
Porting IRIX® Applications to SGI® Altix®

Platforms: SGI ProPack™ for Linux®

007-4674-001

CONTRIBUTORS
Written by Steven Levine

Illustrated by Chrystie Danzer

Production by Karen Jacobson

Engineering contributions by George Pirocanac

COPYRIGHT
© 2004, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The software described in this document is “commercial computer software” provided with restricted rights (except as to included open/free
source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of
worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, Altix, IRIX, Origin, Onyx, Onyx2, and XFS are registered trademarks and CaseVision, NUMAflex,
NUMAlink, OpenMP, Performance Co-Pilot, ProDev, SGI Advanced Linux, SGI ProPack, SGIconsole, and SHMEM are trademarks of Silicon
Graphics, Inc., in the United States and/or other countries worldwide.

SGI Advanced Linux Environment 3.0 is based on Red Hat Enterprise Linux AS 3.0, but is not sponsored by or endorsed by Red Hat, Inc. in any
way.

Cray is a registered trademark of Cray, Inc. FLEXlm is a registered trademark of Macrovision Corporation. Java is a registered trademark of Sun
Microsystems, Inc. in the United States and/or other countries. Linux is a registered trademark of Linus Torvalds, used with permission by
Silicon Graphics, Inc. MIPS is a registered trademark and MIPSPro is a trademark of MIPS Technology, Inc., used under license by Silicon
Graphics, Inc., in the United States and/or other countries worldwide. POSIX is a registered trademark of the Institute of Electrical and Electronic
Engineers, Inc. (IEEE). Red Hat is a registered trademark and Red Hat Linux Advanced Server 3.0 and RPM are trademarks of Red Hat, Inc.
TotalView is a trademark of Etnus, LLC. VTune is a trademark and Intel and Itanium are registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries. All other trademarks are the property of their respective owners.

007-4674-001 iii

Record of Revision

Version Description

001 April 2004
Original publication

007-4674-001 v

Contents

Figures . ix

Tables . xi

Examples . xiii

About This Guide. xv
Related Publications . xv
Obtaining Publications . xv
Conventions . xvi
Reader Comments . xvi

1. Porting Overview . 1

2. Endian Order . 5
A Case of Endianness . 5
Examples . 6

3. 64-bit ABI Porting Issues . 9
32-bit and 64-bit Differences . 9
Writing C Code Portable to 64-Bit Platforms 11
Writing Fortran Code Portable to 64-Bit Platforms 13
Examples of Fortran Portability Issues 13

4. Compiler and Development Tools 17
Development Tool Chain . 17
Editors . 18
Compilers . 18

Intel Compilers . 18
GNU Compilers . 20

vi 007-4674-001

Contents

Standards Support . 21
C Language Standard Support 21
C++ Language Standard Support 22
Fortran Language Standard Support 22
OpenMP Standard Support 24

Compiler Options . 24

Compiler Directives . 27
Assemblers . 28
Linker . 28

5. Additional Development Tools 29
Archiver and Other Object file Tools 29
Debuggers . 31

Altix Command Line Debuggers 31
GUI Debuggers on Altix. 33

Timing . 34
Clock_gettime() and Clock_getres() 35
MPI Timing Routines . 37

Performance Analysis Tools . 38
Performance Tools on Altix 39
VTune . 39
gprof . 40
pfmon . 40
profile.pl . 41
SGI Histx . 41

6. Message Passing on IRIX and Linux 45
Compiling MPI Programs on Linux 45
SHMEM Program Launch . 45
NUMA Placement . 45
dplace Command . 46
Performance Tuning Tools . 46
MPT Release Documentation . 46
Performance Impact of Partitioning 47

Contents

007-4674-001 vii

Software Modules Differences 47
System-Specific MPT Features 48

7. POSIX Threads (pthreads) Implementations 49
Implementation Differences . 50
Differences in Cancellation . 51
Differences in Mutex Implementations 53
Condition Variables . 54
Read-Write Locks . 54
Signals . 55
Scheduling Pthreads . 56

