SE1

OpenGL Shader ISL Library

Reference Page Index

Related User Documents

Shader SDK(1)

I nteractive Shading Language
ipf2oql(1)

isic(1)

ISL Reference Pages
islAppearance
islAppearanceBase

islA ppearanceCopy
islAppearanceCopyData

iS|A ppearanceSnapshot
islAppearanceSnapshotData
issCompileAction
isiCopyAction

isiDrawAction

islError

issMemory

is|Shader

isl Shape

islSnapshotAction

isl:: TexGen::copyNormToTex
isl:: TexGen::copyPosToTex
isl:: TexGen::tangentSpaceAxis
isl:: Texture::ClearCoat360

isl:: Texture::Fresnel

isl:: Texture::Image
isl::Texture::Noise
isl::VertexContext
isl::VertexShader

OpenGL Shader Software Development Kit

The language specification

OpenGL Shader Interactive Shading Language translator
OpenGL Shader Interactive Shading Language compiler

OpenGL Shader standard appearance class

OpenGL Shader base appearance class

OpenGL Shader appearance copy class

OpenGL Shader copy appearance data

OpenGL Shader 'snapshot’ appearance class

OpenGL Shader 'snapshot’ appearance data

OpenGL Shader compiler class

OpenGL Shader appearance copy action class

OpenGL Shader rendering class

OpenGL Shader error class

OpenGL Shader memory manager class

OpenGL Shader Interactive Shading Language shader class
OpenGL Shader Interactive Shading Language shape class
OpenGL Shader appearance snapshot class

OpenGL Shader TexGen Function: id:: TexGen::copyNormToTex
OpenGL Shader TexGen Function: idl:: TexGen::copyPosToTex
OpenGL Shader TexGen Function: id:: TexGen::tangentSpaceAxis
OpenGL Shader ClearCoat360 Texture

OpenGL Shader Fresndl Texture

OpenGL Shader Texture Generation Base class

OpenGL Shader Noise Texture

OpenGL Shader Vertex Shader Context class

OpenGL Shader Vertex Shading class

Shader SDK(1)
NAME

Shader SDK - OpenGL Shader Software Development Kit
DESCRIPTION

The OpenGL Shader Software Development Kit is a suite of tools for supporting interactive, programmable shading on
OpenGL systems. It consists of command line compilers and tranglators that can convert a set of Interactive Shading
Language (ISL) shadersinto an OpenGL function call, as well as an Interactive Shading Language Library that enables
applications to access the compilers in an interactive system.

COMMAND LINE COMPILER

The command line compiler islc(1) trand ates an appearance description into a description of OpenGL passes. When
converted to an OpenGL stream with atrandator such asipf2ogl(1), this intermediate pass description will render an object
with the specified appearance. An appearance is defined as one or more of: alist of surface shaders, alist of ambient light
shaders, and alist of direct light shaders. The shaders are written in the OpenGL Interactive Shading L anguage.

COMMAND LINE TRANSLATOR

The command line translator ipf2ogl (1) translates a description of OpenGL passes, as output by islc(1), into C code which
implements the OpenGL passes described in the input. For agiven intermediate passfile, one .c file and one .h file are
generated by ipf2ogl(1). The .c file contains the definitions of the initialization, drawing and cleanup functions for the shader,
while the .h file contains the prototypes for these functions.

ISL LIBRARY

The OpenGL Shader Interactive Shading Language Library provides a minimal interface for supporting interactive,
programmable shading. The ISL Library consists of six classes that enable an application to define an appearance consisting
of ISL shaders, compile that appearance into an OpenGL stream, associate the compiled appearance with geometry from the
application, and, subsequently, to render the shaded geometry to an OpenGL rendering context opened by the application.

DOCUMENTATION

Documentation may be found in /usr/share/shader/doc. Documentation found here includes html man pages for the command line
compiler, translator, and ISL Library aswell asthe ISL Specification.

EXAMPLE SOURCE CODE

Example source code may be found in /usr/share/shader/src. It includes examples for creating applications based on output from the
command line compiler and trandlator, a stand-alone application based on the ISL Library, and an Inventor-based application using
the ISL Library.

FILES

fusr/bin/islc

location of command-line ISL compiler
{usr/bin/ipf2og|

location of OpenGL translator
lusr/1ib32/libisl.s0

ISL Library
/usr/lib32/debug/libisl.so

Debug ISL Library
/usr/share/shader/src/*

sample code and documentation
{usr/share/shader/doc/*

ISL Specification and html format man pages

SEE ALSO

islc(1), ipf2ogl(1), islShader (3), islAppearance(3), isl Shape(3), id CompileAction(3), islDrawAction(3), and islError(3),

Interactive Shading Language (ISL)
Language Description

Version 3.0

August 8, 2002

Copyright 2000-2002, Silicon Graphics, Inc. ALL RIGHTS RESERVED
UNPUBLISHED -- Rights reserved under the copyright laws of the United States. Use of a copyright notice is precautionary only and does not imply publication or disclosure.

U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND:

Use, duplication or disclosure by the Government is subject to restrictions as set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013 and/or in similar or successor clausesin the FAR, or the DOD or NASA FAR Supplement. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd. Mountain View, CA
94039-7311.

Contents

|. Introduction
Il. Files

[11. Datatypes
IV. Variables and identifiers

V. Uniform operations

V1. Parameter operations

VII. Varying operations

V111, Built-in functions
IX. Variable declarations
X. Statements

XI1. Functions
XII. Level of Detail

l. Introduction

ISL isashading language designed for interactive display. Like other shading languages, programs written in ISL describe how to
find the final color for each pixel on asurface. ISL was created as a simple restricted shading language to help us explore the
implications of interactive shading. As such, the language definition itself changes often. While this may be a snapshot specification
for ISL, ISL isnot proposed as aformal or informal language standard. Shading language design for interactive shading is still an
area of active debate. Over the next several releases of OpenGL Shader, we plan to extend I SL to more closely resemble the evolving
OpenGL 2.0 language.

A. Features in common with off-line shading languages

Thefinal pixel color comes from the combined effects of two function types. A light shader computes the color and intensity for a
light hitting the surface. Light shaders can be used for ambient, distant and local lights. Several light shaders may beinvolved in
finding the final color for asingle pixel. A surface shader computes the base surface color and the interaction of the lights with that
surface. The term shader is used to refer to either of these special types of function.

All shading code is written with a single instruction, multiple data (SIMD) model. |SL shaders are written asif they were operating on
asingle point on the surface, in isolation. The same operations are performed for all pixels on the surface, but the computed values
can be different at every pixel.

Like other shading languages that follow the SIMD model, ISL data may be declared varying or uniform. Varying values may vary

from pixel to pixel, while uniform values must be the same at every pixel on the surface.

B. Major differences from other shading languages

ISL has several differences and limitations that distinguish it from more full-featured shading languages:

« Unlike most other interactive shading languages, the types of shading functions you write in ISL are based on the logical
process of defining a surface appearance rather than the convenience of mapping to hardware. Describing what you want is
your job, figuring out how to map it onto the hardware is our job. Thisis why we have light and surface shaders rather than
vertex and fragment shaders.

« Theprimary varying datatypein ISL islimited to the range [0,1]. Results outside this range are clamped.
« |ISL does not allow texture lookups based on computed results.

« ISL doesnot allow user-defined parameters that vary across the surface. Such parameters must either be computed or loaded
as texture.

ISL isaso different from most other shading languages in that more than one surface shader may be applied to each surface. The
shaders are applied in turn and may composite or blend their results. ISL no longer supports explicit atmosphere shaders. Any light
transmission effects between the surface and eye can be handled in the final shader applied to each surface.

Il. Files

The appearance of a shaded surface is defined by one or more ISL surface shaders and possibly one or more ISL light shaders. Each
shader is defined in its own ISL source files, which should have the file name extension .idl.

A. File contents

Only one shader definition (whether light or surface) can appear in each .id file. The .idl file may include C preprocessor-like
#include directivesto get access to functions or global variable definitions stored in another file.

Commentsinisl may be either C or C++-style (/* comment*/ or // comment to end of line)

B. File compilation

There are two ways to compile aset of ISL files into the rendering passes used to compute surface appearance. Thefirst isto use the
ISL run-time library. The second is to use the command line compiler and translator. Both are documented in the shader(1) man page.
The|ISL Library consists of a set of C++ classes that enable an application to compile that appearance consisting of ISL shadersinto
an OpenGL stream. The compiled appearance can be associated with geometry from the application, and rendered to an OpenGL
rendering context opened by the application. The ISL compiler, islc, converts a set of ISL filesinto a pass description (.ipf) file.
Information on running islc can be found on the islc(1) man page. The pass description file can be converted either to C OpenGL code
with the command line tranglator ipf2ogl (see the ipf2ogl(1) man page), or to a Performer pass file with the command line translator
ipf2pf (shipped with Performer 2.4 or later).

[ll. Data types

All ISL datais classified as either varying, parameter or uniform. Varying data may hold a different value at each pixel. Parameter
data must have the same value at every pixel on a surface, but can differ from surface to surface or from frame to frame. Changesto
varying or parameter data do not require recompiling the shader. Uniform data also has the same value at every pixel on the surface,
but changes to uniform data only take effect when the shader is recompiled.

The complete list of ISL datatypesis:

|uniform float uf uf and pf are each asingle floating point value
|parameter float pf

uniform color uc uc and pc are each a set of four floating point values, representing a color, vector or point. For colors,

the components are ordered red, green, blue and apha. For points, the components are ordered x,y,z
parameter color pc |gng w.

varying color vc vcisafour element color, vector or point that may have different values at each pixel on the surface.
Elements of the color are constrained to lie between 0 and 1. Negative values are clamped to zero and
values greater than one are clamped to one

|uniform matrix um [um and pm are each a set of sixteen floating point values, representing a 4x4 matrix in row-major order
|parameter matrix pm (al four elements of first row, all four elements of second row, ...)

|uniform string us |us is acharacter string, used for texture names.

ISL also alows 1D arrays of all uniform and parameter types, using a C-style specification:

|uniform float ufa[n] |ufais an array with n uniform float point el ements, ufa[0] through ufa[n-1]
|parameter float pfan] |ufais an array with n parameter float point elements, pfa[0] through pfa[n-1]
|uniform color uca[n] |ucais an array with n uniform color elements, uca[0] through uca[n-1].
|parameter color uca[n] |pca isan array with n parameter color elements, pca[0] through pca[n-1].
|uniform matrix uma[n] |umais an array with n uniform matrix elements, uma[0] through uma[n-1]
|parameter matrix pma[n] Ipmais an array with n parameter matrix elements, pma[0] through pma[n-1]
|uniform string usa[n] |usaisan array with n uniform string el ements, usa[0] through usa[n-1]

V. Variables and identifiers

Identifiersin ISL are used for variable or function names. They begin with aletter, and may be followed by additional letters,
underscores or digits. For example a, abc, C93d, and d_e f aredl legal identifiers.

Several variables are predefined with special meaning:

varying color FB Current frame buffer contents. Thisis the intermediate result location for aimost all varying
operations.

parameter matrix shadermatrix |Arbitrary matrix associated with the shader at compile time. This may be used to control the
coordinate space where the shader operates.

parameter color lightVector Within alight shader, the direction the light is shining. This vector may be modified by the
light shader. Within a surface shader, the direction of the most recent light.

|uniform float pi | The math constant.
|uniform float numambientlights |Number of ambient lightsin the current isl Appearance.
|uniform float numdirectlights |Number of direct lights (= both local and distant lights) in the current islAppearance.

V. Uniform operations

In the following, uf and ufO-uf15 are uniform floats; ufais an array of uniform floats; uc, ucO and ucl are uniform colors; ucais an
array of uniform colors; um, umO and um1 are uniform matrices; umais an array of uniform matrices; us, usO and usl are uniform
strings; usais an array of uniform strings; and ur, urO and url are uniform relations.

A. uniform float

Operations producing a uniform float:

|variab|e reference |Va| ue of uniform float variable.

float constant One of the following non-case-sensitive patterns:
OxH (hex integer);

00 (octa integer);

D;D. ;. D D. D,

DeSD; D. eSD; . DeSD; D. DeSD

Where

H=1 or more hex digits (0-9 or af)
O=1 or more octa digits (0-7)
D=1 or more decimal digits (0-9)
S =+, - or nothing

|(uf) |Groupi ng intermediate computations.

|-uf |Negate uf

|uf0 + uf1 |Add uf0 and uf1

|uf0 - uf1 |Subtract uf1 from uf0

|uf0 * uf1 |Multiply uf0 and uf1

uf0/ ufl Divide uf0 by ufl

uc[ufQ] Gives channel floor(ufQ) of color uc, where red is channel O, green is channel 1, blueis channel 2 and
aphais channel 3.

|um[ufO] [uf1] |Gives element floor(4* uf0 + uf1) of matrix um

ufa[uf] Element floor(uf) of array ufawhere element O isthe first element.
Behavior is undefined if floor(ufQ) falls outside the array.

If(...) |Function call to afunction returning uniform float result

Uniform float assignments take the following forms, where Ivalue is either a uniform float variable or a floating point element from a
variable (var[ufQ] for auniform color or auniform float array, var[ufO][uf1] for a uniform matrix or uniform color array or
var[ufO][uf1][uf2] for a uniform matrix array):

|lvalue = uf |Simple assignment

|lvalue += uf |Equivalent to Ivalue = lvalue + uf
|lvalue -= uf |Equivalent to Ivalue = lvalue - uf
|lvalue *= uf |Equivalent to lvalue = lvalue * uf
|lvalue /= uf |Equivalent to Ivalue = Ivalue/ uf

B. uniform color

Operations producing a uniform color:

|variable reference |Value of uniform color variable

|co|or(uf0,uf1,uf2,uf3) |red:uf0; green=uf1; blue=uf2; alpha=uf3

|uf |co| or(uf ,uf ,uf,uf)

|(uc) |Grouping intermediate computations

-uc Each uniform float operation is applied component-by-component
ucO + ucl

ucO - ucl

ucO * ucl

ucO/ ucl

lum[uf] |Row floor(uf) of matrix um

uca[uf] Element floor(uf) of array uca, where element O isthe first element.

Behavior is undefined if floor(ufQ) falls outside the array.
|f(...) |Functi on call to afunction returning uniform color result

Uniform color assignments take the following forms, where Ivalue is either a uniform color variable or a color element from a
variable (var[ufQ] for an element of a color array or row of auniform matrix or var[ufO][uf1] for auniform matrix array):

|lvalue = uc |Simple assignment

|lvalue += uc |Equivalent to Ivalue = lvalue + uc
|lvalue -= uc |Equivalent to Ivalue = lvalue - uc
|lvalue*=uc |Equivalent to Ivalue = Ivalue * uc
|lvalue /= uc |Equivalent to Ivalue = lvalue/ uc

Color elements can also be set individually. See section A above.

C. uniform matrix

Operations producing a uniform matrix:

|variable reference |Value of uniform matrix variable

matrix(ufO,uf1,uf2,uf3, Matrix with rows (ufO,uf1,uf2,uf3), (uf4,uf5,uf6,uf7), (uf8,ufo,uf10,uf11) and (uf12,uf13,uf14,uf15)

uf4,uf5,uf6,uf7,

uf8,uf9,uf10,uf11,

uf12,uf13,uf14,uf15)

|uf |matrix(uf,0,0,0, o,uf,0,0, 0,0,uf,0, 0,0,0,uf)

|(um) |Grouping intermediate computations

-um Each uniform float operation is applied component-by-component

umO + uml

umO - uml

umO * uml Matrix multiplication:
result[i][k] = sum;=o_3(umO[i][j] * um1[j][k])

uma| uf] Element floor(uf) of array umawhere element 0 isthe first element.
Behavior is undefined if floor(ufQ) falls outside the array.

If(...) |Function call to afunction returning uniform matrix result

Uniform matrix assignments take the following forms, where lvalue is either a uniform matrix variable or one element of a uniform
matrix array variable, accessed as var[uf]:

|lvalue = um |Simple assignment

|lvalue += um |Equivalent to Ivalue = Ivalue + um
|lvalue -= um |Equivalent to Ivalue = lvalue - um
|lvalue *=um |Equivalent to Ivalue = lvalue * um

Matrix elements can also be set individually. See sections A and B above.

E. uniform string

Operations producing a uniform string:

|variable reference |Value of uniform string variable

|constant string |String inside double quotes ("string")

usa[uf] Element floor(uf) of array usawhere element O isthe first element.
Behavior isundefined if floor(ufO) falls outside the array.

If(...) |Function call to afunction returning uniform string result

Strings can include escape sequences beginning with '\':

| char acter sequence | name

\O |Octal character code

\xH |Hex character code

\n INewline

I\t | Tab

I\ |Vertical tab

\b |Backspace

\r |Carriage return

\f |Form feed

Na [Alert (bell)

I\ |Backslash character

\? |Question mark

\ |Single quote

\" |Embedded double quote

Uniform string assignments take the following forms, where Ivalue is either a uniform string variable or one element of an uniform
string array variable, accessed by var[uf]:

|lvalue = us |Simple assignment

F. uniform relations

Operations producing a uniform relation (used in control statements discussed later):

uf0 == ufl Traditional comparisons: equal, not equal, greater or equal, less or equal, greater, and less
ufO !'=ufl

uf0 >= ufl

ufO <= ufl

ufO > ufl

ufO < ufl

|uc0 ==ucl |True if all elements of ucO are equal to the corresponding elements of ucl

|uc0 I=ucl |true if any elements of ucO does not equal the corresponding element of ucl

|um0 ==uml |True if all elements of umO are equal to the corresponding elements of um1

|um0 I=uml |True if any elements of um0 does not equal the corresponding element of uml1

us0 == usl Traditional string comparison: equal and not equal
us0 !=usl

|(ur) |Grouping intermediate computations

lur0&& url [Trueif both ur0 and url are true

|ur0 || url | Trueif either ur0 or url aretrue

|'ur | Trueif ur isfalse

It isnot possible to save uniform relation resultsto a variable.
VI. Parameter operations

In the following, pf and pfO-pf15 are parameter floats; pfais an array of parameter floats; pc, pcO and pcl are parameter colors; pcais
an array of parameter colors; pm, pm0 and pm1 are parameter matrices; and pmais an array of parameter matrices. Also, ufO and ufl
are uniform floats and uc is a uniform color as defined above.

A. parameter float

Operations producing a parameter float:

|variable reference [Value of parameter float variable.

|uf |Convert uniform float to parameter float.

|(pf) |Grouping intermediate computations.

|-pf |Negate pf

[pfO + pf1 |Add pf0 and pf1

|pf0 - pf1 |Subtract pf1 from pf0

|pf0* pfl |Multiply pf0 and pf1

|pf0/ pfl Divide pfO by pfl

pc[pfQ] Gives channel floor(pf0) of color pc, where red is channel O, green is channel 1, blueis channel 2 and

aphais channel 3.
|pm[pfO] [pf1] |Gives element floor(4*pf0 + pf1) of matrix pm

pfafuf] Element floor(uf) of array pfawhere element O isthe first element. Note that currently the array index
must be uniform.

Behavior isundefined if floor(ufO) falls outside the array.
If(...) |Function call to a function returning parameter float result

Parameter float assignments take the following forms, where Ivalue is either a parameter float variable or afloating point element
from avariable (var[ufO] for a parameter float array):

|lvalue = pf |Simple assignment

|lvalue += pf |Equivalent to Ivalue = Ivalue + pf
|lvalue -= pf |Equivalent to Ivalue = lvalue - pf
|lvalue *= pf |Equivalent to Ivalue = Ivalue * pf
|lvalue /= pf |Equivalent to Ivalue = value/ pf

B. parameter color

Operations producing a parameter color:

variablereference |Value of parameter color variable
|uc |Convert uniform color to parameter color.

|color(pf0,pf1,pf2,pf3) red=pf0; green=pf1; blue=pf2; alpha=pf3

|pf |color(pf pf pf pf)

|(pc) |Grouping intermediate computations

-pc Each parameter float operation is applied component-by-component

pcO + pcl

pcO - pcl

pcO * pcl

pcO/ pcl

|pm[pf] |Row floor(pf) of matrix pm

pca[uf] Element floor(uf) of array pca, where element 0 isthe first element. Note that currently the array index
must be uniform.
Behavior isundefined if floor(ufQ) falls outside the array.

