–4639–005 27

4: Monitoring Tools

/dev/hw/module/001c10/slab/0/node/link/1 is /dev/hw/module/001c10/slab/1/node
/dev/hw/module/001c10/slab/0/node/link/2 is /dev/hw/module/001r13/slab/0/repeaterrouter

gtopology(1) Command

The gtopology(1) command is included as part of the pcp-sgi package of the SGI
ProPack for Linux software. It displays a 3D scene of the system interconnect using
the output from the topology(1) command. See the man page for more details.

Figure 4-1 on page 28, shows the ring topology (the eight nodes are shown in pink,
the NUMAlink connections in cyan) of an Altix 350 system with 16 CPUs.

Figure 4-1 Ring Topology of an Altix 350 System with 16 CPUs

28 007–4639–005

Linux
®

Application Tuning Guide

Figure 4-2 on page 29, shows the fat-tree topology of an Altix 3700 system with 32
CPUs. Again, nodes are the pink cubes. Routers are shown as blue spheres (if all
ports are used) otherwise, yellow.

Figure 4-2 An Altix 3700 System with 32 CPUs Fat-tree Topology

Figure 4-3 on page 30, shows an Altix 3700 system with 512 CPUs. The dual planes of
the fat-tree topology are clearly visible.

007–4639–005 29

4: Monitoring Tools

Figure 4-3 An Altix 3700 System with 512 CPUs

Performance Co-Pilot Monitoring Tools

This section describes Performance Co-Pilot monitoring tools and covers the
following topics:

• "pmshub(1) Command" on page 31

• "shubstats(1) Command" on page 31

• "linkstat(1) Command" on page 32

• "Other Performance Co-Pilot Monitoring Tools" on page 32

30 007–4639–005

Linux
®

Application Tuning Guide

pmshub(1) Command

The pmshub(1) command is an Altix system-specific performance monitoring tool that
displays ccNUMA architecture cacheline traffic, free memory, and CPU usage
statistics on a per-node basis.

Figure 4-4 on page 31, shows a four-node Altix 3700 system with eight CPUs. A key
feature of pmshub is the ability to distinguish between local verses remote cacheline
traffic statistics. This greatly helps you to diagnose whether the placement of threads
on the CPUs in your system has been correctly tuned for memory locality (see the
dplace(1) and runon(1) man pages for information on thread placement.). It also
shows undesirable anomalies such as hot cachelines (for example, due to lock
contention) and other effects such as cacheline "ping-pong". For details about the
intrepretation of each component of the pmshub display, see the pmshub(1) man page.

Figure 4-4 Four Node Altix 3700 System with Eight CPUs

shubstats(1) Command

The shubstats(1) command is basically a command-line version of the pmshub(1)
command (see "pmshub(1) Command" on page 31). Rather than showing a graphical
display, the shubstats command allows you to measure absolute counts (or
rate/time converted) ccNUMA-related cacheline traffic events, on a per-node basis.
You can also use this tool to obtain per-node memory directory cache hit rates.

007–4639–005 31

4: Monitoring Tools

linkstat(1) Command

The linkstat(1) command is a command-line tool for monitoring NUMAlink traffic
and error rates on SGI Altix systems. This tool shows packets and Mbytes
sent/received on each NUMAlink in the system, as well as error rates. It is useful as
a performance monitoring tool, as well as, a tool for helping you to diagnose and
identify faulty hardware. For more information, see the linkstat(1) man page.

Other Performance Co-Pilot Monitoring Tools

In addition to the Altix specific tools described above, the pcp and pcp-sgi
packages also provide numerous other performance monitoring tools, both graphical
and text-based. It is important to remember that all of the performance metrics
displayed by any of the tools described in this chapter can also be monitored with
other tools such as pmchart(1), pmval(1), pminfo(1) and others. Additionally, the
pmlogger(1) command can be used to capture Performance Co-Pilot archives, which
can then be "replayed" during a retrospective performance analysis.

A very brief description of other Performance Co-Pilot monitoring tools follows. See
the associated man page for each tool for more details.

• pmchart(1) — graphical stripchart tool, chiefly used for investigative performance
analysis.

• pmgsys(1) — graphical tool showing miniature CPU, Disk, Network, LoadAvg
and memory/swap in a miniature display, for example, useful for permanent
residence on your desktop for the servers you care about.

• pmgcluster(1) — pmgsys, but for multiple hosts and thus useful for monitoring
a cluster of hosts or servers.

• mpvis(1) — 3D display of per-CPU usage.

• clustervis(1) — 3D display showing per-CPU and per-Network performance
for multiple hosts.

• nfsvis(1) — 3D display showing NFS client/server traffic, grouped by NFS
operation type

• nodevis(1) — 3D display showing per-node CPU and memory usage.

• webvis(1) — 3D display showing per-httpd traffic.

• dkvis(1) - 3D display showing per-disk traffic, grouped by controller.

32 007–4639–005

Linux
®

Application Tuning Guide

• diskstat(1) — command line tool for monitoring disk traffic.

• topdisk(1) — command line, curses-based tool, for monitoring disk traffic.

• topsys(1) — command line, curses-based tool, for monitoring processes making a
large numbers of system calls or spending a large percentage of their execution
time in system mode using assorted system time measures.

• pmgxvm(1) — miniature graphical display showing XVM volume topology and
performance statistics.

• osvis(1) — 3D display showing assorted kernel and system statistics.

• mpivis(1) — 3D display for monitoring multithreaded MPI applications.

• pmdumptext(1) — command line tool for monitoring multiple performance
metrics with a highly configurable output format. Therefore, it is a useful tools for
scripted monitoring tasks.

• pmval(1) — command line tool, similar to pmdumptext(1), but less flexible.

• pminfo(1) — command line tool, useful for printing raw performance metric
values and associated help text.

• pmprobe(1) — command line tool useful for scripted monitoring tasks.

• pmie(1) — a performance monitoring inference engine. This is a command line
tool with an extraordinarily powerful underlying language. It can also be used as
a system service for monitoring and reporting on all sorts of performance issues of
interest.

• pmieconf(1) — command line tool for creating and customizing "canned"
pmie(1) configurations.

• pmlogger(1) — command line tool for capturing Performance Co-Pilot
performance metrics archives for replay with other tools.

• pmlogger_daily(1) and pmlogger_check(1) — cron driven infrastructure for
automated logging with pmlogger(1).

• pmcd(1) — the Performance Co-Pilot metrics collector daemon

• PCPIntro(1) — introduction to Performance Co-Pilot monitoring tools, generic
command line usage and environment variables

007–4639–005 33

4: Monitoring Tools

• PMAPI(3) — introduction to the Performance Co-Pilot API libraries for developing
new performance monitoring tools

• PMDA(3) — introduction to the Performance Co-Pilot Metrics Domain Agent API,
for developing new Performance Co-Pilot agents

System Usage Commands

Several commands can be used to determine user load, system usage, and active
processes.

To determine the system load, use the uptime(1) command, as follows:

[user@profit user]# uptime

1:56pm up 11:07, 10 users, load average: 16.00, 18.14, 21.31

The output displays time of day, time since the last reboot, number of users on the
system, and the average number of processes waiting to run.

To determine who is using the system and for what purpose, use the w(1) command,
as follows:

[user@profit user]# w

1:53pm up 11:04, 10 users, load average: 16.09, 20.12, 22.55
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

user1 pts/0 purzel.geneva.sg 2:52am 4:40m 0.23s 0.23s -tcsh

user1 pts/1 purzel.geneva.sg 2:52am 4:29m 0.34s 0.34s -tcsh

user2 pts/2 faddeev.sgi.co.j 6:03am 1:18m 20:43m 0.02s mpirun -np 16 dplace -s1 -c0-15

/tmp/ggg/GSC_TEST/cyana-2.0.17
user3 pts/3 whitecity.readin 4:04am 9:48m 0.02s 0.02s -csh

user2 pts/4 faddeev.sgi.co.j 10:38am 2:00m 0.04s 0.04s -tcsh

user2 pts/5 faddeev.sgi.co.j 6:27am 7:19m 0.36s 0.32s tail -f log

user2 pts/6 faddeev.sgi.co.j 7:57am 1:22m 25.95s 25.89s top

user1 pts/7 mtv-vpn-hw-richt 11:46am 39:21 11.20s 11.04s top

user1 pts/8 mtv-vpn-hw-richt 11:46am 33:32 0.22s 0.22s -tcsh
user pts/9 machine007.americas 1:52pm 0.00s 0.03s 0.01s w

The output from this command shows who is on the system, the duration of user
sessions, processor usage by user, and currently executing user commands.

34 007–4639–005

Linux
®

Application Tuning Guide

To determine active processes, use the ps(1) command, which displays a snapshot of
the process table. The ps –A command selects all the processes currently running on a
system as follows:

[user@profit user]# ps -A

PID TTY TIME CMD

1 ? 00:00:06 init

2 ? 00:00:00 migration/0

3 ? 00:00:00 migration/1
4 ? 00:00:00 migration/2

5 ? 00:00:00 migration/3

6 ? 00:00:00 migration/4

...

1086 ? 00:00:00 sshd
1120 ? 00:00:00 xinetd

1138 ? 00:00:05 ntpd

1171 ? 00:00:00 arrayd

1363 ? 00:00:01 amd

1420 ? 00:00:00 crond
1490 ? 00:00:00 xfs

1505 ? 00:00:00 sesdaemon

1535 ? 00:00:01 sesdaemon

1536 ? 00:00:00 sesdaemon

1538 ? 00:00:00 sesdaemon

To monitor running processes, use the top(1) command. This command displays a
sorted list of top CPU utilization processes as shown in Figure 4-5 on page 36.

007–4639–005 35

4: Monitoring Tools

Figure 4-5 Using top(1) to Show Top CPU Utilization processes

The vmstat(1) command reports virtual memory statistics. It reports information
about processes, memory, paging, block IO, traps, and CPU activity. For more
information, see the vmstat(1) man page.

[user@machine3 user]# vmstat

procs memory swap io system cpu
r b swpd free buff cache si so bi bo in cs us sy id wa

1 0 0 81174720 80 11861232 0 0 0 1 1 1 0 0 0 0

The first report produced gives averages since the last reboot. Additional reports give
information on a sampling period of length delay. The process and memory reports
are instantaneous in either case.

36 007–4639–005

Linux
®

Application Tuning Guide

The iostat(1) command is used for monitoring system input/output device loading
by observing the time the devices are active in relation to their average transfer rates.
The iostat command generates reports that can be used to change system
configuration to better balance the input/output load between physical disks. For
more information, see the iostat(1) man page.

user@machine3 user]# iostat

Linux 2.4.21-sgi302c19 (revenue3.engr.sgi.com) 11/04/2004

avg-cpu: %user %nice %sys %idle

40.46 0.00 0.16 59.39

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

The sar(1) command writes to standard output the contents of selected cumulative
activity counters in the operating system. The accounting system, based on the values
in the count and interval parameters, writes information the specified number of
times spaced at the specified intervals in seconds. For more information, see the
sar(1) man page.

