Event Manager User Guide

007-4661-001



CONTRIBUTORS
Written by Darrin Goss

Edited by Cindi Leiser
Production by Glen Traefald
Engineering contributions by Andrei Vilkotski, Elena Gorvitovskaia, and Jonathan Lim.

COPYRIGHT

© 2003, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, IRIX, and the SGI logo are registered trademarks, and CXFS is a trademark of Silicon Graphics, Inc., in the United States
and/or other countries worldwide.

UNIX is a registered trademark of The Open Group. All other trademarks mentioned herein are the property of their respective owners.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.



007-4661-001

Record of Revision

Version Description

001 August 2003
Original publication






007-4661-001

Contents

Figures .
Tables
Examples

About This Document
Obtaining Publications
Conventions

Reader Comments .

Overview

Event Manager.
Event Producer.
Event Subscriber
Event Consumer
Event Manager API

Event Manager API

API Data Structures
Event Structure . .
GeneralBlock Structure

API Functions . o
emgrAddDataToEvent() .
emgrAddFileToEvent() .
emgrAddGbToEvent()
emgrAddIntlemToEvent()
emgrAddItemToEvent() .
emgrAddSubscribe() .
emgrAddTaggedDataToEvent()

. ix
.oXi
. Xiii
. XV
. XV

. XV1

. XVi

0 NN oG R W

N DN P PR PR PR
N m, O O 0 NI & W iN



Contents

Vi

emgrAddTaggedFileToEvent() .
emgrAddUnsubscribe()
emgrAllocEvent() .
emgrBuildQSearch() .
emgrCheckEvent().
emgrCloneEvent() .
emgrCloneGb()
emgrForwardEvent() .
emgrFreeEvent()
emgrGetEventltem() .
emgrGetFirstEventGb()
emgrGetFirstEventltem() .
emgrGetNextEventGb()
emgrGetNextEventltem().
emgrlsDaemonlnstalled().
emgrlsDaemonStarted() .
emgrNewQuery() .
emgrNewSubscribe() .
emgrNewUnsubscribe() .
emgrPrintEvent() .
emgrRunQuery() .
emgrRunSubscribe() .
emgrRunUnSubscribe()
emgrSearchGb()
emgrSendEvent() .
emgrSetToForward() .
emgrShmClilnitEvent()
emgrShmInitEvent()
emgrSubscribeSpecCntFreq()
emgrSubscribeSpecDsoConsumer() .
emgrSubscribeSpecExecConsumer()
emgrSubscribeSpecExecShMemConsumer()
emgrSubscribeSpecFacility() .

.23
.24
.25
.26
.26
.27
.27
.28
.29
.30
.31
.32
.33
.34
.35
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
.51
.52

007-4661-001



Contents

007-4661-001

emgrSubscribeSpecForwardConsumer()
emgrSubscribeSpecPriority()
emgrSubscribeSpecRegexpMap()
emgrSubscribeSpecTimeFreq() .
getConfigValue() .

Creating Producer, Subscriber, and Consumer Applications
Creating a Producer Application
Creating a Subscriber Application .
Creating, Modifying, and Submitting Subscrlptlon Events .
Examples . . e
Creating, Modifying, and Submlttmg Unsubscrlptlon Events
Examples .
Creating a Consumer Application
Example

eventmond Command-line Options
Configuring the Daemon .

Sending Commands to Tasks
Displaying Help

. 53
. 54
. 55
. 56
. 58

. 59
. 59
. 64
. 64
. 68
.71
. 74
.77
.79

.81
. 81
. 82
. 82

Vii






007-4661-001

Figures

Figure 1-1
Figure 1-2
Figure 2-1
Figure 3-1
Figure 3-2

Figure 3-3

Figure 3-4

Event Manager Architecture .
Event Manager Components .
Event Structure Layout

Creating and Submitting an Event from a Producer Application.

Creating/Updating and Submitting a Subscription Event from a
Subscriber Application.

Creating/Updating and Submlttmg an Unsubscr1pt1on Event
from a Subscriber Application

Accessing an Event from a Consumer Application.

. 60
. 65

.71
.77






007-4661-001

Tables

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 4-1
Table 4-2

Event Header Fields

Event Body Fields .

API Function Categories

Event Frequency Examples

eventmond Command-line Options to Configure the Daemon
eventmond Command-line Options to Start and Stop Tasks .

. 10
. 10
. 13
. 56
. 81
. 82

Xi






007-4661-001

Examples

Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5
Example 3-6
Example 3-7
Example 3-8

Example 3-9

Example Producer Code .

Example Code to Subscribe a DSO Consumer .

Example Code to Subscribe an Executable Consumer .
Example Code to Subscribe a Shared Memory Consumer.
Example Code to Unsubscribe a DSO Consumer
Example Code to Unsubscribe an Executable Consumer .

Example Code to Unsubscribe a Shared Memory Consumer .

Example Code to Access Event Data from a Shared Library
Consumer Application.

Example Code to Access Event Data from a Shared Memory
Consumer

. 62
. 68
. 69
. 70
. 74
.75
. 76

.79

. 80

Xiii






About This Document

This document describes the Event Manager application. It includes the following topics:

An overview of the Event Manager application
A description of the Event Manager application programming interface (API)
Information about creating producer, subscriber, and consumer applications

Information about the event nond command-line options

Obtaining Publications

You can obtain SGI documentation in the following ways:

007-4661-001

Visit the online SGI Technical Publications Library at http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
typei nf osear ch on a command line.

You can also view release notes by typing either gr el not es orr el not es ona
command line.

You can also view man pages by typing man <title> on a command line.

XV



About This Document

Conventions

The following conventions are used throughout this publication:

Convention Meaning

conmand This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user i nput This bold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

[ Brackets enclose optional portions of a command or directive line.
Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each

page.)

You can contact SGI in any of the following ways:

* Send e-mail to the following address:
techpubs@sgi.com

* Use the Feedback option on the Technical Publications Library webpage:
http:/ /docs.sgi.com

e Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

XVi 007-4661-001



About This Document

¢ Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Pkwy, M/S 535
Mountain View, California 94043-1351

* Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

007-4661-001 XVii






Chapter 1

007-4661-001

Overview

The Event Manager collects event information from other applications. It runs
independently of all other applications and enables local or remote applications to
receive event data from it on a subscription basis.

The Event Manager uses a producer/consumer architecture (refer to Figure 1-1).

Remote System

Producer

Local System

<-|--]-=-==-=-=-=

Producer —> | Consumer

Event Manager

Producer —— Consumer

Remote System

- == - - | Consumer

Figure 1-1 Event Manager Architecture

Applications that create events and send them to the Event Manager are called producer
applications (or producers). Applications that subscribe to receive event information from
the Event Manager are called consumer applications (or consumers). Producers and
consumers can reside on the same system as the Event Manager or on remote systems.



1: Overview

When the Event Manager registers an event from a producer application, it forwards the
event information to all consumer applications that are subscribed to receive information
about the event. Those applications must include functionality to process the event
because the Event Manager simply forwards the event information that it receives; the
Event Manager does not process the event information.

The Event Manager runs as a daemon (event nond) that starts at system startup and waits
to receive events from producer applications and send event information to consumer
applications. You can also manually run event nond to send commands to the daemon
through secured UNIX domain sockets.

Event management uses the following components (refer to Figure 1-2):

¢ Event manager

¢ Event producer

¢ Event subscriber

e Event consumer

¢ Event manager application programming interface (API)

Note: A single application can combine any or all of the event subscriber, producer, and
consumer functions.

007-4661-001



Event Manager

Event Manager

007-4661-001

Remote System

Producer .' -1
I
I
Generate :
Events
Local System :
I
I
I a
| Subscriber
I
: Subscribe/
, Unsubcribe
| Events
Y

Producer
Generate

Events

Event Manager
(event nond)

— Consumer
Receive

Events

Forward
Events

Figure 1-2 Event Manager Components

Remote System

-——|- -». Consumer

The Event Manager is a multi-threaded UNIX process that normally runs at system
startup as a daemon (event nond) and monitors TCP/IP port 5553 for events from
producers and subscription/unsubscription requests from subscribers. When the Event
Manager detects an event, it forwards the event information to all local and remote
consumers that are subscribed to the event. The Event Manager discards any events that
are not subscribed to a consumer.



1: Overview

You can use the event nond command to configure the daemon and control tasks that it
runs. (Refer to Chapter 4, “eventmond Command-line Options,” for more information)

Note: This new version of event nond replaces the version of event nond that shipped
with earlier versions of IRIX. It is named event nond to provide compatibility with older
versions of IRIX.

Event Producer

An event producer is an application that creates events and sends them to the Event
Manager via the Event Manager APIL There are two types of event producer applications:

* A separate process that runs on the local system or on a remote system.
* A shared library (also called a dynamic shared object [DSO]) that the Event

Manager loads and executes.

Example event producers include the sysl og DSO and the avai | non and confi gnon
standalone applications.

Event Subscriber

An event subscriber is a special subscription management application. It subscribes a
consumer to an event so the consumer can receive event information from the Event
Manager. It unsubscribes the consumer from the event when the consumer no longer
requires information about the event.

An example event subscriber is espconf i g, which handles event subscription for
Embedded Support Partner (ESP) version 3.0.

Note: Event subscriber functions can also be contained in producer or consumer
applications.

4 007-4661-001



Event Consumer

Event Consumer

007-4661-001

An event consumer is an application that subscribes to receive events and then processes
the event data that it receives. There are four types of event consumer applications:

A shared library consumer is a compiled function that is linked in a shared library that
the Event Manager can dynamically load into its address space and then execute.
The Event Manager passes the event as a parameter to the function. You must
specify the name of the shared library and the function that you want to call in the
shared library when you subscribe the consumer to the event. If the shared library is
not in a standard library directory (for example, / usr/ | i b), you must specify the
full path to the shared library when you subscribe the consumer.