If(...) |Function call to afunction returning parameter color result

Parameter color assignments take the following forms, where lvalue is either a parameter color variable or a color element from a
variable (var[ufQ] for an element of a color array):

|lvalue = pc |Simple assignment

|lvalue += pc |Equivalent to Ivalue = lvalue + pc
|lvalue -= pc |Equivalent to Ivalue = Ivalue - pc
|lvalue*= pc |Equivalent to Ivalue = lvalue * pc
|lvalue /= pc |Equivalent to Ivalue = Ivalue/ pc

Unlike uniform colors, parameter colors cannot currently be set by element.

C. parameter matrix

Operations producing a parameter matrix:

\variablereference |Value of parameter matrix variable
lum |Convert uniform matrix to parameter matrix.
matrix(pfO,pfl,pf2,pf3, IMatrix with rows (pf0,pf1,pf2,pf3), (pf4,pf5,pf6,pf7), (pf8,pf9,pf10,pf11) and (pf12,pf13,pf14,pf15)
pf4,pf5,pf6,pf7,
pf8,pf9,pf10,pf11,
pf12,pf13,pf14,pf15)
|pf |ma1rix(pf,0,0,0, 0,pf,0,0, 0,0,pf,0, 0,0,0,pf)
(pm) |Grouping intermediate computations
-pm Each parameter float operation is applied component-by-component
pmO + pm1
pmO - pm1
pmO0 * pml Matrix multiplication:
resultfi][k] = sumj—q_s(umO[i]{j] * umij][k])
pma[uf] Element floor(uf) of array pmawhere element 0 isthe first element. Note that currently the array
index must be uniform.
Behavior is undefined if floor(ufQ) falls outside the array.
If(...) |Function call to afunction returning parameter matrix result

Parameter matrix assignments take the following forms, where Ivalue is either a parameter matrix variable or one element of a
parameter matrix array variable, accessed as var[uf]:

|lvalue = pm |Simple assignment

|lvalue += pm |Equivalent to Ivalue = Ivalue + pm
|Iva|ue -=pm |Equiva|ent tolvalue = lvalue - pm
|lvalue *= pm |Equivalent to Ivalue = lvalue * pm

Unlike uniform matrices, parameter matrices cannot currently be set by element.

D. parameter relations

Operations producing a parameter relation closely parallel the uniform relations covered earlier. They can be used in control
statements discussed later:

pfO == pfl Traditional comparisons: equal, not equal, greater or equal, less or equal, greater, and less
pfO I=pfl
pfO >= pfl
pfO <= pfl
pf0 > pfl

pfO < pfl

|pc0 ==pcl |True if all elements of pcO are equal to the corresponding elements of pcl

|pcO I=pcl |true if any elements of pcO does not equal the corresponding element of pcl

|pm0 ==pml |True if all elements of pmO are equal to the corresponding elements of pm1

|pm0 1= pml |True if any elements of pmO0 does not equal the corresponding element of pm1

|(pr) |Grouping intermediate computations
Ipr0&& prl [Trueif both pr0and prl are true
prO || prl | Trueif either prO or prl aretrue

|'pr | Trueif prisfalse

It is not possible to save parameter relation resultsto avariable.

VIIl. Varying operations

In the following, vcisavarying color. Also, pfO and pfl are parameter floats and pc is a parameter color as defined above.
A. varying color

Operations producing avarying color:

variable reference |Value of varying color variable

Note: when avarying variable is used, texgen value of -3 is passed to the application geometry drawing
function (see the description under texture()). While the geometry drawing function may choose to act on
this value, OpenGL Shader will set the texture generation mode appropriately.

pc Convert parameter color to varying, clamping the resulting color to [0,1]. After this conversion, every
pixel hasits own copy of the color value.

Possible targets for varying assignments are:

|FB |AII channels of the framebuffer

FB.C |Set only some channels, leaving the others alone. C is a channel specification, consisting of some combination of the

|etters

r,g,b and ato select the red, green, blue and alpha channels. Each letter can appear at most once, and they must

appear in order. This can be used to isolate individual channels: FB.r, FB.g, FB.b, FB.a, or to select arbitrary groups of
channels. FB.rgb, FB.rb, FB.ga.

Varying assignments into the framebuffer can take the following forms, where Ivalue is FB or FB.C (as described above):

FB =f(...) |Function call to afunction returning varying color result
All varying functions also implicitly have access to the value of FB when the function is called.
Except for certain built-in functions explicitly noted later, varying functions can only be assigned directly into
all channels of the framebuffer. To combine the results of avarying function with the existing frame buffer
contents, you must save the existing frame buffer into a variable. For example:
| NO | OK
varying color a= FB;
FB.r =f(); |FB =f();
FB.bga=a;
|lvalue=vc |Copy vcinto lvalue
Ivalue += vc |Add, subtract, or multiply Ivalue and vc, putting the result in Ivalue.
Ivalue -=vc
Ivalue*=vc

Assignments into varying variables can only take this form:

|variable = FB |Copy framebuffer to variable

B. varying relations

Operations producing a varying relation (used in control statements discussed later):

FB[vfQ] >=vfl
FB[vfQ] <= vfl
FB[vfQ] > vfl
FB[vfO] < vfl

FB[vf0O] == vf1|Traditional comparisons. equal, not equal, greater or equal, less or equal, greater, and less

FB[vfQ] !=vfl |Performs per-pixel comparison between frame buffer channel ufO and reference value ufl. Frame buffer

channel Oisred, channel 1isgreen, channel 2 isblue and channel 3 is alpha

It is not possible to save varying relation results to a variable.

VIIl. Built-in functions

The following isthe set of provided functions returning uniform results.

parameter float abs(parameter float x)

uniform float abs(uniform float x) absolute value of x

parameter float acos(parameter float x)

uniform float acos(uniform float x) inverse cosine, radian result is between 0 and pi

'uniform float asin(uniform float y)

parameter float asin(parameter float y)

'inverse sine, radian result is between -pi/2 and pi/2

uniform float atan(uniform float f)

parameter float atan(parameter float f)

inverse tangent, radian result is between -pi/2 and pi/2

uniform float atan(uniform float y; uniform float

X)

parameter float atan(parameter float y; parameter
float x)

inverse tangent of y/x, radian result is between -pi and pi

uniform float ceil (uniform float x)

parameter float ceil(parameter float x)

round x up (smallest integer i >=X)

uniform float clamp(uniform float x; uniform
float a; uniform float b)

parameter float clamp(parameter float x;
parameter float a; parameter float b)

clamp x to lie between aand b

uniform float cos(uniform float r)

parameter float cos(parameter float r)

cosine of r radians

uniform float exp(uniform float x)

parameter float exp(parameter float x)

uniform float floor(uniform float x)

parameter float floor(parameter float x)

round x down (largest integer i <= X)

uniform matrix inverse(uniform matrix m)

parameter matrix inverse(parameter matrix m)

matrix inverse
m*inverse(m) = inverse(m)*m = identity matrix

uniform float log(uniform float x)

parameter float log(parameter float x)

natural log of x

uniform float max(uniform float x; uniform float
y)

parameter float max(parameter float x; parameter
float y)

maximum of x and y

uniform float min(uniform float f; uniform float
0)

parameter float min(parameter float f; parameter
float)

minimum of x and y

uniform float mod(uniform float n; uniform float
d)

parameter float mod(parameter float n;
parameter float d)

Remainder of division n/d

n - d*floor(n/d)

uniform matrix perspective(uniform float d)

parameter matrix perspective(parameter float d)

matrix to perform perspective projection looking down the Z axiswith a
field of view of d degrees.

matrix(cotan(d/2),0, 0, 0,
0} cotan(d/2),0, 0,
0, 0, 1,1,
0} 0, -2,

uniform float pow(uniform float x; uniform float
y)

parameter float pow(parameter float x; parameter
float y)

Xy

uniform matrix rotate(uniform float x; uniform
float y; uniform float z; uniform float r)

parameter matrix rotate(parameter float x;
parameter float y; parameter float z; parameter
float r)

rotate r radians around axis (x,y,2)

uniform float round(uniform float x)

parameter float round(parameter float x)

round x to the nearest integer

uniform matrix scale(uniform float x; uniform
float y; uniform float z)

parameter matrix scale(parameter float X;
parameter float y; parameter float z)

matrix(x,0,0,0, 0,y,0,0, 0,0,z,0, 0,0,0,1)

uniform float sign(uniform float x)

parameter float sign(parameter float x)

signof x:-1,00r 1

uniform float sin(uniform float r)

parameter float sin(parameter float r)

sine of r radians

uniform float smoothstep(uniform float &;
uniform float b; uniform float x)

parameter float smoothstep(parameter float a;
parameter float b; parameter float X)

smooth transition between 0 and 1 as x changes from ato b.

Oforx<a 1forx>b

uniform color spline(uniform float x; uniform
color c[])

uniform float spline(uniform float x; uniform
float c[])

parameter color spline(parameter float x;
parameter color c[])

parameter float spline(parameter float Xx;
parameter float c[])

evaluate Catmull-Rom spline at x based on control point vector, c.

A Catmull-Rom spline passes through all of the control points. The
derivative of the curve at each control point is half the difference between
the next and previous control points. The full curve is covered between
x=0 and x=1

uniform float sgrt(uniform float x)

parameter float sqrt(parameter float x)

square root of x

uniform float step(uniform float a; uniform float

X)

parameter float step(parameter float a; parameter
float x)

0 for x<a
1 for x>=a

uniform float tan(uniform float r)

parameter float tan(parameter float r)

tangent of r radians

uniform matrix tranglate(uniform float x;
uniform float y; uniform float z)

parameter matrix translate(parameter float x;
parameter float y; parameter float z)

matrix(1,0,0,0, 0,1,0,0, 0,0,1,0, x,y,z,1)

The following is the set of provided functions returning varying color results.

varying color texture(
uniform string texturename ;
parameter matrix xform(;
uniform float texgen]])

varying color texture(
uniform float texturearray[][;
parameter matrix xform[;
uniform float texgen]])

varying color texture(
uniform color texturearray[][;
parameter matrix xform(;
uniform float texgen]])

Map texture onto surface, using texture coordinates defined with object
geometry. Versions with array textures are 1D texturing only (using the s
texture coordinate).

Optional float texgen (>= 0) is passed to the geometry drawing function so
it can generate a different (application defined) set of per-vertex texture
coordinates. If texgen is not given, avalue of 0 will be passed to the
geometry drawing function.

Optional matrix xform is amatrix for transforming the texture coordinates.
If xform is not given, the identity matrix is used (i.e. texture coordinates
are used as given).

Note: negative texgen values are used for built-in texture generation
modes. These negative values are also passed to the geometry drawing
function. While the geometry drawing function may choose to act on these
value, OpenGL Shader will set the texture generation mode appropriately.

| textureuse |texgen code
|texture() | >=0
|project() | -1
|environment() | -2
|varying variable use | -3

varying color environment(
uniform string texturename ;
parameter matrix xform])

varying color environment(
uniform float texturearray[][;
parameter matrix xformy])

varying color environment(
uniform color texturearray[][;
parameter matrix xform])

Map texture onto surface, as a spherical environment map. Versions with
array textures are 1D texturing only (using the s texture coordinate).

Optiona matrix xform is amatrix for transforming the texture coordinates.
For example, it can be used to set the map up direction. If xform is not
given, the identity matrix is used (i.e. texture coordinates are used as
generated).

Note: environment also passes a texgen value of -2 to the application
geometry drawing function.

varying color project(
uniform string texturename ;
parameter matrix xform])

varying color project(
uniform float texturearray[][;
parameter matrix xform])

varying color project(
uniform color texturearray[][;
parameter matrix xform])

Project texture onto surface using parallel projection down the Z axis.
Versions with array textures are 1D texturing only (using the X coordinate

only).

Optional matrix xform is amatrix for transforming before projection. For
example, to project in shader space, use inverse(shadermatrix). If xformis
not given, the identity matrix is used.

Note: project() also passes atexgen value of -1 to the application geometry
drawing function.

|varying color transform(parameter matrix xform)

|Transform the varying color in the frame buffer by the given matrix

varying color lookup(parameter float ut[])

varying color lookup(parameter color 1ut[])

Lookup each frame buffer channel in the given lookup table.

Each channel is handled independently, so the resulting red component of
the result comes from the red component lut[n* FB.r]. Similarly, for green
from lut[n* FB.g] and blue from lut[n* FB.b]

|varyi ng color blend(varying color v)

|Channel by channel blend: FB*(1-v) + v = v*(1-FB) + FB

varying color over(varying color v)

Alpha-based blend of FB over v:

v*(1-FB.a) + FB*FB.a

varying color under(varying color v)

Alpha-based blend of FB under v:
FB*(1-v.a) + v*v.a

varying color setupLight(
parameter float lightnum)

Configure a specific light for subsequent diffuse or specular calculations.
After being called, the global lightVector is set with the current light's
position. Light shaders can modify lightV ector within their body

|varying color ambient()

|Return sum of ambient light hitting surface

varying color ambient(
uniform float lightnum)

Return result of ambient light lightnum

If lightnum<0 or lightnum>=numambientlights, ambient() returns black

varying color diffuse()

|Return sum of diffuse light hitting surface

varying color diffuse(
uniform float lightnum)

Return result of diffuse contribution from light lightnum
If lightnum<O0 or lightnum>=numdirectlights, diffuse() returns black

diffuse(lightnum) is equivalent to setupLight(lightnum);
runDiffuse(lightV ector);

varying color runDiffuse(
parameter color vector)

Cdlculate diffuse effects of previously configured light (configured by
using setupLight). Accepts a parameter Ivector to specifiy the light
position. Use the global lightVector to accept the value set by previous
code or the setupLight routine.

varying color specular(parameter float €)

Return sum of specular light hitting surface, using e as the exponent in the
Phong lighting model

varying color specular(
uniform float lightnum,
parameter float €)

Return result of specular contribution from light lightnum
If lightnum<O0 or lightnum>=numdirectlights, specular() returns black

specular(lightnum, €) is equivalent to setupLight(lightnum);
runSpecular(e,lightVector);

varying color runSpecular(
parameter float €;
parameter color Ivector)

Calculate specular effects of previously configured light (configured by
using setupLight). Accepts the parameter e as the exponent in the Phong
lighting model.Accepts a parameter lvector to specifiy the light position.
Use the global lightV ector to accept the value set by previous code or the
setupLight routine.

IX. Variable declarations

A variable declaration is a type name followed by one (and only one) variable name. Each variable name may optionally be followed

by an initial value. Some examples:

uniform float fvar;

uniform float farray[3];
uniform float fvar = 3;
parameter matrix = 1;
uniform string = "mytexture”
varying color cvar;

Variable and functions names are bound using static scoping rules similar to C. The same name cannot occur more than once within

the same block of statements (bounded by '{' and '}"), but can be redefined within a nested block:

legal

| not legal |
{
uni formfl oat x;
uni form fl oat x; {
}
}
}

uni form fl oat x;

uni form col or Xx;

X. Statements

In the following, uf isauniform float, ur isauniform relation and vr is avarying relation as defined above.

Legal ISL statements are:

|assignment; |Performs assignment

|variable declaration; |Creates and possibly initializes variable

|{list of 0 or more statements} [Executes statements sequentially

if (ur) statement Execute statement only if uniform relation ur or parameter relation pr istrue

if (pr) statement
if (ur) statement else statement |Execute first statement if ur or pr istrue, and second statement if ur or prisfalse.

if (pr) statement else statement
if (vr) statement Restricts the currently active set of pixelsto those where the given varying relation is true.
The active set of pixels starts as al visible pixels within the shaded object, but may be
restricted by one or more if statements.

Note: Any variable of any type assigned inside avarying if should only be used inside the if.
The contents outside the if are undefined, and may change from release to release.
Assignmentsinto FB are still OK.

if (vr) statement else statement | The first statement executes with the same restricted set of pixels as the previousif statement.
The second statement executes with the active pixels restricted to those that were active when
the if statement was reached but where the varying relation was false.

Note: Any variable of any type assigned inside avarying if should only be used inside the if.
The contents outside the if are undefined, and may change from release to release.
Assignmentsinto FB are still OK.

repeat (uf) statement repeat statement max(0,floor(uf)) or max(O,floor(pf)) times.

repeat (pf) statement
XI. Functions

Every function has this form:
type function_name(formal_parameters) { body }

Thetypeisone of the ordinary types or a shader type:

surface Surface appearance. Should compute the base surface color and lighting contribution (though calls to ambient(),
diffuse() and specular()).

|atmosphere |Equiva| ent to surface. Atmospheric effects like fog are handled in the last surface shader in the shader list.

|ambientlight |Light contributing to ambient() function.

distantlight is alight shining down the z axis. It is transformed by shadermatrix, which can be used by the
application to point the light in other directions. Within the body of a distantlight, lightVector gives the light
direction. It isinitialized to shadermatrix[2], but can be changed by the shader. pointlight is alight positioned at
distantlight the origin. It is transformed by shadermatrix, which can be used by the application to point the light in other

directions. Within the body of a pointlight, lightVector givesthe light direction. It isinitialized to
shadermatrix[3], but can be changed by the shader.

pointlight

Distant and point lights return the varying color and intensity of light falling on a surface. They do not compute
the interaction of light with the surface itself, that interaction is computed in the surface shader through the
diffuse() and specular() functions, or through setupLight() and runDiffuse() and runSpecul ar

The set of formal parameter declarations are a semi-colon separated list of uniform variable declarations, with initial values. Initial
values arerequired for all formal parameters. For shaders, theinitial values are interpreted as defaults for any variable not set

explicitly by the application. Arrays in the formal parameter list for a shader are not currently visible to the application. The initial
values for parameters of ordinary functions are not currently used, but they are still required.

The body isjust alist of statements. The result of each shader isjust the value left in FB when the shader exits.

The last statement of any function should be the special statement
ret urnvaue,.

The return statement can only appear asthe last statement in afunction, and the type of value should match the function type. For
functions returning avarying color, the return is optional . If return is omitted on avarying color function, the function return valueis
the value of FB at the end of the function.

Surface shaders return a varying color giving the final color of the surface. At the start of the shader, FB contains the color of the
closest surface previously seen at each pixel. Shaders with transparency should handle any blending with this existing color. In order
for surfaces with varying opacity to work, it is also necessary that the application and/or scene graph sort transparent surfaces, and
surfaces with varying opacity should be treated as transparent.

Atmosphere shaders start with FB set to the final rendered color for each pixel. They return the attenuated color.

An example shader:

surface shadertest(

uni form col or ¢ color(1,0,0,1);

uniformfloat f . 25)
{

FB = diffuse();

FB *= c*f;

return FB;
}

XIl. Level of Detail

Since complex shaders can sometimes be expensive in terms of texture use or rendering time, ISL includes several facilitiesto create
several levels of detail for asingle shader. The resulting LOD shader is used exactly as any normal shader, but has an extra parameter
to control its rendered complexity. When an LOD shader is applied to an object, the application only needs to adjust the level
parameter and the shader will handle the transitions between complex appearance when the object is close or important and simple
appearance when the object is distant or unimportant.

A. Automatic LOD

The easiest form of level of detail to useis performed automatically by the OpenGL Shader compiler. If the API requirements for
auto-LOD are satisfied (See the manual for isilCompileAction). Auto-LOD is enabled for any appearance that contains a shader with
the parameter:

parameter float autoL OD

When auto-LOD is enabled, shaders in the appearance will automatically be analyzed and simplified to create multiple levels of
detail. These levels of detail can be controlled by setting the autol OD variable of the fir st shader to a value between 0 (full
complexity) and 1 (maximum simplification).

For example:

| Original AutoLOD

surface fancy() surface fancy(paraneter float autolLOD=0)

{

FB = environnent ("fl owers.rgb"); FB = environnent ("fl owers.rgbh");
FB *= color(.5,.2,.0,0); FB *= color(.5,.2,.0,0);
FB = under (t exture("marbl ebirds. rgba", FB = under (t exture("marbl ebi rds. rgba",
scale(2.,2.,2.))); scale(2.,2.,2.)));
} }

B. Semi-automatic LOD

The next easiest form of level of detail uses building-block functions provided with OpenGL Shader that accept a simplification level
parameter. These building block functions are found in the shader_include sample directory. To use semi-automatic level of detail, a
shader should accept alevel of detail parameter with a name other than autoLOD. This parameter has no special meaning to the
shading compiler so can have any name you choose. Then just pass this level parameter into the building block functions.