[user@machine3 user]# sar

Linux 2.4.21-sgi302c19 (revenue3.engr.sgi.com) 11/04/2004

12:00:00 AM CPU %user %nice %system %idle

12:10:00 AM all 49.85 0.00 0.19 49.97

12:20:00 AM all 49.85 0.00 0.19 49.97

12:30:00 AM all 49.85 0.00 0.18 49.97
12:40:00 AM all 49.88 0.00 0.16 49.97

12:50:00 AM all 49.88 0.00 0.15 49.97

01:00:00 AM all 49.88 0.00 0.15 49.97

01:10:00 AM all 49.91 0.00 0.13 49.97

01:20:00 AM all 49.88 0.00 0.15 49.97
01:30:00 AM all 49.88 0.00 0.16 49.97

01:40:00 AM all 49.91 0.00 0.13 49.97

01:50:00 AM all 49.87 0.00 0.16 49.97

02:00:00 AM all 49.91 0.00 0.13 49.97

02:10:00 AM all 49.91 0.00 0.13 49.97

02:20:00 AM all 49.90 0.00 0.13 49.97
02:30:00 AM all 49.90 0.00 0.13 49.97

02:40:00 AM all 49.90 0.00 0.13 49.97

007–4639–005 37

4: Monitoring Tools

02:50:00 AM all 49.90 0.00 0.14 49.96
03:00:00 AM all 49.90 0.00 0.13 49.97

03:10:00 AM all 49.90 0.00 0.13 49.97

03:20:00 AM all 49.90 0.00 0.14 49.97

03:30:01 AM all 49.89 0.00 0.14 49.97

03:40:00 AM all 49.90 0.00 0.14 49.96
03:50:01 AM all 49.90 0.00 0.14 49.96

04:00:00 AM all 49.89 0.00 0.14 49.97

04:10:00 AM all 50.18 0.01 0.66 49.14

04:20:00 AM all 49.90 0.00 0.14 49.96

04:30:00 AM all 49.90 0.00 0.14 49.96

04:40:00 AM all 49.94 0.00 0.10 49.96
04:50:00 AM all 49.89 0.00 0.15 49.96

05:00:00 AM all 49.94 0.00 0.09 49.97

05:10:00 AM all 49.89 0.00 0.16 49.96

05:20:00 AM all 49.94 0.00 0.10 49.96

05:30:00 AM all 49.89 0.00 0.16 49.96
05:40:00 AM all 49.94 0.00 0.10 49.96

05:50:00 AM all 49.93 0.00 0.11 49.96

06:00:00 AM all 49.89 0.00 0.15 49.96

06:10:00 AM all 49.94 0.00 0.10 49.96

06:20:01 AM all 49.88 0.00 0.17 49.95

06:30:00 AM all 49.93 0.00 0.10 49.96
06:40:01 AM all 49.93 0.00 0.11 49.96

06:50:00 AM all 49.88 0.00 0.16 49.96

07:00:00 AM all 49.93 0.00 0.10 49.96

07:10:00 AM all 49.93 0.00 0.11 49.96

07:20:00 AM all 49.87 0.00 0.17 49.96
07:30:00 AM all 49.99 0.00 0.13 49.88

07:40:00 AM all 50.68 0.00 0.14 49.18

07:50:00 AM all 49.94 0.00 0.11 49.94

08:00:00 AM all 49.92 0.00 0.13 49.94

08:10:00 AM all 49.88 0.00 0.18 49.95
08:20:00 AM all 49.93 0.00 0.13 49.95

08:30:00 AM all 49.93 0.00 0.12 49.95

08:40:00 AM all 49.93 0.00 0.12 49.95

08:50:00 AM all 25.33 0.00 0.08 74.59

09:00:00 AM all 0.02 0.00 0.04 99.95

09:10:00 AM all 1.52 0.00 0.05 98.43
09:20:00 AM all 0.41 0.00 0.10 99.49

09:30:00 AM all 0.01 0.00 0.02 99.97

38 007–4639–005

Linux
®

Application Tuning Guide

09:40:00 AM all 0.01 0.00 0.02 99.97
09:50:00 AM all 0.01 0.00 0.02 99.97

10:00:00 AM all 0.01 0.00 0.02 99.97

10:10:00 AM all 0.01 0.00 0.08 99.91

10:20:00 AM all 2.93 0.00 0.55 96.52

10:30:00 AM all 3.13 0.00 0.02 96.84

10:30:00 AM CPU %user %nice %system %idle

10:40:00 AM all 3.13 0.00 0.03 96.84

10:50:01 AM all 3.13 0.00 0.03 96.84

Average: all 40.55 0.00 0.13 59.32

007–4639–005 39

Chapter 5

Data Placement Tools

This chapter describes data placement tools you can use on an SGI Altix system. It
covers the following topics:

• "Data Placement Tools Overview" on page 41

• "runon Command" on page 43

• "dplace Command" on page 43

• "dlook Command" on page 50

• "Installing NUMA Tools" on page 56

Data Placement Tools Overview
On an SMP machine, all data is visible from all processors. Special optimization
applies to SGI Altix systems to exploit multiple paths to memory, as follows:

• By default, all pages are allocated with a “first touch” policy.

• The initialization loop, if executed serially, will get pages from single node.

• In the parallel loop, multiple processors will access that one memory.

So, perform initialization in parallel, such that each processor initializes data that it is
likely to access later for calculation.

Figure 5-1 on page 42, shows how to code to get good data placement.

007–4639–005 41

5: Data Placement Tools

Figure 5-1 Coding to Get Good Data Placement

Placement facilities include cpusets, runon(1), and dplace(1), all built upon
CpuMemSets API:

• cpusets — Named subsets of system cpus/memories, used extensively in batch
environments.

• runon and dplace — Avoid poor data locality caused by process or thread drift
from CPU to CPU.

– runon restricts execution to the listed set of CPUs (for example, runon 1-3
a.out); however, processes are still free to move among listed CPUs.

– dplace binds processes to specified CPUs in round-robin fashion; once
pinned, they do not migrate. Use this for high performance and reproducibility
of parallel codes.

42 007–4639–005

Linux
®

Application Tuning Guide

For more information on CpuMemSets and cpusets, see chapter 4, “CPU Memory Sets
and Scheduling” and chapter 5, “Cpuset System”, respectively, in the Linux Resource
Administration Guide.

runon Command
The runon(1) command allows you to run a command on a specified list of CPUs, as
follows;

runon cpu ... command [args ...]

runon cpu ... -p [pid ...]

Note: The runon(1) command is a deprecated package on SGI ProPack 4 for Linux
Service Pack 2. You can use the taskset(1) command to retrieve or set the CPU
affinity of a process. For more information, see the taskset(1) man page or enter
taskset at the command line for a usage statement.

runon executes a command, assigning it to run only on the listed CPUs. Listed CPUs
may include individual CPUs, or an inclusive range of CPUs separated by a hyphen.
Alternatively, the CPU placement of existing processes can be specified, using the -p
option. This CPU affinity is inherited across fork(2) and exec(2) system calls.

All options are passed in the argv list to the executable being run.

For example, to execute the echo command on CPUs 1, 3, 4, 5, or 9, perform the
following:

machineA:~ # runon 1 3-5 9 echo Hello World
Hello World

dplace Command
You can use the dplace(1) command to bind a related set of processes to specific
CPUs or nodes to prevent process migration. This can improve the performance of
your application since it increases the percentage of memory accesses that are local.

007–4639–005 43

5: Data Placement Tools

Using the dplace Command

The dplace command allows you to control the placement of a process onto
specified CPUs, as follows:

dplace [-c cpu_numbers] [-s skip_count] [-n process_name] [-x skip_mask]
[-p placement_file] command [command-args]

dplace -q

Scheduling and memory placement policies for the process are set up according to
dplace command line arguments.

By default, memory is allocated to a process on the node on which the process is
executing. If a process moves from node to node while it running, a higher
percentage of memory references are made to remote nodes. Because remote accesses
typically have higher access times, process performance can be diminished. CPU
instruction pipelines also have to be reloaded.

You can use the dplace command to bind a related set of processes to specific CPUs
or nodes to prevent process migrations. In some cases, this improves performance
since a higher percentage of memory accesses are made to local nodes.

Processes always execute within a CpuMemSet. The CpuMemSet specifies the CPUs
on which a process can execute. By default, processes usually execute in a
CpuMemSet that contains all the CPUs in the system (for detailed information on
CpusMemSets, see the Linux Resource Administration Guide).

The dplace command invokes an SGI kernel hook (module called numatools) to
create a placement container consisting of all the CPUs (or a or a subset of CPUs) of a
cpuset. The dplace process is placed in this container and by default is bound to the
first CPU of the cpuset associated with the container. Then dplace invokes exec to
execute the command.

The command executes within this placement container and remains bound to the
first CPU of the container. As the command forks child processes, they inherit the
container and are bound to the next available CPU of the container.

If you do not specify a placement file, dplace binds processes sequentially in a
round-robin fashion to CPUs of the placement container. For example, if the current
cpuset consists of physical CPUs 2, 3, 8, and 9, the first process launched by dplace
is bound to CPU 2. The first child process forked by this process is bound to CPU 3,
the next process (regardless of whether it is forked by parent or child) to 8, and so on.

44 007–4639–005

Linux
®

Application Tuning Guide

If more processes are forked than there are CPUs in the cpuset, binding starts over
with the first CPU in the cpuset.

For more information on dplace(1) and examples of how to use the command, see
the dplace(1) man page.

The dplace(1) command accepts the following options:

• -c cpu_numbers: The cpu_numbers variable specifies a list of CPU ranges, for
example: "-c1", "-c2-4", "-c1, 4-8, 3". CPU numbers are not physical CPU numbers.
They are logical CPU numbers that are relative to the CPUs that are in the set of
allowed CPUs as specified by the current cpuset or runon(1) command. CPU
numbers start at 0. If this option is not specified, all CPUs of the current cpuset
are available.

• -s skip_count: Skips the first skip_count processes before starting to place
processes onto CPUs. This option is useful if the first skip_count processes are
“shepherd" processes that are used only for launching the application. If
skip_count is not specified, a default value of 0 is used.

• -n process_name: Only processes named process_name are placed. Other processes
are ignored and are not explicitly bound to CPUs.

The process_name argument is the basename of the executable.

• -x skip_mask: Provides the ability to skip placement of processes. The skip_mask
argument is a bitmask. If bit N of skip_mask is set, then the N+1th process that
is forked is not placed. For example, setting the mask to 6 prevents the second
and third processes from being placed. The first process (the process named by
the command) will be assigned to the first CPU. The second and third processes
are not placed. The fourth process is assigned to the second CPU, and so on. This
option is useful for certain classes of threaded applications that spawn a few
helper processes that typically do not use much CPU time.

Note: OpenMP with Intel applications runnint on ProPack 2.4, should be
placed using the -x option with a skip_mask of 6 (-x6). For applications
compiled on ProPack 3 (or later) using the Native Posix Thread Library (NPTL),
use the -x2 option.

007–4639–005 45

5: Data Placement Tools

• -p placement_file: Specifies a placement file that contains additional directives that
are used to control process placement. (Implemented in SGI ProPack 3 Sevice Pack
2).

• command [command-args]: Specifies the command you want to place and its
arguments.

• -q: Lists the global count of the number of active processes that have been placed
(by dplace) on each CPU in the current cpuset. Note that CPU numbers are
logical CPU numbers within the cpuset, not physical CPU numbers.

Example 5-1 Using the dplace command with MPI Programs

You can use the dplace command to improve placement of MPI programs on
NUMA systems and verify placement of certain data structures of a long running
MPI program by running a command such as the following:

mpirun -np 64 /usr/bin/dplace -s1 -c 0-63 ./a.out

You can then use the dlook(1) command to verify placement of certain data structures
of a long running MPI program by using the dlook command in another window on
one of the slave thread PIDs to verify placement. For more information on using the
dlook command, see "dlook Command" on page 50 and the dlook(1) man page.

Example 5-2 Using dplace command with OpenMP Programs

To run an OpenMP program on logical CPUs 4 through 7 within the current cpuset,
perform the following:

%efc -o prog -openmp -O3 program.f
%setenv OMP_NUM_THREADS 4
%dplace -x6 -c4-7 ./prog

The dplace(1) command has a static load balancing feature so that you do not
necessarily have to supply a CPU list. To place prog1 on logical CPUs 0 through 3
and prog2 on logical CPUs 4 through 7, perform the following:

%setenv OMP_NUM_THREADS 4
%dplace -x6 ./prog1 &

%dplace -x6 ./prog2 &

You can use the dplace -q command to display the static load information.