An executable consumer can be any type of executable file that the Event Manager can
execute with a f ork() /exec() sequence. If the executable file is not accessible
through the PATH environment variable, you must specify the full path to the file
when you subscribe the consumer.

A shared memory executable consumer is an application that can access the event
information directly from memory that is shared with the Event Manager. The
Event Manager sends the consumer a command-line parameter that specifies a key
which indicates where the consumer can access the event information.

A forwarding consumer is a feature of the Event Manager that simply forwards the
event to another application. It does not process the event.

Consumers must subscribe to events with the Event Manager to receive information
about the events that occur. Consumers should unsubscribe from events when they no
longer need to receive the event information. Event subscription and unsubscription is
normally performed by a subscriber application, but it can be performed by a producer,
consumer, or subscriber application.

An example event consumer application is the Embedded Support Partner consumer
DSO that processes all events for ESP by logging the events and performing actions
assigned to them.



1: Overview

Event Manager API

The Event Manager application programming interface (API) contains a set of functions
that enable other applications to communicate with the Event Manager. Event producers
send information to the Event Manager via the Event Manager APIL. Event handlers
(consumers) receive event information via the Event Manager APL

Subscriber applications use the Event Manager API to manage the event
subscription/unsubscription process for consumers. The API also enables applications
to access information within an event.

The API library is dynamically linked to the applications.

Refer to Chapter 2, “Event Manager APL"” for descriptions of the Event Manager API
functions.

6 007-4661-001



Chapter 2

API Data Structures

007-4661-001

Event Manager API

The Event Manager application programming interface (API) provides functions that
enable applications to communicate with the Event Manager daemon (event nond).
These functions enable the applications to:

Subscribe events
Unsubscribe events
Log events

Query events

The Event Manager API uses a TCP/IP socket to communicate with the Event Manager
daemon. The engr api . h file contains the function declarations, and the | i bengr api . so
file contains the actual functions.

This chapter describes the functions that the Event Manager API contains. Chapter 3,
“Creating Producer, Subscriber, and Consumer Applications,” describes how to use the
functions to create producer, subscriber, and consumer applications.

The Event Manager API functions use the following special data structures:

Event structure

GeneralBlock structure



2: Event Manager API

Event Structure

The API functions use a structure called event (Engr Event _t ) to pass event information.
The event structure includes a fixed portion (the event header) and a variable portion
(the event data). The event header contains information about the event (application that
created it, host where it originated, time that it occurred, and so on), and the event data
contains the actual event.

Note: An event structure contains all public data for the event. All private data that the
API control layer requires is stored in a private event control structure that contains the
event structure as its first element. Do not directly allocate memory for an event
structure; use the engr Al | ocEvent () API function to allocate event resources.

Figure 2-1 shows the layout of the event structure.

8 007-4661-001



API Data Structures

Figure 2-1 Event Structure Layout

007-4661-001 9



2: Event Manager API

Table 2-1 describes the fields that the event header contains.

Table 2-1 Event Header Fields

Field Description Size

evd ass Event class ID number 4 bytes
evType Event type ID number that is unique to each application 4 bytes
flags Internal flags that indicate how to handle the message 2 bytes
ver si on Event version number that is specific to each application 2 bytes
ti mestanp Time that the event occurred 8 bytes
ui d User ID number of the process that generated the event 4 bytes
evid Event ID number 4 bytes
header _si ze Size of the event header plus event body 4 bytes
total _size Size of the entire event 4 bytes

Table 2-2 describes the fields that the event body contains.

Table 2-2 Event Body Fields
Field Description Size
sour ce Hostname (including domain name) of the system that Variable (included in a zero- terminated
generated the event string)
appnane Application that owns the event (for example, Kernel or UNIX) Variable (included in a zero terminated
string)
origin Application that generated the event (for example, SYSLOG) Variable (included in a zero terminated

string)

10

The event payload portion of the event structure contains a linked list of “items” that are
formatted as (name, value) pairs. The name portion is a zero-terminated string that acts
like an additional field in the event structure. The value portion is a typed value that the
Event Manager can use to filter expressions or a consumer application can use as event
data.

007-4661-001



API Data Structures

You must enter information in the following fields before you can send event information
via the Event Manager API:

* The sour ce field must be set to the hostname of the system where the event
originates.

* The appnane field must be set to the application that is sending the event (for
example, ESP, CXFS, etc.).
The following definitions in the enygr api . h file create the event structure:

e Definition of the event header:

typedef struct EngrEvent Header ({

int32_t evd ass; /* Event C ass nunber (application specific) */
int32_t evType; /* Event Type nunber (application specific) */
intl6_t flags; /* Event flags */

int1l6_t version; /* Event Version (application specific) */

int64_t timestanp; /[* Event Tine (GMI) */

int32_t uid; /* User ID of a process which sends an event */
uint32_t evid; /* Event id <16 bit sq nunmber><16 bit randonm> */

int32_t header_size; /* size of fixed and variable parts of header */
int32_t total _size; [/* size of entire event including header */

} EngrEvent Header _t;
* Definition of the event body:

t ypedef struct EngrEvent {

/* Fixed portion of public event data
*/

Engr Event Header _t header;

/* Variable portion of public event data

*/

char *source; /[* fully qualified |local hostnane */

char *appnane; /* Name of application that owns this event */
char *origin; /* Name of application that |ogged this event */

/* Private APl data is appended here

*

* Note: Never directly allocate nmenory for an EngrEvent struct.
* Always use the engrAllocEvent() function to allocate an event struct.
*/

} EngrEvent _t;

007-4661-001 11



2: Event Manager API

GeneralBlock Structure

12

The GeneralBlock structure is an abstract structure that defines data within an event
structure. The following definition in the engr G. h file creates the GeneralBlock
structure:

typedef struct General Bl ock {
int32_t type;
int32_t length;

voi d *pVal ue;

char tag[ 1] ;
} General Bl ock_t;

The GeneralBlock structure provides a way to represent (name, value) pairs for various
types of data. The structure currently supports strings, binary data, and file data;
however, it is an open structure that can support other types if needed. The event data is
a linked list of GeneralBlock structures.

When a data item in an event structure is a file, there is a GbFi | eVal ue structure that
defines it. The GoFi | eVal ue structure contains the size of the file data and related
information, the modification time of the file, the path to the file, and the raw file data.
The following definition in the engr Gb. h file creates the GoFi | eVal ue structure:

typedef struct CGoFil eVal ue {
int32_t size; /* size of the static attributes (size and
mod tine) + the length of the path and file */
char nmodTi ne[ 24] ;
char *pat h;
int8_t *pCont ent ;
} GoFileVal ue_t;

007-4661-001



API Functions

API Functions

The API functions have the following categories:
¢ Event manipulation functions:
—  Creation/definition functions
—  Access functions
*  Subscription manipulation functions
e Transmission/execution functions
¢ Configuration functions
Table 2-3 lists the functions that belong to each category and the type of application

(producer, subscriber, and /or consumer) that uses each function. Descriptions of the
individual functions appear in alphabetical order after the table.

Table 2-3 API Function Categories
Category Function Used By?
Event manipulation engr AddGbToEvent () P
(creation/definition)
engr Addl nt | t enTToEvent () P/S
engr Addl t eniToEvent () P/S

engr AddTaggedDat aToEvent ()
engr AddTaggedFi | eToEvent ()
engr AddDat aToEvent ()

engr AddFi | eToEvent ()
enmgr Al | ocEvent ()

engr C oneEvent ()

engr d oneGh()

engr FreeEvent ()

Nn = N N =9 =<9 =<9 =T

engr Get Event It em()

007-4661-001 13



2: Event Manager API

14

Table 2-3 API Function Categories (continued)

Category Function Used By?

Event manipulation engr Cet Fi r st Event Gb() C

(creation/definition) )

(cont.) engr GCet Fi rst Event I ten() C
engr Get Next Event Gb() C
engr Get Next Event It em() C
enmgr NewQuer y() P/S
engr Set ToFor war d() P
engr ShnCl i | nit Event () C
engr Shm ni t Event () C

Event manipulation (access)  engr Bui | dQSear ch() C
engr Print Event () P/S/C
engr Sear chGo() C
engr CheckEvent () P/Ss/C
engr AddSubscr i be() S
enmgr AddUnsubscri be() S
engr NewSubscri be() S
engr NewUnsubscri be() S
enygr Subscri beSpecCnt Freq() S
engr Subscri beSpecbDsoConsurer () S
engr Subscri beSpecExecConsuner () S
engr Subscri beSpecExecShMenConsuner () S
engr Subscri beSpecFacility() S
engr Subscri beSpecFor war dConsuner () S
engr Subscri beSpecPriority() S

007-4661-001



API Functions

007-4661-001

Table 2-3 API Function Categories (continued)

Category Function Used By?

Subscription manipulation engr Subscri beSpecRegexpMap() S

(cont.) engr Subscri beSpecTi meFreq() S

Transmission/execution engr For war dEvent () P
engr RunQuer y() P/S
engr RunSubscri be() S
engr RunUnSubscri be() S
engr SendEvent () P/S

Configuration engr | sDaenonl nst al | ed() P/S
engr | sDaenonSt art ed() P/S
get Confi gVval ue() P/S

a. The “Used By” column indicates the type of application that uses each function (P = producer, S = subscriber,
and C = consumer).

The following sections describe the API functions that are available.

15



2: Event Manager API

emgrAddDataToEvent()

16

i nt engr AddDat aToEvent ( Engr Event _t *pEvent,
const void *databuf,
size_t size);

The engr AddDat aToEvent () function adds binary data to an event.