For example:

surface brdf_with_fresnel (paraneter float |odrange = 0; ...)

/1 BRDF contribution
FB = microfacet BRDF(brdf P, brdf Q col orP, col orQ brdf Col or,
| odrange, lod_low, lod_md, |od_high);

/'l Fresnel contribution.
FB = hdrFresnel (env,"fresnel Refract.bw', | odrange);

}

C. Manual LOD

Thefinal method isto create level of detail shaders manually. The control mechanism for manual level of detail isthe same asfor
semi-automatic level of detail, but instead of using LOD building blocks, you manually add conditionals to the shader to control the
different levels. Manual and semi-automatic level of detail can be mixed in the same shader.

A manual level of detail shader might follow this outline:

surface LODshader (paraneter float |lodrange = 0; ...)
{
if (lodrange < | od_| ow)
... nost conplex |evel .
else if (lodrange < | od_m d)
... second level ...
else if (lodrange < | od_high)
... third | evel
el se
si mpl est | evel

ipf2ogl(1)
NAME
ipf2ogl - OpenGL Shader Interactive Shading Language translator
SYNOPSIS
ipf2ogl [-s shader-name] [-o out-file] [in-fil€]
DESCRIPTION

The command line translator ipf2ogl translates a description of OpenGL passes, as output by islc, into C code which
implements the OpenGL passes described in the input. For agiven intermediate passfile, one .c file and one .h file are
generated by ipf2ogl. The .c file contains the definitions of the initialization, parameter access, drawing and cleanup functions
for the shader, while the .h file contains the prototypes for these functions. See below for alist of the generated functions.

Anintermediate passfileis passed to ipf2ogl as the in-file command line argument. If in-file is not specified, input is read
from stdin.

In addition to an input file, ipf2ogl can take the following command line arguments:

-s shader-name

Specifies the name of the shader defined by the intermediate passfile. If specified, shader-name will be used in place
of default when naming all the externally visible functions defined in the generated .c and .h files. See below for a
list of the generated functions.

-0 out-file

Specifies the base name of the output files generated by ipf2ogl. The actua file names will be out-file.c and
out-file.h. If -0 out-file is not specified on the command line the output file names will be shader-name_shader.c and
shader-name_shader .h.

The functionsin the generated C code are defined as follows:
int setup_default_shader (
GLsizei win_w,
GLsizei win_h)
int draw_default_shader (
int (*draw_geometry) (float, void*),
void *geometry,
int (*load_texture) (const char*, void*),
void *load_texture user_data,
GLsizei win_w,
GLsizei win_h,
GLint rect_x,
GLint rect y,
GLint rect_w,
GLint rect_h)
int cleanup_default_shader (
void)
GLuint get_default_shader _num_float_parameters (
void)
GLuint get_default_shader_num_color_parameters (

void)

GLuint get_default_shader_num_matrix_parameters (
void)

const char* get_default_shader_float_parameter_name (
GLuint param_num)

const char* get_default_shader _color_parameter_name (
GLuint param_num)

const char* get_default_shader_matrix_parameter_name (
GLuint param_num)

GLint set_default_shader float_parameter (
GLuint param_num,
GLfloat param val)

GLint set_default_shader_color_parameter (
GLuint param_num,
GLfloat param val [4])

GLint set_default_shader _matrix_parameter (
GLuint param_num,
GLfloat param val [16])

setup_default_shader allocates and sets parameters for any temporary or 1D table textures used by the passes of the input
intermediate passfile. If atexture originatesin an imagefile, it is up to the user to allocate resources and set parameters for
thistexture. See the section on draw_default_shader for more information.

draw_default_shader implements the rendering of the passes defined in the input intermediate passfile. draw_geometry isa
function that can be used to render the geometry pointed to by geometry. Although geometry is declared non-congt, it is not
changed by draw_default_shader. However, there is no restriction on what draw_geometry might do with it. The first
argument to draw_geometry is afloating point number corresponding to the optional texgen argument to the ISL texture()
function. The value of this floating point number is automatically filled in by draw_default_shader. load_textureisa
function that can be used to load textures from image files when they are required by a shader pass. The first argument to
load_texture isthe texture name as specifed with the ISL textur e function. The second argument to load_texture is a user
data pointer which is specifed with the load_texture_user_data pointer. win_w and win_h specify the dimensions of the
window. rect_x, rect_y, rect_w and rect_h specify the position and dimensions of the screen space bounding rectangle of the
geometry pointed to by geometry.

cleanup_default_shader freesresources allocated by setup_default_shader. To avoid resource leaks, it isimportant to call
cleanup_default_shader once draw_default_shader will no longer be called.

It is expected that a user application will call setup_default_shader once at application initialization followed by repeated
callsto draw_default_shader followed by acall to cleanup_default_shader at application exit. However, caling these
routines out of this expected order will not cause failures or resource leaks. For instance, calling cleanup_default_shader or
draw_default_shader before calling setup_default_shader will simply have no effect. Also, calling setup_default_shader
repeatedly without calling cleanup_default_shader in between will cause only the first setup_default_shader call to take
effect. Other erroneous command sequences will be handled similarly.

get_default_shader num_float_parameters, get_default_shader num_color _parametersand
get_default_shader num_matrix_parameter s return the number of float, color and matrix parameters used by the shader.

get_default_shader float_parameter _name returns the name of the float parameter specified by param_num. If
param_numis greater than or equal to the number of float parameters, NULL is returned.

get_default_shader_color_parameter _name returns the name of the color parameter specified by param_num. I
param_numis greater than or equal to the number of color parameters, NULL is returned.

get_default_shader_matrix_parameter _name returns the name of the matrix parameter specified by param_num. If

param_numis greater than or equal to the number of matrix parameters, NULL is returned.

set_default_shader_float_parameter setsthe value of the float parameter specified by param_numto param val. If
param_numis greater than or equal to the number of float parameters, no state is changed and negative one is returned
indicating failure. Zero is returned on success.

set_default_shader_color_parameter sets the value of the color parameter specified by param_numto param val. If
param_numis greater than or equal to the number of color parameters, no state is changed and negative one is returned
indicating failure. Zero is returned on success.

set_default_shader_matrix_parameter setsthe value of the matrix parameter specified by param_numto param val.
Matrix data should be specified in column-major order (asitisin OpenGL). If param_numis greater than or equal to the
number of matrix parameters, no state is changed and negative oneis returned indicating failure. Zero is returned on success.

EXAMPLES

The following command translates an intermediate pass file named mytexture.ipf and prints the generated C code to
default_shader.c and default_shader .h:

i pf 2ogl nytexture.ipf

The functions defined in default_shader.c will be named setup_default_shader, draw_default_shader,
cleanup_default_shader, get_default_shader num_float_parameters, get_default_shader_num_color_parameters,
get_default_shader num_matrix_parameters, get_default_shader float_parameter _name,

get_default_shader float_parameter _name, get_default_shader float_parameter _name,
set_default_shader float parameter, set_default_shader color_parameter and set_default_shader _matrix_parameter.

The following command trandl ates an intermediate pass file named mytexture.ipf and prints the generated C code to
yourtexture.c and yourtexture.h:
i pf 20gl -0 yourtexture nytexture.ipf

The functions defined in yourtexture.c will be named setup_default_shader, draw_default_shader,
cleanup_default_shader, etc.

The following command translates an intermediate pass file named mytexture.ipf and prints the generated C code to
mytexture_shader.c and mytexture_shader.h:
i pf 2ogl -s mytexture nytexture.ipf

This time the functions defined in mytexture _shader.c will be named setup_mytexture _shader, draw_mytexture shader,
cleanup_mytexture shader, etc.

The following command trand ates an intermediate pass file named mytexture.ipf and prints the generated C code to
yourtexture.c and yourtexture.h:
i pf 20gl -s mytexture -o yourtexture nytexture.ipf

The functions defined in yourtexture.c will be named setup_mytexture_shader, draw_mytexture_shader,
cleanup_mytexure_shader, etc.

NOTES

The intermediate pass file which is read by ipf2ogl is not a standard and is subject to change. Applications should never
depend on the format or content of thisfile. The intermediate pass file should not be generated by hand but always be
generated by a compiler such asidlc.

The OpenGL generated by ipf2ogl may not render properly on some graphics accelerators due to missing functionality, bugs,
or constraints of their graphics drivers. The ipf2ogl translator depends heavily on OpenGL state management within the
driver and strict compliance to the OpenGL specification.

It isthe responsibility of the application to avoid OpenGL state conflicts with the code generated by ipf2ogl. The generated
code makes no attempt to determine the current OpenGL state when it makes its own state changes nor can it prevent the

draw_geometry callback from making state changes behind its back. The easiest way to avoid state conflictsisto restore
OpenGL state to its default before calling the functions generated by ipf2og!.

MACHINE DEPENDENCIES

If the environment variable ISL_IMPACT_WORKAROUND is set, ipf2ogl will include workarounds for known issues on
systems with SGI Impact graphics (Indigo2 Impact, Octane)

If the environment variable ISL_IR_ WORKAROUND is set, ipf2ogl will include workarounds for known issues on systems
with SGI InfiniteReality graphics (Onyx InfiniteReality, Onyx2)

FILES

lusr/bin/ipf2ogl

location of this command
fusr/bin/islc

location of 1SL compiler
/usr/share/shader/src/*

sample code and documenation
/usr/share/shader/doc/*

ISL Specification and html format man pages

SEE ALSO

shader(1), islc(1)

islc(1)
NAME

islc - OpenGL Shader Interactive Shading Language compiler
SYNOPSIS

islc shader

islc [-I directory] [-s shader] [-a shader] [-d shader] [-| shader] [-f shader] [-v outfile version] [-D
hardware_capability declaration] ... [-0 outfil€]

DESCRIPTION

The command line compiler islc translates an appearance description into a description of OpenGL passes. When converted to
an OpenGL stream with atranslator such asipf2ogl, this intermediate pass description will render an object with the specified
appearance. An appearance is defined as one or more of: alist of surface shaders, alist of ambient light shaders, and alist of
direct light shaders. The shaders are written in the OpenGL Interactive Shading Language.

Each shader is the name of afile containing the shader and an optional matrix:

file[matrix]
where the row-major matrix has the form:
(MO0 m01 MO2 MO3 m10 m11 m12 m13 m20 m21 m22 m23 m30 m31 m32 m33)

If the matrix isincluded, the file name and matrix must together form a single argument. Since spaces are meaningful to the
shell, the easiest way to achieve thisisto surround the file name and matrix pair with quotation marks. The matrix specifies
the default value of the shadermatrix global variable in the shader. If the matrix is omitted, the default shadermatrix is the
identity. As shadermatrix is a parameter variable, it would typically be changed per-frame by the application. The default
valueis used for applications that don't set the shadermatrix parameter.

If only asingle argument isgiven toislc, it is assumed to be a surface shader, and the compiler delivers the intermediate pass
description to stdout. If more arguments are given, they are interpreted as follows:

-| directory

Specifies adirectory to add to the end of the search path for shader or #include files. File names beginning with / are
always interpreted as absolute file paths. For file names not beginning with /, islc first searchesin the local directory,
then any directoriesgiveninthe |ISL_SHADER_PATH environment variable, and finally in directories given with
the -1 option.

-s shader

Specifies the name of afile containing a surface shader. If more than one surface shader is defined on the command
line, al shaders are included in the surface shader list and have effect.

-a shader

Specifies the name of afile containing an ambient light shader. If more than one ambient light shader is defined on
the command line, all shaders are included in the appearance description and have effect.

-d shader

Specifies the name of afile containing adistant light shader. The direction of a distant light (before transformation by
the shader matrix) points down the Z axis, a'position’ of (0,0,1,0). If more than one distant light shader is defined on
the command line, all shaders are included in the appearance description and have effect.

-| shader

Specifies the name of afile containing alocal light shader. The position of alocal light (before transformation by the
shader matrix) is at the origin, (0,0,0,1). If more than one local light shader is defined on the command line, all
shaders are included in the appearance description and have effect.

-f shader

Specifies the name of afile containing afog (atmosphere) shader. This shader is appended to the list of surface
shaders in the appearance. If more than one fog shader is defined on the command line, all shaders are included in the
surface shader list and have effect. This option is equivalent to -s and may be removed in a future release.

-o outfile

Specifies the name of afile to which the intermediate pass descriptions are written. If this argument is omitted, the
result is sent to stdouit.

-v outfile version

Specifies the version of the file to which the intermediate pass descriptions are written. This option can be used to
generate pass description files that are compatible with older versions of shader trandator tools such asipf2ogl. Legal
fileversionsare 1.0, 2.0, 2.2, 2.3, 2.4, and 3.0. If no version is specified, the default version is the latest version. See
the ipf2ogl(1) man page for more information on ipf2ogl.

-D hardware_capability_declaration

EXAMPLES

If hardware_capability declarationis current, islc attempts to determine the capabilities of the current graphics
hardware. islc must be run on a machine with graphics hardware and must have access to that hardware to use -D
current.

-D can also be used to target hardware different from the current machine. For this option,
hardware_capability_declaration takes one of the following values, determined by using glGetString(1). Itis
possible to get this information using gixinfo(1) on the target hardware, though glxinfo modifies the format of the
extensions string. The list of extensions should be separated by spaces (no commas), and each should start with GL_
(glxinfo stripsit off). Valid extensions should be of the form GL_ARB_multitexture):

ISL_GL_VENDOR=GL_vendor_string
ISL_GL_RENDERER=GL _ renderer_string
ISL_GL_VERSION=GL_version_string
ISL_ GL_EXTENSIONS=GL_extensions_string
It can also take the following value, determined using glGet(3) with an argument of
GL_MAX_TEXTURE_UNITS_ARB or from documentation for the target hardware:
ISL_GL_TEXTURE_UNITS=max_multitexture_units

Useof anISL_GL_TEXTURE_UNITS value other than 1 also requires a multi-texture geometry drawing function.
If you are unsure, avalue of 1 can be used even on hardware that does support multitexture.

Capabilitiesmay also be set withISL_GL_VENDOR, ISL_GL_RENDERER, ISL_GL_VERSION,
ISL_GL_EXTENSIONSAND ISL_GL_TEXTURE_UNITS environment variables. Capabilities set with -D
override those set using environment variables. Any capabilities not defined with an environment variable or -D will
use generic multi-platform defaults.

The following command compiles a surface shader named fire.isl into a description of OpenGL passes delivered to stdout:

islc fire.isl

The following command compiles a surface shader named cloth.idl, illuminated by a single ambient light named amb.isl and
two direct light sources named pnt.isl and dst.isl, into a description of OpenGL passes written to the file named out.ipf:

islc -a anb.isl -d pnt.isl -d dst.isl -s cloth.isl -0 out.ipf

The following command compiles a surface shader named matte.id, illuminated by a single direct light source named dst.idl
having a shadermatrix that represents a rotation of 90 degrees around the y axis, into a description of OpenGL passes written
to stdout:

islc -s mtte.isl -d "dst.isl (001 00100210000002DD"

ENVIRONMENT VARIABLES

The compiler islc considers the following environment variables:

ISL_SHADER_PATH
This specifies a colon-separated list of directories which isic will search, in order, for shaders given on the command
line and #include files within those shaders. For a more compl ete description of the islc search strategy, see the -1
option.

ISL_GL_VENDOR
The GL vendor string, as returned by glGetString(3) or glxinfo(1). Seethe -D option.

ISL_GL_RENDERER
The GL renderer string, as returned by glGetString(3) or glxinfo(1). See the -D option.

ISL_GL_VERSION
The GL version string, as returned by glGetString(3) or glxinfo(1). See the -D option.

ISL_GL_EXTENSIONS
The GL extensions string, as returned by glGetString(3) or glxinfo(1). See the -D option.

ISL_GL_TEXTURE_UNITS

The GL extensions string, as returned by glGet(3) with theargument GL_ MAX _TEXTURE_UNITS ARB. Seethe
-D option.

NOTES

The intermediate passfile is not a standard and is subject to change. Applications should never depend on the format or
content of thisfile. The intermediate pass file should always be trandated into another format with a program such as ipf2ogl.
See the ipf20gl (1) man page for more information about ipf2ogl.

FILES

lusr/bin/islc

location of this command
lusr/bin/ipf2ogl

location of OpenGL translator
/usr/share/shader/src/*

sample code and documenation
/usr/share/shader/doc/*

ISL Specification and html format man pages

BUGS

i sl ¢ can be used to generate | PF code for use with OpenGL Performer v2.5 or eariler, however, these versions of
Performer require v1.0 of | PF to be generated. i sl c incorrectly emits part of the | PF v1.0 specification, as reported in SGI
bug #850415. A workaround is to post-process code emitted fromani sl ¢ -v 1. 0 command with the following script.
This script removes the non v1.0 compatible portions of code, and allows the processed | PF to be used with OpenGL
Performer v2.5s pf Shader |oader.

#!/ usr/ bi n/ perl

for each line in the ipf
whi l e(<>) {
seen the start of a texgen bl ock

if (defined($texgen)) {
line with a USER token
if (/ USER/) {

$texgen=""; # kill texgen: I|ine
next ; # kill USER |line
}
non-USER line -- reset to norma
el se {
print $texgen;
undef ($t exgen) ;
}
}
l ook for new texgen line
if (/™ *texgen:/) {
$texgen = $_; # remenber this line & use as flag
next ; # don't output yet
}
normal |ine, just output
print;
}
SEE ALSO

shader(1), ipf2ogl(1)

SE1

NAME
issAppearance - OpenGL Shader standard appearance class

INHERITS FROM
islAppearanceBase

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islAppearance (void);
virtual ~islAppearance (void);

Setting and getting shader lists

void pushShader (ListType type, islShader* shdr);
islShader* popShader (ListType type);

islShader* getShader (ListTypetype, int ii);

int getNumShaders (ListType type) const;

CLASSDESCRIPTION

The i Appearance class object holds a collection of is|Shader objects that completely define an appearance. Thisincludes a

list of ambient light shaders, alist of distant light shaders, alist of local light shaders, and alist of surface shaders. These lists
are maintained internally by the islAppearance.

Each list is specified uniquely with an enumerant of typei sl Appear ance: : Li st Type that is passed into each list
management method of islAppearance. Thei sl Appear ance: : Li st Type isone of:

i sl Appear ance: : AMBI ENTLI GHT_LI ST, i sl Appearance: : DI STANTLI GHT LI ST,

i sl Appearance: : LOCALLI GHT_LI ST, or i sl Appearance: : SURFACE LI ST. TheidAppearance class
provides an interface for setting and getting each of the list's objects. By default, all shader lists are empty.

The code to enable two local lights and a surface shader, for example, looks like:

i sl Appear ance* appearance = new i sl Appearance();

sur f - >pushShader (i sl Appear ance: : SURFACE LI ST, surf);

sur f - >pushShader (i sl Appear ance: : LOCALLI GHT_LI ST, i ght1);
sur f - >pushShader (i sl Appear ance: : LOCALLI GHT_LI ST, I i ght 2) ;

The appearance also includes an implied ordering for shadersin each of the lists. The lists of shadersin the appearance are
traversed in order, and each shader isvisited in turn. This order is most relevant in the
i sl Appear ance: : SURFACE_LI ST because it determines the order of layered surface effects.

ThelSL Library
The OpenGL Shader Interactive Shading Language Library provides aminimal interface for supporting interactive,

file:///usr/include/shader/isl.h

programmable shading. The ISL Library consists of six classes that enable an application to define an appearance consisting
of ISL shaders, compile that appearance into an OpenGL stream, associate the compiled appearance with geometry from the
application, and, subsequently, to render the shaded geometry to an OpenGL rendering context opened by the application.

The appearance is specified through an isl A ppearance class object, which contains alist of active ambient light shaders, alist

of active distant light shaders, alist of active local light shaders, and alist of surface shaders. Each of these shadersis
contained in an islShader class object. An islAppearance is compiled into a stream of OpenGL commands held inside the |SL

Library using an issCompileAction.