Scope . 56
Policy . 56
Priority . 57

Environment Variables . 57
Summary of Differences in Supported Features 58

8. Miscellaneous Porting Concerns 61
I/O Controls . 61
ATT Korn Shell vs. Public Domain Korn Shell 63
Serial Port Devices. 64
Security . 65

9. Frequently Asked Questions 67

A. Application Programming Interface (API) Differences: libc 71

Index . 83

007-4674-001 ix

Figures

Figure 1-1 Hardware and Software Platform 1
Figure 5-1 Typical ddd display 33

007-4674-001 xi

Tables

Table 1-1 Platform Comparison 2
Table 1-2 Development Tools Comparison 2
Table 1-3 Development Libraries Comparison 3
Table 1-4 Platform Layer Porting Issues. 3
Table 3-1 C data type sizes in 32-bit and 64-bit ABI 9
Table 4-1 Development Process 17
Table 4-2 Intel Compiler Versions 18
Table 4-3 C Language Standard Support Summary 22
Table 4-4 Fortran Language Standard Support Summary. 23
Table 4-5 Common Compiler Flags on IRIX and Linux (Both Intel and GNU) . 24
Table 4-6 Similar Compiler Flags on MIPSpro and Intel compilers 25
Table 4-7 Conflicting Compiler Options 26
Table 4-8 Intel-only Flags 26
Table 4-9 Compiler Directives for Tuning and Debugging 27
Table 5-1 Development Process 29
Table 5-2 IRIX and Linux Common Archiver Options 30
Table 5-3 Additional Object File Tools 31
Table 5-4 Command Line Debugger Commonly Used Commands 32
Table 5-5 profile.pl Flags 41
Table 6-1 System-Specific MPT features. 48
Table 7-1 IRIX 6.5 vs. Linux Pthread Feature Comparison 58
Table 8-1 IRIX and Linux device naming examples 64
Table 8-2 IRIX and Linux Security Features. 65

007-4674-001 xiii

Examples

Example 2-1 C Program Illustrating Endian Order 6
Example 2-2 Fortran Program Illustrating Endian Order 7
Example 3-1 Changing Integer Variables 13
Example 3-2 Enlarging Tables 14
Example 3-3 Storing %LOC Return Values 14
Example 3-4 Modifying C Routines Called by Fortran 14
Example 3-5 Declaring Fortran Arguments as long ints 15
Example 3-6 Changing Argument Declarations in Fortran Subprograms . . . 15
Example 4-1 Script to Set Up C-shell Modules Environment 19
Example 4-2 Script to Initialize Modules Environment 19
Example 4-3 Compiler Command Line Syntax For Intel Version 7.x Compilers . 20
Example 4-4 Compiler Command Line Syntax For Intel Version 8.0 Compilers . 20
Example 4-5 Compiler Command Line Syntax for the GNU Compilers . . . 20
Example 5-1 Building an Archive 30
Example 5-2 Using gettimeofday() 34
Example 5-3 Determining clock resolution time 36
Example 5-4 Using MPI Timing Routines 37

007-4674-001 xv

About This Guide

This publication provides information about porting an application to the SGI Altix
platform

Related Publications

The following SGI publications contain additional information that may be helpful for
user’s of SGI ProPack for Linux:

• Linux Application Tuning Guide

• Linux Configuration and Operations Guide

• Linux Device Driver Programmer’s Guide - Porting to SGI Altix Systems

• Linux Resource Administration Guide

• Message Passing Toolkit (MPT) User’s Guide

• Performance Co-Pilot for IA-64 Linux User’s and Administrator’s Guide

• SGI Altix 3000 User’s Guide

• SCSL User’s Guide

• SGI ProPack for Linux Start Here

• XFS for Linux Administration

Obtaining Publications

You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

xvi 007-4674-001

About This Guide

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type infosearch on a command line.

• You can also view man pages by typing man <title> on a command line.

Conventions

The following conventions are used throughout this publication:

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

About This Guide

007-4674-001 xvii

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane
Mountain View, California 94043-1351

SGI values your comments and will respond to them promptly.