Parameters:

*pEvent pointer to an event structure

*databuf pointer to a data buffer (The pointer should be valid while you use the
event; producers should free the data buffer memory.)

size size of the data buffer (in bytes)

Return value:

e Success: 0

¢ Failure:
-1 A processing error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrAddFileToEvent()

007-4661-001

i nt engr AddFi | eToEvent ( Engr Event _t *pEvent,
const char *path);

The engr AddFi | eToEvent () function adds the contents of a file to an event.

Parameters:
*pEvent pointer to an event structure
*path pointer to a character string that contains the full pathname of the file

Return value:

e Success: 0

¢ Failure:
-1 A processing error occurred.
4 The *pEvent pointer that was passed to the function points to
corrupted memory.
17 The file does not exist or could not be opened.

17



2: Event Manager API

emgrAddGbToEvent()

18

i nt engr AddGbToEvent ( Engr Event _t *pEvent,
struct General Bl ock *pNewGB) ;

The enmgr AddGbToEvent () function adds a GeneralBlock structure to an event.

Parameters:

*pEvent pointer to an event structure

*pNewGB pointer to a GeneralBlock structure to add to the event
Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrAddIintlemToEvent()

007-4661-001

i nt engr Addl nt |t emlfoEvent ( Emgr Event _t * pEvent,
const char *name,
| ong wvalue) ;

The engr AddI nt | t eniToEvent () function converts an integer to a string and adds it to an
event.

Parameters:

*pEvent pointer to the event structure

*name pointer to a character string that contains the name of the item
value integer value to add

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

19



2: Event Manager API

emgrAdditemToEvent()

20

i nt engr Addl t enToEvent ( Engr Event _t *pEvent,
const char *name,
const char *wvalue);

The engr Addl t enfToEvent () function adds an item (named value) to an event.

Parameters:

*pEvent pointer to the event structure

*name pointer to a character string that contains the name of the item
*value pointer to a character string that contains the value of the item

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrAddSubscribe()

Engr Event _t *engr AddSubscri be( Enmgr Event _t * pEvent,

const char *appname,
i nt evClass,

i nt evType,

const char *source,
const char *origin) ;

The emgr AddSubscri be() function adds the next subscription specification to an event
that was already allocated with the engNewSubscri be() function. The
engr AddSubscri be() function also sets specific information for batch subscription

processing.

Parameters:

*appname

evClass
evType

*source

*origin

Return value:

pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type) (Set this
string to NULL to select events from any application.)

event class to subscribe (Set this parameter to -1 to select all classes.)
event type to subscribe (Set this parameter to -1 to select all event types.)

pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events are subscribed from the localhost.)

pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value or pass
an empty string or NULL character pointer to the origin parameter.)

® Success: Pointer to the event structure

* Failure: NULL pointer

007-4661-001

21



2: Event Manager API

emgrAddTaggedDataToEvent()

22

i nt engr AddTaggedDat aToEvent ( Engr Event _t *pEvent,

const char *tag,
const voi d *pBuffer,
size_t size);

The engr AddTaggedDat aToEvent () function adds the contents of a data buffer to an
event. It also names the data with a tag that you can specify to quickly access the data
again. (The tag acts as an item name.)

Parameters:
*pEvent

*tag
*pBuffer

size

Return value:
* Success: 0
e Failure:
-1
4

pointer to an event structure
pointer to a character string that contains the tag

pointer to the buffer of data (This pointer must be valid the entire time
that the event is in use.)

number of bytes of data in the buffer

An unspecified error occurred.

The *pEvent pointer that was passed to the function points to
corrupted memory.

007-4661-001



API Functions

emgrAddTaggedFileToEvent()

007-4661-001

i nt engr AddTaggedFi | eToEvent (Engr Event _t *pEvent,
const char *tag,
const char *path);

The engr AddTaggedFi | eToEvent () function adds the contents of a file to an event. It
also names the data block with a tag that you specify so you can quickly access the data
again. (The tag acts as an item name.)

Parameters:

*pEvent pointer to an event structure

*tag pointer to a character string that contains the file tag

*path pointer to a character string that contains the path to the file

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

23



2: Event Manager API

emgrAddUnsubscribe()

Enmgr Event _t *engr AddUnSubscri be( Emgr Event _t * pEvent,

const char *appname,
i nt evClass,

i nt evType,

const char *source,
const char *origin) ;

The emgr AddUnSubscri be() function adds the next unsubscription specification to an
event that was already allocated with the engr NewUnSubscri be() function. The
engr AddUnSubscr i be() function also sets specific information for batch event

processing.

Parameters:
*pEvent

*appname

evClass
evType

*source

*origin

Return value:

pointer to an event structure

pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type)

Note: Do not set this parameter to an empty string or a NULL character
pointer.

event class to subscribe (Set this parameter to -1 to select all classes.)
event type to subscribe (Set this parameter to -1 to select all event types.)

pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events are unsubscribed from the localhost.)

pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value. Set this
parameter to empty string or the NULL character pointer to specify any
application.)

® Success: Pointer to the event structure

* Failure: NULL pointer

24

007-4661-001



API Functions

emgrAllocEvent()

Emgr Event _t *engr Al | ocEvent (const char *appname,
i nt evClass,
i nt evType,
i nt wversion,
char *origin) ;

The emgr Al | ocEvent () function allocates memory for an event.

Parameters:

*appname pointer to a character string that contains the name of the application
that owns the event

evClass application-specific event class number (set to 0 if you do not want to
specify a class)

evType application-specific event type number (do not set to 0 or -1)

version application-specific event version for consumer or producer use (set to 0
if you do not want to specify a version)

*origin pointer to a character string that contains the name of the application

that logs the event (If it is the same as the application that owns the
event, set the string to the same string as appname.)

Return value:
® Success: Pointer to the event structure

e Failure: NULL pointer

007-4661-001 25



2: Event Manager API

emgrBuildQSearch()
i nt engr Bui | dQSear ch( Engr Event _t *pEvent) ;

The engr Bui | dQ@Sear ch() function builds the internal search table for an event to enable
searches based on item tags. Normally, you do not need to use the function because the
Event Manager calls it when necessary on the consumer side.

Parameters:

*pEvent pointer to the event structure

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

emgrCheckEvent()
i nt engr CheckEvent (const Engr Event _t *pEvent) ;

The emgr CheckEvent () function verifies that an event structure is valid.

Parameter:

*pEvent pointer to an event structure

Return value:

e Success: 0 (event structure is valid)

e Failure:
-1 The event structure is not valid.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

26 007-4661-001



API Functions

emgrCloneEvent()

emgrCloneGb()

007-4661-001

i nt *engrd oneEvent (const Engr Event _t *pEvent);

The emgr A oneEvent () function clones all parameters and data from an event, except
the eventlD, source, timestamp, and uid attributes. This function is useful for DSO
consumers that must modify an event and pass it elsewhere for further processing.

Parameters:

*pEvent pointer to the event structure

Return value:
e Success: 0

¢ Failure: NULL pointer (The *pEvent pointer that was passed to the function points
to corrupted memory, or a memory allocation failure occurred.)

Gener al Bl ock_t *engr Cl oneCGb(const EngrEvent _t *pGb) ;
The emgr d one@() function clones the contents of a GeneralBlock structure.

Parameters:

*pGb pointer to the GeneralBlock structure

Return value:
e Success: 0

¢ Failure: NULL pointer (The *pGB pointer that was passed to the function points to
corrupted memory, or a memory allocation failure occurred.)

27



2: Event Manager API

emgrForwardEvent()

i nt engr For war dEvent ( Engr Event _t *pEvent,
const char *forwardPath) ;

The engr For war dEvent () function specifies that the Event Manager should forward an
event to one or more remote hosts; this function uses the engr SendEvent () function to
forward the event to the first host in the forward path.

Parameters:

*pEvent pointer to the event structure

*forwardPath ~ pointer to a character string

The character string contains the path of hosts that should receive an
event and has the following format:

hostnamel[:port]>hostname2>[:port]>...hostnameN|:port]

Example: host 1. sgi . conrhost 2. sgi . com 5553>host 3. sgi . com

Return value:

e Success: 0

¢ Failure:
-1 The forward path is invalid or there is a communication error with
the first host in the path.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

28 007-4661-001



API Functions

emgrFreeEvent()
i nt engr FreeEvent (Emgr Event _t *pEvent) ;

The enmgr FreeEvent () function frees up all memory resources allocated to an event.

Parameters:

*pEvent pointer to an event structure

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001 29



2: Event Manager API

emgrGetEventitem()

const void *engrGet Eventlten(const EnmgrEvent _t *pEvent,
const char *name,
int *pType,
i nt *pLength) ;

This emgr Get Event I t en() function returns the value of an item.

Parameters:
*pEvent pointer to the event structure
*name pointer to a character string that contains the name of the requested item
*pType pointer to an integer that holds the type of data that the function
retrieves
The integer can have the following values:
1 = file data
2 = binary data
3 = string data
*pLength pointer to an integer that holds the length of the data that the function

retrieves (the length of the string if the function returns a string, the
length of the binary large object (BLOB) of data if the function returns
binary data, or the file length if the function returns a file)

Return value:

* Success: Pointer to a character array if the item is a string, pointer to a binary array if
the item is binary data, or pointer to a GoFi | eVal ue structure (type
CGbFi | eval ue_t) if the item is a file

e Failure: NULL pointer

30 007-4661-001



API Functions

emgrGetFirstEventGb()

007-4661-001

const struct General Bl ock *engr Get Fi r st Event Go( Engr Event _t *pEvent) ;

The enmgr Get Fi r st Event Gb() function returns the first GeneralBlock structure that is
attached to an event and initializes an iterator to use with the engr Get Next Event Go()
function.

Parameters:

*pEvent pointer to the event structure

Return value:
e Success: Pointer to the GeneralBlock structure

¢ Failure: NULL pointer

31



2: Event Manager API

emgrGetFirstEventltem()

int emgr CGet Fi rst Event|ten( Emgr Event _t *pEvent,

const char **pName,
const void **pValue,
i nt *pType,

i nt *pLength) ;

The engr Get Fi r st Event I t en() function traverses event data and returns the first item
and value of the event data initialized into pName and pValue. It initializes the iterator.