The compilation will take advantage of capabilities available on the current graphics hardare. It is possible to override the
automatic capability detection through a set of environment variables: ISL_GL_VENDOR, ISL_GL_RENDERER,
ISL_GL_VERSION, ISL_GL_EXTENSIONS, and ISL_GL_TEXTURE_UNITS, ISL_GL_ARBFP_LIMITS. Seethe
islShape reference page for more details on these environment variables and their usage.

Application geometry is associated with the appearance through an isl Shape class object. The geometry is defined simply asa

pointer to data and an associated user callback, which the application provides for delivering this data to the graphics pipeline.
The appearance is a pointer to an islAppearance. An isl Shape class object can be rendered into the current OpenGL context

with an isiDrawAction. A simple example of drawing red geometry is shown below:

i sl Shader* shader = new i sl Shader();
shader - >set Shader ("surface nyshader() { FB = color(1,0,0,1); }");

i sl Appear ance* appearance = new i sl Appearance();
appear ance- >pushShader (i sl Appear ance: : SURFACE LI ST, shader);

[l for multi-texture capable hardware where we don't provide
/1 a multi-texture DrawGeonetryFunc to the isl Shape (see bel ow)
putenv("ISL_G._TEXTURE_UNI TS=1");

i sl Conpi | eAction* conpil eaction = new i sl Conpil eAction();

conpi | eacti on->conpi | e(appear ance) ;

i sl Shape* shape = new i sl Shape();

shape- >set Appear ance(appear ance) ;

shape- >set Dr awGeonet r yFunc(user _drawcal | back) ;
shape- >set Geonret ryDat a((voi d*) user _dat a) ;

i sl DrawActi on* drawaction = new i sl DrawAction();
drawact i on- >dr awm(shape) ;

It isthe responsibility of the application to compile the appearance when necessary (if, for example, the shaders have changed
or the shader parameters have changed). It is aso the responsibility of the application to ensure there are no OpenGL state
collisions between the ISL Library and its own implementation. The ISL Library sets state only in the application of an
isiDrawAction. The isiDrawAction restores all state to its original settings before returning, however it assumes most

OpenGL stateis set to its default values when the draw action is applied. The isiDrawAction depends on the application
properly setting the gl Vi ewport and G._PRQIECTI ON_MATRI X; these are read from the OpenGL state and possibly
used during the draw action. Any errors during shader parsing, compiling, or drawing are trapped and can be queried with the
help of theislError class.

Thereis aminor typing incompatibility between the versions of the standard template library provided with the MipsPro
version 7.2 compilers and the 7.3 compilers. The OpenGL Shader ISL Library on IRIX is built with the 7.3 version compilers,
but with compatibility options set to mimic the 7.2 STL typesto allow use with either compiler version. If you are using the
newer 7.3 compilers, you must #def i ne : : STL_USE _SGA _ALLOCATORS and STL_SG _ THREADS beforeincluding
id.hinthefilesthat directly use the OpenGL Shader API, or you can define these symbols using compiler flags. For example,
using something like the following in a Makefile:

these flags are required to build with version 7.3 of the
M psPro Conpilers; they are ignored on version 7.2.1
LC++DEFS += -D:: STL_USE _SG _ALLOCATORS - DSTL_SG _THREADS

These preprocessor symbols are ignored by the 7.2.1 standard template library headers, so code which may be compiled with
either the 7.2.1 or 7.3 MipsPro compilers can safely define them in both cases.
METHOD DESCRIPTIONS

issAppearance()
islAppearance (void);

Constructs a new islAppearance.

~islAppearance()
virtual ~islAppearance (void);

Destroys the islAppearance.

getNumShader s()
int getNumShaders (ListType type) congt;

Returns the number of shadersin the shader list of type type.

getShader ()
islShader* getShader (ListTypetype, int ii);

Returns the shader at position ii in the shader list of type type.

popShader ()
islShader* popShader (ListType type);

Pops the last shader on the shader list of type type.

pushShader ()
void pushShader (ListType type, islShader* shdr);

Pushes the shader shdr onto the shader list of type type. The user must manage all memory for shdr explicitly - the shader
lists neither delete nor copy the contents of this pointer at any point.

SEE ALSO
islAppearance, islAppearanceBase, islCompileAction, isiDrawAction, islError, islShader, isl Shape

SE1

NAME
isAppear anceBase - OpenGL Shader base appearance class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islAppearanceBase (void);
virtual ~islAppearanceBase (void);

CLASSDESCRIPTION
TheidAppearanceBase classis a parent for derived islAppearance class objects that hold the complete description of the
rendered appearance in aform specific to the derived appearance class.

Application geometry is associated with the appearance through an isl Shape class object. See the derived islAppearance class
for an example.

METHOD DESCRIPTIONS

islAppearanceBase()
islAppearanceBase (void);

Constructs a new islAppearanceBase.

~islAppear anceBase()
virtual ~islAppearanceBase (void);

Destroys the is AppearanceBase.

SEE ALSO
islAppearance, isl Shape

file:///usr/include/shader/isl.h

SE1

NAME
issAppear anceCopy - OpenGL Shader appearance copy class

INHERITS FROM
islAppearanceBase

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islAppearanceCopy (void);
virtual ~islAppearanceCopy (void);

Setting and getting shader lists

virtual void setAppearanceCopyData (isl AppearanceCopyData*);
virtual isl AppearanceCopyData* getAppearanceCopyData (void) const;
islShader* getShader (islAppearance::ListType type, int ii);

int getNumShaders (isl Appearance::ListType type) const;

CLASSDESCRIPTION

The il AppearanceCopy class object holds a deep copy of an appearance created through an islCopyAction. This appearance
copy isidentical to the original but at a different memory location, and with different accessors to shader members.

METHOD DESCRIPTIONS

issAppear anceCopy()
islAppearanceCopy (void);

Constructs a new islAppearanceCopy.

~islAppear anceCopy()
virtual ~islAppearanceCopy (void);

Destroys the islA ppearanceCopy.

getAppear anceCopyData()
virtual islAppearanceCopyData* getAppearanceCopyData (void) const;

Returns a pointer to the id AppearanceCopyData for this appearance.

file:///usr/include/shader/isl.h

getNumShader s()
int getNumShaders (islAppearance::ListType type) const;

Returns the number of shaders in the shader list of type type.

getShader ()
islShader* getShader (islAppearance::ListTypetype, int ii);

Returns the shader at position ii in the shader list of type type.

setAppear anceCopyData()
virtual void setAppearanceCopyData (isl AppearanceCopyData*);

Set the appearance to be used when this isl AppearanceCopy is applied to an islShape

SEE ALSO
islAppearanceBase, islCopyAction

SE1

NAME
issAppear anceCopyData - OpenGL Shader copy appearance data

HEADER FILE
#include <shader/isl.h>

CLASSDESCRIPTION
The id AppearanceCopyData class object holds an appearance copied from a compiled islAppearance by isiCopyAction. This
is an opague data type, and cannot be explicitly constructed, destroyed, or manipulated by the application except through

islAppearanceCopy and islCopyAction.

SEE ALSO
islAppearance, islAppearanceCopy, islCopyAction

file:///usr/include/shader/isl.h

SE1

NAME
islAppear anceSnapshot - OpenGL Shader 'snapshot’ appearance class

INHERITS FROM
islAppearanceBase

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islAppearanceSnapshot (void);
virtual ~islAppearanceSnapshot (void);

Setting and getting shader lists

virtual void setAppearanceSnapshotData (isl A ppearanceSnapshotData*);
virtual islAppearanceSnapshotData* getAppearanceSnapshotData (void) const;

CLASSDESCRIPTION

The id AppearanceSnapshot class object holds an appearance 'frozen' from a compiled isl A ppearance by isl SnapshotAction.

In this appearance shapshot, all run-time parameter expressions and control constructs are pre-evaluated into object of the
islAppearanceSnapshotData class. This allows a multi-threaded application to split the parameter evaluation and drawing

portions of the normal

islAppearance draw into separate execution threads.

METHOD DESCRIPTIONS

islAppear anceSnapshot()
islAppearanceSnapshot (void);

Constructs a new islAppearanceSnapshot.

~isAppear anceSnapshot()
virtual ~islAppearanceSnapshot (void);

Destroys the islA ppearanceSnapshot.

getAppear anceSnapshotData()
virtual islAppearanceSnapshotData* getAppearanceSnapshotData (void) const;

file:///usr/include/shader/isl.h

Returns a pointer to the il AppearanceSnapshotData for this appearance.

setAppear anceSnapshotData()
virtual void setAppearanceSnapshotData (isl A ppearanceSnapshotData*);

Set the appearance to be used when this is AppearanceSnapshot is applied to an isl Shape

SEE ALSO
islAppearance, islAppearanceBase, il AppearanceSnapshotData, islSnapshotAction

SE1

NAME
islAppear anceSnapshotData - OpenGL Shader 'snapshot’ appearance data

HEADER FILE
#include <shader/isl.h>

CLASSDESCRIPTION
The id AppearanceSnapshotData class object holds an appearance 'frozen' from a compiled islAppearance by
islSnapshotAction. Thisis an opagque data type, and cannot be explicitly constructed, destroyed, or manipulated by the

application except through islAppearanceSnapshot and sl SnapshotAction.

SEE ALSO
islAppearance, il AppearanceSnapshot, islSnapshotAction

file:///usr/include/shader/isl.h

SP1

NAME
issCompileAction - OpenGL Shader compiler class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islCompileAction (const char* compiler="id");
virtual ~islCompileAction (void);

Setting and getting image data-loading infor mation
virtual void setl oadimageData (void* user_data);
virtual void* getl oadlmageData (void);

virtual void setl oadlmageFunc (L oadimageFunc load_image);
virtual LoadlmageFunc getl oadl mageFunc (void) const;

rendering methods

virtual int compile (const il Appearance* appearance);
virtual int isCompiled (const il Appearance* appearance);
virtual int getNumErrors (void) const;

virtual int getError (islError& error);

CLASSDESCRIPTION

TheidCompileAction class provides an interface for compiling islA ppearance objects. The compile() method compiles the appearance given in an
islAppearance into a representation of a stream of OpenGL commands that is cached inside the ISL Library. This stream is completely independent of
geometry. It can be associated with geometry in an islShape and drawn with an islDrawAction. The isCompiled() method can be used to query if agiven

appearance has been compiled and its data stream cached. It is up to the application to ensure the cached stream properly reflects the current appearance
with calls to compile(). In general, thiswill be true if no shader source code or uniform shader parameters in the islA ppearance have been modified since

compile() was previously called, and no #i ncl ude files changed on disk.

Image Data

An islCompileAction may be provided with a callback function to load image data for textures used by the shader. If this callback is provided, the image
data may be used to improve shader performance or create levels of detail for compiled shaders. If this callback is not provided, no level of detail (LOD)
simplifications using textures will be attempted for any shader. This function is of type:

bool (*Loadl mageFunc) (
const char* nane, void* user_data,
i nt &conponents,
int &idth, int &height, int &Jepth, int &border,
unsi gned int & ormat, unsigned int &t ype,
int *&pixels);

The argument name is equivalent to the string passed to the texture, environment, or project operation, and the argument user_data is specified in the
isilCompileAction class object and passed through to the application callback without modification. The remaining parameters are equivalent to the
parameters in the gl TexImage* functions. Memory for the image data array is allocated by the application, but need only remain valid until control is
returned to the application or the next call to LoadlmageFunc. The callback should return true if image datais available for the given texture or false if no
image datais available, if the texture is computed at run-time, or if this texture should not participate in the automatic level-of-detail simplifications.

Local textures may be created during level-of-detail simplifications. It is expected that these textures will also be managed by the application. Local
textures are identified by their names: which begin with the prefix "islloctx_". If the LoadlmageFunc is passed the name that exactly matches "islloctx_", it
should return trueif it is prepared to manage local textures, and false otherwise. For example, during level-of-detail simplification, the Loadl mageFunc
may be asked to load an image named "islloctx_3 foo.tx" (where 3 could be replaced with any integer). This means that the simplification is going to make
alocal texture, starting with "foo.tx" as the base texture. (The base texture is aways one referenced by one of the loaded shaders).

Thefirst time this particular file nameis requested, the LoadlmageFunc should recognize the "islloctx_integer " prefix pattern, make a copy of the base
image "foo.tx" (loading it from file if necessary), renameit to "islloctx_3 foo.tx", and return it. The new local texture should be maintained by the

file:///usr/include/shader/isl.h

application, and returned the next timeiit is requested by name. The level-of-detail simplification will manipulate the data in the texture after it is copied, so
the application needs to maintain that data (i.e. it is not sufficient to re-create it by copying the base texture again next time it is requested). The
level-of-detail simplification may operate recursively on the local textures: i.e., it may later request image named "islloctx_0_islloctx_3 foo.tx". The
application should similarly copy the local texture " islloctx_3 foo.tx", that it is maintaining, renameit "islloctx_0_islloc_3 foo.tx, and return a pointer to
the data.

Note that to enable automatic level of detail, at least one shader in an appearance must al so take parameter float autoL OD. The first autoL OD parameter in
the appearance is the one that will be used. One easy way to control autoL OD isto create an empty shader for use as the first shader in an appearance
solely to enable autoL OD and control the simplification level:

surface LOD(paraneter float autoLOD=0) { }

ThelSL Library

The OpenGL Shader Interactive Shading Language Library provides aminimal interface for supporting interactive, programmable shading. The ISL
Library consists of six classes that enable an application to define an appearance consisting of ISL shaders, compile that appearance into an OpenGL
stream, associate the compiled appearance with geometry from the application, and, subsequently, to render the shaded geometry to an OpenGL rendering
context opened by the application.

The appearance is specified through an il A ppearance class object, which contains alist of active ambient light shaders, alist of active distant light shaders,
alist of active local light shaders, and alist of surface shaders. Each of these shadersis contained in an islShader class object. AnislAppearanceis
compiled into a stream of OpenGL commands held inside the ISL Library using an islCompileAction.

The compilation will take advantage of capabilities available on the current graphics hardare. It is possible to override the automatic capability detection
through a set of environment variables: ISL_GL_VENDOR, ISL_GL_RENDERER, ISL_GL_VERSION, ISL_GL_EXTENSIONS, and
ISL_GL_TEXTURE_UNITS. Thelast is useful if you are running on multi-texture capable hardware, but do not have a multi-texture capable
DrawGeometryFunc for your islShape

Application geometry is associated with the appearance through an isl Shape class object. The geometry is defined simply as a pointer to dataand an
associated user callback, which the application provides for delivering this data to the graphics pipeline. The appearance is a pointer to an islA ppearance.
An islShape class object can be rendered into the current OpenGL context with an islDrawAction. A simple example of drawing red geometry is shown
below:

i sl Shader* shader = new i sl Shader();
shader - >set Shader ("surface nyshader() { FB = color(1,0,0,1); }");

i sl Appear ance* appearance = new i sl Appearance();
appear ance- >set Shader Li st (i sl Appear ance: : SURFACE_LI ST, shader) ;

/1 for nmulti-texture capabl e hardware where we don't provide
/1l a multi-texture DrawCGeonetryFunc to the isl Shape (see bel ow)
putenv("lSL_G__TEXTURE_UNI TS=1");

i sl Conpi | eAction* conpileaction = new isl Conpil eAction();

conpi | eacti on->conpi | e(appear ance) ;

i sl Shape* shape = new i sl Shape();

shape- >set Appear ance(appear ance) ;

shape- >set Dr awGeonet r yFunc(user _dr awcal | back) ;
shape- >set Geonet ryDat a((voi d*) user _dat a) ;

i sl DrawAction* drawaction = new i sl DrawAction();

dr awact i on- >dr awm shape) ;
It is the responsibility of the application to compile the appearance when necessary (if, for example, the shaders have changed or the shader parameters
have changed). It is also the responsibility of the application to ensure there are no OpenGL state collisions between the ISL Library and its own
implementation. The ISL Library sets state only in the application of an isiDrawAction. The islDrawAction restores all state to its original settings before
returning, however it assumes most OpenGL stateis set to its default values when the draw action is applied. The isiDrawAction depends on the
application properly setting the gl Vi ewport and GL_PROJIECTI ON_MATRI X; these are read from the OpenGL state and possibly used during the draw
action. Any errors during shader parsing, compiling, or drawing are trapped and can be queried with the help of theislError class.

There isaminor typing incompatibility between the versions of the standard template library provided with the MipsPro version 7.2 compilers and the 7.3
compilers. The OpenGL Shader ISL Library on IRIX is built with the 7.3 version compilers, but with compatibility options set to mimic the 7.2 STL types
to allow use with either compiler version. If you are using the newer 7.3 compilers, you must #def i ne : : STL_USE_SA _ALLOCATORS and
STL_SG _THREADS before including isl.h in the files that directly use the OpenGL Shader AP, or you can define these symbols using compiler flags.
For example, using something like the following in a Makefile:

these flags are required to build with version 7.3 of the
M psPro Conpilers; they are ignored on version 7.2.1

LC++DEFS += -D:: STL_USE_SG _ALLOCATCORS - DSTL_SA _THREADS
These preprocessor symbols are ignored by the 7.2.1 standard template library headers, so code which may be compiled with either the 7.2.1 or 7.3
MipsPro compilers can safely define them in both cases.
METHOD DESCRIPTIONS

issCompileAction()
islCompileAction (const char* compiler="id");

Constructs a new islCompileAction. The compiler argument specifies the Interactive Shading Language compiler to be used to convert the isl Shader
objects contained in the islA ppearance into OpenGL. Currently, only asingle compiler is supported, and compiler isignored.

~idCompileAction()
virtual ~islCompileAction (void);

Destroys the isl CompileAction.

compile()
virtual int compile (const islAppearance* appearance);

Recompiles all of the shaders that are given in appearance to generate a stream of OpenGL commands that is cached within the ISL Library. Returns -1 if
an error condition has occurred; otherwise returns O.

getError()
virtual int getError (i Error& error);

Gets the next error from the list of errors found by compile(). Each subsequent call to getError gets the next error in the list until all errors have been
returned. Thereturn valueis 1 if an error was available and 0 if no errors were left in thelist.

getL oadl mageData()
virtual void* getlL oadlmageData (void);

Gets the pointer to user data that is passed through to thei sl Conpi | eAct i on: : Loadl nageFunc callback function.

getL oadl mageFunc()
virtual LoadlmageFunc getL oadlmageFunc (void) const;

Returns the pointer to the current LoadlmageFunc callback.

getNumErrors()
virtual int getNumeErrors (void) const;

Returns number of errors from calls to compile() that can be read with getError().

isCompiled()
virtual int isCompiled (const islAppearance* appearance);

Returns 1 if appearance was successfully compiled and its results successfully cached with compile(); otherwise returns 0. It is the responsibility of the
application to track the need for arecompileif there have been any changes to the shader listsin appearance or the individual shaders.

setlL oadl mageData()
virtual void setL oadlmageData (void* user_data);

Sets a pointer to user data that is passed through to thei sl Conpi | eAct i on: : Loadl mageFunc callback function. The datais unmodified by the
isilCompileAction.

setL oadl mageFunc()

virtual void setL oadl mageFunc (L oadlmageFunc load_image);

Setsapointer toani sl Conpi | eAct i on: : Loadl nageFunc callback function. If provided, this callback may be called during compilation to
improve the performance of the compiled shader or for the creation of shader levels-of-detail.