007-4674-001 1

Chapter 1

1. Porting Overview

This document outlines the steps necessary to port an application from an IRIX system
to the SGI Altix platform. We define platform as the set of software interfaces resting on a
set of particular hardware, as shown in Figure 1-1. The hardware platform consists of the
microprocessor and various other system devices, including disk drives, network
connections, and system interconnects. Usually an application gains access to these
devices through the operating system and system libraries which are called through a
programming language. Other higher level services are provided by the layer called
middleware.

Figure 1-1 Hardware and Software Platform

System hardware

Microprocessor

Hardware

Operating system

Programming language

Middleware

System libraries

Development
ToolsApplication

2 007-4674-001

1: Porting Overview

Table 1-1 provides an outline of two SGI platforms, the Origin3000 and the Altix. We can
see that for the most part these systems have different sets of interfaces. We define
porting as the act of adapting an application from one platform to another.

Given the large number of differences between the platforms, one might think that
porting is essentially a rewrite of the application. Luckily, many of the differences
between platforms are abstracted under standard programming languages and system
libraries. At each level of the hierarchy there is a set of development tools that can aid in
the process. For example, a C or Fortran program written for the Origin already has a lot
of the porting issues solved through the use of standard compliance and features in the
programming languages and library interfaces. A Java program (if written in100% pure
Java) has even fewer porting issues to resolve.

Table 1-2 gives a comparison of various development tools and utilities available on
Origin and Altix platforms.

Table 1-1 Platform Comparison

System Origin3000 Altix

Processor MIPS IPF

System HW NUMAlink NUMAlink

OS IRIX ALE/ProPack (Linux)

System Libraries libc, MPI, other libc, MPI, other

Programming Languages C, C++, Fortran, other C, C++, Fortran, other

Middleware various various

Table 1-2 Development Tools Comparison

System Origin3000 Altix (Prop) Altix (Open Source)

C/C++ Compiler MIPSpro (cc) ecc/icc gcc

Fortran77 Compiler (f77) efc/ifort g77

Fortran90/95 Compiler (f90) efc/ifort N/A

Text Debugger (dbx) idb gdb

Kernel Debugger kdb kdb kdb

007-4674-001 3

Table 1-3 gives a comparison of various development libraries available on Origin and
Altix platforms.

At each level of the platform hierarchy there are possible porting issues. Table 1-4
summarizes the main ones at each level.

GUI Debugger ProDev Workshop TotalView, various ddd

App Perf Tools SpeedShop VTune gprof

System Perf Tools PCP VTune/SGI Histx PCP

Java Virtual Machine 1.4.1 1.4.2 (BEA, Sun) gjv

Array Services 3.6 3.6

Table 1-3 Development Libraries Comparison

System Origin 3000 Altix (Prop) Altix (Open Source)

Scientific Libraries SCSL SCSL, MKL, Goto BLAS

MPI MPT MPT MPICH, LAM

FFIO Full support Subset of IRIX support

threads sproc, pthreads pthreads pthreads

Table 1-4 Platform Layer Porting Issues

Platform Layer Porting Issues

Processor Assembly language, endianness

Other HW Device drivers

OS Differences in system calls and APIs

System libraries Differences in APIs

Languages Differences in ABIs, standards, adherence

Table 1-2 Development Tools Comparison (continued)

System Origin3000 Altix (Prop) Altix (Open Source)

4 007-4674-001

1: Porting Overview

This manual attempts to outline each of the issues and explain what it is and how to deal
with it. It is best viewed online as many of items have hyperlinks into other SGI manuals
and Internet web sites. It is by no means an exhaustive set, but it does highlight the major
areas in some detail.

This remainder of this document is organized as follows:

• Chapter 2 describes endian order, and summarizes the differences in the byte order
of a word in big-endian and little-endian systems.

• Chapter 3 discusses the issues that arise when trying to port 32-bit applications on
the IRIX platform to the IPF 64-bit ABI on the Altix platform.

• Chapter 4 describes the similarities and differences between the development tools
environments found on IRIX and ProPack (Linux), concentrating on the compilation
process and tools available for Altix.