Parameters:
*pEvent
**pName

**pValue

“pType

*pLength

Return value:
® Success: 0
e Failure:
-1
4

32

pointer to the event structure
pointer to the location where the returned item name pointer is stored

pointer to a character array if the item is a string, pointer to a binary
array if the item is binary data, or pointer to a GFi | eVal ue structure
(type GbFi | eVal ue_t) if the item is a file

pointer to an integer that holds the type of data that the function
retrieves

The integer can have the following values:
1 = file data

2 = binary data

3 = string data

pointer to an integer that holds the length of the data that the function
retrieves (the length of the string if the function returns a string, the
length of the BLOB of data if the function returns binary data, or the file
length if the function returns a file)

An unspecified error occurred.

The *pEvent pointer that was passed to the function points to
corrupted memory.

007-4661-001



API Functions

emgrGetNextEventGb()

const struct General Bl ock *engr Get Next Event Go( Engr Event _t *pEuvent) ;

The engr Get Fi r st Event G() function returns the next GeneralBlock structure that is
attached to an event.

Parameters:

*pEvent pointer to the event structure

Return value:
e Success: Pointer to the GeneralBlock structure

¢ Failure: NULL pointer

007-4661-001 33



2: Event Manager API

emgrGetNextEventltem()

i nt engr Get Next Event | t en{ Engr Event _t *pEvent,

const char **pName,
const void **pValue,
int *pType,

int *pLength) ;

The engr Get Next Event | t en() function traverses the event data and returns the item
and value of the next item in the event data to pName and pValue.

Parameters:
*pEvent
**pName

**pValue

“pType

*pLength

Return value:
® Success: 0
e Failure:
-1
4

34

pointer to the event structure
pointer to the location where the returned item name pointer is stored

pointer to a character array if the item is a string, pointer to a binary
array if the item is binary data, or pointer to a GFi | eVal ue structure
(type GbFi | eVal ue_t) if the item is a file

pointer to an integer that holds the type of data that the function
retrieves

The integer can have the following values:
1 = file data

2 = binary data

3 = string data

pointer to an integer that holds the length of the data that the function
retrieves (the length of the string if the function returns a string, the
length of the BLOB of data if the function returns binary data, or the file
length if the function returns a file)

An unspecified error occurred.

The *pEvent pointer that was passed to the function points to
corrupted memory.

007-4661-001



API Functions

emgrisDaemoninstalled()

int engrlsDaenonlnstall ed();

Theenyr | sDaenonl nst al | ed() function identifies whether the Event Manager server is
installed on the local system.

Parameters: none

Return value:
¢ 0: Event Manager server is installed

¢ 1: Event Manager server is not installed

Note: This function works only with the default configuration. If you modify how the
Event Manager is configured or installed, this function fails.

emgrisDaemonStarted()

007-4661-001

i nt engrlsDaenonStarted(const char *server);

The engr | sDaenonSt ar t ed() function identifies whether the Event Manager daemon is
running on the specified system.

Parameters:

*server pointer to a character string that contains the name of the server to check

Return value:
¢ 0: Event Manager daemon is running on the specified system

¢ 1: Event Manager daemon is not running on the specified system

Note: This function works only with the default configuration. If you modify how the
Event Manager is configured or installed, this function fails.

35



2: Event Manager API

emgrNewQuery()

Emgr Event _t *engr NewQuery(const char *appname,
i nt evClass,
i nt evType,
const char *source,
const char *origin) ;

The emgr NewQuer y() function is a wrapper to the emgr Al | ocEvent () function. The
engr NewQuer y() function allocates an event structure and initializes the event header to
conduct a query of events that are currently subscribed.

Parameters:

*appname pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type) Set this
parameter to the NULL character pointer to specify any application

evClass event class to match (Set this parameter to -1 to select all classes.)

evType event type to match (Set this parameter to -1 to select all event types.)

*source pointer to a character string that contains the name of the host or hosts
from which to query events (If the string contains more than one host,
separate the hosts with spaces and /or commas. If the string is empty or
NULL, events from any source are used.)

*origin pointer to a character string that contains the name of the application

that logs the event. If the string is empty or NULL, events from any
origin are used

Return value:
® Success: Pointer to the event structure

e Failure: NULL pointer

36 007-4661-001



API Functions

emgrNewSubscribe()

Engr Event _t *engr NewSubscri be(const char *appname,

i nt evClass,
i nt evType,
const char *source,
const char *origin) ;

The engr NewSubscr i be() functionisa wrapper to the engr Al | ocEvent () function. The
engr NewSubscri be() function allocates an event structure and initializes the event
header with the specified data.

Parameters:

*appname

evClass
evType

*source

*origin

Return value:

pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type) (Set this
string to NULL to select events from any application.)

event class to subscribe (Set this parameter to -1 to select all classes.)
event type to subscribe (Set this parameter to -1 to select all event types.)

pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events from any source are used.)

pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value. Set this
parameter to empty string or the NULL character pointer to specify any
origin.)

® Success: Pointer to the event structure

e Failure: NULL pointer

007-4661-001

37



2: Event Manager API

emgrNewUnsubscribe()

Enmgr Event _t *engr NewUnSubscri be(const char *appname,

i nt evClass,
i nt evType,
const char *source,
const char *origin) ;

The emgr NewUnSubscr i be() function is a wrapper to the engr Al | ocEvent () function.
The engr NewUnSubscri be() function allocates an event structure and initializes the
event header for unsubscription using the data provided.

Parameters:

*appname

evClass
evType

*source

*origin

pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type)

Note: Do not set this parameter to an empty string or a NULL character
pointer.

event class to subscribe (Set this parameter to -1 to select all classes.)
event type to subscribe (Set this parameter to -1 to select all event types.)

pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events are unsubscribed from any host.)

pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value. Set this
parameter to empty string or the NULL character pointer to specify any
host.)

Note: If you want to unsubscribe an event, the specified parameters must match the
subscription parameters (including the consumer definition).

38

007-4661-001



API Functions

emgrPrintEvent()

007-4661-001

Return value:
® Success: Pointer to the event structure

¢ Failure: NULL pointer

voi d engr Print Event (const EngrEvent _t *pEuvent,
FI LE *out);

The engr Pri nt Event () function prints an event to a FILE stream.

Parameters:
*pEvent pointer to the event structure
*out pointer to the FILE stream

Return value: None

39



2: Event Manager API

emgrRunQuery/()

i nt emgr RunQuer y( Emgr Event _t * pQueryEvent,
const char *host,
Engr Event _t ***ppRetEvents,
i nt *pEvCount,
i nt timeout);

The emgr RunQuer y() function executes a subscription query.

Parameters:

*appname pointer returned by the engr NewQuer y() function

*host hostname (and optionally port number) of the system to query

evType event type to match (Set this parameter to -1 to select all event types.)

***ppRetEvents  array of pointers to events that match the query

*pEvCount number of returned events

Note: The calling program must free the memory that is used to store
the number of returned events and the array of pointers.

timeout number of seconds to wait for a return from the Event Manager

Return value:

* Success: 0 (with ppRetEvents and pEvCount set to values)

¢ Failure:
-1 An unspecified error occurred.
4 The *pQueryEvent pointer that was passed to the function points to

corrupted memory.

40 007-4661-001



API Functions

emgrRunSubscribe()

007-4661-001

i nt emgr RunSubscri be( Engr Event _t * pSubscrEvent,
const char *host,
i nt timeout,
char **pRetEventMask) ;

The emgr RunSubscri be() function adds subscription attributes to an event (Use this

function instead of the engr SendEvent () function if operation completion status is

needed.) This function can subscribe multiple events at a time.

Parameters:

*pSubscrEvent  pointer to the event structure

*host pointer to a character string that contains the hostname

timeout number of seconds to wait for a return from the Event Manager

** pRetEventMask address of a variable that returns the subscription status (each element
contains ‘0’ plus the subscription status)

Return value:

*  Success: 0 (with pRetEventMask set to a value)

¢ Failure:
-1 An unspecified error occurred.
4 The *pSubscrEvent pointer that was passed to the function points to

corrupted memory.

41



2: Event Manager API

emgrRunUnSubscribe()

42

i nt emgr RunUnSubscri be( Engr Event _t * pSubscrEvent,
const char *host,
int timeout,
char **pRetEventMask) ;

The emgr RunUnSubscri be() function unsubscribes events. (Use this function instead of
the engr SendEvent () function if operation completion status is needed.) This function
can unsubscribe multiple events at a time.

Parameters:

*pSubscrEvent  pointer to the event structure

*host pointer to a character string that contains the hostname

timeout number of seconds to wait for a return from the Event Manager

** pRetEventMask address of a variable that returns the subscription status (each element
contains ‘0" plus the subscription status)

Return value:

*  Success: 0 (with pRetEventMask set to a value)

¢ Failure:
-1 An unspecified error occurred.
4 The *pSubscrEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrSearchGb()

const struct General Bl ock *engr Sear chGo( Engr Event _t *pEvent,
const char *tag);

The engr Sear chGhb() function locates the GeneralBlock referenced by a tag that you

specify.

Parameters:

*pEvent pointer to the event structure

*tag pointer to a character string that contains the tag for the GeneralBlock

that you want to locate

Return value:
e Success: Pointer to the GeneralBlock structure

¢ Failure: NULL pointer

007-4661-001 43



2: Event Manager API

emgrSendEvent()

44

i nt *engr SendEvent (Enmgr Event _t * pEvent,
const char *host);

The engr SendEvent () sends an event to the Event Manager on the specified host.