46 007–4639–005

Linux
®

Application Tuning Guide

Example 5-3 Using the dplace command with Linux commands

The following examples assume that the command is executed from a shell running
in a cpuset consisting of physical CPUs 8 through 15.

Command Run Location

dplace -c2 date Runs the date command on physical CPU 10.

dplace make linux Runs gcc and related processes on physical CPUs 8
through 15.

dplace -c0-4,6
make linux

Runs gcc and related processes on physical CPUs 8
through 12 or 14.

runon 4-7 dplace
app

The runon command restricts execution to physical
CPUs 12 through 15. The dplace command
sequentially binds processes to CPUs 12 through 15.

dplace for Compute Thread Placement Troubleshooting Case Study

This section describes common reasons why compute threads do not end up on
unique processors when using commands such a dplace(1) or profile.pl (see
"Profiling with profile.pl" on page 13).

In the example that follows, a user used the dplace -s1 -c0-15 command to bind
16 processes to run on 0-15 CPUs. However, output from the top(1) command shows
only 13 CPUs running with CPUs 13, 14, and 15 still idle and CPUs 0, 1 and 2 are
shared with 6 processes.

263 processes: 225 sleeping, 18 running, 3 zombie, 17 stopped
CPU states: cpu user nice system irq softirq iowait idle

total 1265.6% 0.0% 28.8% 0.0% 11.2% 0.0% 291.2%

cpu00 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu01 90.1% 0.0% 0.0% 0.0% 9.7% 0.0% 0.0%

cpu02 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu03 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu04 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

007–4639–005 47

5: Data Placement Tools

cpu05 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu06 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu07 88.4% 0.0% 10.6% 0.0% 0.8% 0.0% 0.0%

cpu08 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu09 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu10 99.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

cpu11 88.1% 0.0% 11.2% 0.0% 0.6% 0.0% 0.0%

cpu12 99.7% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0%

cpu13 0.0% 0.0% 2.5% 0.0% 0.0% 0.0% 97.4%

cpu14 0.8% 0.0% 1.6% 0.0% 0.0% 0.0% 97.5%

cpu15 0.0% 0.0% 2.4% 0.0% 0.0% 0.0% 97.5%

Mem: 60134432k av, 15746912k used, 44387520k free, 0k shrd,
672k buff

351024k active, 13594288k inactive

Swap: 2559968k av, 0k used, 2559968k free

2652128k cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

7653 ccao 25 0 115G 586M 114G R 99.9 0.9 0:08 3 mocassin

7656 ccao 25 0 115G 586M 114G R 99.9 0.9 0:08 6 mocassin

7654 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 4 mocassin

7655 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 5 mocassin

7658 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 8 mocassin

48 007–4639–005

Linux
®

Application Tuning Guide

7659 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 9 mocassin

7660 ccao 25 0 115G 586M 114G R 99.8 0.9 0:08 10 mocassin

7662 ccao 25 0 115G 586M 114G R 99.7 0.9 0:08 12 mocassin

7657 ccao 25 0 115G 586M 114G R 88.5 0.9 0:07 7 mocassin

7661 ccao 25 0 115G 586M 114G R 88.3 0.9 0:07 11 mocassin

7649 ccao 25 0 115G 586M 114G R 55.2 0.9 0:04 2 mocassin

7651 ccao 25 0 115G 586M 114G R 54.1 0.9 0:03 1 mocassin

7650 ccao 25 0 115G 586M 114G R 50.0 0.9 0:04 0 mocassin

7647 ccao 25 0 115G 586M 114G R 49.8 0.9 0:03 0 mocassin

7652 ccao 25 0 115G 586M 114G R 44.7 0.9 0:04 2 mocassin

7648 ccao 25 0 115G 586M 114G R 35.9 0.9 0:03 1 mocassin

An application can start some threads executing for a very short time yet the threads
still have taken a token in the CPU list. Then, when the compute threads are finally
started, the list is exhausted and restarts from the beginning. Consequently, some
threads end up sharing the same CPU. To bypass this, try to eliminate the "ghost"
thread creation, as follows:

• Check for a call to the "system" function. This is often responsible for the
placement failure due to unexpected thread creation.

• When all the compute processes have the same name, you can do this by issuing a
command, such as the following:

dplace -c0-15 -n compute-process-name ...

• You can also run dplace -e -c0-32 on 16 CPUs to understand the pattern of
the thread creation. If by chance, this pattern is the same from one run to the
other (unfortunately race between thread creation often occurs), you can find the
right flag to dplace. For example, if you want to run on CPU 0-3, with dplace
-e -C0-16 and you see that threads are always placed on CPU 0, 1, 5, and 6,

007–4639–005 49

5: Data Placement Tools

then dplace -e -c0,1,x,x,x,2,3 or dplace -x24 -c0-3 (24 =11000, place
the 2 first and skip 3 before placing) should place your threads correctly.

dlook Command
You can use dlook(1) to find out where in memory the operating system is placing
your application’s pages and how much system and user CPU time it is consuming.

Using the dlook Command

The dlook(1) command allows you to display the memory map and CPU usage for a
specified process as follows:

dlook [-a] [-c] [-h] [-l] [-o outfile] [-s secs] command [command-args]
dlook [-a] [-c] [-h] [-l] [-o outfile] [-s secs] pid

For each page in the virtual address space of the process, dlook(1) prints the
following information:

• The object that owns the page, such as a file, SYSV shared memory, a device
driver, and so on.

• The type of page, such as random access memory (RAM), FETCHOP, IOSPACE,
and so on.

• If the page type is RAM memory, the following information is displayed:

– Memory attributes, such as, SHARED, DIRTY, and so on

– The node on which the page is located

– The physical address of the page (optional)

• Optionally, the dlook(1) command also prints the amount of user and system
CPU time that the process has executed on each physical CPU in the system.

Two forms of the dlook(1) command are provided. In one form, dlook prints
information about an existing process that is identified by a process ID (PID). To use
this form of the command, you must be the owner of the process or be running with
root privilege. In the other form, you use dlook on a command you are launching
and thus are the owner.

The dlook(1) command accepts the following options:

50 007–4639–005

Linux
®

Application Tuning Guide

• -a: Shows the physical addresses of each page in the address space.

• -c: Shows the user and system CPU time, that is, how long the process has
executed on each CPU.

• -h: Explicitly lists holes in the address space.

• -l: Shows libraries.

• -o: Outputs to file name (outfile). If not specified, output is written to stdout.

• -s: Specifies a sample interval in seconds. Information about the process is
displayed every second (secs) of CPU usage by the process.

An example for the sleep process with a PID of 4702 is as follows:

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

dlook 4702

Peek: sleep

Pid: 4702 Thu Aug 22 10:45:34 2002

Cputime by cpu (in seconds):

user system

TOTAL 0.002 0.033

cpu1 0.002 0.033

Process memory map:

2000000000000000-2000000000030000 r-xp 0000000000000000 04:03 4479 /lib/ld-2.2.4.so

[2000000000000000-200000000002c000] 11 pages on node 1 MEMORY|SHARED

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-200000000003c000] 3 pages on node 0 MEMORY|DIRTY

...

2000000000128000-2000000000370000 r-xp 0000000000000000 04:03 4672 /lib/libc-2.2.4.so

[2000000000128000-2000000000164000] 15 pages on node 1 MEMORY|SHARED
[2000000000174000-2000000000188000] 5 pages on node 2 MEMORY|SHARED

[2000000000188000-2000000000190000] 2 pages on node 1 MEMORY|SHARED

007–4639–005 51

5: Data Placement Tools

[200000000019c000-20000000001a8000] 3 pages on node 1 MEMORY|SHARED
[20000000001c8000-20000000001d0000] 2 pages on node 1 MEMORY|SHARED

[20000000001fc000-2000000000204000] 2 pages on node 1 MEMORY|SHARED

[200000000020c000-2000000000230000] 9 pages on node 1 MEMORY|SHARED

[200000000026c000-2000000000270000] 1 page on node 1 MEMORY|SHARED

[2000000000284000-2000000000288000] 1 page on node 1 MEMORY|SHARED
[20000000002b4000-20000000002b8000] 1 page on node 1 MEMORY|SHARED

[20000000002c4000-20000000002c8000] 1 page on node 1 MEMORY|SHARED

[20000000002d0000-20000000002d8000] 2 pages on node 1 MEMORY|SHARED

[20000000002dc000-20000000002e0000] 1 page on node 1 MEMORY|SHARED

[2000000000340000-2000000000344000] 1 page on node 1 MEMORY|SHARED

[200000000034c000-2000000000358000] 3 pages on node 2 MEMORY|SHARED

....

20000000003c8000-20000000003d0000 rw-p 0000000000000000 00:00 0

[20000000003c8000-20000000003d0000] 2 pages on node 0 MEMORY|DIRTY

The dlook command gives the name of the process (Peek: sleep), the process ID,
and time and date it was invoked. It provides total user and system CPU time in
seconds for the process.

Under the heading Process memory map, the dlook command prints information
about a process from the /proc/pid/cpu and /proc/pid/maps files. On the left, it
shows the memory segment with the offsets below in decimal. In the middle of the
output page, it shows the type of access, time of execution, the PID, and the object
that owns the memory (in this case, /lib/ld-2.2.4.so). The characters s or p
indicate whether the page is mapped as sharable (s) with other processes or is private
(p). The right side of the output page shows the number of pages of memory
consumed and on which nodes the pages reside. A page is 16, 384 bytes. Dirty
memory means that the memory has been modified by a user.

In the second form of the dlook command, you specify a command and optional
command arguments. The dlook command issues an exec call on the command and
passes the command arguments. When the process terminates, dlook prints
information about the process, as shown in the following example:

dlook date

Thu Aug 22 10:39:20 CDT 2002

Exit: date

52 007–4639–005

Linux
®

Application Tuning Guide

Pid: 4680 Thu Aug 22 10:39:20 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

20000000002dc000-20000000002e4000 rw-p 0000000000000000 00:00 0

[20000000002dc000-20000000002e4000] 2 pages on node 3 MEMORY|DIRTY

2000000000324000-2000000000334000 rw-p 0000000000000000 00:00 0

[2000000000324000-2000000000328000] 1 page on node 3 MEMORY|DIRTY

4000000000000000-400000000000c000 r-xp 0000000000000000 04:03 9657220 /bin/date

[4000000000000000-400000000000c000] 3 pages on node 1 MEMORY|SHARED

6000000000008000-6000000000010000 rw-p 0000000000008000 04:03 9657220 /bin/date
[600000000000c000-6000000000010000] 1 page on node 3 MEMORY|DIRTY

6000000000010000-6000000000014000 rwxp 0000000000000000 00:00 0

[6000000000010000-6000000000014000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0
[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

If you use the dlook command with the -s secs option, the information is sampled at
regular internals. The output for the command dlook -s 5 sleep 50 is as follows:

Exit: sleep
Pid: 5617 Thu Aug 22 11:16:05 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0
[2000000000030000-200000000003c000] 3 pages on node 3 MEMORY|DIRTY

2000000000134000-2000000000140000 rw-p 0000000000000000 00:00 0

20000000003a4000-20000000003a8000 rw-p 0000000000000000 00:00 0

007–4639–005 53

5: Data Placement Tools

[20000000003a4000-20000000003a8000] 1 page on node 3 MEMORY|DIRTY

20000000003e0000-20000000003ec000 rw-p 0000000000000000 00:00 0

[20000000003e0000-20000000003ec000] 3 pages on node 3 MEMORY|DIRTY

4000000000000000-4000000000008000 r-xp 0000000000000000 04:03 9657225 /bin/sleep
[4000000000000000-4000000000008000] 2 pages on node 3 MEMORY|SHARED

6000000000004000-6000000000008000 rw-p 0000000000004000 04:03 9657225 /bin/sleep

[6000000000004000-6000000000008000] 1 page on node 3 MEMORY|DIRTY

6000000000008000-600000000000c000 rwxp 0000000000000000 00:00 0
[6000000000008000-600000000000c000] 1 page on node 3 MEMORY|DIRTY

60000fff80000000-60000fff80004000 rw-p 0000000000000000 00:00 0

[60000fff80000000-60000fff80004000] 1 page on node 3 MEMORY|DIRTY

60000fffffff4000-60000fffffffc000 rwxp ffffffffffffc000 00:00 0

[60000fffffff4000-60000fffffffc000] 2 pages on node 3 MEMORY|DIRTY

You can run a Message Passing Interface (MPI) job using the mpirun command and
print the memory map for each thread, or redirect the ouput to a file, as follows:

Note: The output has been abbreviated to shorten the example and bold headings
added for easier reading.

mpirun -np 8 dlook -o dlook.out ft.C.8

Contents of dlook.out:

Exit: ft.C.8

Pid: 2306 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 21 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

54 007–4639–005

Linux
®

Application Tuning Guide

...