• Chapter 5 outlines additional development tools which are mainly used after an
application has been built (or to automate the build process).

• Chapter 6 discusses the differences in Message Passing Toolkit (MPT) support
between IRIX and Linux systems.

• Chapter 7 outlines differences between the POSIX threads (Pthreads)
implementations on IRIX 6.5 and the latest version of ProPack.

• Chapter 8 provides a list of issues that you may need to address when porting an
application from an IRIX to a Linux system.

• Chapter 9 gathers some frequently asked questions regarding application porting
and provides the answers.

• Appendix A notes the standard C libraries (libc) that are available on IRIX but
missing on Linux.

Middleware Existence of different packages, different APIs

Development tools Differences in the features and user interfaces

Table 1-4 Platform Layer Porting Issues (continued)

Platform Layer Porting Issues

007-4674-001 5

Chapter 2

2. Endian Order

One of the major issues that may arise when porting an application is endian order. This
chapter summarizes the differences in byte order between big endian systems and little
endian systems.

A Case of Endianness

A big endian machine (such as MIPS/IRIX) will lay out a word in memory such that the
highest order byte will be at the lowest address. For example the 32-bit word 0x12345678
will be laid out on a big endian machine as follows:

If we view 0x12345678 as two half words, 0x1234 and 0x5678, we would see the following
in a big endian machine:

On a little endian machine (IA64/Altix) the highest order byte is at the highest address.
So our examples above would look like the following:

Memory offset 0 1 2 3

Memory content 0x12 0x34 0x56 0x78

Memory offset 0 2

Memory content 0x1234 0x5678

Memory offset 0 1 2 3

Memory content 0x78 0x56 0x34 0x12

6 007-4674-001

2: Endian Order

Similarly, the two half-words 0x1234 and 0x5678 would look like the following:

It is important to realize that individual bytes are addressed in the same order on either
machine. Thus, the following stream would appear in this same order on both a big
endian and a little endian system:

Examples

The following examples illustrate the difference in byte order between big endian and
little endian machine.

The following C program will print out “big endian” when compiled and run on a big
endian machine and “little endian” when compiled and run on a little endian machine.

Example 2-1 C Program Illustrating Endian Order

#include <stdio.h>

main()
{

int i = 0x12345678;

if (*(char *)&i == 0x12)
printf(“Big endian\n”);

else if (*(char *)&i == 0x78)
printf(“Little endian\n”);

}

The following Fortran program, when compiled, creates a file, fort_7 that contains the
string “ABCDEFGHIJ”:

Memory offset 0 2

Memory content 0x3412 0x7856

0x12 0x34 0x56 0x78

Examples

007-4674-001 7

Example 2-2 Fortran Program Illustrating Endian Order

program yy

character*10 str
integer strint(2)

! equivalence (str,strint(1))

str = “ABCDEFGHIJ”
! print 10, str,strint(1),strint(2)
! 10 format(2x,a10,2x,z20,2x,z20)

open(unit=7,form=’unformatted’,file=”fort_7”,status=’new’)
write(unit=7) str
close(unit=7)

end

After compiling this program, note the results of a dump from the od command:

% yy
% od -hc fort_7
0000000 000a 0000 4241 4443 4645 4847 4a49 000a

\n \0 \0 \0 A B C D E F G H I J \n \0
0000020 0000

\0 \0
0000022

This program was compiled on a little endian machine. The individual bytes ‘A’ ‘B’ ‘C’
etc. are in order. Notice how when read as words the ‘A’ & ‘B’ are swapped to 4241.
When we get to the end we see the delimiter as the bytes 0a 00 00 00 and the two swapped
halfwords 000a and 0000 which corresponds to a word value of 0x0000000a or 10
(decimal).

On a big endian machine the delimiter word would be as follows in bytes:

00 00 00 0a

This is what we see when we run this on a big endian machine OR set the endian
environment variable mode to be big endian on an Altix, as in the following example.
Note the order of the byte characters \0 \0 \0 \n.