Parameters:
*pEvent pointer to the event structure
*host pointer to a character string that contains the hostname of the Event

Manager used to subscribe events. The character string uses the
following format: <hostname>[:<port_number>]

If you specify NULL or an empty string, the function subscribes the
event with the Event Manager on the local system.

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrSetToForward()

007-4661-001

i nt engr Set ToFor war d( Engr Event _t * pEvent,
const char *forwardPath) ;

The engr Set ToFor war d() function specifies that the Event Manager should forward an
event to one or more remote hosts.

Parameters:

*pEvent pointer to the event structure

*forwardPath ~ pointer to a character string

The character string contains the path of hosts that should receive an
event and has the following format:

hostnamel[:port]>hostname2>[:port]>...hostnameN|:port]

Example: host 1. sgi . conrhost 2. sgi . com 5553>host 3. sgi . com

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

45



2: Event Manager API

emgrShmcClilnitEvent()

Emgr Event _t *engr ShnCl i I nit Event (i nt argc,
const char *argou[],
int *pError);

The emgr shnCl i | ni t Event () function is a wrapper to the engr Shm ni t Event ()
function. It hides the details and simplifies command-line option parsing to mai n(),
searches for a shared memory option, and calls the engr Shr ni t Event () function.

Parameters:

argc number of arguments

*argu[] pointer to the array of arguments

*pError pointer to the error code when an error occurs

Return value:
e Success: Pointer to the initialized event structure

¢ Failure: NULL pointer (*pError points to the error code.)

46 007-4661-001



API Functions

emgrShminitEvent()

007-4661-001

Engr Event _t *engr Shm ni t Event (i nt shmlid,
i nt *pError) ;

The emgr shmi ni t Event () function initializes an event from shared memory that the
Event Manager allocated.

Parameters:

shmld shared memory ID (that was passed to the consumer process as a
command-line parameter)

*pError pointer to the error code when an error occurs

Return value:
¢ Success: Pointer to the initialized event structure
¢ Failure: NULL pointer (*pError points to the error code.)

The error is the system error number from the errNO global variable. (Refer to the
/usr/include/errno. hand/usr/include/linux/errno. h files for more
information.)

47



2: Event Manager API

emgrSubscribeSpecCntFreq()

48

i nt engr Subscri beSpecCnt Freq( Engr Event _t *pEvent,
int freq);

The enmgr Subscri beSpecCnt Freq() function is a wrapper to the

engr Addl t eniToEvent () function. The engr Subscri beSpecCnt Freq() function adds a
tagged item to a subscription event to specify how often the Event Manager should send
a matching event to a matching subscriber.

Parameters:
*pEvent pointer to the event structure
freq count frequency value (The Event Manager sends one of this number of

events to the subscriber; for example, if you set freq to 5, the Event
Manager sends every fifth matching event to the subscriber.)

Return value:

e Success: 0

¢ Failure:
-1 A memory allocation failure occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrSubscribeSpecDsoConsumer()

007-4661-001

i nt engr Subscri beSpecDsoConsuner ( Engr Event _t * pEvent,
const char *dsoPath,
const char *callName,
const char *prmSpec);

The engr Subscri beSpecDsoConsuner () function subscribes events from consumers
that are implemented as dynamic shared object (DSO) libraries that are called from the
Event Manager server.

Parameters:

*pEvent pointer to the event structure

*dsoPath pointer to a character string that contains the pathname of the consumer
DSO library

*callName pointer to a character string that contains the name of the main
consumer function to call

*prmSpec pointer to a character string of parameters for the consumer

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

49



2: Event Manager API

emgrSubscribeSpecExecConsumer()

50

i nt engr Subscri beSpecExecConsuner ( Enmgr Event _t * pEvent,
const char *execPath,
const char *prmSpec) ;

The engr Subscri beSpecExecConsuner () function subscribes events from applications
that are launched with the f or k() and exec() commands. Event parameters are passed
to the consumer on the command line.

Parameters:

*pEvent pointer to the event structure

*execPath pointer to a character string that contains the pathname of the consumer
application to launch

*prmSpec pointer to a string of parameters for the application

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrSubscribeSpecExecShMemConsumer()

007-4661-001

i nt engr Subscri beSpecExecShMenConsurner ( Emgr Event _t * pEvent,
const char *execPath,
const char *prmSpec);

The engr Subscr i beSpecExecShMenConsuner () function subscribes events from
consumer applications that are launched via f or k() and exec() commands. Event
parameters are passed to the consumer applications via shared memory handoffs
handled by the API layer.

Parameters:

*pEvent pointer to the event structure

*execPath pointer to a character string that contains the pathname of the consumer
application to launch

*prmSpec pointer to a string of parameters for the application

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

51



2: Event Manager API

emgrSubscribeSpecFacility()

52

i nt engr Subscri beSpecFaci | i ty( Engr Event _t *pEvent,
i nt facility) ;

The enmgr Subscri beSpecFaci | i ty() function is a wrapper to the

engr Addl t eniToEvent () function. The engr Subscri beSpecFaci | i ty() function addsa
tagged item to a subscription or unsubscription event to specify an optional event facility
filter (used for subscription matching).

Parameters:
*pEvent pointer to the event structure
facility facility ID value (same as sysl og facility value)

Return value:

e Success: 0

¢ Failure:
-1 A memory allocation failure occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

007-4661-001



API Functions

emgrSubscribeSpecForwardConsumer()

007-4661-001

i nt engr Subscri beSpecFor war dConsurer ( Engr Event _t *pEvent,
const char *forwardPath) ;

The engr Subscr i beSpecFor war dConsuner () function specifies that the Event Manager
should forward an event to another host for processing.

Parameters:

*pEvent pointer to the event structure

*forwardPath ~ pointer to a character string

The character string contains the path of hosts that should receive an
event and has the following format:

hostnamel[:port]>hostname2>[:port]>...hostnameN|:port]

Example: host 1. sgi . conrhost 2. sgi . com 5553>host 3. sgi . com

Return value:

e Success: 0

¢ Failure:
-1 An unspecified error occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

53



2: Event Manager API

emgrSubscribeSpecPriority()

i nt engr Subscri beSpecPriority(EngrEvent _t *pEvent,
int pri);

The enmgr Subscri beSpecPriority() function is a wrapper to the

engr Addl t eniToEvent () function. The engr Subscri beSpecPri ority() functionaddsa
tagged item to a subscription or unsubscription event to specify an optional event
priority filter for subscription matching.

Parameters:
*pEvent pointer to the event structure
pri priority value (same as sysl og priority value)

Return value:

e Success: 0

¢ Failure:
-1 A memory allocation failure occurred.
4 The *pEvent pointer that was passed to the function points to corrupted

memory.

54 007-4661-001



API Functions

emgrSubscribeSpecRegexpMap()

007-4661-001

i nt engr Subscri beSpecRegexpMap( Emgr Event _t * pEvent,
const char *regExp,
i nt evMapClass,
i nt evMapType) ,

The enmgr Subscri beSpecRegexpMap() function is a wrapper to the

enmgr AddI t enTToEvent () function. The emgr Subscr i beSpecRegexpMap() function adds
a tagged item to a subscription event to specify an optional untagged event's class and
type mapping before forwarding it to a subscribed consumer.

Parameters:
*pEvent pointer to the event structure
*regExp regular expression to compare to an event’s message body

evMapClass class ID to add to the event
evMapType type ID to add to the event

Return value:

e Success: 0

e Failure:
-1 A memory allocation failure occurred.
4 The *pEvent pointer that was passed to the function points to

corrupted memory.

55



2: Event Manager API

emgrSubscribeSpecTimeFreq()

56

i nt engr Subscri beSpecTi neFr eq( Engr Event _t *pEvent,

The engr Subscri beSpecTi meFreq() function is a wrapper to the

int freq);

engr Addl t eniToEvent () function. The engr Subscri beSpecTi neFreq() function adds a
tagged item to a subscription event that specifies how often (in events/second) a
matching event should be sent to a subscribed consumer. This function enables you to
limit (or throttle) the number of events that are sent to a consumer each second.

The Event Manager divides the actual number of events that it receives in a second by
the frequency value (freq) and rounds the value down to the nearest integer value; the
Event Manager sends the resulting number of events to the subscribed consumer each
second. Table 2-3 shows the number of events that are sent to a consumer for various

example frequency (freq) values.

Table 2-4 Event Frequency Examples

Number of Events
Received by the Event
Manager (Per Second)

Number of Events
Sent to Subscribed
Consumer (Per

Second)freg=1  freq=2 freq=3 freq=4 freq=5
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
3 3 1 1 0 0
4 4 2 1 1 0
5 5 2 1 1 1
6 6 3 2 1 1
7 7 3 2 1 1
8 8 4 2 2 1
9 9 4 3 2 1
10 10 5 3 2 2
1 1 5 3 2 2

007-4661-001



API Functions

Table 2-4 Event Frequency Examples (continued)

Number of Events
Received by the E

Number of Events
vent Sent to Subscribed

Manager (Per Second) Consumer (Per

Second) freg = 1 freq =2

freq=3 freq=4 freqg=5

12
13
14
15
16
17
18
19
20

12
13
14
15
16
17
18
19
20

6
6

10

4

4

@D W W

2

2

= W W W

Parameters:
*pEvent
freq
Return value:
* Success: 0
e Failure:
-1
4

007-4661-001

pointer to the event structure

frequency value

A memory allocation failure occurred.

The *pEvent pointer that was passed to the function points to

corrupted memory.

57



2: Event Manager API

getConfigValue()

58

typedef void *SearchMarker _t;
Sear chMar ker _t get Confi gVal ue(const char *key,

const char **ovalue,
Sear chMar ker _t  from) ;

The get Confi gVal ue() function retrieves the configuration value for a specified item.