ENVIRONMENT VARIABLES

When an isilCompileAction is constructed, it queries the current graphics hardware for its capabilities. These queries can be overridden by the following
environment variables:

I SL_G._VENDCR (overrides gl GetString(G._VENDOR))

| SL_GL_RENDERER (overrides gl GetString(G._RENDERER))

I SL_GL_VERSION (overrides gl GetString(G._VERSII ON))

I SL_G._EXTENSI ONS (overrides gl Get Stri ng(GL_EXTENSI ONS))

I SL_GL_TEXTURE_UNI TS (overrides gl Getlntegerv(G._MAX_TEXTURE_UNI TS_ARB, &x)) | SL_GL_TEXTURE_UNI TS
(overrides gl Getlntegerv(G_MAX _TEXTURE_UNI TS_ARB, &x))

The latter can be particularly useful if you are running on multi-texture capable hardware, but do not have a multi-texture support in the
DrawGeometryFunc for your isl Shape

SEE ALSO
islAppearance, islCompileAction, isiDrawAction, islError, islShader, islShape

SE1

NAME
issiCopyAction - OpenGL Shader appearance copy action class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islCopyAction (isMemory* mm=NULL);
virtual ~islCopyAction (void);

M ethods to manage snapshots

virtual islAppearanceCopyData* copy (const iSlAppearance*) const;
virtual void deleteCopy (islAppearanceCopyData*) const;

CLASSDESCRIPTION
The idCopyAction class provides an interface for deep-copying a compiled islAppearance for potentia placement elsewhere
in memory. An example use of an islCopyAction might be to place an in a shared memory arena.

islAppearanceCopy performs copies on previously compiled appearances. copy() will return NULL if the appearance specifed
is not compiled.

Allocation of islAppearanceCopyData
The islAppearanceCopyData created by and deleted by deleteCopy(), can be allocated by specifying anissMemory to the
islCopyAction constructor. If no is specified, a default issMemory will be used.

METHOD DESCRIPTIONS

isiCopyAction()
islCopyAction (isMemory* mm=NULL);

Constructs a new islCopyAction. The object argument, if specified, will be used for allocating and freeing al memory used
by the snapshot process. If no issMemory is specified (or NULL is specified) a default allocator will be used.

~islCopyAction()
virtual ~islCopyAction (void);

Destroys the isCopyAction. Does not delete any previously alocated islAppearanceCopyData that were not explicitly
deallocated by calls to deleteCopy().

copy()

file:///usr/include/shader/isl.h

virtual islAppearanceCopyData* copy (const islAppearance*) const;

Copy the islAppearance. Returns a pointer an object of the isl A ppearanceCopyData class representing the copied appearance.

The copy only works correctly on a compiled appearance. copy() will return NULL if the appearance specifed is not compiled
or if any other error condition occurs.

deleteCopy()
virtual void deleteCopy (islAppearanceCopyData*) const;

Delete memory associated with copied appearance.

SEE ALSO
islAppearance, islAppearanceCopyData, islCopyAction, islMemory

SE1

NAME
issDrawAction - OpenGL Shader rendering class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islDrawAction (void);
virtual ~isiDrawAction (void);

Setting and getting texture loading infor mation

virtual void setL oadTextureData (void* user _data);

virtual void* getlL oadTextureData (void);

virtual void setl oadTextureFunc (L oadTextureFunc load_texture);
virtual LoadTextureFunc getL oadTextureFunc (void) const;

Setting and getting image data loading infor mation

virtual void setL oadlmageData (void* user_data);

virtual void* getl oadimageData (void);

virtual void setl oadl mageFunc (L oadlmageFunc load_image);
virtual LoadlmageFunc getL oadlmagefFunc (void) const;

drawing methods
virtual int draw (const islShape* shape);
virtual int getNumErrors (void) const;
virtual int getError (islError& error);

CLASSDESCRIPTION

The idDrawAction class provides an interface for drawing islShape objects. The draw() method uses the OpenGL stream
cached when the appearance of the shape was last successfully compiled with an isl CompileAction or isl SnapshotAction.

This stream is applied to the geometry of the shape and rendered to the current OpenGL context. Nothing is drawn if the
appearance has not been compiled previously. It is up to the application to ensure the cached stream properly reflects the
current appearance in the is Shape. In general, thiswill be true if no shader code or uni f or mshader parameters have

changed in an islAppearance since it was compiled, and no par amet er parameters or shader matrices have changed in an
islAppearanceSnapshot. It is OK if the geometry data, geometry callback, and/or screen space bounding boxes of the
geometry have changed.

Binding Textures

TheidDrawAction class provides an interface to specify an application callback function to load textures into the current
graphics context. This function will be called when the ISL Library encounters a texture name in atexture, environment, or
project operation. Thisfunctionisof typei sl Dr awAct i on: : LoadText ur eFunc:

file:///usr/include/shader/isl.h

i nt (*LoadTextureFunc)(const char* nane, void* user_data);

The argument name is equivalent to the string passed to the texture, environment, or project operation, and the argument
user_data is specified in the isiDrawAction class object and passed through to the application callback without modification.
It isthe responsibility of the callback to ensure that the desired texture is downloaded and ready to be used by the time it
returns. The callback should return -1 if unsuccessful; otherwise it should return the dimension of the texture that was
downloaded. The ISL Library uses the dimension to enable and disable texturing appropriately.

All management of named textures is the responsibility of the application through this callback. It can, for example, use the
texture name to index into a cache of textureidsit generates with gl GenText ur es. If the texture has been downloaded
previoudly, the callback need only bind the proper texture id and return. The callback should use only texture object OpenGL
calssuch asgl Bi ndText ur e, gl TexPar anet er, and gl Tex| mage2D to specify and download the named texture
into the current OpenGL context. It should not call any other OpenGL functions.

ThelSL Library

The OpenGL Shader Interactive Shading Language Library provides a minimal interface for supporting interactive,
programmable shading. The ISL Library consists of six classes that enable an application to define an appearance consisting
of ISL shaders, compile that appearance into an OpenGL stream, associate the compiled appearance with geometry from the
application, and, subsequently, to render the shaded geometry to an OpenGL rendering context opened by the application.

The appearance is specified through an isl Appearance class object, which contains alist of active ambient light shaders, alist

of active distant light shaders, alist of active local light shaders, and alist of surface shaders. Each of these shadersis
contained in an islShader class object. An islAppearance is compiled into a stream of OpenGL commands held inside the ISL

Library using an isiCompileAction.

The compilation will take advantage of capabilities available on the current graphics hardare. It is possible to override the
automatic capability detection through a set of environment variables: ISL_GL_VENDOR, ISL_GL_RENDERER,
ISL_GL_VERSION, ISL_GL_EXTENSIONS, and ISL_GL_TEXTURE_UNITS. Thelast isuseful if you are running on
multi-texture capable hardware, but do not have a multi-texture capable DrawGeometryFunc for your isl Shape

Application geometry is associated with the appearance through an isl Shape class object. The geometry is defined simply asa

pointer to data and an associated user callback, which the application provides for delivering this data to the graphics pipeline.
The appearance is a pointer to an islAppearance. An islShape class object can be rendered into the current OpenGL context

with an isiDrawAction. A simple example of drawing red geometry is shown below:

i sl Shader* shader = new i sl Shader();
shader - >set Shader ("surface myshader() { FB = color(1,0,0,1); }");

i sl Appear ance* appearance = new i sl Appearance();
appear ance- >pushShader (i sl Appear ance: : SURFACE LI ST, shader) ;

/1 for nmulti-texture capabl e hardware where we don't provide
/1 a multi-texture DrawCeonetryFunc to the isl Shape (see bel ow)
put env(" 1 SL_G._TEXTURE_UNI TS=1");

i sl Conpi | eActi on* conpil eacti on = new i sl Conpil eAction();

conpi | eacti on->conpi | e(appear ance) ;

i sl Shape* shape = new i sl Shape();

shape- >set Appear ance(appear ance) ;

shape- >set Dr awGeonet r yFunc(user _dr awcal | back) ;
shape- >set Geonet ryDat a((voi d*) user _dat a) ;

i sl DrawActi on* drawaction = new i sl DrawAction();
drawact i on- >dr am shape) ;

Itisthe responsibility of the application to compile the appearance when necessary (if, for example, the shaders have changed

or the shader parameters have changed). It is aso the responsibility of the application to ensure there are no OpenGL state
collisions between the ISL Library and its own implementation. The ISL Library sets state only in the application of an
isiDrawAction. The isiDrawAction restores all state to its original settings before returning, however it assumes most
OpenGL state is set to its default values when the draw action is applied. The isiDrawAction depends on the application
properly setting the gl Vi ewport and G._PRQIECTI ON_MATRI X; these are read from the OpenGL state and possibly
used during the draw action. Any errors during shader parsing, compiling, or drawing are trapped and can be queried with the
help of theislError class.

Thereis aminor typing incompatibility between the versions of the standard template library provided with the MipsPro
version 7.2 compilers and the 7.3 compilers. The OpenGL Shader ISL Library on IRIX is built with the 7.3 version compilers,
but with compatibility options set to mimic the 7.2 STL typesto allow use with either compiler version. If you are using the
newer 7.3 compilers, you must #def i ne : : STL_USE _SA _ALLOCATORS and STL_SG _ THREADS beforeincluding
id.hinthefilesthat directly use the OpenGL Shader API, or you can define these symbols using compiler flags. For example,
using something like the following in a Makefile:

these flags are required to build with version 7.3 of the
M psPro Conpilers; they are ignored on version 7.2.1
LC++DEFS += -D:: STL_USE_SG _ALLOCATORS - DSTL_SG _THREADS

These preprocessor symbols are ignored by the 7.2.1 standard template library headers, so code which may be compiled with
either the 7.2.1 or 7.3 MipsPro compilers can safely define them in both cases.
METHOD DESCRIPTIONS

isiDrawAction()
isiDrawAction (void);

Constructs a new isiDrawAction.

~isIDrawAction()
virtual ~isiDrawAction (void);

Destroysthe id DrawAction.

draw()
virtual int draw (const islShape* shape);

Draws the shape into the current OpenGL context using the OpenGL stream that was cached when the appearance of the
shape was last compiled. Returns -1 if an error condition has occurred; otherwise returns O.

getError()
virtual int getError (islError& error);

Getsthe next error from the list of errors found by render() or redraw(). Each subsequent call to getError gets the next error in
the list until al errors have been returned. Thereturn valueis 1 if an error was available and O if no errors were left in the list.

getL oadlmageData()
virtual void* getL oadimageData (void);

Getsthe pointer to user datathat is passed through to thei sl Dr awAct i on: : Loadl mageFunc callback function. (This
method is reserved for future expansion)

getL oadl mageFunc()
virtual LoadlmageFunc getL oadlmageFunc (void) const;

Returns the pointer to the current Loadl mageFunc callback. (This method is reserved for future expansion)

getL oad T extur eData()
virtual void* getLoadTextureData (void);

Gets the pointer to user datathat is passed through to thei sl Dr awAct i on: : LoadText ur eFunc callback function.

getL oad T extureFunc()
virtual LoadTextureFunc getL oadTextureFunc (void) const;

Returns the pointer to the current LoadTextureFunc callback function.

getNumErrors()
virtual int getNumErrors (void) const;

Returns number of errors from calls to draw() that can be read with getError().

setL oadl mageData()
virtual void setLoadlmageData (void* user_data);

Sets a pointer to user datathat is passed through to thei sl Dr awAct i on: : Loadl nageFunc callback function. The data
isunmodified by theisiDrawAction. (This method is reserved for future expansion)

setL oadl mageFunc()
virtual void setL oadl mageFunc (L oadl mageFunc load_image);

Setsapointertoani sl DrawAct i on: : Loadl mageFunc calback function. (This method is reserved for future
expansion)

setL oadTextureData()
virtual void setLoadTextureData (void* user_data);

Sets a pointer to user datathat is passed through tothei sl Dr awAct i on: : LoadText ur eFunc callback function. The
datais unmodified by the i DrawAction.

setL oad T extur eFunc()
virtual void setL oadTextureFunc (LoadTextureFunc load_texture);

Setsapointertoani sl DrawAct i on: : LoadText ur eFunc callback function. If thisfunction is not specified, loading of
texturesisignored entirely by the isiDrawAction. The callback is responsible for using OpenGL calls (such as
gl Bi ndText ur e and gl TexI mage2D) to download atexture of a given name.

SEE ALSO

islAppearance, islA ppearanceSnapshot, islCompileAction, isiDrawAction, islError, islShader, islShape, islSnapshotAction

SE1

NAME
iSError - OpenGL Shader error class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islError (void);
virtual ~islError (void);

Getting error information
virtual const char* getFileName (void) const;
virtual int getLine (void) const;
virtual const char* getMessage (void) const;
virtual ErrorClass getErrorClass (void) const;

CLASSDESCRIPTION

TheidError class object contains information about a single error encountered while compiling or drawing shaders. Errors are
gueried through the islShader::getError(), is CompileAction::getError() and islDrawAction::getError() methods.

Each error includes afile name or shader identifier, aline number, a user-readable message, and an error class from the
enumerated typei sl Error:: Error C ass.

Error classes
Each error hasaclassfromi sl Error: : Err or Cl ass, which can be one of the following: i sl Err or: : NO_ERROR,
i sl Error::FATAL_ERROR,i sl Error:: FI LE_ ERROR,i sl Error:: SYNTAX ERRCR,

i sl Error:: DECLARE_ERROR,i sl Error:: UNDECLARED ERRCR, i sl Error: : ARGUVENT ERROR,
islError:: TYPE ERRCR i sl Error: : UNSUPPORTED ERRORori sl Error:: RENDER ERROR

i sl Error::NO ERROR used only for newly created islError objects and when there are no more errors left to report from

one of the getError functions. An error of thei sl Err or : : NO_ERROR class will also have the file set and message set to an
empty string and the line number set to -1.

i sl Error::FATAL_ERROR: an error (such as out of memory) from which there is no chance of recovery.
i sl Error:: Fl LE_ ERROR: aproblem loading an includefile.
i sl Error:: SYNTAX ERROCR: ashader syntax error.

i sl Error:: DECLARE _ERROR: an error in avariable or function declaration.

file:///usr/include/shader/isl.h

i sl Error:: UNDECLARED ERROR: useof avariable or function that has not been defined in the shader.

i sl Error:: ARGUVENT ERRCR: an error in the arguments passed to afunction.

i sl Error:: TYPE_ERRCR an attempt to perform a shading operation on an incompatible type (e.g. "string" + number).

i sl Error:: UNSUPPORTED_ ERROR: an unsupported language feature.

i sl Error:: RENDER_ERRCR: an error in rendering.
METHOD DESCRIPTIONS

islError()
islError (void);

Constructs anew islError of error classi sl Err or: : NO_ERROR.

~idError()
virtual ~islError (void);

Destroysthe idError.

getErrorClass()
virtual ErrorClass getErrorClass (void) const;

Returns the error class for this error, from the enumerated type Er r or Cl ass

getFileName()
virtual const char* getFileName (void) congt;

Get the name of the file or string identifying the shader where the error occurred. If there is no identifying string, an empty
string is returned. The return valueis never NULL.

getLing()
virtual int getLine (void) const;

Returns the line where the error occurred. If there is no line number associated with the error, returns -1.

getM essage()
virtual const char* getMessage (void) const;

Returns a human-readable message explaining the error. If thereis no message (i.e. fori sl Er r or : : NO_ERROR), returns
an empty string. Thereturn valueis never NULL.

SEE ALSO

issCompileAction, issDrawAction, islError, is Shader

SE1

NAME
issShader - OpenGL Shader Interactive Shading L anguage shader class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

islShader (void);
virtual ~islShader (void);

Setting and getting shader information

virtual int setShader (const char* shader);

virtual char* getShader (void) const;

virtual void setlncludePath (const char* path);
virtual char* getlncludePath (void) const;

virtual void setShaderMatrix (const float* matrix);
virtual void getShaderMatrix (float* matrix);
virtual char* getName (void) const;

virtual int getNumErrors (void) const;

virtual int getError (islError& error);

Setting and getting shader parameters

virtual int getParameter (const char* name);

virtual int getNumParameters (void);

virtual Parameter Type getParameterType (int param);

virtual char* getParameterName (int param) const;

virtual int getParameterFloat (int param, float& val);

virtual int setParameterFloat (int param, float val);

virtual int getParameterColor (int param, float& r, float& g, float& b, float& a);
virtual int setParameterColor (int param, float r, float g, float b, float a);
virtual int getParameterMatrix (int param, float* val);

virtual int setParameterMatrix (int param, const float* val);

virtual int getParameterString (int param, char*& val);

virtual int setParameterString (int param, const char* val);

CLASSDESCRIPTION

The id Shader class object contains a single shader defined in the Interactive Shading Language (ISL) and supplies an
interface to setting and getting its name, matrix, parameters, and the shader itself. A string containing an |SL shader is passed
to the id Shader with the setShader() method. The shader string is parsed immediately to extract any shader parameters. The
number of parameters, their types, and their values can be queried through islShader methods, and their values can be queried
and set through additional methods. Errors that are encountered during parsing can be queried with getError().

The islShader class object also contains a path in which it searches for files incorporated into the shader with an #i ncl ude

file:///usr/include/shader/isl.h

directive. This string is set by with the setincludePath() method and is interpreted as a colon-separated list of directories that
are searched, in order. If thel SL_ | NCLUDE_PATH environment variable is set, its value is prepended to that specified by
setincludePath(). If I SL_I NCLUDE_PATH s not set and setIncludePath() has not been called, only the local directory is
searched.

Itis possibleto usethe#i ncl ude directiveto pull filesinto the islShader class object directly from disk by using code of
the form (to load the shader / usr / shader s/ myshader . i sl):

i sl Shader* shader = new i sl Shader();
i sl Shader - >set | ncl udePat h("/usr/shaders/");
i sl Shader - >set Shader (" #i ncl ude \"nyshader.isl\"");

Parameters are identified with unique integer indices from 0 to one less than the total number of parameters (which may be
queried with getNumParameters()). The index of a parameter may be obtained from the name it hasin the ISL shader with the
getParameter() method. Parameter types are specified as enumerated values of typei sl Shader : : Par anet er Type,

which can be one of the following: i sl Shader : : PARAVMETER _UNKNOWNi sl Shader : : PARAMETER _FLQAT,
i sl Shader: : PARAMETER CCOLOR,i sl Shader : : PARAMETER _MATRI X, ori sl Shader : : PARAMETER_STRI NG

ThelSL Library

The OpenGL Shader Interactive Shading Language Library provides a minimal interface for supporting interactive,
programmable shading. The ISL Library consists of six classes that enable an application to define an appearance consisting
of ISL shaders, compile that appearance into an OpenGL stream, associate the compiled appearance with geometry from the
application, and, subsequently, to render the shaded geometry to an OpenGL rendering context opened by the application.

The appearance is specified through an isl Appearance class object, which contains alist of active ambient light shaders, alist

of active distant light shaders, alist of active local light shaders, and alist of surface shaders. Each of these shadersis
contained in an islShader class object. An islAppearance is compiled into a stream of OpenGL commands held inside the ISL

Library using an islCompileAction.

The compilation will take advantage of capabilities available on the current graphics hardare. It is possible to override the
automatic capability detection through a set of environment variables: ISL_GL_VENDOR, ISL_GL_RENDERER,
ISL_GL_VERSION, ISL_GL_EXTENSIONS, and ISL_GL_TEXTURE_UNITS. Thelast isuseful if you are running on
multi-texture capable hardware, but do not have a multi-texture capable DrawGeometryFunc for your islShape

Application geometry is associated with the appearance through an isl Shape class object. The geometry is defined simply asa

pointer to data and an associated user callback, which the application provides for delivering this data to the graphics pipeline.
The appearance is a pointer to an islAppearance. An islShape class object can be rendered into the current OpenGL context

with an islDrawAction. A simple example of drawing red geometry is shown below:

i sl Shader* shader = new i sl Shader();
shader - >set Shader ("surface myshader() { FB = color(1,0,0,1); }");

i sl Appear ance* appearance = new i sl Appearance();
appear ance- >pushShader (i sl Appear ance: : SURFACE LI ST, surf);

/1 for nmulti-texture capabl e hardware where we don't provide
/1 a multi-texture DrawCGeonetryFunc to the isl Shape (see bel ow)
putenv(" I SL_GL_TEXTURE_UN TS=1");

i sl Conpi | eActi on* conpil eacti on = new i sl Conpil eAction();

conpi | eacti on->conpi | e(appear ance) ;

i sl Shape* shape = new i sl Shape();
shape- >set Appear ance(appear ance) ;
shape- >set Dr awGeonet r yFunc(user _dr awcal | back) ;

shape- >set Geonet ryDat a((voi d*) user _dat a) ;

i sl DrawActi on* drawaction = new i sl DrawAction();
dr awact i on- >dr awm(shape) ;

It isthe responsibility of the application to compile the appearance when necessary (if, for example, the shaders have changed
or the shader parameters have changed). It is aso the responsibility of the application to ensure there are no OpenGL state
collisions between the ISL Library and its own implementation. The ISL Library sets state only in the application of an
isiDrawAction. The isiDrawAction restores all state to its original settings before returning, however it assumes most
OpenGL stateis set to its default values when the draw action is applied. The isiDrawA ction depends on the application

properly setting the gl Vi ewport and G._PRQIECTI ON_MATRI X; these are read from the OpenGL state and possibly
used during the draw action. Any errors during shader parsing, compiling, or drawing are trapped and can be queried with the
help of theislError class.