Exit: ft.C.8

Pid: 2310 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 25 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 25 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2307 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 30 MEMORY|DIRTY

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 30 MEMORY|DIRTY

...

Exit: ft.C.8

Pid: 2308 Fri Aug 30 14:33:37 2002

Process memory map:

2000000000030000-200000000003c000 rw-p 0000000000000000 00:00 0

[2000000000030000-2000000000034000] 1 page on node 0 MEMORY|DIRTY

007–4639–005 55

5: Data Placement Tools

[2000000000034000-200000000003c000] 2 pages on node 12 MEMORY|DIRTY|SHARED

2000000000044000-2000000000060000 rw-p 0000000000000000 00:00 0

[2000000000044000-2000000000050000] 3 pages on node 12 MEMORY|DIRTY|SHARED

[2000000000050000-2000000000054000] 1 page on node 0 MEMORY|DIRTY

...

For more information on the dlook command, see the dlook man page.

Installing NUMA Tools
To use the dlook(1), dplace(1), and topology(1) commands, you must load the
numatools kernel module. Perform the following steps:

1. To configure numatools kernel module to be started automatically during
system startup, use the chkconfig(8) command as follows:

chkconfig --add numatools

2. To turn on numatools, enter the following command:

/etc/rc.d/init.d/numatools start

This step will be done automatically for subsequent system reboots when
numatools are configured on by using the chkconfig(8) utility.

The following steps are required to disable numatools:

1. To turn off numatools, enter the following:

/etc/rc.d/init.d/numatools stop

2. To stop numatools from initiating after a system reboot, use the chkconfig(8)
command as follows:

chkconfig --del numatools

56 007–4639–005

Chapter 6

Performance Tuning

After analyzing your code to determine where performance bottlenecks are occurring,
you can turn your attention to making your programs run their fastest. One way to
do this is to use multiple CPUs in parallel processing mode. However, this should be
the last step. The first step is to make your program run as efficiently as possible on a
single processor system and then consider ways to use parallel processing.

This chapter describes the process of tuning your application for a single processor
system, and then tuning it for parallel processing in the following sections:

• "Single Processor Code Tuning"

• "Multiprocessor Code Tuning" on page 64

It also describes how to improve the performance of floating-point programs in

• "Floating-point Programs Performance" on page 75

Single Processor Code Tuning
Several basic steps are used to tune performance of single-processor code:

• Get the expected answers and then tune performance. For details, see "Getting the
Correct Results" on page 58.

• Use existing tuned code, such as that found in math libraries and scientific library
packages. For details, see "Using Tuned Code" on page 60.

• Determine what needs tuning. For details, see "Determining Tuning Needs" on
page 60.

• Use the compiler to do the work. For details, see "Using Compiler Options Where
Possible" on page 61.

• Consider tuning cache performance. For details, see "Tuning the Cache
Performance" on page 62.

• Set environment variables to enable higher-performance memory management
mode. For details, see "Managing Memory" on page 64.

007–4639–005 57

6: Performance Tuning

Getting the Correct Results

One of the first steps in performance tuning is to verify that the correct answers are
being obtained. Once the correct answers are obtained, tuning can be done. You can
verify answers by initially disabling specific optimizations and limiting default
optimizations. This can be accomplished by using specific compiler options and by
using debugging tools.

The following compiler options emphasize tracing and porting over performance:

• -O: the -O0 option disables all optimization. The default is -O2.

• -g: the -g option preserves symbols for debugging.

• -mp: the -mp option limits floating-point optimizations and maintains declared
precision.

• -IPF_fltacc: the -IPF_fltacc option disables optimizations that affect
floating-point accuracy.

• -r:, -i: the -r8 and -i8 options set default real, integer, and logical sizes to 8
bytes, which are useful for porting codes from Cray, Inc. systems. This explicitly
declares intrinsic and external library functions.

Some debugging tools can also be used to verify that correct answers are being
obtained. See "Debugging Tools" on page 20 for more details.

Managing Heap Corruption Problems

Two methods can be used to check for heap corruption problems in programs that
use glibc malloc/free dynamic memory management routines: environment
variables and Electric Fence.

Set the MALLOC_CHECK_ environment variable to 1 to print diagnostic messages or to
2 to abort immediately when heap corruption is detected.

Electric Fence is a malloc debugger. It aligns either the start or end of an allocated
block with an invalid page, causing segmentation faults to occur on buffer overruns
or underruns at the point of error. It can also detect accesses to previously freed
regions of memory.

Overruns and underruns are circumstances where an access to an array is outside the
declared boundary of the array. Underruns and overruns cannot be simultaneously
detected. The default behavior is to place inaccessible pages immediately after

58 007–4639–005

Linux
®

Application Tuning Guide

allocated memory, but the complementary case can be enabled by setting the
EF_PROTECT_BELOW environment variable. To use Electric Fence, link with the
libefence library, as shown in the following example:

% cat foo.c

#include <stdio.h>

#include <stdlib.h>
int main (void)

{

int i;

int * a;

float *b;
a = (int *)malloc(1000*sizeof (int));

b = (float *)malloc(1000*sizeof (float));

a[0]=1;

for (i=1 ; i<1001;i++)

{
a[i]=a[i-1]+1;

}

for (i=1 ; i<1000;i++)

{

b[i]=a[i-1]*3.14;
}

printf(‘‘answer is %d %f \n’’,a[999],b[999]);

}

Compile and run the program as follows (note the error when it is compiled with the
library call):

% ecc foo.c

% ./a.out
answer is 1000 3136.860107

% ecc foo.c -lefence

% ./a.out

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens

Segmentation fault

% dbg

007–4639–005 59

6: Performance Tuning

To avoid potentially large core files, the recommended method of using Electric Fence
is from within a debugger. See the efence man page for additional details.

Using Tuned Code

Where possible, use code that has already been tuned for optimum hardware
performance.

The following mathematical functions should be used where possible to help obtain
best results:

• SCSL: SGI’s Scientific Computing Software Library. This library includes BLAS,
LAPACK, FFT, convolution/correlation, and iterative/direct sparse solver routines.
Documentation is available via online man pages (see intro_scsl) and the SCSL
User’s Guide available on the SGI Technical Publications Library at
http://docs.sgi.com.

• MKL: Intel’s Math Kernel Library. This library includes BLAS, LAPACK, and FFT
routines.

• VML: the Vector Math Library, available as part of the MKL package
(libmkl_vml_itp.so).

• Standard Math library

Standard math library functions are provided with the Intel compiler’s libimf.a
file. If the -lm option is specified, glibc libm routines are linked in first.

Documentation is available for MKL and VML, as follows:
http://intel.com/software/products/perflib/index.htm?iid=ipp_home+software_libraries&
.

Determining Tuning Needs

Use the following tools to determine what points in your code might benefit from
tuning:

• time: Use this command to obtain an overview of user, system, and elapsed time.

• gprof: Use this tool to obtain an execution profile of your program (a pcsamp
profile). Use the -p compiler option to enable gprof use.

60 007–4639–005

Linux
®

Application Tuning Guide

• VTune: This Intel performance monitoring tool is a Linux-server, Windows-client
application. It supports remote sampling on all Itanium and Linux systems.

• pfmon: This performance monitoring tool is designed for Itanium and Linux. It
uses the Itanium Performance Monitoring Unit (PMU) to do counting and
sampling on unmodified binaries.

For information about other performance analysis tools, see Chapter 3, "Performance
Analysis and Debugging" on page 11.

Using Compiler Options Where Possible

Several compiler options can be used to optimize performance. For a short summary
of ifort or ecc options, use the -help option on the compiler command line. Use
the -dryrun option to show the driver tool commands that ifort or ecc generate.
This option does not actually compile.

Use the following options to help tune performance:

• -ftz: Flushes underflow to zero to avoid kernel traps. Enabled by default at -O3
optimization.

• -fno-alias: Assumes no pointer aliasing. Pointer aliasing can create uncertainty
about the possibility that two unrelated names might refer to the identical
memory; because of this uncertainty, the compiler will assume that any two
pointers can point to the same location in memory. This can remove optimization
opportunities, particularly for loops.

Other aliasing options include -ansi_alias and -fno_fnalias. Note that
incorrect alias assertions may generate incorrect code.

• -ip: Generates single file, interprocedural optimization; -ipo generates multifile,
interprocedural optimization.

Most compiler optimizations work within a single procedure (like a function or a
subroutine) at a time. This intra-procedural focus restricts optimization
possibilities because a compiler is forced to make worst-case assumptions about
the possible effects of a procedure. By using inter-procedural analysis, more than
a single procedure is analyzed at once and code is optimized. It performs two
passes through the code and requires more compile time.

• -O3: Enables -O2 optimizations plus more aggressive optimizations, including
loop transformation and prefetching. Loop transformation are found in a

007–4639–005 61

6: Performance Tuning

transformation file created by the compiler; you can examine this file to see what
suggested changes have been made to loops. Prefetch instructions allow data to be
moved into the cache before their use. A prefetch instruction is similar to a load
instruction.

Note that Level 3 optimization may not improve performance for all programs.

• -opt_report: Generates an optimization report and places it in the file specified
in -opt_report_file.

• -override_limits: This is an undocumented option that sometimes allows the
compiler to continue optimizing when it has hit an internal limit.

• -prof_gen and -prof_use: Generates and uses profiling information. These
options require a three-step compilation process:

1. Compile with proper instrumentation using -prof_gen.

2. Run the program on one or more training datasets.

3. Compile with -prof_use, which uses the profile information from the
training run.

• -S: Compiles and generates an assembly listing in the .s files and does not link.
The assembly listing can be used in conjunction with the output generated by the
-opt_report option to try to determine how well the compiler is optimizing
loops.

Tuning the Cache Performance

There are several actions you can take to help tune cache performance:

• Avoid large power-of-2 (and multiples thereof) strides and dimensions that cause
cache thrashing. Cache thrashing occurs when multiple memory accesses require
use of the same cache line. This can lead to an unnecessary number of cache
misses.

To prevent cache thrashing, redimension your vectors so that the size is not a
power of two. Space the vectors out in memory so that concurrently accessed
elements map to different locations in the cache. When working with
two-dimensional arrays, make the leading dimension an odd number; for
multidimensional arrays, change two or more dimensions to an odd number.

62 007–4639–005

Linux
®

Application Tuning Guide

Consider the following example: a cache in the hierarchy has a size of 256 KB (or
65536 4—byte words). A Fortran program contains the following loop:

real data(655360,24)

...

do i=1,23

do j=1,655360

diff=diff+data(j,i)-data(j,i+1)

enddo
enddo

The two accesses to data are separated in memory by 655360*4 bytes, which is a
simple multiple of the cache size; they consequently load to the same location in
the cache. Because both data items cannot simultaneously coexist in that cache
location, a pattern of replace on reload occurs that considerably reduces
performance.