Parameters:

*key pointer to a character string that contains the search key

“*value pointer to the location where the result string pointer is stored

from token that specifies where the function should begin its search (Set this

parameter to NULL for the first get Conf i gval ue() function call and
set it to the return value from the previous get Conf i gVal ue() function

call to continue searching from the point where the previous search
ended.)

Return value:

® Success: A token that indicates the location to begin the search the next time that the
function is called.

e Failure: None

007-4661-001



Chapter 3

Creating Producer, Subscriber, and Consumer
Applications

This chapter covers the following topics:
¢ Creating a producer application
¢ Creating a subscriber application

¢ Creating a consumer application

Creating a Producer Application

Producer applications must include Event Manager application programming interface
(API) function calls that create and submit events to the Event Manager.

Figure 3-1 summarizes the steps necessary to create an event and send it to the Event
Manager. The text following the figure provides detailed information about each step.
Refer to Chapter 2, “Event Manager API,” for specific information about the individual
functions.

007-4661-001 59



3: Creating Producer, Subscriber, and Consumer Applications

60

& & © O

)

)

Include the Event Manager API header file:
#i ncl ude <engrapi. h>

(Optional)

Verify that the Event Manager daemon is available:
engr | sDaenonl nst al | ed()
engr | sDaenonSt art ed()

Allocate memory for the event:
engr Al | ocat eEvent ()

(Optional)
Add the event data:
engr Add| t eniToEvent ()
or
engr AddTaggedDat aToEvent ()
or
engr AddDat aToEvent ()
or
engr AddTaggedFi | eToEvent ()
or
engr AddFi | eToEvent ()

Send the event to the Event Manager:
engr SendEvent ()
or
engr For war dEvent ()

Free the allocated memory:
engr FreeEvent ()

Figure 3-1

Creating and Submitting an Event from a Producer Application

007-4661-001



Creating a Producer Application

007-4661-001

Include the Event Manager API header file so that you can access the Event
Manager API functions:

#i ncl ude <engrapi . h>
Verify that the Event Manager daemon is available:

* Use the engr | sDaenonl nst al | ed() function to verify that the event nond
daemon is installed on the system.

* Use the engr | sDaenonSt ar t ed() function to verify that the emgr daemon is
running so that the producer application can send event data to it.

Note: This step is optional. These functions work only with the default
configuration; if you modify how the Event Manager is installed or configured, these
functions may fail.

Use the engr Al | ocEvent () function to allocate memory for the event.
Add information to the event:

Use the engr AddI t eniToEvent () function to add a character name-value.
or

Use the engr AddTaggedDat aToEvent () or engr AddDat aToEvent () function to add
binary data to the event.

or

Use the engr AddTaggedFi | eToEvent () or engr AddFi | eToEvent () function to add
a file from the local filesystem.

Tips:

Normally, you should use the Tagged version of the commands because tagged data
can be accessed faster.

Be careful with data that you added to an event using the

engr AddTaggedDat aToEvent () and engr AddDat aToEvent () functions. The API
does not free any passed pointers; you must keep the pointers valid until you send
the event information and free memory.

Note: This step is optional. You can create an event that has no data; however,
normally, you should attach data to an event before you send the event to the Event
Manager.

61



3: Creating Producer, Subscriber, and Consumer Applications

5. Use the engr SendEvent () or engr For war dEvent () function to send the event to

the Event Manager daemon (event nond).

6. Use the engr FreeEvent () function to free the memory that you allocated for the

event.

62

Example 3-1 shows an example producer that allocates an event, adds several types of
data to it, sends the event to Event Manager, and frees the memory allocated to the event.

Example 3-1 Example Producer Code

#i ncl ude <stdio. h>
#include <string. h>

#i ncl ude <engrapi. h>

mai n()

{

Engr Event _t *e;
int ret;
char *err, *val;

/*--- Define data to send ---*/

char *NAME1 = "HDSI ZE", *NAME2 = " MEMBI ZE";

char *VALUE1l = "30@&B", *VALUE2 = "256MB";

int class=123,type=456, ver si on=0;

char *origin = "syslog";

char *appnanme = "uni x";

char *dat abuf;

int datasz;

[*---- Initialize the event header and body----*/

e = engrAl |l ocEvent (cl ass, type, versi on, ori gi n, appnane) ;

/[*--- Add data to event---*/

i f (engr Addl t enlToEvent (e, NAMEL, NULL)!= 0) {
printf("Error.\n");

}

i f (enmgr Addl t enTToEvent (e, NAME2, VALUE2)!= 0) {
printf("Error.\n");

007-4661-001



Creating a Producer Application

007-4661-001

/*--- Add file to event ---*/

if(ret = engrAddFil eToEvent(e,"/tnp/testfile"))
printf("\n Failure adding file.\n");

[*--- Add binary data to event ---*/
/* NOTE: databuf nmenory will not be freed by engrFreeEvent()*/
i f(ret = engr AddDat aToEvent (e, dat abuf, datasz))
printf("\n Failure adding binary data.\n");
/[*--- Send the event to the Event Manager ---*/
if((err = engrSendEvent (e, NULL)) != 0) {
printf("\n Failure sending data: errcode %\ n",ret);
/*--- Free the nenory allocated to the event ---%*/

engr FreeEvent (e);

63



3: Creating Producer, Subscriber, and Consumer Applications

Creating a Subscriber Application

Subscriber applications perform the following functions:
¢ Creating, updating, and submitting subscription events

¢ Creating, updating, and submitting unsubscription events

Subscription events indicate that the Event Manager should send information about a
specific event to a specific consumer application. Subscription events specify how the
Event Manager should notify the consumer about the event (load a consumer DSO, send
event information to an executable application via shared memory, send event
information to an executable application via command-line options, or forward the event
to a consumer application on another system). Several Event Manager API functions are
available to configure how and when the Event Manager should send event information
to consumer applications.

Unsubscription events indicate that a consumer no longer needs to receive information
about a specific event. When the Event Manager receives an unsubscription event, it
stops sending information about the specified event to the specified consumer.

Creating, Modifying, and Submitting Subscription Events

You must subscribe a consumer to an event to enable the consumer application to receive
event information from the event nond daemon. You do this by creating a subscription
event and submitting it to the event nond daemon.

Figure 3-2 summarizes the steps needed to create, modify, and submit subscription
events. The text following the figure provides detailed information about each step. Refer
to Chapter 2, “Event Manager APL,” for specific information about the individual
functions.

64 007-4661-001



Creating a Subscriber Application

007-4661-001

O

Include the Event Manager AP header file:
#include <engrapi.h>

O,

Optional:

Verify that the Event Manager is available:
engr | sDaenonl nst al | ed()
engr | sDaenonSt art ed()

Create or update a subscription event :

To create a subscription event, use the
following function:

engr NewSubscri be()
and then use one of the following functions:

engr Subscr i beSpecDsoConsuner ()
or

engr Subscr i beSpecExecConsurer ()
or

engr Subscri beExecShMenConsuner ()

To update a subscription event, use one or more
of the following functions:

engr Subscri beSpecPriority()
or

engr Subscri beSpecFaci i ty()
or

engr Subscri beSpecRegexpMap()
or

engr Subscri beSpecTi meFreq()
or

engr Subscri beSpecCnt Freq()

©

Send the event to the Event Manager:
engr SendEvent ()
or
enmgr RunSubscri be()

©)

Free the allocated memory:
engr FreeEvent ()

Figure 3-2

Creating/Updating and Submitting a Subscription Event from a Subscriber

Application

65



3: Creating Producer, Subscriber, and Consumer Applications

66

1.

2.

3.

Include the Event Manager API header file so that you can access the Event
Manager API functions:

#i ncl ude <engrapi . h>

Verify that the Event Manager daemon is available:

Use the engr | sDaenonl nst al | ed() function to verify that the event nond
daemon is installed on the system.

Use the engr | sDaenonSt art ed() function to verify that the event nond
daemon is running so the producer application can send event data to it.

Note: This step is optional. These functions work only with the default
configuration; if you modify how the Event Manager is installed or configured, these
functions may fail.

Create or update the subscription event:

To create a subscription event, perform the following actions:

Use the engr NewSubscr i be() function to allocate a new subscription event
structure and initialize the event header with data.

Perform one of the following actions to subscribe a consumer to the event:

Use the engr Subscri beSpecDsoConsuner () function to subscribe events from
consumers that are implemented as distributed shared object (DSO) libraries
that are called from the Event Manager server.

or

Use the engr Subscri beSpecExecConsuner () function to subscribe events
from applications that execute through the f ork() or exec() command.
(Event parameters pass to the consumer through the command line.)

or

Use the engr Subscri beExecShMenConsuner () function to subscribes events
from consumer applications that execute through the f or k() or exec()
commands and use shared memory. (Event parameters pass to the consumer
applications via shared memory handoffs handled by the API layer.)

007-4661-001



Creating a Subscriber Application

007-4661-001

To update a subscription event, perform one or more of the following actions:

Use the engr Subscri beSpecPriority() function to add a tagged item to a
subscription event to specify an optional event priority filter for subscription
matching.

Use the engr Subscri beSpecFaci l i ty() function to add a tagged item to a
subscription event to specify an optional event facility filter for subscription
matching.

Use the engr Subscr i beSpecRegexpMap() function to add a tagged item to a
subscription event to specify an optional untagged event’s class and type
mapping before forwarding it to a subscribed consumer.

Use the engr Subscr i beSpecTi neFr eq() function to add a tagged item to a
subscription event that specifies how often (events/second) a matching event
should be sent to a matching subscriber.

Use the engr Subscr i beSpecCnt Freq() function to add a tagged item to a
subscription event to specify how often (one out of n events) a matching event
should be sent to a matching subscriber.

Use the engr SendEvent () or engr RunSubscri be() function to send the event to
the Event Manager daemon (event nond).

Use the engr Fr eeEvent () function to free the memory that you allocated for the
event.