Thereis aminor typing incompeatibility between the versions of the standard template library provided with the MipsPro
version 7.2 compilers and the 7.3 compilers. The OpenGL Shader ISL Library on IRIX is built with the 7.3 version compilers,
but with compatibility options set to mimic the 7.2 STL types to allow use with either compiler version. If you are using the
newer 7.3 compilers, you must #def i ne : : STL_USE_SG _ALLOCATORS and STL_SG _ THREADS beforeincluding
id.hinthefilesthat directly use the OpenGL Shader API, or you can define these symbols using compiler flags. For example,
using something like the following in a Makefile:

these flags are required to build with version 7.3 of the
M psPro Conpilers; they are ignored on version 7.2.1
LC++DEFS += -D:: STL_USE _SG _ALLOCATORS - DSTL_SG _THREADS

These preprocessor symbols are ignored by the 7.2.1 standard template library headers, so code which may be compiled with
either the 7.2.1 or 7.3 MipsPro compilers can safely define them in both cases.
METHOD DESCRIPTIONS

isiShader ()
isl Shader (void);

Constructs a new i Shader.

~isd Shader ()
virtual ~islShader (void);

Destroys the is Shader.

getError()
virtual int getError (islError& error);

Gets the next error from the list of errors found by setShader(). Each subsequent call to getError gets the next error in the list
until al errors have been returned. The return valueis 1 if an error was available and O if no errors were left in thelist.

getlncludePath()
virtual char* getlncludePath (void) const;

Gets the id Shader include path.

getName()

virtual char* getName (void) const;

Gets the isl Shader name, which is extracted from the shader string. Thisvalueis NULL until setShader() has been called.
This name is used to identify the shader when diagnostic information, such as an error message, is generated.

getNumError ()
virtual int getNumErrors (void) const;

Returns number of errors from calls to setShader() that can be read with getError().

getNumPar ameter 5()
virtual int getNumParameters (void);

Returns the total number of parameters in the shader.

getParameter ()
virtual int getParameter (const char* name);

Returns the index of the shader parameter with the given name. The value -1 isreturned if name is not a parameter of the
shader. The index is aunique identifier that can be used to get the parameter type (with getParameterType()), get the

parameter name (with getParameterName()), and get and set the parameter value (with getParameterFloat(),
setParameterFloat(), getParameterColor(), setParameterColor(), getParameterMatrix(), setParameterMatrix(),
getParameterString(), and setParameterString().)

getParameter Color ()
virtual int getParameterColor (int param, float& r, float& g, float& b, float& a);

Getsthe value of the parameter whose index is paramintor, g, b, and a. If param does not index a parameter of type
i sl Shader: : PARAMETER CCOLOR, -1 isreturned; otherwise O is returned.

getParameter Float()
virtual int getParameterFloat (int param, float& val);

Places the value of the parameter whose index is paraminto val. If param does not index a parameter of type
i sl Shader : : PARAMETER FLOAT, -1 isreturned; otherwise O is returned.

getParameter Matrix()
virtual int getParameterMatrix (int param, float* val);

Places the value of the parameter whose index is paraminto val. The matrix is an array of 16 floating point values given in
column-magjor form (asin OpenGL). The storage must be allocated by the application. If param does not index a parameter of
typei sl Shader : : PARAMETER MATRI X, -1 isreturned; otherwise 0 is returned.

getParameter Name()
virtual char* getParameterName (int param) const;

Returns the name of the parameter whose index is param.

getParameter String()
virtual int getParameterString (int param, char*& val);

Places the value of the parameter whose index is paraminto val. If param does not index a parameter of type
i sl Shader: : PARAMETER _STRI NG, -1 isreturned; otherwise O is returned.

getParameter Type()
virtual Parameter Type getParameterType (int param);

Returns the ParameterType of the parameter whose index is param. ParameterType is one of

i sl Shader: : PARAMETER FLOAT,i sl Shader : : PARAMETER COLOR,i sl Shader : : PARAMETER_MATRI X, or
i sl Shader : : PARAMETER _STRI NG. If paramisnot avalid parameter index, i sl Shader : : PARAMETER UNKNOMN
isreturned.

getShader ()
virtual char* getShader (void) const;

Gets the isl Shader shader string.

getShaderMatrix()
virtual void getShaderMatrix (float* matrix);

Getsthe id Shader shader matrix. The matrix isan array of 16 floating point values given in column-major form (asin
OpenGL). The storage must be allocated by the application.

setl ncludePath()
virtual void setlncludePath (const char* path);

Sets the islShader include path. If set, path is interpreted as a colon-separated list of directoriesin which the setShader()

method will search, in order, for any header filesincluded by the shader. If this method has not been called, only the local
directory issearched. If the | SL_| NCLUDE_PATH environment variable is set, its value is prepended to the path specified
with setlncludePath().

setParameter Color ()
virtual int setParameterColor (int param, float r, float g, float b, float a);

Sets the value of the parameter of index paramtor, g, b, and a. If param does not index a parameter of type
i sl Shader: : PARAMETER _CCLOR, -1 isreturned; otherwise O is returned.

setParameter Float()
virtual int setParameterFloat (int param, float val);

Sets the value of the parameter whose index is paramto val. If param does not index a parameter of type
i sl Shader : : PARAMETER FLOAT, -1 isreturned; otherwise O is returned.

setParameter M atrix()
virtual int setParameterMatrix (int param, const float* val);

Sets the value of the parameter whose index is param to val. The matrix should be an array of 16 floating point values given
in column-major form (asin OpenGL). If param does not index a parameter of typei sl Shader : : PARAMETER MATRI X,
-1 isreturned; otherwise O is returned.

setParameter String()
virtual int setParameterString (int param, const char* val);

Sets the value of the parameter of index paramto val. The string is copied, so storage an application has allocated for val may
be freed. If param does not index a parameter of typei sl Shader : : PARAMETER_STRI NG, -1 isreturned; otherwise O is
returned.

setShader ()
virtual int setShader (const char* shader);

Sets the islShader shader string. The shader argument is a string that contains a shader written in the Interactive Shading
Language. This string is parsed immediately, and its parameters and name are extracted and can be queried by an application.
Any parameters existing in the islShader before the call to setShader() are deleted along with their associated values. The

shader string is copied, so storage an application has allocated for shader may be freed. Returns -1 if an error condition has
occurred; otherwise returns 0.

setShader Matrix()
virtual void setShaderMatrix (const float* matrix);

Sets the islShader shader matrix. The matrix isan array of 16 floating point values given in column-major form (asin
OpenGL). This specifies the value of the variable shadermatrix for this shader. The value defaults to the identity matrix.

ENVIRONMENT VARIABLES

The setShader() method considersthe | SL_| NCLUDE PATH environment variable. If set, this environment variableis
prepended to the path specified with setlncludePath().

SEE AL SO
islAppearance, issCompileAction, issDrawAction, islError, islShader, isl Shape

SE1

NAME
isMemory - OpenGL Shader memory manager class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Allocator/Deallocator specification and construction

issMemory (NewFunc nfn, DeleteFunc dfn);
~isMemory ();

Setting and getting al/deallocator functions

NewFunc getNewFunc () const;
DeleteFunc getDeleteFunc () const;

CLASSDESCRIPTION

TheidMemory class provides an interface for user-defined memory allocator/deall ocator functions. These methods are used
by certain classes throughout the libraries to place objects at user-defined locations. For example, this may be useful to place
objects in shared-memory.

METHOD DESCRIPTIONS

issMemory()
isMemory (NewFunc nfn, DeleteFunc dfn);

The issMemory constructor takes two arguments which specify the allocator and deallocator which objects requiring an
issMemory will use.

nfn is the allocator function pointer and must perform an alocation of

size_t
bytes when invoked. It's signatureis:

voi d *(*NewkFunc) (size_t);
nfn is the deallocator function pointer and must perform a deall ocation of the specified

void *
when invoked. This deallocation must be symmetric with that performed in nfn or undefined results will occur:

typedef void (*Del et eFunc) (voi d*);
A reasonabl e replacement pair of new/del ete functions would allocate alarge chunk of memory then return sequential smaller

file:///usr/include/shader/isl.h

pieces of the large chunk, to reduce the overhead of frequent small allocations.

~issMemory()
~isMemory ();

Destructor.

getDeleteFunc()
DeleteFunc getDeleteFunc () const;

Returns the deall ocator function pointer.

getNewFunc()
NewFunc getNewFunc () const;

Returns the allocator function pointer.

SEE ALSO
isMemory

SE1

NAME
islShape - OpenGL Shader Interactive Shading Language shape class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

is| Shape (void);
virtual ~islShape (void);

Setting and getting appear ance

virtual void setAppearance (isl AppearanceBase* appearance);
virtual islAppearanceBase* getAppearance (void) const;

Setting and getting geometry infor mation

virtual void setGeometryData (void* geometry data);

virtual void* getGeometryData (void) const;

virtual void setDrawGeometryFunc (DrawGeometryFunc draw);
virtual DrawGeometryFunc getDrawGeometryFunc (void) const;

Setting and getting screen space bound

virtual void setScreenBound (int x, int y, int h, int w);

virtual void setScissorScreenBound (ScreenBound box);

virtual void getScissorScreenBound (ScreenBound box) const;
virtual void getScreenBound (int& X, int& y, int& w, int& h) const;

Setting and getting object bounds on the screen

virtual void setObjectScreenBound (unsigned int num_boxes, ScreenBound* boxes);
virtual unsigned int getObjectScreenBound (unsigned int num_boxes, ScreenBound* boxes);

CLASSDESCRIPTION

The id Shape class object provides an interface to associate an islAppearance class object with geometry retained by an

application. The geometry is provided as a data pointer, an application callback that draws the data, and a set of screen space
bounding boxes. The draw callback is of typei sl Shape: : Dr awGeonet r yFunc:

i nt (*DrawCGeonetryFunc) (unsigned int numtex,
const float* texcoords,
voi d* geonetry_data);

The argument gives the number of multi-texture units that are active for this drawing pass. The maximum number of texture
unitsto useis determined (when an appearance is compiled) based on the maximum number of texture units available and the
number of texture unitsto use, as provided inthel SL_GL_TEXTURE_UNI TS environment variable. If you may run on
multi-texture capable hardware, but do not have a multi-texture capable DrawGeometryFunc, you can override the automatic

file:///usr/include/shader/isl.h

hardware capability detection by setting the environment variable, | SL_GL_TEXTURE_UNI TS to avaue of 1 before
creating the isl CompileAction. See islCompileAction for details, and see below for further details.

The argument texcoordsis an array of texture coordinate generation modes. There is one element in the array for each active
multi-texture unit. Each element of the array specifies the texture coordinate generation mode for the corresponding texture
unit. The values of texcoords can be interpreted as follows:

0 -1: glTexGen has aready been set for texture projection. no user texture coordinates should be set.

0 -2: glTexGen has aready been set for environment mapping. no user texture coordinates should be set.

o -3: gi'TexGen has already been set for use of avarying variable. no user texture coordinates should be set.
o -4: the corresponding texture unit is not in use. no user texture coordinates should be set.

0 -5: the user must load the normals as texture coordinates.

o 0: normal drawing. user should load standard surface texture coordinates.

0 >0: value set by atexture ISL operation with a user-defined pass-through variable. In this case, the corresponding
element of texcoords takes on the value of the pass-through variable. This variable typically is used to select among
texture coordinates that are computed by the application but can be used for any purpose.

The argument geometry _data passed to the callback is the unmodified geometry data given to the isl Shape with
setGeometryData(). The callback should only draw the geometry and not set any OpenGL appearance state (such as current

texture, framebuffer blend modes, and current color). It must restore any allowed OpenGL state it setsin the process of
drawing the data (such as the modelview or projection matrices). The geometry must include texture coordinatesif any
shaders have texture ISL operations (indicated by the presence of atexcoords argument with elements greater than or equal to
0) and must include normal vectors if any shaders have diffuse or specular ISL operations. However, if an application aso
regquests the normals in a texture coordinate set (texcoords argument equal to -5) for any texture unit, the normal s (specified
viaany gINormal* coall) should be omitted. The presence of this argument implies that we are doing lighting wholly in
fragment-hardware, and that base lighting will be Phong lighting, and that most lighting be fully hardware accel erated.

The DrawGeometryFunc function should return O if successful; otherwise it should return -1.

In addition, an application must specify screen space bounding boxes to define active pixels during rendering. Screen bounds
are defined using data of the type

i nt ScreenBound[4] ;

where the four elements of the ScreenBound array are{ starti ng_x, starting_y, w dth, height}.All pixe
operations performed on the islShape by the ISL Library are scissored to this area. The screen space bounding box does not
necessarily have to cover the entire object. For example, it can be used to tile the rendering of a single object for the purpose
of load balancing or distribution using code of the form:

i sl DrawActi on* drawaction = new i sl DrawAction();

i sl Shape: : ScreenBound ul = {0, O, 64,64}, ur = {64, 0,64, 64},
i sl Shape: : ScreenBound Il = {0, 64, 64,64}, |Ir = {64, 64, 64, 64},
shape- >set Sci ssor Scr eenBound(ul) ;

dr awact i on- >dr awm shape) ;

shape- >set Sci ssor Scr eenBound(ur) ;

dr awact i on- >dr awm shape) ;

shape- >set Sci ssor ScreenBound(I1);

dr awact i on- >dr awm(shape) ;

shape- >set Sci ssor ScreenBound(I r);

dr awact i on- >dr awm shape) ;

If the geometry stored in shape spanned the (0,0)-(128,128) range, the code above would draw it in four separate pieces.

The application may also supply alist of tighter screen space bounding boxes for the actual geometry using
setObj ectScreenBound(). These boxes are used in pixel and texture block copy operations. Looser bounds will not affect

appearance, but may affect performance.

ThelSL Library

The OpenGL Shader Interactive Shading Language Library provides a minimal interface for supporting interactive,
programmable shading. The ISL Library consists of six classes that enable an application to define an appearance consisting
of ISL shaders, compile that appearance into an OpenGL stream, associate the compiled appearance with geometry from the
application, and, subsegquently, to render the shaded geometry to an OpenGL rendering context opened by the application.

The appearance is specified through an isl Appearance class object, which contains alist of active ambient light shaders, alist

of active distant light shaders, alist of active local light shaders, and alist of surface shaders. Each of these shadersis
contained in an islShader class object. An islAppearance is compiled into a stream of OpenGL commands held inside the |SL

Library using an issCompileAction.

The compilation will take advantage of capabilities available on the current graphics hardare. It is possible to override the
automatic capability detection through a set of environment variables: ISL_GL_VENDOR, ISL_GL_RENDERER,
ISL_GL_VERSION, ISL_GL_EXTENSIONS, and ISL_GL_TEXTURE_UNITS. Some of these can be useful to override the
hardware queries and lower limits on certain capabilities, but true hardware limits are ultimately respected. If a user specifies
an override of 8 for texture units when only 4 exist, the true capability of 4 will be respected. Examples of these environment
variables which can be overridden:

o ISL_GL_TEXTURE_UNITS: Override the hardware texture unit count. Thisis useful if you are running on
multi-texture capable hardware, but do not have a multi-texture capable DrawGeometryFunc for your isl Shape

<\item>

o ISL_GL_TEXTURE_UNITS: Override the hardware texture unit count. Thisis useful if you are running on
multi-texture capable hardware, but do not have a multi-texture capable DrawGeometryFunc for your isl Shape

<\item>

o ISL_GL_TEXTURE_UNITS: Override the hardware texture unit count. Thisis useful if you are running on
multi-texture capable hardware, but do not have a multi-texture capable DrawGeometryFunc for your isl Shape

<\item>

o ISL_GL_ARBFP_LIMITS: Override the hardware fragment program limits. The space-delimited valuesin this list
correspond to the following glGetParameterivARB query tokens, in-order:

GL_MAX_PROGRAM_INSTRUCTIONS ARB GL_MAX_PROGRAM_ALU_INSTRUCTIONS ARB
GL_MAX_PROGRAM_TEX_INSTRUCTIONS_ARB
GL_MAX_PROGRAM_TEX_INDIRECTIONS ARB
GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS ARB
GL_MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB
GL_MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB
GL_MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS ARB
GL_MAX_PROGRAM_TEMPORARIES ARB GL_MAX_PROGRAM_NATIVE_TEMPORARIES_ARB
GL_MAX_PROGRAM_PARAMETERS ARB GL_MAX_PROGRAM_LOCAL_PARAMETERS ARB
GL_MAX_PROGRAM_ENV_PARAMETERS ARB
GL_MAX_PROGRAM_NATIVE_PARAMETERS ARB GL_MAX_PROGRAM_ATTRIBS_ARB
GL_MAX_PROGRAM _NATIVE_ATTRIBS ARB

An example of these limits might be set using:

setenv ISL_G_ARBFP_LIMTS "94 63 31 4 96 64 32 4 16 32 32 32 32 32 10 10"

Application geometry is associated with the appearance through an isl Shape class object. The geometry is defined simply asa

pointer to data and an associated user callback, which the application provides for delivering this data to the graphics pipeline.
The appearance is a pointer to an islAppearance. An islShape class object can be rendered into the current OpenGL context

with an isiDrawAction. A simple example of drawing red geometry is shown below:

i sl Shader* shader = new i sl Shader();
shader - >set Shader ("surface myshader() { FB = color(1,0,0,1); }");

i sl Appear ance* appearance = new i sl Appearance();
appear ance- >pushShader (i sl Appear ance: : SURFACE LI ST, shader);

/1 for nmulti-texture capabl e hardware where we don't provide
/1 a multi-texture DrawCGeonetryFunc to the isl Shape (see bel ow)
putenv(" I SL_CGL_TEXTURE_UN TS=1");

i sl Conpi | eActi on* conpil eacti on = new i sl Conpil eAction();

conpi | eacti on->conpi | e(appear ance) ;

i sl Shape* shape = new i sl Shape();

shape- >set Appear ance(appear ance) ;

shape- >set Dr awGeonet r yFunc(user _dr awcal | back) ;
shape- >set Geonet ryDat a((voi d*) user _dat a) ;

i sl DrawActi on* drawaction = new i sl DrawAction();
dr awact i on- >dr awm(shape) ;

It isthe responsibility of the application to compile the appearance when necessary (if, for example, the shaders have changed
or the shader parameters have changed). It is also the responsibility of the application to ensure there are no OpenGL state
collisions between the ISL Library and its own implementation. The ISL Library sets state only in the application of an
isiDrawAction. The isiDrawAction restores all state to its original settings before returning, however it assumes most
OpenGL stateis set to its default values when the draw action is applied. The isiDrawA ction depends on the application

properly setting the gl Vi ewport and G._PRQIECTI ON_MATRI X; these are read from the OpenGL state and possibly
used during the draw action. Any errors during shader parsing, compiling, or drawing are trapped and can be queried with the
help of theislError class. Thereis aminor typing incompatibility between the versions of the standard template library
provided with the MipsPro version 7.2 compilers and the 7.3 compilers. The OpenGL Shader ISL Library on IRIX is built
with the 7.3 version compilers, but with compatibility options set to mimic the 7.2 STL typesto allow use with either
compiler version. If you are using the newer 7.3 compilers, you must #def i ne : : STL_USE SG _ALLOCATORS and
STL_SA THREADS beforeincluding id.h in the files that directly use the OpenGL Shader API, or you can define these
symbols using compiler flags. For example, using something like the following in a Makefile;

these flags are required to build with version 7.3 of the
M psPro Conpilers; they are ignored on version 7.2.1
LC++DEFS += -D:: STL_USE_SG _ALLOCATORS - DSTL_SG _THREADS

These preprocessor symbols are ignored by the 7.2.1 standard template library headers, so code which may be compiled with
either the 7.2.1 or 7.3 MipsPro compilers can safely define them in both cases.