• Use a memory stride of 1 wherever possible. A loop over an array should access
array elements from adjacent memory addresses. When the loop iterates through
memory by consecutive word addresses, it uses every word of every cache line in
sequence and does not return to a cache line after finishing it.

If memory strides other than 1 are used, cache lines could be loaded multiple
times if an array is too large to be held in memory at one time.

• Cache bank conflicts can occur if there are two accesses to the same 16-byte-wide
bank at the same time. Try different padding of arrays if the output from the
pfmon -e L2_OZQ_CANCELS1_BANK_CONF command and the output from the
pfmon -e CPU_CYCLES command shows a high number of bank conflicts
relative to total CPU cycles. These can be combined into one command:

% pfmon -e CPU_CYCLES,L2_OZQ_CANCELS1_BANK_CONF a.out

A maximum of four performance monitoring events can be counted
simultaneously.

• Group together data that is used at the same time and do not use vectors in your
code, if possible. If elements that are used in one loop iteration are contiguous in
memory, it can reduce traffic to the cache and fewer cache lines will be fetched for
each iteration of the loop.

• Try to avoid the use of temporary arrays and minimize data copies.

007–4639–005 63

6: Performance Tuning

Managing Memory

Nonuniform memory access (NUMA) uses hardware with memory and peripherals
distributed among many CPUs. This allows scalability for a shared memory system
but a side effect is the time it takes for a CPU to access a memory location. Because
memory access times are nonuniform, program optimization is not always
straightforward.

Codes that frequently allocate and deallocate memory through glibc malloc/free
calls may accrue significant system time due to memory management overhead. By
default, glibc strives for system-wide memory efficiency at the expense of
performance.

In compilers up to and including version 7.1.x, to enable the higher-performance
memory management mode, set the following environment variables:

% setenv MALLOC_TRIM_THRESHOLD_ -1

% setenv MALLOC_MMAP_MAX_ 0

Because allocations in ifort using the malloc intrinsic use the glibc malloc
internally, these environment variables are also applicable in Fortran codes using, for
example, Cray pointers with malloc/free. But they do not work for Fortran 90
allocatable arrays, which are managed directly through Fortran library calls and
placed in the stack instead of the heap.

Multiprocessor Code Tuning
Before beginning any multiprocessor tuning, first perform single processor tuning.
This can often obtain good results in multiprocessor codes also. For details, see
"Single Processor Code Tuning" on page 57.

Multiprocessor tuning consists of the following major steps:

• Determine what parts of your code can be parallelized. For background
information, see "Data Decomposition" on page 65.

• Choose the parallelization methodology for your code. For details, see
"Parallelizing Your Code" on page 66.

• Analyze your code to make sure it is parallelizing properly. For details, see
Chapter 3, "Performance Analysis and Debugging" on page 11.

64 007–4639–005

Linux
®

Application Tuning Guide

• Check to determine if false sharing exists. For details, see "Fixing False Sharing"
on page 68.

• Tune for data placement. For details, see "Using dplace and runon" on page 69.

• Use environment variables to assist with tuning. For details, see "Environment
Variables for Performance Tuning" on page 70.

Data Decomposition

In order to efficiently use multiple processors on a system, tasks have to be found
that can be performed at the same time. There are two basic methods of defining
these tasks:

• Functional parallelism

Functional parallelism is achieved when different processors perform different
functions. This is a known approach for programmers trained in modular
programming. Disadvantages to this approach include the difficulties of defining
functions as the number of processors grow and finding functions that use an
equivalent amount of CPU power. This approach may also require large amounts
of synchronization and data movement.

• Data parallelism

Data parallelism is achieved when different processors perform the same function
on different parts of the data. This approach takes advantage of the large
cumulative memory. One requirement of this approach, though, is that the
problem domain be decomposed. There are two steps in data parallelism:

1. Data decomposition

Data decomposition is breaking up the data and mapping data to processors.
Data can be broken up explicitly by the programmer by using message
passing (with MPI) and data passing (using the shmem library routines) or can
be done implicitly using compiler-based MP directives to find parallelism in
implicitly decomposed data.

There are advantages and disadvantages to implicit and explicit data
decomposition:

– Implicit decomposition advantages: No data resizing is needed; all
synchonization is handled by the compiler; the source code is easier to

007–4639–005 65

6: Performance Tuning

develop and is portable to other systems with OpenMP or High
Performance Fortran (HPF) support.

– Implicit decomposition disadvantages: The data communication is hidden
by the user; the compiler technology is not yet mature enough to deliver
consistent top performance.

– Explicit decomposition advantages: The programmer has full control over
insertion of communication and synchronization calls; the source code is
portable to other systems; code performance can be better than implicitly
parallelized codes.

– Explicit decomposition disadvantages: Harder to program; the source
code is harder to read and the code is longer (typically 40% more).

2. The final step is to divide the work among processors.

Parallelizing Your Code

The first step in multiprocessor performance tuning is to choose the parallelization
methodology that you want to use for tuning. This section discusses those options in
more detail.

You should first determine the amount of code that is parallelized. Use the following
formula to calculate the amount of code that is parallelized:

p=N(T(1)-T(N)) / T(1)(N-1)

In this equation, T(1) is the time the code runs on a single CPU and T(N) is the time it
runs on N CPUs. Speedup is defined as T(1)/T(N).

If speedup/N is less than 50% (that is, N>(2-p)/(1-p)), stop using more CPUs and tune
for better scalability.

CPU activity can be displayed with the top or vmstat commands or accessed by
using the Performance Co-Pilot tools (for example, pmval
kernel.percpu.cpu.user) or by using the Performance Co-Pilot visualization
tools pmchart.

Next you should focus on a parallelization methodology, as discussed in the
following subsections.

66 007–4639–005

Linux
®

Application Tuning Guide

Use MPT

You can use the Message Passing Interface (MPI) from the SGI Message Passing
Toolkit (MPT). MPI is optimized and more scalable for SGI Altix 3000 series systems
than generic MPI libraries. It takes advantage of the SGI Altix 3000 architecture and
SGI Linux NUMA features.

Use the -lmpi compiler option to use MPI. For a list of environment variables that
are supported, see the mpi man page. Those variables that are valid for IRIX systems
only are so noted on the man page.

MPIO_DIRECT_READ and MPIO_DIRECT_WRITE are supported under Linux for local
XFS filesystems in SGI MPT version 1.6.1 and beyond.

For details about the Message Passing Toolkit, see the Message Passing Toolkit: MPI
Programmer’s Manual.

Use OpenMP

OpenMP is a shared memory multiprocessing API, which standardizes existing
practice. It is scalable for fine or coarse grain parallelism with an emphasis on
performance. It exploits the strengths of shared memory and is directive-based. The
OpenMP implementation also contains library calls and environment variables.

To use OpenMP directives with C, C++, or Fortran codes, you can use the following
compiler options:

• ifort -openmp or ecc -openmp: These options use the OpenMP front-end that
is built into the Intel compilers. The resulting executable file makes calls to
libguide.so, which is the OpenMP run-time library provided by Intel.

• guide: An alternate command to invoke the Intel compilers to use OpenMP code.
Use guidec (in place of ifort), guideefc (in place of ifort), or guidec++ to
translate code with OpenMP directives into code with calls to libguide. See
"Other Performance Tools" on page 19 for details.

The -openmp option to ifort is the long-term OpenMP compiler for Linux
provided by Intel. However, if you have performance problems with this option,
using guide might provide improved performance.

For details about OpenMP usage see the OpenMP standard, available at
http://www.openmp.org/specs.

007–4639–005 67

6: Performance Tuning

Use Compiler Options

Use the compiler to invoke automatic parallelization. Use the -parallel and
-par_report option to the efc or ecc compiler. These options show which loops
were parallelized and the reasons why some loops were not parallelized. If a source
file contains many loops, it might be necessary to add the -override_limits flag
to enable automatic parallelization. The code generated by -parallel is based on
the OpenMP API; the standard OpenMP environment variables and Intel extensions
apply.

There are some limitations to automatic parallelization:

• For Fortran codes, only DO loops are analyzed

• For C/C++ codes, only for loops using explicit array notation or those using
pointer increment notation are analyzed. In addition, for loops using pointer
arithmetic notation are not analyzed nor are while or do/while loops. The
compiler also does not check for blocks of code that can be run in parallel.

Identifying Parallel Opportunities in Existing Code

Another parallelization optimization technique is to identify loops that have a
potential for parallelism, such as the following:

• Loops without data dependencies; a data dependency conflict occurs when a loop
has results from one loop pass that are needed in future passes of the same loop.

• Loops witih data dependencies because of temporary variables, reductions, nested
loops, or function calls or subroutines.

Loops that do not have a potential for parallelism are those with premature exits, too
few iterations, or those where the programming effort to avoid data dependencies is
too great.

Fixing False Sharing

If the parallel version of your program is slower than the serial version, false sharing
might be occurring. False sharing occurs when two or more data items that appear
not to be accessed by different threads in a shared memory application correspond to
the same cache line in the processor data caches. If two threads executing on different
CPUs modify the same cache line, the cache line cannot remain resident and correct
in both CPUs, and the hardware must move the cache line through the memory
subsystem to retain coherency. This causes performance degradation and reduction in

68 007–4639–005

Linux
®

Application Tuning Guide

the scalability of the application. If the data items are only read, not written, the
cache line remains in a shared state on all of the CPUs concerned. False sharing can
occur when different threads modify adjacent elements in a shared array. When two
CPUs share the same cache line of an array and the cache is decomposed, the
boundaries of the chunks split at the chache line.

You can use the following methods to verify that false sharing is happening:

• Use the performance monitor to look at output from pfmon and the
BUS_MEM_READ_BRIL_SELF and BUS_RD_INVAL_ALL_HITM events.

• Use pfmon to check DEAR events to track common cache lines.

• Use the Performance Co-Pilot pmshub utility to monitor cache traffic and CPU
utilization. You can also use the shubstats(1) tool to monitor Altix cache and
directory traffic.

If false sharing is a problem, try the following solutions:

• Use the hardware counter to run a profile that monitors storage to shared cache
lines. This will show the location of the problem. You can use the profile.pl
-e command or histx -e command. For more information, see "Profiling with
profile.pl" on page 13, "Using histx" on page 14, and the profile.pl(1)
man page.

• Revise data structures or algorithms.

• Check shared data, static variables, common blocks, and private and public
variables in shared objects.

• Use critical regions to identify the part of the code that has the problem.

Using dplace and runon

The dplace command binds processes to specified CPUs in a round-robin fashion.
Once bound to a process, they do not migrate. This is similar to _DSM_MUSTRUN on
IRIX systems. dplace numbering is done in the context of the current CPU memory
set. See Chapter 4, "Monitoring Tools" on page 25 for details about dplace.

The runon command restricts execution to the listed set of CPUs; however, processes
are still free to move among listed CPUs.

007–4639–005 69

6: Performance Tuning

Environment Variables for Performance Tuning

You can use several different environment variables to assist in performance tuning.
For details about environment variables used to control the behavior of MPI, see the
mpi(1) man page.

Several OpenMP environment variables can affect the actions of the OpenMP library.
For example, some environment variables control the behavior of threads in the
application when they have no work to perform or are waiting for other threads to
arrive at a synchronization semantic; other variables can specify how the OpenMP
library schedules iterations of a loop across threads. The following environment
variables are part of the OpenMP standard:

• OMP_NUM_THREADS (The default is the number of CPUs in the system.)

• OMP_SCHEDULE (The default is static.)

• OMP_DYNAMIC (The default is false.)

• OMP_NESTED (The default is false.)

In addition to the preceding environment variables, Intel provides several OpenMP
extensions, two of which are provided through the use of the KMP_LIBRARY variable.

The KMP_LIBRARY variable sets the run-time execution mode, as follows:

• If set to serial, single-processor execution is used.