67



3: Creating Producer, Subscriber, and Consumer Applications

Examples

The following examples show how to subscribe various types of consumer applications
to events.

Example 3-2 Example Code to Subscribe a DSO Consumer

#i nclude <stdlib. h>

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

#i ncl ude <string. h>

#i ncl ude "engrapi.h

mai n()
{
int i =0;
const char *host = "local host";

const char *sAppNanme = "tstApp";

int sCl ass = 123;
int sType = 345;
const char *sSource = NULL;
const char *sOrigin = NULL;

const char *sDsoPat h "./libtstdso.so";
const char *sDsoFunc "Tst Dso";
const char *sDsoPrns = "pl, p2, p3";

Engr Event _t *pSubscrEvent =
engr NewSubscri be(sAppNane, sC ass, sType, sSource, sOrigin);

engr Subscri beSpecDsoConsuner ( pSubscr Event ,
sDsoPat h, sDsoFunc, sDsoPrns);

engr SendEvent (pSubscr Event, host);

engr FreeEvent (pSubscr Event) ;

68 007-4661-001



Creating a Subscriber Application

007-4661-001

Example 3-3 Example Code to Subscribe an Executable Consumer

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude
#i ncl ude

mai n()

{

const

const
int
int
const
const

const
const

<stdlib. h>
<stdi 0. h>
<sys/types. h>
<sys/stat. h>

<string. h>

<engr api . h>

= O’

char *host = "l ocal host";

char *sAppName = "tstApp";
sCl ass = 123;
sType = 345;

char *sSource = NULL;

char *sOrigin = NULL;

char *sExecPath = "/bin/ls";

" Iu.
1

char *sExecPrns

Emgr Event _t *pSubscr Event =

engr NewSubscri be( sAppNanme, sC ass, sType, sSource,

engr Subscri beSpecExecConsuner ( pSubscr Event,

enmgr SendEvent (pSubscr Event, host);

engr FreeEvent (pSubscr Event) ;

sOrigin );

sExecPat h,

sExecPrns) ;

69



3: Creating Producer, Subscriber, and Consumer Applications

Example 3-4 Example Code to Subscribe a Shared Memory Consumer

#i nclude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

#i ncl ude <string. h>

#i ncl ude <engrapi. h>

mai n()
{
int i =0;
const char *sAppNanme = "tstApp";
int sC ass = 123;
int sType = 345;
const char *sSource = "mnsk-1linux.csd.sgi.conl;
const char *sOrigin = "tstApp";

const char *sExecPath = "t st ShnExec";

Engr Event _t *pSubscrEvent =

engr NewSubscri be(sAppNane, sC ass, sType, sSource, sOrigin ) ;
engr Subscri beSpecExecShMenConsuner (pSubscr Event, sExecPath, NULL);
engr SendEvent (pSubscr Event, NULL);

engr FreeEvent (pSubscr Event) ;

70 007-4661-001



Creating a Subscriber Application

Creating, Modifying, and Submitting Unsubscription Events

007-4661-001

When a consumer no longer requires information about an event from the Event

Manager, you should unsubscribe the event for that consumer. You do this by creating an
unsubscription event and sending it to the event nond daemon.

Figure 3-3 summarizes the steps necessary to create, modify, and submit unsubscription
events. The text following the figure provides detailed information about each step. Refer

to Chapter 2, “Event Manager API,” for specific information about the individual

functions.

©

Include the Event Manager API header file:
#i ncl ude <engrapi . h>

©

Optional:

Verify that the Event Manager is available:
engr | sDaenonl nstal | ed()
engr | sDaenonSt arted()

Create or update an unsubscription event :

To create an unsubscription event, use the
following function:

engr NewUnsubscri be()
and then use one of the following functions:

engr Subscri beSpecDsoConsurrer ()
or

engr Subscri beSpecExecConsurer ()
or

engr Subscr i beExec ShMenConsuner ()

To update an unsubscription event, use one or
more of the following functions:

engr Subscri beSpecPriority()
or

engr Subscri beSpecFaci lity()
or

engr Subscri beSpecRegexpMap()
or

engr Subscri beSpecTi neFreq()
or

engr Subscri beSpecCnt Freq()

O,

Send the event to the Event Manager:
engr SendEvent ()
or
engr Unsubscri beEvent ()

O,

Free the allocated memory:
engr FreeEvent ()

Figure 3-3

Creating/Updating and Submitting an Unsubscription Event from a Subscriber

Application

71



3: Creating Producer, Subscriber, and Consumer Applications

72

1.

2.

3.

Include the Event Manager API header file so that you can access the Event
Manager API functions:

#i ncl ude <engrapi . h>

Verify that the Event Manager daemon is available:

Use the engr | sDaenonl nst al | ed() function to verify that the event nond
daemon is installed on the system

Use the engr | sDaenonSt ar t ed() function to verify that the emgr daemon is
running so the producer application can send event data to it.

Note: This step is optional. These functions work only with the default
configuration; if you modify how the Event Manager is installed or configured, these
functions may fail.

Create/update the unsubscription event:

To create an unsubscription event, perform the following actions:

Use the engr NewUnsubscri be() function to allocate a new unsubscription
event structure and initialize the event header with data.

Perform one of the following actions to unsubscribe a consumer from an event:

Use the engr Subscri beSpecDsoConsuner () function to unsubscribe events
from consumers that are implemented as distributed shared object (DSO)
libraries that are called from the Event Manager server.

or

Use the engr Subscri beSpecExecConsurer () function to unsubscribe events
from applications that execute through the f ork() or exec() command.
(Event parameters pass to the consumer through the command line.)

or

Use the engr Subscri beExecShMenConsuner () function to unsubscribe events
from consumer applications that execute through the f or k() or exec()
commands and use shared memory. (Event parameters pass to the consumer
applications via shared memory handoffs handled by the API layer.)

007-4661-001



Creating a Subscriber Application

007-4661-001

To update an unsubscription event, perform one or more of the following actions:

Use the engr Subscri beSpecPriority() function to add a tagged item to an
unsubscription event to specify an optional event priority filter for subscription
matching.

Use the engr Subscri beSpecFaci | i ty() function to add a tagged item to an
unsubscription event to specify an optional event facility filter for subscription
matching.

Use the engr Subscr i beSpecRegexpMap() function to add a tagged item to an
unsubscription event to specify an optional untagged event’s class and type
mapping before forwarding it to a subscribed consumer.

Use the engr Subscr i beSpecTi neFreq() function to add a tagged item to an
unsubscription event that specifies how often (events/second) a matching
event should be sent to a matching subscriber.

Use the engr Subscr i beSpecCnt Freq() function to add a tagged item to an
unsubscription event to specify how often (1/n) a matching event should be
sent to a matching subscriber.

Use the engr SendEvent () or engr RunUnsubscri be() function to send the event to
the Event Manager daemon (event nond).

73



3: Creating Producer, Subscriber, and Consumer Applications

Examples

74

The unsubscription code must contain the same components as the subscribe code
(except that the enmgr NewUnsubscri be() function replaces the engr NewSubscr i be()
function). The following examples show how to unsubscribe various types of consumer
applications from events.

Example 3-5

#i
#i
#i
#i

ncl ude <stdlib. h>
ncl ude <stdio. h>

ncl ude <sys/types. h>
ncl ude <sys/stat. h>

#i ncl ude <string. h>

#i ncl ude "engrapi . h"

mai n()

{
int i =0;
const char *host = "l ocal host";
const char *sAppNanme = "tstApp";
int sCl ass = 123;
int sType = 345;
const char *sSource = NULL;
const char *sOrigin = NULL;

const char *sDsoPat h
const char *sDsoFunc
const char *sDsoPrms = "pl, p2,

Emgr Event _t *pUnsubscr Event =
engr NewUnsubscri be( sAppNane,

p3":

sd ass,

Example Code to Unsubscribe a DSO Consumer

"./libtstdso.so";
"Tst Dso";

sType,

engr Subscri beSpecDsoConsuner ( pUnsubscr Event ,

sDsoPat h, sDsoFunc, sDsoPrns);
engr SendEvent (pUnsubscr Event ,

engr FreeEvent (pUnsubscr Event) ;

host) ;

sSour ce,

sOrigin);

007-4661-001



Creating a Subscriber Application

007-4661-001

Example 3-6 Example Code to Unsubscribe an Executable Consumer

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

mai n()

{

int i
const
const

i nt

i nt
const
const
const
const
Engr Ev
engr Ne
engr Su
engr Se

engr Fr

<stdlib. h>
<stdi 0. h>
<sys/types. h>
<sys/stat. h>

<string. h>

<engr api . h>

= 0’

char *host = "l ocal host";

char *sAppNane = "tstApp";
sCl ass = 123;
sType = 345

char *sSource = NULL;

char *sOrigin = NULL;

char *sExecPat h
char *sExecPrns

"/bin/ls";

ent _t *pUnsubscrEvent =
wUnsubscri be( sAppNane, sC ass, sType, sSource,

bscri beSpecExecConsuner ( pUnsubscr Event, sExecPat h,

ndEvent (pUnsubscr Event, host);

eeEvent (pUnsubscr Event) ;

sOrigin );

sExecPrns) ;

75



3: Creating Producer, Subscriber, and Consumer Applications

76

Example 3-7

<stdlib. h>
<stdi 0. h>
<sys/types. h>

#i
#i
#i
#i

#i

#i

ncl ude
ncl ude
ncl ude
ncl ude

ncl ude

ncl ude

mai n()

{

int i

const
int
i nt
const
const

const

Example Code to Unsubscribe a Shared Memory Consumer

<sys/stat. h>
<string. h>
<engr api . h>
= 0’
char *sAppNane = "t st App";
sCl ass = 123;
sType = 345
char *sSource = "m nsk-Ilinux.csd. sgi.cont;
char *sOrigin = "tstApp";
char *sExecPath = "t st ShnExec";

Engr Event _t *pUnsubscr Event =

engr NewUnsubscri be(sAppNane, sC ass, sType, sSource
engr Subscri beSpecExecShMenConsuner (pUnsubscr Event ,

engr SendEvent ( pUnsubscr Event, NULL);

engr FreeEvent (pUnsubscr Event) ;

sOrigin ) ;
sExecPat h, NULL);

007-4661-001



Creating a Consumer Application

Creating a Consumer Application

007-4661-001

When the Event Manager detects an event, it compares the event with the current

subscription parameters; if there is a match, the Event Manager executes the proper
consumer (using the method specified in the subscription event for the consumer) to

send the event to it. Then, the consumer can use API functions to access the event

payload (data).