METHOD DESCRIPTIONS

islShape()
isl Shape (void);

Constructs a new islShape.

~islShape()
virtual ~is Shape (void);

Destroys the isl Shape.

getAppearance()
virtual islAppearanceBase* getAppearance (void) const;

Returns the appearance of the isl Shape.

getDrawGeometryFunc()
virtual DrawGeometryFunc getDrawGeometryFunc (void) const;

Returns the single texture geometry draw function of the isl Shape.

getGeometryData()
virtual void* getGeometryData (void) const;

Returns the geometry data of the isl Shape.

getObj ect ScreenBound()
virtual unsigned int getObjectScreenBound (unsigned int num_boxes, ScreenBound* boxes);

Getsthe list of non-overlapping screen space bounding boxes for the geometry. The num_boxes argument gives the number
of boxesthat have been allocated in the boxes array. The return value from getObjectScreenBound is the number of boxes
actually used. Each element of the boxes array is set to the holds the position and size of one bounding box. If num_boxesis
less than the total number of actual boxes used, only information on the first num_boxes boxes will be placed in the boxes
array, though the total number of boxesin use will still be returned.

getScissor ScreenBound()
virtual void getScissorScreenBound (ScreenBound box) const;

Use of thisfunction is depricated, use getScissorScreenBound instead

getScreenBound()
virtual void getScreenBound (int& x, int& y, int& w, int& h) const;

Fill box with the screen space bounding box of the geometry.

setAppear ance()
virtual void setAppearance (islAppearanceBase* appearance);

Sets the appearance of the islShape to appearance.

setDrawGeometryFunc()
virtual void setDrawGeometryFunc (DrawGeometryFunc draw);

Sets the geometry draw callback of the islShape to draw. Thisfunction is used by an isiDrawAction to request that the
application draw the geometry specified with setGeometryData().

setGeometryData()
virtual void setGeometryData (void* geometry data);

Sets the geometry data of the islShape to geometry data. This data may be drawn with afunction of type
i sl Shape: : Dr awGeonet r yFunc.

setObj ectScreenBound()
virtual void setObjectScreenBound (unsigned int num_boxes, ScreenBound* boxes);

Sets alist of non-overlapping screen space bounding boxes for the geometry. The num_boxes argument gives the number of
boxes contained in the list. Each element of the boxes array contains an array of four integer pixel coordinates: { | ef t,
bottom wi dth, height}.Theparametersareidentical in order and interpretation to those for gl CopyPi xel s. If
setObjectScreenBound is never called, the single box given by i sI Shape: : set Sci ssor Scr eenBound is used.

However, at least one of setObjectScreenBound or setScissorScreenBound must be used.

set Scissor ScreenBound()
virtual void setScissorScreenBound (ScreenBound box);

Sets the screen space bounding box of the geometry. boxisanarray (i nt [4]) containing the lower left corner x, lower left
corner y, box width and box height. These elements are identical in meaning and order to the arguments for
gl CopyPi xel s. If setScissorScreenBound is never called, the total bounding box of all object screen bounding boxesis

used (see setObj ectScreenBound) However, at least one of setObjectScreenBound or setScissorScreenBound must be used.

setScreenBound()
virtual void setScreenBound (int X, int y, int h, int w);

Use of thisfunction is depricated, use setScissorScreenBound instead

SEE ALSO
islAppearance, issCompileAction, issDrawAction, islError, islShader, islShape

SE1

NAME
islSnapshotAction - OpenGL Shader appearance snapshot class

HEADER FILE
#include <shader/isl.h>

PUBLIC METHOD SUMMARY

Construction and destruction

isl SnapshotAction (issMemory* mm=NULL);
virtual ~islSnapshotAction (void);

Setting and getting texture freezing information

virtual void setSnapshotTextureData (void* user_data);

virtual void* getSnapshotTextureData (void) const;

virtual void setSnapshotTextureFunc (SnapshotTextureFunc snapshot_texture);
virtual SnapshotTextureFunc getSnapshotTextureFunc (void) const;

M ethods to manage snapshots

virtual isl AppearanceSnapshotData* snapshot (const islAppearance*) const;
virtual isl AppearanceSnapshotData* snapshot (const islAppearanceCopy*) const;
virtual void deleteSnapshot (isl AppearanceSnapshotData*) const;

CLASSDESCRIPTION
The id SnapshotAction class provides an interface for freezing the current run-time parameter settings for aislAppearance, for
later use in aislAppearanceSnapshot.

It is not necessary to snapshot an appearance before use, and in a single-thread/single-processor application the combination
of taking a snapshot and rendering the resulting frozen appearance will aimost certainly be more expensive than just rendering
the original appearance. Taking a snapshot of an appearance offers two benefits for multi-threaded applications. First, the
snapshot mechanism allows parameter changes in one thread while rendering a previously snapped appearance in another
thread. Second, the snapshot representation for a shader can be alocated using a user-provided allocator, allowing it to be

allocated in shared memory if desired.

Allocation of il AppearanceSnapshotData
The il AppearanceSnapshotData created by

snapshot() and deleted by , can be allocated by specifying an to the isl SnapshotAction constructor. If noissMemory is
specified, adefault isMemory will be used.

Texture Tracking

During the snapshot process, if provided, a callback function of typei sl Snapshot Acti on: : Shapshot Text ur eFunc
will be called for each external texture that will be used given the current parameter settings for the shader.

file:///usr/include/shader/isl.h

i nt (*Snapshot Text ur eFunc) (const char* nane, float texgen_code,
voi d* user _data);

name is the texture name, texgen_code is the texture 'code’ for this texture call (seeisiDrawAction for more details on texgen

codes), and user_data is an arbitrary data pointer that can be used by the callback. This callback can be used to tell which
textures and texture generation codes will be used by the shader, given the current parameter settings. It is called for each
texture use, so may be called multiple times for the same texture.

METHOD DESCRIPTIONS

islSnapshotAction()
islSnapshotAction (issMemory* mm=NULL);

Constructs a new isl SnapshotAction. TheissMemory object argument, if specified, will be used for allocating and freeing all
memory used by the snapshot process. If no isMemory is specified (or NULL is specified) a default allocator will be used.

~isdSnapshotAction()
virtual ~islSnapshotAction (void);

Destroys the islSnapshotAction. Does not delete any previously allocated snapshots that were not explicitly deallocated by
calls to deleteSnapshot().

deleteSnapshot()
virtual void deleteSnapshot (islAppearanceSnapshotData*) const;

Delete memory associated with frozen appearance.

getSnapshot TextureData()
virtual void* getSnapshotTextureData (void) const;

Getsthe pointer to user datathat is passed through to thei sl Snapshot Acti on: : LoadText ur eFunc callback
function.

getSnapshot Textur eFunc()
virtual SnapshotTextureFunc getSnapshot TextureFunc (void) const;

Returns the pointer to the current SnapshotTextureFunc callback function.

setSnapshot T extureData()
virtual void setSnapshotTextureData (void* user_data);

Sets a pointer to user datathat is passed through to thei sl Snapshot Acti on: : Snapshot Text ur eFunc callback
function. The datais unmodified by the isl SnapshotAction.

setSnapshot Textur eFunc()
virtual void setSnapshotTextureFunc (SnapshotTextureFunc snapshot_texture);

Setsapointertoani sl Snapshot Acti on: : Snapshot Text ur eFunc callback function. If thisfunction is not

specified, loading of texturesisignored entirely by the islSnapshotAction. The texture uses will still exist in the frozen
shader, but islSnapshotAction does no tracking beyond calling the SnapshotTextureFunction

snapshot()
virtual isl AppearanceSnapshotData* snapshot (const islAppearance*) const;

Snapshot the islAppearance. Returns a pointer an object of the il AppearanceSnapshotData class representing the 'snapped'
appearance. Returns 0 if an error condition has occurred.

snapshot()
virtual isl AppearanceSnapshotData* snapshot (const islAppearanceCopy*) const;

Snapshot the islAppearanceData. Returns a pointer an object of the islAppearanceSnapshotData class representing the
'snapped’ appearance. Returns 0 if an error condition has occurred.

SEE ALSO

islAppearance, islAppearanceData, il AppearanceSnapshot, islAppearanceSnapshotData, islDrawAction, isMemory,
isl SnapshotAction

file:///H|/shaderdocs/refman/developer/islAppearanceData.html
file:///H|/shaderdocs/refman/developer/islAppearanceData.html

SE1

NAME
id:: TexGen::copyNormToTex - OpenGL Shader TexGen Function: isl:: TexGen::copyNormToT ex

INHERITSFROM
isl::VertexShader

HEADER FILE
#include <shader/islvertexfn.h>

PUBLIC METHOD SUMMARY

virtual void init (void);
virtual void run (void);

INHERITED PUBLIC METHODS

Inherited from idl::VertexShader
inline VertexContext* getContext () const;
virtual void init (void);
virtual void run (void);
inline void setContext (VertexContext* cc);

CLASSDESCRIPTION

Theidl::TexGen::copyNormToTex classis apublically derived class of typei sl : : Ver t exShader which implements the
texgen functionality, asit's name implies, of copying the current normal to the current texture.

To use this particular texgen mode, create an instance, and pass it to all igl::VertexContexts which are being used to draw
geometry with this texture generation mode.

METHOD DESCRIPTIONS
init()
virtual void init (void);
Executes shader initidization. Seei sl : : Ver t exShader for details.

run()
virtual void run (void);

Executes per-vertex computation. Seei sl : : Ver t exShader for details.

SEE ALSO
isl::VertexContext, idl::VertexShader

file:///usr/include/shader/islvertexfn.h

SE1

NAME
id:: TexGen::copyPosToTex - OpenGL Shader TexGen Function: igl::TexGen::copyPosToT ex

INHERITSFROM
isl::VertexShader

HEADER FILE
#include <shader/islvertexfn.h>

PUBLIC METHOD SUMMARY

virtual void init (void);
virtual void run (void);

INHERITED PUBLIC METHODS

Inherited from isl::VertexShader

inline VertexContext* getContext () const;
virtual void init (void);
virtual void run (void);
inline void setContext (VertexContext* cc);

CLASSDESCRIPTION

Theidl::TexGen::copyPosToTex classisapublically derived class of typei sl : : Ver t exShader which implements the
texgen functionality, asit's name implies, of copying the current vertex to the current texture.

To use this particular texgen mode, create an instance, and passittoall i sl : : Vert exShader which are being used to
draw geometry with this texture generation mode.

METHOD DESCRIPTIONS
init()
virtual void init (void);
Executes shader initiaization. Seei sl : : Vert exShader

run()
virtual void run (void);

Executes per-vertex computation. Seei sl : : Ver t exShader for details.

SEE ALSO
isl::VertexShader

file:///usr/include/shader/islvertexfn.h

SE1

NAME
id:: TexGen::tangentSpaceAxis - OpenGL Shader TexGen Function: isl:: TexGen::tangentSpaceAXis

INHERITSFROM
isl::VertexShader

HEADER FILE
#include <shader/islvertexfn.h>

PUBLIC METHOD SUMMARY

void setAxis (ISLcolor aa);
ISLcolor getAxis ();
virtual void init (void);
virtual void run (void);

PROTECTED MEMBER SUMMARY
ISLfloat _axig4];
ISLfloat _binormal[4];
ISLfloat _tangent[4];

INHERITED PUBLIC METHODS

Inherited from idl::VertexShader
inline VertexContext* getContext () const;
virtual void init (void);
virtual void run (void);
inline void setContext (VertexContext* cc);

CLASSDESCRIPTION

Theid:: TexGen::tangentSpaceAxisclass is a publically derived class of typei sl : : Ver t exShader which implementsthe
texgen functionality, asit's name implies, of copying the current normal to the current texture.

To use this particular texgen mode, create an instance, and passit to all igl::VertexContexts which are being used to draw
geometry with this texture generation mode.

METHOD DESCRIPTIONS

getAxis()
ISLcolor getAxis ();

This function returns the current axis used to generate tangent-space.

file:///usr/include/shader/islvertexfn.h

init()
virtual void init (void);

Executes shader initidlization. Seei sl : : Ver t exShader for details.

run()
virtual void run (void);

Executes per-vertex computation. Seei sl : : Vert exShader for details.

setAxis()
void setAxis (ISLcolor aa);

Used to specify a particular axis from which to generate tangent-space. Both atangent and binormal are generated, when
combined with the normal, define a coordinate space at each vertex. The tangent and binromal are computed as:

Vt angent
Vbi nor mal

Nor mal cross Vtangent;
Nor mal cross aa;

MEMBER DESCRIPTIONS

_axig[4]
ISLfloat _axig4];

Storage for the specified axis vector used in generation of the tangent-space.

_binormal[4]
ISLfloat _binormal[4];

Storage for the computed binormal vector.

_tangent[4]
ISLfloat _tangent[4];

Storage for the computed tangent vector.

SEE ALSO
is::VertexContext, is::VertexShader

SE1

NAME
id:: Texture: :Clear Coat360 - OpenGL Shader ClearCoat360 Texture

INHERITS FROM
isl:: Texture::lmage

HEADER FILE
#include <shader/isltexture.h>

PUBLIC METHOD SUMMARY

bool [oadPaint (const std::string&);
void setViewMatrix (const float* vm);
virtual bool compute ();

void restoreState ();

INHERITED PUBLIC METHODS

Inherited from id:: Texture::Image

virtual bool compute ();

int getDepth ();

unsigned char* getDstimg () const;

int getHeight ();

int getNumChannels ();

unsigned char* getSrcimg () const;

int getWidth ();

void setDstimg (unsigned char* dst);

void setimgDims (int ww, int hh, int dd=1);
void setSrcimg (unsigned char* src);

CLASSDESCRIPTION

Theid:: Texture::ClearCoat360 class creates an 360 degree environment reflection map, based on a previously captured or
simulated paint simulation. This class allows ClearCoat360 paints to be used by an is|Shader.

METHOD DESCRIPTIONS

compute()
virtual bool compute ();

Computes the view-dependent texture environment. Requires complete access to the framebuffer to do this, and overwrites
current contents of the framebuffer. This call completely manages all state necessary for the texture to be computed correctly.
The framebuffer must be greater than or equal to the width and height of the paint (getWidth(), getHeight()) for the resultant

environment map to be properly calculated and sized.

file:///usr/include/shader/isltexture.h

After compute() is caled the image should copied into a texture for subsequent application as an environment map. Use the

most efficient texture copy method available for your platform. InfiniteReality performs very well with
glCopyTexSublmage2D on an existing texture, for instance.

After the texture has been extracted from the framebuffer, the context state should be returned to it's pre-compute() state with
restoreState().

To summarize, there are several stepsin creating and computing an isl:: Texture::ClearCoat360:

Create anew ClearCoat360 object (ClearCoat360()).
Load apaint (loadPaint()).
Render the paint to a buffer (compute()).

Extract the image from the buffer (glCopyTexSublmage2D or equivalent).
Restore the buffer state (restoreState()).

ok~ 0w N PE

The same steps, in pseudo-code;

usi ng nanespace isl:: Texture;
i sl::Texture::C earCoat 360 *cctex = new isl:: Texture:: d ear Coat 360;

bool | oaded = cctex->| oadPai nt("paint.cc360");
if (|loaded == false)

{

cerr << "couldn't load cc360 paint. exiting." << endl;
exit(-1);
}

cctex->conpute();

gl Bi ndTexture(G._TEXTURE 2D, application_allocated texture_ obj);
gl CopyTexSubl mage2D(G._TEXTURE 2D, 0,

0, O,

0, O,

cctex->get Wdth(), cctex->getHeight());

cctex->restoreState();

loadPaint()
bool loadPaint (const std::string&);

This method will attempt to load the named .cc360 paint file at the path specified. Returns true or false for success or failure.

Paints may only be loaded when the GL context in which they will be used is current. Thisrestriction is due to texture
binding done in the load process. Textures and texture names are not shared across pipes, so this further requires that each
pipe in which a ClearCoat360 texture is used have av new instance of a particular isl:: Texture::ClearCoat360 created and
loaded.

restoreState()
void restoreState ();

Returns the state to it's previous setting after a has been issued. May only be called after a or the GL context will bein an
indeterminate state.

setViewMatrix()
void setViewMatrix (const float* vm);

This method sets the view matrix from which the resultant ClearCoat360 environment texture is cal cul ated.

SEE ALSO
islShader, i9l:: Texture::lmage

SE1

NAME
id:: Texture: :Fresnd - OpenGL Shader Fresnel Texture

INHERITS FROM
isl:: Texture::lmage

HEADER FILE
#include <shader/isltexture.h>

PUBLIC METHOD SUMMARY

void setlndexOf Refraction (float idx);
void setContrastScaleBias (float ss, float bb);
virtual bool compute ();

INHERITED PUBLIC METHODS

Inherited from idl:: Texture::Image

virtual bool compute ();

int getDepth ();

unsigned char* getDstimg () const;

int getHeight ();

int getNumChannels ();

unsigned char* getSrcimg () const;

int getWidth ();

void setDstimg (unsigned char* dst);

void setimgDims (int ww, int hh, int dd=1);
void setSrclmg (unsigned char* src);

CLASSDESCRIPTION

Theid:: Texture::Fresnel class creates afresnel refraction map from an input environment (sphere) map. The resultant blend
parameters are stored in the alpha channel of the destination image. idl:: Texture::Fresnel uses the image set/query methods
from idl::Texture::Image. Thisimplementation is derived from the original SGI ClearCoat implementation, and can be used to

achieve identical effects.

METHOD DESCRIPTIONS

compute()
virtual bool compute ();

Computes the fresnel map, using the source image and storing results in the alpha-channel of the destination image.

setContrastScaleBias()
void setContrastScaleBias (float ss, float bb);

file:///usr/include/shader/isltexture.h

Sets a contrast enhancement scale and bias to the results.

setl ndexOfRefraction()
void setlndexOfRefraction (float idx);

Sets the index of refraction to use in computing the map. A value of 1.8 isused by default, which is approximately that of a
polyurethane.

SEE ALSO
isl:: Texture::lmage

SE1

NAME
id:: Texture::Image - OpenGL Shader Texture Generation Base class

HEADER FILE
#include <shader/isltexture.h>

PUBLIC METHOD SUMMARY

int getNumChannels ();

int getWidth ();

int getHeight ();

int getDepth ();

void setimgDims (int ww, int hh, int dd=1);
void setSrcimg (unsigned char* src);

void setDstimg (unsigned char* dst);
unsigned char* getDstimg () const;
unsigned char* getSrcimg () const;

virtual bool compute ();

CLASSDESCRIPTION
Theid:: Texture::Image class defines the base class for dynamically calculated textures within the ISL framework.

is::Texture::Imageis apure virtua class and therefore cannot be directly instantiated. isl:: Texture::Image isinstead a
template providing base image sizing and depth functionality and requiresit's derived classes to supply the compute()
method.

METHOD DESCRIPTIONS

compute()
virtual bool compute ();

Method to be supplied by any derived class. Do any/all texture generation work here.

getDepth()
int getDepth ();

Returns the depth of the computed image in pixels.

getDstimg()
unsigned char* getDstimg () const;

Returns a pointer to the currently set destination image.

getHeight()
int getHeight ();

file:///usr/include/shader/isltexture.h

Returns the height of the computed image in pixels.

getNumChannels()
int getNumChannels ();

Returns the number of channelsin the computed image.

getSrcimg()
unsigned char* getSrclmg () const;

Returns a pointer to the currently set source image.

getWidth()
int getWidth ();

Returns the width of the computed image in pixels.

setDstimg()
void setDstimg (unsigned char* dst);

Sets the pointer to the memory in which the destination image will be stored. Must be allocated by the user and be of at least

wi dt h* hei ght *num channel s
in extents.

setlmgDims()
void setimgDims (int ww, int hh, int dd=1);

Configures the width, height, and optional depth of the computed image, in pixels. Both the source and destination images
must be of this size.

setSrclmg()
void setSrclmg (unsigned char* src);

Sets the pointer to the memory in which the source image (if any) is stored.