• If set to throughput, CPUs yield to other processes when waiting for work. This
is the default and is intended to provide good overall system performance in a
multiuser environment. This is analogous to the IRIX _DSM_WAIT=YIELD variable.

• If set to turnaround, worker threads do not yield while waiting for work. This is
analogous to the IRIX _DSM_WAIT=SPIN variable. Setting KMP_LIBRARY to
turnaround may improve the performance of benchmarks run on dedicated
systems, where multiple users are not contending for CPU resources.

If your program gets a segmentation fault immediately upon execution, you may
need to increase KMP_STACKSIZE. This is the private stack size for threads. The
default is 4 MB. You may also need to increase your shell stacksize limit.

70 007–4639–005

Linux
®

Application Tuning Guide

Understanding Parallel Speedup and Amdahl’s Law
There are two ways to obtain the use of multiple CPUs. You can take a conventional
program in C, C++, or Fortran, and have the compiler find the parallelism that is
implicit in the code.

You can write your source code to use explicit parallelism, stating in the source code
which parts of the program are to execute asynchronously, and how the parts are to
coordinate with each other.

When your program runs on more than one CPU, its total run time should be less.
But how much less? What are the limits on the speedup? That is, if you apply 16
CPUs to the program, should it finish in 1/16th the elapsed time?

This section covers the following topics:

• "Adding CPUs to Shorten Execution Time" on page 71

• "Understanding Parallel Speedup" on page 72

• "Understanding Amdahl’s Law" on page 73

• "Calculating the Parallel Fraction of a Program" on page 74

• "Predicting Execution Time with n CPUs" on page 74

Adding CPUs to Shorten Execution Time

You can distribute the work your program does over multiple CPUs. However, there
is always some part of the program’s logic that has to be executed serially, by a single
CPU. This sets the lower limit on program run time.

Suppose there is one loop in which the program spends 50% of the execution time. If
you can divide the iterations of this loop so that half of them are done in one CPU
while the other half are done at the same time in a different CPU, the whole loop can
be finished in half the time. The result: a 25% reduction in program execution time.

The mathematical treatment of these ideas is called Amdahl’s law, for computer
pioneer Gene Amdahl, who formalized it. There are two basic limits to the speedup
you can achieve by parallel execution:

• The fraction of the program that can be run in parallel, p, is never 100%.

• Because of hardware constraints, after a certain point, there is less and less benefit
from each added CPU.

007–4639–005 71

6: Performance Tuning

Tuning for parallel execution comes down to doing the best that you are able to do
within these two limits. You strive to increase the parallel fraction, p, because in some
cases even a small change in p (from 0.8 to 0.85, for example) makes a dramatic
change in the effectiveness of added CPUs.

Then you work to ensure that each added CPU does a full CPU’s work, and does not
interfere with the work of other CPUs. In the SGI Altix architectures this means:

• Spreading the workload equally among the CPUs

• Eliminating false sharing and other types of memory contention between CPUs

• Making sure that the data used by each CPU are located in a memory near that
CPU’s node

Understanding Parallel Speedup

If half the iterations of a DO-loop are performed on one CPU, and the other half run at
the same time on a second CPU, the whole DO-loop should complete in half the time.
For example, consider the typical C loop in Example 6-1.

Example 6-1 Typical C Loop

for (j=0; j<MAX; ++j) {

z[j] = a[j]*b[j];

}

The compiler can automatically distribute such a loop over n CPUs (with n decided at
run time based on the available hardware), so that each CPU performs MAX/n
iterations.

The speedup gained from applying n CPUs, Speedup(n), is the ratio of the one-CPU
execution time to the n-CPU execution time: Speedup(n) = T(1) � T(n). If you measure
the one-CPU execution time of a program at 100 seconds, and the program runs in 60
seconds with two CPUs, Speedup(2) = 100 � 60 = 1.67.

This number captures the improvement from adding hardware. T(n) ought to be less
than T(1); if it is not, adding CPUs has made the program slower, and something is
wrong! So Speedup(n) should be a number greater than 1.0, and the greater it is, the
better. Intuitively you might hope that the speedup would be equal to the number of
CPUs (twice as many CPUs, half the time) but this ideal can seldom be achieved.

72 007–4639–005

Linux
®

Application Tuning Guide

Understanding Superlinear Speedup

You expect Speedup(n) to be less than n, reflecting the fact that not all parts of a
program benefit from parallel execution. However, it is possible, in rare situations, for
Speedup(n) to be larger than n. When the program has been sped up by more than the
increase of CPUs it is known as superlinear speedup.

A superlinear speedup does not really result from parallel execution. It comes about
because each CPU is now working on a smaller set of memory. The problem data
handled by any one CPU fits better in cache, so each CPU executes faster than the
single CPU could do. A superlinear speedup is welcome, but it indicates that the
sequential program was being held back by cache effects.

Understanding Amdahl’s Law

There are always parts of a program that you cannot make parallel, where code must
run serially. For example, consider the DO-loop. Some amount of code is devoted to
setting up the loop, allocating the work between CPUs. This housekeeping must be
done serially. Then comes parallel execution of the loop body, with all CPUs running
concurrently. At the end of the loop comes more housekeeping that must be done
serially; for example, if n does not divide MAX evenly, one CPU must execute the few
iterations that are left over.

The serial parts of the program cannot be speeded up by concurrency. Let p be the
fraction of the program’s code that can be made parallel (p is always a fraction less
than 1.0.) The remaining fraction (1–p) of the code must run serially. In practical
cases, p ranges from 0.2 to 0.99.

The potential speedup for a program is proportional to p divided by the CPUs you can
apply, plus the remaining serial part, 1-p. As an equation, this appears as Example 6-2.

Example 6-2 Amdahl’s law: Speedup(n) Given p

1
Speedup(n) = -----------

(p/n)+(1-p)

Suppose p = 0.8; then Speedup(2) = 1 / (0.4 + 0.2) = 1.67, and Speedup(4)= 1 / (0.2 +
0.2) = 2.5. The maximum possible speedup (if you could apply an infinite number of
CPUs) would be 1 / (1-p). The fraction p has a strong effect on the possible speedup.

The reward for parallelization is small unless p is substantial (at least 0.8); or to put
the point another way, the reward for increasing p is great no matter how many CPUs

007–4639–005 73

6: Performance Tuning

you have. The more CPUs you have, the more benefit you get from increasing p.
Using only four CPUs, you need only p= 0.75 to get half the ideal speedup. With
eight CPUs, you need p= 0.85 to get half the ideal speedup.

Calculating the Parallel Fraction of a Program

You do not have to guess at the value of p for a given program. Measure the
execution times T(1) and T(2) to calculate a measured Speedup(2) = T(1) / T(2). The
Amdahl’s law equation can be rearranged to yield p when Speedup (2) is known, as in
Example 6-3.

Example 6-3 Amdahl’s law: p Given Speedup(2)

2 SpeedUp(2) - 1

p = --- * --------------
1 SpeedUp(2)

Suppose you measure T(1) = 188 seconds and T(2) = 104 seconds.

SpeedUp(2) = 188/104 = 1.81

p = 2 * ((1.81-1)/1.81) = 2*(0.81/1.81) = 0.895

In some cases, the Speedup(2) = T(1)/T(2) is a value greater than 2; in other words, a
superlinear speedup ("Understanding Superlinear Speedup" on page 73). When this
occurs, the formula in Example 6-3 returns a value of p greater than 1.0, which is
clearly not useful. In this case you need to calculate p from two other more realistic
timings, for example T(2) and T(3). The general formula for p is shown in Example
6-4, where n and m are the two CPU counts whose speedups are known, n>m.

Example 6-4 Amdahl’s Law: p Given Speedup(n) and Speedup(m)

Speedup(n) - Speedup(m)
p = ---

(1 - 1/n)*Speedup(n) - (1 - 1/m)*Speedup(m)

Predicting Execution Time with n CPUs

You can use the calculated value of p to extrapolate the potential speedup with higher
numbers of CPUs. The following example shows the expected time with four CPUs,
if p=0.895 and T(1)=188 seconds:

74 007–4639–005

Linux
®

Application Tuning Guide

Speedup(4)= 1/((0.895/4)+(1-0.895)) = 3.04
T(4)= T(1)/Speedup(4) = 188/3.04 = 61.8

The calculation can be made routine using the computer by creating a script that
automates the calculations and extrapolates run times.

These calculations are independent of most programming issues such as language,
library, or programming model. They are not independent of hardware issues,
because Amdahl’s law assumes that all CPUs are equal. At some level of parallelism,
adding a CPU no longer affects run time in a linear way. For example, on some
architectures, cache-friendly codes scale closely with Amdahl’s law up to the
maximum number of CPUs, but scaling of memory intensive applications slows as
the system bus approaches saturation. When the bus bandwidth limit is reached, the
actual speedup is less than predicted.

Floating-point Programs Performance
Certain floating-point programs experience slowdowns due to excessive floating point
traps called Floating-Point Software Assist (FPSWA).

This happens when the hardware cannot complete a floating point operation and
requests help (emulation) from software. This happens, for instance, with denormals
numbers. See the following document for more details:

http://www.intel.com/design/itanium/downloads/245415.htm

The symptoms are a slower than normal execution, FPSWA message in the system log
(run dmesg). The average cost of a FPSWA fault is quite high around 1000
cycles/fault.

By default, the kernel prints a message similar to the following in the system log:

foo(7716): floating-point assist fault at ip 40000000000200e1

isr 0000020000000008

The kernel throttles the message in order to avoid flooding the console.

It is possible to control the behavior of the kernel on FPSWA faults using the
prctl(1) command. In particular, it is possible to get a signal delivered at the first
FPSWA. It is also possible to silence the console message.

007–4639–005 75

6: Performance Tuning

Using pfmon you can count fp_true_sirstall to test for FPSWA faults, as follows:

$ pfmon --no-qual-check -ku --drange=fpswa_interface \
-eloads_retired,ia64_inst_retired,fp_true_sirstall -- test-fpswa

1 LOADS_RETIRED

2615140 IA64_INST_RETIRED

To see a list of available options, use the pfmon - help command.

76 007–4639–005

Chapter 7

Suggested Shortcuts and Workarounds

This chapter contains suggested workarounds and shortcuts that you can use on your
SGI Altix system.

Determining Process Placement
This section describes methods that can be used to determine where different
processes are running. This can help you understand your application structure and
help you decide if there are obvious placement issues.

There are some set-up steps to follow before determining process placement (note that
all examples use the C shell):

1. Set up an alias as in this example, changing guest to your username:

% pu

% alias pu "ps -edaf|grep guest"

The pu command shows current processes.

2. Create the .toprc preferences file in your login directory to set the appropriate
top options. If you prefer to use the top defaults, delete the .toprc file.