Figure 3-4 summarizes the steps necessary to access the event payload. The text
following the figure provides detailed information about each step. Refer to Chapter 2,
“Event Manager APL"” for specific information about the individual functions.

e

@
©
©

©

Include the Event Manager API header file:
#i ncl ude <enygrapi. h>

If it is a shared library consumer, the function prototype should have the same
format as the following Consumner Entry_t protoype:

typedef int ConsunerEntry_t (EnmgrEvent _t *event,

int argc, const char *argv[]);

If it is a shared memory consumer, initilialize the event structure in shared memory:
engr ShnC i | ni t Event () and/or engr Shm ni t Event ()

Retrieve the data:

If you know the name of the item: If you do not know the name of the item:
Get the desired (name, value) pair: Get the first (name, value) pair:
engr Get Event | t en() engr Get Fi rst Event | ten()

If it exists, get the next (name, value) pair:

engr Get Next Event | t en()

Note: Use a loop, if necessary, to retrieve all items.

Process the event

Figure 3-4

Accessing an Event from a Consumer Application

77



3: Creating Producer, Subscriber, and Consumer Applications

1. Include the Event Manager API header file so that you can access the Event
Manager API functions:

#i ncl ude <engrapi . h>

2. If the consumer is a shared library consumer, the function prototype must use the
same format as the following Consumer Entry_t prototype to enable the Event
Manager to call it:

typedef int ConsumerEntry_t (EngrEvent _t *event,
int argc,
const char *argv[]);

For example:

int TstDso(EngrEvent _t *event,
int argc,
char *argv[]);

3. If the consumer is a shared memory consumer, use the engr Shmi ni t Event () or
engr ShnCl i | ni t Event () function to initialize the event structure from shared
memory.

4. Retrieve the data using one of the following methods:
e If you know the name of the item:

Use the engr Get Event | t en() function to get the value of the item. You must
specify the name of the item as a parameter to the function.

e If you do not know the name of the item:

Use the engr Get Fi r st Event | t en() function to get a (name, value) pair. If there
is more than one (name, value) pair, use the engr Get Next | t en() functionin a
loop to load all of the (name, value) pairs.

5. Process the event.

78 007-4661-001



Creating a Consumer Application

Example

007-4661-001

The following example shows shared library consumer code that accesses all (name,
value) pairs in an event.

Example 3-8 Example Code to Access Event Data from a Shared Library Consumer
Application

<#i ncl ude engrapi. h>

int TstDso(EmgrEvent _t *event, int argc, char *argv[]) {
int i;
const char *nane;
const void *val ue;
int type = 0, length = 0;

printf("consuner_main\n");
printf(" type=%l; cl ass=%; ver si on=%",
event - >header . evType, event - >header . evd ass, event - >header . versi on) ;

printf (" ORI G N=%s; APPNAVE=%s ; SOURCE=%s\ n",
event - >ori gi n, event - >appnane, event - >sour ce) ;

i = engrCetFirstEventlten{event, &name, &value, & ype, & ength);
while (i == 0) {

printf(" %=[ ¥%s];\n", nane, (char *) val ue);

i = engrGet Next Eventltem(event, &nane, &val ue, & ype, & ength);
}

printf(" Number of args: %\ n",argc-1);
for(i=0; i< argc; i++)
printf(" argl%] = "%'\n",i,argv[i]);

return O;

79



3: Creating Producer, Subscriber, and Consumer Applications

The following example code accesses event data from a shared memory consumer.

Example 3-9 Example Code to Access Event Data from a Shared Memory Consumer

int main(int argc, const char *argv[]) {

int i = 0;

for(i =0; i < argc; i++) {
printf("Arg[%] = "%'\n", i, argv[il]);

}

{

int error = 0;
Engr Event _t *pEvent = engrShnCilnitEvent( argc, argv, &error);

if ( pEvent I'= NULL ) {
enmgr Pri nt Event (pEvent, stdout);

engr FreeEvent (pEvent);
} else {
fprintf(stderr,
"Error % initializing event fromthe shared nmenory\n",
error);

}

return O;

80 007-4661-001



Chapter 4

event nond Command-line Options

Use the event nond command to configure the event nond daemon or to send commands
to tasks that event nond is running.

Note: The task interface is complex and remains proprietary until SGI thoroughly tests
it. When the task interface becomes available for general use, this document will be
revised to provide more information about the task interface and how to write tasks that
use it. SGI recommends that you do not attempt to create and load custom tasks at this
time.

Configuring the Daemon

007-4661-001

Use the following command-line options to configure how the event nond daemon
behaves:

eventrond [-p <port_number>] [-s <socket_name>] [-c <subscription_file_name>]
[-B]

Table 4-1 eventmond Command-line Options to Configure the Daemon
Option Description
-p <port_number> Specifies the TCP/IP port that event nond uses to send and

receive event information (default: 5553)

- S <socket_name> Specifies the UNIX domain socket that event nond uses for
the command execution interface (load task, run task, and so
on) (default: / t np/ s. event nond)

- € <subscription_file_name> Specifies a file in which event nond saves the current
subscription data so consumers do not have to resubscribe
events if the event mond daemon is stopped and restarted

-B- Specifies that event nond should not run as a daemon

81



4: event nond Command-line Options

Sending Commands to Tasks

Displaying Help

82

Use the following command-line options to send commands to tasks that the Event
Manager is running:

eventnmond [-L <taskname> - P <parameters>] [-U <taskname> - P <parameters>]
[-S <taskname> - P <parameters>] [-Q <taskname> -P <parameters>]
[-1 <taskname> - P <parameters>] [-C <taskname> -P <parameters>]
[ - M <taskname> - P <parameters>] [-T [Al1]]

Table 4-2 eventmond Command-line Options to Start and Stop Tasks

Option? Description®

- C <taskname> - P <parameters> Sends a command to a running task

- | <taskname> - P <parameters> Returns information about a running task

-L <taskname> - P <parameters> Loads a task into the Event Manager and starts it

- M <taskname> - P <parameters> Sends a message to a running task

- Q <taskname> - P <parameters> Stops a running task

- S <taskname> - P <parameters> Starts a loaded task

-T [Al] Lists the loaded tasks and shows the current status of
each task

Use- T Ato show all active tasks. Use- T | to show
all idle tasks. Use - T to show all tasks.

- U <taskname> - P <parameters> Stops a running task and unloads it

a. <taskname> is either the name of the task (for example, sysl 0g) or the full DSO name (for example,
|'i bsysl 0g. so0). The full pathname (for example, / usr/ | i b/ sysl og) of the DSO is not required.

b. The commands are not applicable to all tasks. For example, the sys| og task uses only the load task and un-
load task commands.

Use the - h command-line option to display information about the command-line options
that are available:

eventnmond -h

007-4661-001



	Record of Revision
	Figures
	Tables
	Examples
	About This Document
	Obtaining Publications
	Conventions
	Reader Comments

	Overview
	Event Manager
	Event Producer
	Event Subscriber
	Event Consumer
	Event Manager API

	Event Manager API
	API Data Structures
	Event Structure
	GeneralBlock Structure

	API Functions
	emgrAddDataToEvent()
	emgrAddFileToEvent()
	emgrAddGbToEvent()
	emgrAddIntIemToEvent()
	emgrAddItemToEvent()
	emgrAddSubscribe()
	emgrAddTaggedDataToEvent()
	emgrAddTaggedFileToEvent()
	emgrAddUnsubscribe()
	emgrAllocEvent()
	emgrBuildQSearch()
	emgrCheckEvent()
	emgrCloneEvent()
	emgrCloneGb()
	emgrForwardEvent()
	emgrFreeEvent()
	emgrGetEventItem()
	emgrGetFirstEventGb()
	emgrGetFirstEventItem()
	emgrGetNextEventGb()
	emgrGetNextEventItem()
	emgrIsDaemonInstalled()
	emgrIsDaemonStarted()
	emgrNewQuery()
	emgrNewSubscribe()
	emgrNewUnsubscribe()
	emgrPrintEvent()
	emgrRunQuery()
	emgrRunSubscribe()
	emgrRunUnSubscribe()
	emgrSearchGb()
	emgrSendEvent()
	emgrSetToForward()
	emgrShmCliInitEvent()
	emgrShmInitEvent()
	emgrSubscribeSpecCntFreq()
	emgrSubscribeSpecDsoConsumer()
	emgrSubscribeSpecExecConsumer()
	emgrSubscribeSpecExecShMemConsumer()
	emgrSubscribeSpecFacility()
	emgrSubscribeSpecForwardConsumer()
	emgrSubscribeSpecPriority()
	emgrSubscribeSpecRegexpMap()
	emgrSubscribeSpecTimeFreq()
	getConfigValue()


	Creating Producer, Subscriber, and Consumer Applications
	Creating a Producer Application
	Creating a Subscriber Application
	Creating, Modifying, and Submitting Subscription Events
	Examples

	Creating, Modifying, and Submitting Unsubscription Events
	Examples


	Creating a Consumer Application
	Example


	eventmond Command-line Options
	Configuring the Daemon
	Sending Commands to Tasks
	Displaying Help