% setenv F_UFMTENDIAN big

% rm fort_7
% yy
% od -hc fort_7
0000000 0000 0a00 4241 4443 4645 4847 4a49 0000

8 007-4674-001

2: Endian Order

\0 \0 \0 \n A B C D E F G H I J \0 \0
0000020 0a00

\0 \n
0000022

Because we are on a little endian box, the words are swapped. So in this case 00 00 and
00 0a become 0000 and 0a00

007-4674-001 9

Chapter 3

3. 64-bit ABI Porting Issues

In this section we examine the issues that arise when trying to port 32-bit application
from an IRIX to an Altix Platform.

Note: If your source code has already been ported to the 64-bit ABI on IRIX you can skip
this section although you should check to see if you are using #ifdef operations to
conditionally control compilation for 32-bits or 64-bits. These #ifdef operations may
need to be modified to use symbols from the header files found on Altix rather than those
under IRIX.

32-bit and 64-bit Differences

Unlike MIPS/IRIX which has both n32 and o32, Altix has no 32-bit ABIs; under Altix, all
applications follow the 64-bit ABI, IPF. Like the 64-bit ABI on MIPS, the IPF ABI is termed
LP64; the C long integer (L) and pointer (P) data types are 64-bits. On a 32-bit ABI both
of those types are 32-bits. Table 3-1 summarizes the C data type sizes for both the 32-bit
and 64-bit ABIs.

Table 3-1 C data type sizes in 32-bit and 64-bit ABI

Type Size in 32-bit ABI Size in 64-bit ABI

char 8 bits 8 bits

short 16 bits 16 bits

int 32 bits 32 bits

long 32 bits 64 bits

long long 64 bits 64 bits

void * 32 bits 64 bits

10 007-4674-001

3: 64-bit ABI Porting Issues

It turns out that the issues one encounters when porting from 32-bits to 64-bits are based
on faulty assumptions about integers, long integers and pointers all being the same size
(32-bits). These assumptions can be explicit, such as use of 32-bit variables to hold 64-bit
types, or they could be more subtle, such assumptions about the way certain structures
are laid out and aligned. The following is a list of such faulty assumptions:

sizeof(long) == sizeof(int)
Code that is written specifically for 32-bits often interchanges long
integers and regular integers without consequences. Under LP64,
however, such code could introduce truncation or improper sign
extension.

sizeof(void *) == 4
This assumption is analogous to the previous one. But mappings to
external data structures should seldom be a problem, since the external
definition should also assume 64-bit pointers in the LP64 model.

faulty constants (i.e. -1 = 0xffffffff)
The change in type sizes may yield some surprises related to constants.
You should be particularly careful about using constants with the
high-order (sign) bit set. For instance, the hex constant 0xffffffff yields
different results in the expression:

long x;
... ((long) (x + 0xffffffff)) ...

In both models, the constant is interpreted as a 32-bit unsigned int, with
value 4,294,967,295. In the 32-bit model, the addition result is a 32-bit
unsigned long, which is cast to type long and has value x-1 because of
the truncation to 32 bits. In the LP64 model, the addition result is a
64-bit long with value x+4,294,967,295, and the cast is redundant.

arithmetic assumptions
Related to some of the above cases, code which does arithmetic
(including shifting) which may overflow 32 bits, and assumes particular

float 32 bits 32 bits

double 64 bits 64 bits

long double 128 bits 128 bits

Table 3-1 C data type sizes in 32-bit and 64-bit ABI (continued)

Type Size in 32-bit ABI Size in 64-bit ABI

Writing C Code Portable to 64-Bit Platforms

007-4674-001 11

treatment of the overflow (for example, truncation), may exhibit
different behavior in the LP64 model, depending on the mix of types
involved (including signedness).

Similarly, implicit casting in expressions which mix int and long values
may behave unexpectedly due to sign/zero extension. In particular,
remember that integer constants are sign or zero extended when they
occur in expressions with long values.

Once identified, each of these problems is easy to solve. Change the
relevant declaration to one which has the desired characteristics in both
target environments, add explicit type casts to force the correct
conversions, use function prototypes, or use type suffixes (for example,
`l’ or `u’) on constants to force the correct type.

printf() format assumptions
Code that has been tailored to the 32-bit ABI has diagnostics that rely on
printf using the %x formatting type to print out pointer values. Under
LP64, this formatting would only print 32-bits of the pointer value. To be
truly portable the %p format should be used.