% cat <<EOF>> $HOME/.toprc

YEAbcDgHIjklMnoTP|qrsuzV{FWX

2mlt

EOF

3. Inspect all processes and determine which CPU is in use and create an alias file for
this procedure. The CPU number is shown in the first column of the top output:

% top -b -n 1 | sort -n | more

% alias top1 "top -b -n 1 | sort -n "

Use the following variation to produce output with column headings:

% alias top1 "top -b -n 1 | head -4 | tail -1;top -b -n 1 | sort -n"

007–4639–005 77

7: Suggested Shortcuts and Workarounds

4. View your files (replacing guest with your username):

% top -b -n 1 | sort -n | grep guest

Use the following variation to produce output with column headings:

% top -b -n 1 | head -4 | tail -1;top -b -n 1 | sort -n grep guest

Example Using pthreads

The following example demonstrates a simple usage with a program name of th. It
sets the number of desired OpenMP threads and runs the program. Notice the
process hierarchy as shown by the PID and the PPID columns. The command usage
is the following, where n is the number of threads:

% th n

% th 4

% pu

UID PID PPID C STIME TTY TIME CMD

root 13784 13779 0 12:41 pts/3 00:00:00 login --

guest1

guest1 13785 13784 0 12:41 pts/3 00:00:00 -csh

guest1 15062 13785 0 15:23 pts/3 00:00:00 th 4 <-- Main thread
guest1 15063 15062 0 15:23 pts/3 00:00:00 th 4 <-- daemon thread

guest1 15064 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 1

guest1 15065 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 2

guest1 15066 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 3

guest1 15067 15063 99 15:23 pts/3 00:00:10 th 4 <-- worker thread 4
guest1 15068 13857 0 15:23 pts/5 00:00:00 ps -aef

guest1 15069 13857 0 15:23 pts/5 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND
3 0.0 15072 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep

5 0.0 13785 guest1 15 0 5872 3664 4592 S 0.0 0:00 csh

5 0.0 15062 guest1 16 0 15824 2080 4384 S 0.0 0:00 th

5 0.0 15063 guest1 15 0 15824 2080 4384 S 0.0 0:00 th

5 99.8 15064 guest1 25 0 15824 2080 4384 R 0.0 0:14 th
7 0.0 13826 guest1 18 0 5824 3552 5632 S 0.0 0:00 csh

10 99.9 15066 guest1 25 0 15824 2080 4384 R 0.0 0:14 th

78 007–4639–005

Linux
®

Application Tuning Guide

11 99.9 15067 guest1 25 0 15824 2080 4384 R 0.0 0:14 th
13 99.9 15065 guest1 25 0 15824 2080 4384 R 0.0 0:14 th

15 0.0 13857 guest1 15 0 5840 3584 5648 S 0.0 0:00 csh

15 0.0 15071 guest1 16 0 70048 1600 69840 S 0.0 0:00 ort

15 1.5 15070 guest1 15 0 5056 2832 4288 R 0.0 0:00top

Now skip the Main and daemon processes and place the rest:

% usr/bin/dplace -s 2 -c 4-7 th 4

% pu

UID PID PPID C STIME TTY TIME CMD

root 13784 13779 0 12:41 pts/3 00:00:00 login --

guest1

guest1 13785 13784 0 12:41 pts/3 00:00:00 -csh
guest1 15083 13785 0 15:25 pts/3 00:00:00 th 4

guest1 15084 15083 0 15:25 pts/3 00:00:00 th 4

guest1 15085 15084 99 15:25 pts/3 00:00:19 th 4

guest1 15086 15084 99 15:25 pts/3 00:00:19 th 4

guest1 15087 15084 99 15:25 pts/3 00:00:19 th 4
guest1 15088 15084 99 15:25 pts/3 00:00:19 th 4

guest1 15091 13857 0 15:25 pts/5 00:00:00 ps -aef

guest1 15092 13857 0 15:25 pts/5 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND

4 99.9 15085 guest1 25 0 15856 2096 6496 R 0.0 0:24 th

5 99.8 15086 guest1 25 0 15856 2096 6496 R 0.0 0:24 th

6 99.9 15087 guest1 25 0 15856 2096 6496 R 0.0 0:24 th

7 99.9 15088 guest1 25 0 15856 2096 6496 R 0.0 0:24 th
8 0.0 15095 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep

12 0.0 13785 guest1 15 0 5872 3664 4592 S 0.0 0:00 csh

12 0.0 15083 guest1 16 0 15856 2096 6496 S 0.0 0:00 th

12 0.0 15084 guest1 15 0 15856 2096 6496 S 0.0 0:00 th

15 0.0 15094 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort
15 1.6 15093 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

007–4639–005 79

7: Suggested Shortcuts and Workarounds

Example Using OpenMP

The following example demonstrates a simple OpenMP usage with a program name
of md. Set the desired number of OpenMP threads and run the program, as shown
below:

% alias pu "ps -edaf | grep guest1

% setenv OMP_NUM_THREADS 4

% md

The following output is created:

% pu

UID PID PPID C STIME TTY TIME CMD
root 21550 21535 0 21:48 pts/0 00:00:00 login -- guest1

guest1 21551 21550 0 21:48 pts/0 00:00:00 -csh

guest1 22183 21551 77 22:39 pts/0 00:00:03 md <-- parent / main

guest1 22184 22183 0 22:39 pts/0 00:00:00 md <-- daemon

guest1 22185 22184 0 22:39 pts/0 00:00:00 md <-- daemon helper
guest1 22186 22184 99 22:39 pts/0 00:00:03 md <-- thread 1

guest1 22187 22184 94 22:39 pts/0 00:00:03 md <-- thread 2

guest1 22188 22184 85 22:39 pts/0 00:00:03 md <-- thread 3

guest1 22189 21956 0 22:39 pts/1 00:00:00 ps -aef

guest1 22190 21956 0 22:39 pts/1 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND

2 0.0 22192 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort

2 0.0 22193 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep
2 1.6 22191 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

4 98.0 22186 guest1 26 0 26432 2704 4272 R 0.0 0:11 md

8 0.0 22185 guest1 15 0 26432 2704 4272 S 0.0 0:00 md

8 87.6 22188 guest1 25 0 26432 2704 4272 R 0.0 0:10 md

9 0.0 21551 guest1 15 0 5872 3648 4560 S 0.0 0:00 csh
9 0.0 22184 guest1 15 0 26432 2704 4272 S 0.0 0:00 md

9 99.9 22183 guest1 39 0 26432 2704 4272 R 0.0 0:11 md

14 98.7 22187 guest1 39 0 26432 2704 4272 R 0.0 0:11 md

From the notation on the right of the pu list, you can see the -x 6 pattern.

80 007–4639–005

Linux
®

Application Tuning Guide

place 1, skip 2 of them, place 3 more [0 1 1 0 0 0]
now, reverse the bit order and create the dplace -x mask

[0 0 0 1 1 0] --> [0x06] --> decimal 6

dplace does not currently process hex notation for this bit mask)

The following example confirms that a simple dplace placement works correctly:

% setenv OMP_NUM_THREADS 4

% /usr/bin/dplace -x 6 -c 4-7 md

% pu

UID PID PPID C STIME TTY TIME CMD
root 21550 21535 0 21:48 pts/0 00:00:00 login -- guest1

guest1 21551 21550 0 21:48 pts/0 00:00:00 -csh

guest1 22219 21551 93 22:45 pts/0 00:00:05 md

guest1 22220 22219 0 22:45 pts/0 00:00:00 md

guest1 22221 22220 0 22:45 pts/0 00:00:00 md
guest1 22222 22220 93 22:45 pts/0 00:00:05 md

guest1 22223 22220 93 22:45 pts/0 00:00:05 md

guest1 22224 22220 90 22:45 pts/0 00:00:05 md

guest1 22225 21956 0 22:45 pts/1 00:00:00 ps -aef

guest1 22226 21956 0 22:45 pts/1 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND

2 0.0 22228 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort

2 0.0 22229 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep
2 1.6 22227 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

4 0.0 22220 guest1 15 0 28496 2736 21728 S 0.0 0:00 md

4 99.9 22219 guest1 39 0 28496 2736 21728 R 0.0 0:12 md

5 99.9 22222 guest1 25 0 28496 2736 21728 R 0.0 0:11 md

6 99.9 22223 guest1 39 0 28496 2736 21728 R 0.0 0:11 md
7 99.9 22224 guest1 39 0 28496 2736 21728 R 0.0 0:11 md

9 0.0 21551 guest1 15 0 5872 3648 4560 S 0.0 0:00 csh

15 0.0 22221 guest1 15 0 28496 2736 21728 S 0.0 0:00 md

Combination Example (MPI and OpenMP)

For this example, explicit placement using the dplace -e -c command is used to
achieve the desired placement. If an x is used in one of the CPU positions, dplace
does not explicitly place that process.

007–4639–005 81

7: Suggested Shortcuts and Workarounds

If running without a cpuset, the x processes run on any available CPU.

If running with a cpuset, you have to renumber the CPU numbers to refer to “logical”
CPUs (0 ... n) within the cpuset, regardless of which physical CPUs are in the
cpuset. When running in a cpuset, the unplaced processes are constrained to the set
of CPUs within the cpuset.

For details about cpuset usage, see the Linux Resource Administration Guide.

The following example shows a “hybrid” MPI and OpenMP job with two MPI
processes, each with two OpenMP threads and no cpusets:

% setenv OMP_NUM_THREADS 2

% efc -O2 -o hybrid hybrid.f -lmpi -openmp

% mpirun -v -np 2 /usr/bin/dplace -e -c x,8,9,x,x,x,x,10,11 hybrid

if using cpusets ...

we need to reorder cpus to logical within the 8-15 set [0-7]

% cpuset -q omp -A mpirun -v -np 2 /usr/bin/dplace -e -c x,0,1,x,x,x,x,2,3,4,5,6,7 hybrid

We need a table of options for these pairs. "x" means don’t

care. See the dplace man page for more info about the -e option.
examples at end

-np OMP_NUM_THREADS /usr/bin/dplace -e -c <as shown> a.out

--- --------------- ---------------------------------------

2 2 x,0,1,x,x,x,x,2,3
2 3 x,0,1,x,x,x,x,2,3,4,5

2 4 x,0,1,x,x,x,x,2,3,4,5,6,7

4 2 x,0,1,2,3,x,x,x,x,x,x,x,x,4,5,6,7

4 3
x,0,1,2,3,x,x,x,x,x,x,x,x,4,5,6,7,8,9,10,11

4 4

x,0,1,2,3,x,x,x,x,x,x,x,x,4,5,6,7,8,9,10,11,12,13,14,15

Notes: 0 <- 1 -> <- 2 -> <- 3 -> <------ 4

------------------>

82 007–4639–005

Linux
®

Application Tuning Guide

Notes:
0. mpi daemon process

1. mpi child procs, one per np

2. omp daemon procs, one per np

3. omp daemon helper procs, one per np

4. omp thread procs, (OMP_NUM_THREADS - 1) per np

Example - -np 2 and OMP_NUM_THREADS 2

% setenv OMP_NUM_THREADS 2
% efc -O2 -o hybrid hybrid.f -lmpi -openmp

% mpirun -v -np 2 /usr/bin/dplace -e -c x,8,9,x,x,x,x,10,11 hybrid

% pu

UID PID PPID C STIME TTY TIME CMD

root 21550 21535 0 Mar17 pts/0 00:00:00 login -- guest1

guest1 21551 21550 0 Mar17 pts/0 00:00:00 -csh

guest1 23391 21551 0 00:32 pts/0 00:00:00 mpirun -v -np 2

/usr/bin/dplace

guest1 23394 23391 2 00:32 pts/0 00:00:00 hybrid <-- mpi daemon

guest1 23401 23394 99 00:32 pts/0 00:00:03 hybrid <-- mpi child 1

guest1 23402 23394 99 00:32 pts/0 00:00:03 hybrid <-- mpi child 2

guest1 23403 23402 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon 2
guest1 23404 23401 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon 1

guest1 23405 23404 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon hlpr 1

guest1 23406 23403 0 00:32 pts/0 00:00:00 hybrid <-- omp daemon hlpr 2

guest1 23407 23403 99 00:32 pts/0 00:00:03 hybrid <-- omp thread 2-1

guest1 23408 23404 99 00:32 pts/0 00:00:03 hybrid <-- omp thread 1-1
guest1 23409 21956 0 00:32 pts/1 00:00:00 ps -aef

guest1 23410 21956 0 00:32 pts/1 00:00:00 grep guest1

% top -b -n 1 | sort -n | grep guest1

LC %CPU PID USER PRI NI SIZE RSS SHARE STAT %MEM TIME COMMAND
0 0.0 21551 guest1 15 0 5904 3712 4592 S 0.0 0:00 csh

0 0.0 23394 guest1 15 0 883M 9456 882M S 0.1 0:00 hybrid

007–4639–005 83

7: Suggested Shortcuts and Workarounds

4 0.0 21956 guest1 15 0 5856 3616 5664 S 0.0 0:00 csh
4 0.0 23412 guest1 16 0 70048 1600 69840 S 0.0 0:00 sort