SE1

NAME
id:: Texture: :Noise - OpenGL Shader Noise Texture

INHERITS FROM
isl:: Texture::lmage

HEADER FILE
#include <shader/isltexture.h>

PUBLIC METHOD SUMMARY
void setSeed (unsigned int seed);
unsigned int getSeed ();
virtual bool compute ();

INHERITED PUBLIC METHODS

Inherited from idl:: Texture::Image

virtual bool compute ();

int getDepth ();

unsigned char* getDstimg () const;

int getHeight ();

int getNumChannels ();

unsigned char* getSrcimg () const;

int getWidth ();

void setDstimg (unsigned char* dst);

void setimgDims (int ww, int hh, int dd=1);
void setSrclmg (unsigned char* src);

CLASSDESCRIPTION

Theidl:: Texture::Noise class creates a noise texture using the Perlin noise technique. Noise textures of this sort are simply
scalar values at any point in the texture into which these are computed, so luminance textures are enough to capture the
entirety of the noise calculated by this class.

METHOD DESCRIPTIONS

compute()
virtual bool compute ();

Computes the noise map.

getSeed()
unsigned int getSeed ();

file:///usr/include/shader/isltexture.h

Returns the seed currently used by the random number generator.

set Seed()
void setSeed (unsigned int seed);

Sets the seed to the random number generator. All noise generated from a particular seed will be identical.

SEE ALSO
isl:: Texture::lmage

SE1

NAME
id::VertexContext - OpenGL Shader Vertex Shader Context class

HEADER FILE
#include <shader/islvertex.h>

PUBLIC METHOD SUMMARY

VertexShader s configuration methods

void enable (ProgramType pp);

void disable ();

ProgramType typeProgram () const;

void setVertexShader (VertexShader* fn);
VertexShader* getVertexShader ();

void init ();

Light context methods

void extractL ightPositions (il Appearance* aa);
const ISLvertexVector& getDistantLights () const;
const |SLvertexVector& getLocalLights () const;

Matrix context methods

void setModelviewMatrix (ISLmatrix mv);

void setProjectionMatrix (1SLmatrix pp);

inline ISLmatrix getM odelviewMatrix () const;
inline ISLmatrix getProjectionMatrix () const;
inline ISLmatrix getlnvModelviewMatrix () const;
inline ISLmatrix getlnvProjectionMatrix () const;

Vertex Array data set methods

void setTexCoordPointer (GLint size, GLenum type, GLsizel stride, const GLvoid* pointer);
void setNormal Pointer (GLenum type, GLsizei stride, const GLvoid* pointer);

void setColorPointer (GLint size, GLenum type, GLsizei stride, const GLvoid* pointer);
void setVertexPointer (GLint size, GLenum type, GLsizel stride, const GLvoid* pointer);
void setlndexPointer (GLenum type, GLsizei stride, const GLvoid* pointer);

Vertex Array draw & calculate methods

void drawElements (GLenum mode, GLsizei count, GLenum type, const GLvoid* indices);
void drawArrays (GLenum mode, GLint first, GLsizei count);

Per-component data get methods

inline ISLvertex getNormal ();
inline ISLvertex getVertex ();
inline ISLvertex getColor ();

file:///usr/include/shader/islvertex.h

inline ISLvertex getTexCoord (const int ii);

Per-component data get methods

inline ISLvertex getNormal Result ();

inline ISLvertex getVertexResult ();

inline ISLvertex getColorResult ();

inline ISLvertex getTexCoordResult (const int ii);

Per-component data set methods

inline void setNormal 3f (GL float xx, GLfloat yy, GLfloat zz);
inline void setTexCoord2f (GLfloat ss, GLfloat tt);

inline void setMulti TexCoord?2f (int ii, GLfloat ss, GLfloat tt);
inline void setColor3f (GLfloat xx, GLfloat yy, GLfloat zz);
inline void calcVertex3f (GLfloat xx, GLfloat yy, GLfloat zz);
inline void setVertex3f (GLfloat xx, GLfloat yy, GLfloat zz);

CLASSDESCRIPTION

VertexContext is the basis for run-time user computation of various vertex-based parameters. VertexContext provides a
mapping between standard OpenGL state and programmabl e equivalents and also acts as a framework by which per-vertex
computations are executed.

Vertex Programming Motivation

Per-vertex texture-coordinate calulation is necessary in awide variety of scenarios. One common example is the sphere-map,
adynamically calculated set of texture coordinates which vary per-frame, using a normal as an index into atexture. Others
include BRDFS, cube-maps, or any surface property dependent upon the combined positions of light, eye, and object vertex.
Some of these techniques (sphere-map, cube-map, etc.) exist in dedicated OpenGL hardware today, but many require custom
code to perform. OpenGL graphics hardware isincreasingly supporting alarge degree of custom programmability per-vertex,
and the VertexContext and V ertexShader classes are designed to expose that to the OpenGL Shader community, in a
cross-platform, portable, and compatible fashion.

Though some graphics hardware currently supports custom vertex shading capability in hardware, not al does, nor do all
support it in the same fashion. Therefore, to achieve program compatibility across hardware platforms, a software devel oper
isfaced with a set of painful choices. Either write custom programs for each platform or write to some
lowest-common-denominator programmability set. However, another choice exists - similarly to the way a high-level shading
language such as I SL provides an abstraction of hardware shading capabilties, so doestheid::VertexShader, for vertex

shading.

OpenGL Shader currently supports c-language vertex programs and ARB_vertex_program programs.

VertexContexts are the essential mechanisms by which per-vertex texture generation and vertex processing occurs.
Describing the details of how the particular functions operate follows, but first, a quick example, in a pseudo-application
dr aw() will be presented to give an overview of how a context is used.

voi d drawFrane()

{

/] setup various matrices
gl Matri xMode(G._MODELVI EW) ;
gl LoadMatrixf(mvm);

gl Matri xMbde(G._PRQIECTI ON);
gl LoadMatrixf(pm);

vertex_cont ext - >set Model vi ewMatri x(nvm) ;

vert ex_context->setProjectionMatri x(pm);

/! position the |ight
di st ant Li ght Shader - >set Shader Matri x(| mat);

vert ex_cont ext - >extract Li ght Posi ti ons(shadedShape- >get Appear ance());

[/ init the vertex shaders
vertex_context->init();

/] exceute the drawaction
drawAct i on->draw(shadedShape);

}
voi d shadedShapeDr aw()

for(int ii=0; iisetTexCoord2f(tc[ii][O
vertex_context->setNormal 3f (nn[ii][0]
vertex_context->setVertex3f(vv[ii][O0]
}
}

A complete example can befoundin/ usr/ shar e/ shader/ src/ inthegeonetry andvi ewer _| i b directories.

], te[ii][1
, nn[ii][1]
, vvlii][1]

1)
, nn[ii][2]);
o wlii][2]);

The Pr ogr anTType enumerant is used througout isl::VertexContext to specify a particular shading mode. The valueis one
of:

o isl::VertexShader: : NONE: No programis currently set to execute.

o isl::VertexShader: : TEXGEN: When using texgen shaders, the igl::VertexContext will pass-through and
render all parameters specified. These include, vertex, normal, color, and texture coordinate.

o isl::VertexShader: : VERTEX: When using vertex shaders, the igl::VertexContext will pass-through and

render some parameters specified. These include only vertex, color, and texture coordinates. It is the application's
responsibility, as on any platform supporting vertex shaders, to ensure that the particular vix shader written
transforms vertices to clip-space. Further, as vertex shaders bypass the traditional lighting and transformation, any
lighting cal culations must be performed by the shader in use, and assigned per-vertex to it's color output.

A id::VertexContext is used first to configure the environment in which geometry will be drawn, then to actually draw the
geometry, executing the specified isl::VertexShaders.

To use theigl::VertexContext to generate texture coordinates, an application must replace it's usage of gl TexCoordPointer,
glVertexPointer, giNormal Pointer, etc. with the following equivalent methods.

A igl::VertexContext can also be used to simply operate on the specified data, without actually rendering the geometry
specified throug the various OpenGL vertex array APIs.

Touseaid::VertexContext and isl::VertexShader together, an application must modify existing OpenGL code which looks
like:

gl TexCoor dPoi nter (3, GL_FLOAT, 0,tri->_uv);

gl Nor mal Poi nter (G_FLOAT, 0, tri-> n);

gl VertexPoi nter (3, GL_FLOAT, 0,tri->_v);

gl DrawArrays(G._TRI ANGLE_STRI P, k, tri->_stripLength[i]);

to use id::VertexContext code. Here, for example, we show using a previously-allocated context vert_context to issue the
cals:

vert _cont ext - >set TexCoor dPoi nter(3, G._FLOAT, 0, tri->_uv);

vert _cont ext - >set Nor mal Poi nter(GL_FLOAT, O,tri->_n);

vert_cont ext - >set VertexPoi nter(3, G_FLOAT,0,tri->_v);

vert _context->drawArrays(GL_TRIANGLE_STRIP, k,tri->_stripLength[i]);

Notice that all the arguments remain identical. However, only GL_FLOAT data types are fully-supported at thistime. Please
submit any requests for other data formatsto shader - f eedback@gi . com

An alternate set of methods for specifying per-vertex data exist within VertexContext which parallel the single-component
glNormal, glVertex, glColor, and gl TexCoord functions.

Asfor the vertex array methods above, these methods are designed to be used in code such as:

gl TexCoord2f (.56, .13);
gl Normal 3f(0, 0, 1);
gl Vertex3f(23.0, 14.0, 2.718);

This code, when slightly modified, will then issue the same geometry, but execute the VertexContext's V ertexShaders on each
vertex. The above code is simply converted, when specified using a previousy-allocated context vert _cont ext toissue
the calls, asfollows:

vertex_context->setColor3f(.1, .3, .5);

vert ex_cont ext - >set TexCoord2f(.56, .13);
vertex_context->setNormal 3f(0, 0, 1);
vertex_context->setVertex3f(23.0, 14.0, 2.718);

METHOD DESCRIPTIONS

calcVertex3f()
inline void calcVertex3f (GLfloat xx, GLfloat yy, GLfloat zz);

Performs per-vertex igl::VertexShader operations, as specified to thisigl::VertexContext. Does not render geometry through
OpenGL pipeline - no results are displayed. Calculated results may subsequently be queried.

disable()
void disable ();

Disable specified Pr ogr anily pe pp.

drawArrays()
void drawArrays (GLenum mode, GLint first, GLsizei count);

Calculates & issues per-vertex operations, as specified to this . Issues results to OpenGL pipeline equivalently to
glDrawArrays.

drawElements()
void drawElements (GLenum mode, GLsizei count, GLenum type, const GLvoid* indices);

Calculates & issues per-vertex igl::VertexShader operations, as specified to thisid::VertexContext. I ssues results to OpenGL
pipeline equivalently to glDrawElements.

enable()
void enable (ProgramType pp);

Enable specified Pr ogr anType pp.

extractLightPositions()
void extractLightPositions (islAppearance* aa);

Extracts all distant and local light positions from the specified islAppearance. These paositions are copied into distant and local
light arrays, described below.

getColor()
inline ISLvertex getColor ();

Returns the current input color. Thisisthe preferred accesor for this data from within an . This data should not be overwritten.

getColor Result()
inline | SLvertex getColorResult ();

Returns the color calculation result. Thisis the preferred accesor for this data from within an igl::VertexShader. This data
should not be overwritten.

getDistantLights()
const | SLvertexVector& getDistantLights () const;

Returns areference to an | SL vertexVector containing the previously extracted distant light positions. The light vector is
initial zed with values from computed by extractL ightPositions.

| SLvert exVect or saresimply st d: : vect or <I SLVert ex> typedefs, implemented as STL lists. For convenience, an
| SLvert exVectorlter typedef isprovided as well.

getlnvM odelviewM atrix()
inline ISLmatrix getlnvM odelviewMatrix () const;

Returns the inverse modelview | SLmatrix for thisid::VertexContext.

getInvProjectionMatrix()
inline ISLmatrix getinvProjectionMatrix () const;

Returns the inverse modelview |SLmatrix for thisisl::VertexContext.

getL ocalL ights()

const | SLvertexVector& getLocalLights () const;

Returns areference to an | SL vertexVector containing the previously extracted local light positions. The light vector is
initial zed with values from computed by extractL ightPositions.

getM odelviewM atrix()
inline ISLmatrix getModelviewMatrix () const;

Returns the current modelview |SLmatrix for thisidl::VertexContext.

getNormal()
inline ISLvertex getNormal ();

Returns the current input normal. Thisis the preferred accesor for this data from within an . This data should not be
overwritten.

getNor malResult()
inline ISLvertex getNormal Resullt ();

Returns the normal calculation result. Thisisthe preferred accesor for this data from within an . This data should not be
overwritten.

getProjectionM atrix()
inline ISLmatrix getProjectionMatrix () const;

Returns the current projection ISLmatrix for thisigl::VertexContext.

getTexCoord()
inline ISLvertex getTexCoord (const int ii);

Returns the current input texcoord as specified by ii. Thisis the preferred accesor for this data from within an
isl::VertexShader. This data may be overwritten by a user vertex shader.

getTexCoor dResult()
inline I SLvertex getTexCoordResult (const int ii);

Returns the texcoord as specified by ii calculation result. Thisis the preferred accesor for this data from within an
is::VertexShader. This data may be overwritten by a user vertex shader.

getVertex()
inline SLvertex getVertex ();

Returns the current input vertex. Thisis the preferred accesor for this data from within an idl::VertexShader. This data should
not be overwritten.

getVertexResult()

inline ISLvertex getVertexResult ();

Returns the vertex calculation result. Thisisthe preferred accesor for this data from within an . This data should not be
overwritten.

getVertexShader ()
VertexShader* getVertexShader ();

Returns the current isl::VertexShader in use.

init()
void init ();

Executesthe current isl::VertexShader i ni t () functions. This method should be called per-frame.

setColor 3f()
inline void setColor3f (GLfloat xx, GLfloat yy, GLfloat zz);

Equivalent to glColor3f, though no OpenGL state is modified.

setColor Pointer ()
void setColorPointer (GLint size, GLenum type, GLsizei stride, const GLvoid* pointer);

Equivalent to glColorPointer. Replace calls to glColorPointer to setColorPointer.

setl ndexPointer ()
void setlndexPointer (GLenum type, GLsizei stride, const GLvoid* pointer);

Equivalent to glindexPointer. Replace calls to glindexPointer to setlndexPointer.

setM odelviewM atrix()
void setModelviewMatrix (ISLmatrix mv);

Sets the modelview matrix for thisisl::VertexContext. Many shaders rely on thisto do their work, so this must be set by the

application for each object with a unique ShaderMatrix. Thiswill ensure that each object being drawn is also shaded with it's
corresponding modelview matrix. Computes the inverse of this matrix and storesit for subsequent queries.

setMultiTexCoor d2f()
inline void setMultiTexCoord2f (int ii, GLfloat ss, GLfloat tt);

Equivalent to glMultiTexCoord2f, though no OpenGL state is modified. Only supported on platforms which support
multitexture.

setNor mal 3f()
inline void setNormal 3f (GLfloat xx, GLfloat yy, GLfloat zZ);

Equivalent to gINormal 3f, though no OpenGL state is modified.

setNor malPointer ()
void setNormal Pointer (GLenum type, GLsizei stride, const GLvoid* pointer);

Equivalent to giINormal Pointer. Replace calls to giNormal Pointer to setNormal Pointer.

setProjectionM atrix()
void setProjectionMatrix (ISLmatrix pp);

Sets the projection matrix for thisisl::VertexContext. Computes the inverse of this matrix and stores it for subsegquent queries.

setTexCoor d2f()
inline void setTexCoord2f (GLfloat ss, GLfloat tt);

Equivalent to gl TexCoord2f, though no OpenGL state is modified.

setTexCoor dPainter ()
void setTexCoordPointer (GLint size, GLenum type, GLsizei stride, const GLvoid* pointer);

Equivalent to gl TexCoordPointer. Replace callsto gl TexCoordPointer to setTexCoordPointer.

setVertex3f()
inline void setVertex3f (GLfloat xx, GLfloat yy, GLfloat zz);

Issues per-vertex idl::VertexShader operations, as specified to thisid::VertexContext, and draws the specified vertex, using
current state from prior set* calls. Issues post-computed results to OpenGL pipeline equivaently to glVertex3f.

setVertexPointer ()
void setVertexPointer (GLint size, GLenum type, GLsizei stride, const GLvoid* pointer);

Equivalent to glVertexPointer. Replace calls to glVertexPointer to setVertexPointer.

setVertexShader ()
void setVertexShader (VertexShader* fn);

Specifies the current igl::VertexShader to be used.

typeProgram()
ProgramType typeProgram (') const;

Returns the current type of the VertexContext program.

SEE ALSO
islAppearance, id::VertexContext, idl::VertexShader

SE1

NAME

id::VertexShader - OpenGL Shader Vertex Shading class

HEADER FILE

#include <shader/islvertex.h>

PUBLIC METHOD SUMMARY

isl::VertexContext manipulation

inline void setContext (\VertexContext* cc);
inline VertexContext* getContext () const;

Shading methods

virtual void init (void);
virtual void run (void);

PROTECTED MEMBER SUMMARY

VertexContext* ctxt;

CLASSDESCRIPTION

Theid::VertexShader class defines the base class for operations which are performed per-vertex over a set of geometric
primitives. These primitives are specified through the idl::VertexContext class and methods.

Though idl::VertexShader is not a pure-virtual base class, and can be instantiated directly, it performs no operations, and is
designed to be used only as a base-class from which concrete vertex shading classes are derived. For example, a contrived
vertex shader might be implemented as:

class nmyTexCGen : public isl:: VertexShader

pr ot ect ed:
fl oat scale

public:
voi d run()

mencpy(_ctxt->get TexCoord(0), _ctxt->getNormal(0),
2*si zeof (1 SLfl oat);
}

s

This shader would then, per-vertex, simply use the X- and Y -components of the per-vertex normal as texture coordinates.

For details on the operation and interaction between VertexShaders and idl::V ertexContexts, please read the
is::VertexContext man page.

file:///usr/include/shader/islvertex.h

Both init() and run() methods can use any datain the _ctxt to do per-vertex work. To operate on this data, the | SL math

libraries, asfound inissmath.h and libisimath.so, are provided which package a wide variety of common matrix math.
Please read about the issmath library and it's functionality in associated man-pages for details.

METHOD DESCRIPTIONS

getContext()
inline VertexContext* getContext () const;

Returns the current igl::VertexContext in which this shader is being used.

init()
virtual void init (void);

Executes custom vertex shading code initialization.

Could be used to setup lights of interest, perform a custom calcluation required at each vertex, or simply do nothing.

run()
virtual void run (void);

Executes the vertex shading code in this method, once per-vertex.

setContext()
inline void setContext (VertexContext* cc);

Setstheidl::VertexContext in which this vertex shader will operate.

MEMBER DESCRIPTIONS

_ctxt
VertexContext* _ctxt;

Points to the context in which thisidl::VertexShader is being used. Protected so that derived classes can access it directly.

Thisvariableisthe primary means aigl::VertexShader has for accessing data about its operand and its environment. See the
isl::VertexContext man page for more details on what datais provieded through a VertexContext.

SEE ALSO
isl::VertexContext, idl::VertexShader

	OpenGL Shader ISL Library Reference Page Index
	Related User Documents
	Shader SDK(1) - OpenGL Shader Software Development Kit
	Interactive Shading Language Description
	ipf2ogl(1) - OpenGL Shader Interactive Shading Language translator
	islc(1) - OpenGL Shader Interactive Shading Language compiler

	ISL Reference Pages
	islAppearance
	islAppearanceBase
	islAppearanceCopy
	islAppearanceCopyData
	islAppearanceSnapshot
	islAppearanceSnapshotData
	islCompileAction
	islCopyAction
	islDrawAction
	islError
	islMemory
	islShader
	islShape
	islSnapshotAction
	isl::TexGen::copyNormToTex
	isl::TexGen::copyPosToTex
	isl::TexGen::tangentSpaceAxis
	isl::Texture::ClearCoat360
	isl::Texture::Fresnel
	isl::Texture::Image
	isl::Texture::Noise
	isl::VertexContext
	isl::VertexShader