4 1.6 23411 guest1 15 0 5056 2832 4288 R 0.0 0:00 top

5 0.0 23413 guest1 16 0 3488 1536 3328 S 0.0 0:00 grep

8 0.0 22005 guest1 15 0 5840 3584 5648 S 0.0 0:00 csh

8 0.0 23404 guest1 15 0 894M 10M 889M S 0.1 0:00 hybrid
8 99.9 23401 guest1 39 0 894M 10M 889M R 0.1 0:09 hybrid

9 0.0 23403 guest1 15 0 894M 10M 894M S 0.1 0:00 hybrid

9 99.9 23402 guest1 25 0 894M 10M 894M R 0.1 0:09 hybrid

10 99.9 23407 guest1 25 0 894M 10M 894M R 0.1 0:09 hybrid

11 99.9 23408 guest1 25 0 894M 10M 889M R 0.1 0:09 hybrid

12 0.0 23391 guest1 15 0 5072 2928 4400 S 0.0 0:00 mpirun
12 0.0 23406 guest1 15 0 894M 10M 894M S 0.1 0:00 hybrid

14 0.0 23405 guest1 15 0 894M 10M 889M S 0.1 0:00 hybrid

Resetting System Limits
To regulate these limits on a per-user basis (for applications that do not rely on
limit.h), the limits.conf file can be modified. System limits that can be
modified include maximum file size, maximum number of open files, maximum stack
size, and so on. You can view this file is, as follows:

[user@machine user]# cat /etc/security/limits.conf

/etc/security/limits.conf
#

#Each line describes a limit for a user in the form:

#

#

#Where:

can be:
- an user name

- a group name, with @group syntax

- the wildcard *, for default entry

#

can have the two values:
- "soft" for enforcing the soft limits

- "hard" for enforcing hard limits

#

can be one of the following:

- core - limits the core file size (KB)

84 007–4639–005

Linux
®

Application Tuning Guide

- data - max data size (KB)
- fsize - maximum filesize (KB)

- memlock - max locked-in-memory address space (KB)

- nofile - max number of open files

- rss - max resident set size (KB)

- stack - max stack size (KB)
- cpu - max CPU time (MIN)

- nproc - max number of processes

- as - address space limit

- maxlogins - max number of logins for this user

- priority - the priority to run user process with

- locks - max number of file locks the user can hold
#

#

#* soft core 0

#* hard rss 10000
#@student hard nproc 20

#@faculty soft nproc 20

#@faculty hard nproc 50

#ftp hard nproc 0

#@student - maxlogins 4

End of file

For instructions on how to change these limits, see "Resetting the File Limit Resource
Default" on page 85.

Resetting the File Limit Resource Default

Several large user applications use the value set in the limit.h file as a hard limit
on file descriptors and that value is noted at compile time. Therefore, some
applications may need to be recompiled in order to take advantage of the SGI Altix
system hardware.

To regulate these limits on a per-user basis (for applications that do not rely on
limit.h), the limits.conf file can be modified. This allows the administrator to
set the allowed number of open files per user and per group. This also requires a
one-line change to the /etc/pam.d/login file.

Follow this procedure to execute these changes:

007–4639–005 85

7: Suggested Shortcuts and Workarounds

1. Add the following line to /etc/pam.d/login:

session required /lib/security/pam_limits.so

2. Add the following line to /etc/security/limits.conf, where username is the
user’s login and limit is the new value for the file limit resource:

[username] hard nofile [limit]

The following command shows the new limit:

ulimit -H -n

Because of the large number of file descriptors that that some applications require,
such as MPI jobs, you might need to increase the system-wide limit on the number of
open files on your Altix system. The default value for the file limit resource is 1024.
The default 1024 file descriptors allows for approximately 199 MPI processes per
host.You can increase the file descriptor value to 8196 to allow for more than 512 MPI
processes per host by adding adding the following lines to the
/etc/security/limits.conf file:

* soft nofile 8196

* hard nofile 8196

For more information on setting system limits, see the Chapter 5, “Kernel Tunable
Parameters on SGI ProPack Servers” in the Linux Configuration and Operations Guide.

Resetting the Default Stack Size

Some applications will not run well on an Altix system with a small stack size. To set
a higher stack limit, follow the instructions in "Resetting the File Limit Resource
Default" on page 85 and add the following lines to the
/etc/security/limits.conf file:

* Need example here
* Need example here

86 007–4639–005

Index

A

Altix architecture overview, 2
Amdahl’s law, 71

execution time given n and p, 74
parallel fraction p, 73
parallel fraction p given speedup(n), 74
speedup(n) given p, 73
superlinear speedup, 73

analysis
system configuration, 11

application tuning process, 11
automatic parallelization

limitations, 68

C

cache bank conflicts, 63
cache performance, 62
cacheline traffic and CPU utilization, 31
cluster environment, 1
commands

dlook, 50
dplace, 44
topology, 26

common compiler options, 5
compiler command line, 5
compiler libaries

C/C++, 7
dynamic libraries, 7
overview, 7
shared memory, 8

compiler libraries
static libraries, 7

compiler options
tracing and porting, 58

compiler options for tuning, 61
compiling environment, 5

compiler overview, 5
debugger overview, 8
libraries, 7
modules, 6

CPU utilization, 31
CPU-bound processes, 12
csrep command, 17

D

data decomposition, 65
data dependency, 68
data parallelism, 65
data placement tools, 41

cpusets, 42
dplace, 42
overview, 41
runon, 42

debugger overview, 8
debuggers, 20

gdb, 9
idb, 9
TotalView, 9

denormalized arithmetic, 6
determining parallel code amount, 66
determining tuning needs

tools used, 60
dlook command, 50
dplace command, 44
dumppm, 17

007–4639–005 87

Index

E

Electric Fence debugger, 58
Environment variables, 70
explicit data decomposition, 65

F

False sharing, 68
file limit resources

resetting, 85
floating-point programs, 75
Floating-Point Software Assist, 75
FPSWA

See "Floating-Point Software Assist", 75
functional parallelism, 65

G

gdb tool, 20
GNU debugger, 20
gtopology command, 28
GuideView tool, 18

H

hinv command, 26
histx, 14
histx data collection, 14
histx filters, 17

I

I/O-bound processes, 12
idb tool, 21
implicit data decomposition, 65
iostat command, 37
iprep command, 17

L

latency, 1
limits

system, 84
linkstat command, 32
lipfpm command, 15

M

memory management, 3, 64
memory page, 3
memory strides, 63
memory-bound processes, 12
Message Passing Toolkit

for parallelization, 67
using profile.pl, 14

modules, 6
command examples, 6

MPP definition, 1

N

NUMA Tools
command

dlook, 50
dplace, 44
runon, 43
taskset, 43

installing, 56

O

OpenMP, 67
environment variables, 70
Guide OpenMP Compiler, 20

88 007–4639–005

Linux
®

Application Tuning Guide

P

parallel execution
Amdahl’s law, 71
parallel fraction p, 73

parallel speedup, 72
parallelization

automatic, 68
using MPI, 67
using OpenMP, 67

performance
Assure Thread Analyzer, 20
Guide OpenMP Compiler, 20
GuideView, 18
VTune, 18

performance analysis, 11
Performance Co-Pilot monitoring tools, 30

linkstat, 32
Other Performance Co-Pilot monitoring tools, 32
pmshub, 31
shubstats, 31

performance gains
types of, 11

performance problems
sources, 12

pfmon tool, 13
pmshub command, 31
process placement, 77

MPI and OpenMP, 81
set-up, 77
using OpenMP, 80
using pthreads, 78

profile.pl script, 13
profiling

pfmon, 13
profile.pl, 13

ps command, 35

R

resetting default system stack size, 87

resetting file limit resources, 85
resetting system limit resources, 84
resident set size, 3
runon command, 43

S

samppm command, 17
sar command, 37
scalable computing, 1
shmem, 8
shortening execution time, 71
shubstats command, 31
SMP definition, 1
stack size

resetting, 87
superlinear speedup, 73
swap space, 3
system

overview, 1
system configuration, 11
system limit resources

resetting, 84
system limits

address space limit, 85
core file siz, 85
CPU time, 85
data size, 85
file locks, 85
file size, 85
locked-in-memory address space, 85
number of logins, 85
number of open files, 85
number of processes, 85
priority of user process, 85
resetting, 84
resident set size, 85
stack size, 85

system monitoring tools, 25
command

007–4639–005 89

Index

hinv, 26
topology, 26

system usage commands, 34
iostat, 37
ps, 35
sar, 37
top, 36
uptime, 34
vmstat, 36
w, 35

T

tools
Assure Thread Analyzer, 20
Guide OpenMP Compiler, 20
GuideView, 18
pfmon, 13
profile.pl, 13, 14
VTune, 18

top command, 36
topology command, 26
tuning

cache performance, 62
debugging tools

Electric Fence, 58
idb, 21

dplace, 69
Electric Fence, 58
environment variables, 70
false sharing, 68
heap corruption, 58
managing memory, 64
multiprocessor code, 64
parallelization, 66

profiling
GuideView, 18
histx command, 14
mpirun command, 14
pfmon, 13
profile.pl script, 13
VTune analyzer, 18

single processor code, 57
using compiler options, 61
using dplace, 69
using math functions, 60
using runon, 69
verifying correct results, 58

U

uname command, 12
unflow arithmetic

effects of, 6
uptime command, 34

V

virtual addressing, 3
virtual memory, 3
vmstat command, 36
VTune performance analyzer, 18

W

w command, 35

90 007–4639–005

	New Features in This Manual
	Major Documentation Changes

	Table of Contents
	About This Document
	Related Publications
	Conventions
	Obtaining Publications
	Reader Comments

	1. System Overview
	Scalable Computing
	An Overview of Altix Architecture
	The Basics of Memory Management

	2. The SGI Compiling Environment
	Compiler Overview
	Modules
	Library Overview
	Static Libraries
	Dynamic Libraries
	C/C++ Libraries
	Shared Memory Libraries

	Other Compiling Environment Features

	3. Performance Analysis and Debugging
	Determining System Configuration
	Sources of Performance Problems
	Profiling with pfmon
	Profiling with profile.pl
	profile.pl with MPI programs
	Using histx

	Using VT une for Remote Sampling
	Using GuideView
	Other Performance Tools
	Debugging Tools
	Using ddd

	4. Monitoring Tools
	System Monitoring Tools
	Hardware Inventory and Usage Commands
	Performance Co-Pilot Monitoring Tools
	System Usage Commands

	5. Data Placement Tools
	Data Placement Tools Overview
	runon Command
	dplace Command
	Using the dplace Command
	dplace for Compute Thread Placement Troubleshooting Case Study

	dlook Command
	Using the dlook Command

	Installing NUMA Tools

	6. Performance Tuning
	Single Processor Code Tuning
	Getting the Correct Results
	Managing Heap Corruption Problems
	Using Tuned Code
	Determining Tuning Needs
	Using Compiler Options Where Possible
	Tuning the Cache Performance
	Managing Memory

	Multiprocessor Code Tuning
	Data Decomposition
	Parallelizing Your Code
	Fixing False Sharing
	Using dplace and runon
	Environment Variables for Performance Tuning

	Understanding Parallel Speedup and Amdahl's Law
	Adding CPUs to Shorten Execution Time
	Understanding Parallel Speedup
	Understanding Amdahl's Law
	Calculating the Parallel Fraction of a Program
	Predicting Execution Time with n CPUs

	Floating-point Programs Performance

	7. Suggested Shortcuts and W orkarounds
	Determining Process Placement
	Example Using pthreads
	Example Using OpenMP
	Combination Example (MPI and OpenMP)

	Resetting System Limits
	Resetting the File Limit Resource Default
	Resetting the Default Stack Size

	Index