Writing C Code Portable to 64-Bit Platforms

The key to writing new code which is compatible with the 32-bit and LP64 data models
described is to avoid those problems described above. Since all of the assumptions
described sometimes represent legitimate attributes of data objects, this requires some
tailoring of declarations to the target machines’ data models.

We suggest observing the guidelines in the following procedure to produce code without
the more common portability problems. They can be followed from the beginning in
developing new code, or adopted incrementally as portability problems are identified.

1. Use a header file that can be included in each of the program’s source files, and
defines a type (with a typedef statement) for each specific integer data size
required. That is, where exactly the same number of bits is required on each target,
define a signed and unsigned type, as in the following example.

typedef signed char int8_t
typedef unsigned char uint8_t
...
typedef unsigned long long uint64_t

On an Altix system this header file is /usr/include/stdint.h.

12 007-4674-001

3: 64-bit ABI Porting Issues

2. If you require a large scaling integer type, that is, one which is as large as possible
while remaining efficiently supported by the target, define another pair of types, for
example:

typedef signed long intscaled_t
typedef unsigned long uintscaled_t

If you require integer types of at least a particular size, but chosen for maximally
efficient implementation on the target, define another set of types, similar to the first
but defined as larger standard types where appropriate for efficiency.

Having included the above header file, use the new typedef’ed types instead of the
standard C type names. You need (potentially) a distinct copy of this header file (or
conditional code) for each target platform supported. As a special case of this, if you
are providing libraries or interfaces to be used by others, be particularly careful to
use these types (or similar application specific types) chosen to match the specific
requirements of he interface. Also in such cases, you should choose the actual
names used to avoid name space conflicts with other libraries doing the same thing.
If this is done carefully, your clients should be able to use a single set of header files
on all targets.

3. Be careful that constants are specified with appropriate type specifiers so that they
extend to the size required by the context with the values that you require. Bit
masks can be particularly troublesome in this regard:avoid using constants for
negative values. For example, 0xffffffff may be equivalent to a -1 on 32-bit systems,
but it is interpreted as 4,294,967,295 (signed or unsigned) on 64-bit systems. The
/usr/include/stdint.h header file provides definitions to facilitate this
conversion.

4. Defining constants that are sensitive to type sizes in a central header file may help in
modifying them when a new port is done. Where printf()/scanf() are used for
objects whose types were defined with different typedef statements among the
targets you must support, you may need to define constant format strings for each
of the types defined in step 1,

For example, you may need to define the following constant format strings:

#define _fmt32 “%d”
#define _fmt32u “%u”
#define _fmt64 “%ld”
#define _fmt64u “%lu”

On Altix platforms the /usr/include/inttypes.h header file provides
printf()/scanf() format extensions to standardize these practices.

Writing Fortran Code Portable to 64-Bit Platforms

007-4674-001 13

Writing Fortran Code Portable to 64-Bit Platforms

This section describes which sections of your Fortran source code you need to modify to
port to a 64-bit system.

Standard Fortran code should have no problems, but the following areas need attention:

• Code that uses REAL*16 could get different runtime results due to additional
accuracy in the QUAD libraries on IRIX. (There are no equivalent libraries on Altix.)

• Code compiled at high optimization levels by the MIPSpro and Intel IPF compilers
may yield different answers due to operations being ordered (and reordered)
differently by the compilers. The compilers may also perform constant folding
differently.

• Integer variables which were used to hold addresses in 32-bit applications need to
be changed to INTEGER*8.

• C interface issues may need to be addressed (Fortran passes by reference so
addresses need to be 64-bits).

• The %LOC extension returns 64-bit addresses under the 64-bit ABI.

• The %VAL extension passes 64-bit values under the 64-bit ABI.

Examples of Fortran Portability Issues

The following examples illustrate the variable size issues outlined above:

Example 3-1 Changing Integer Variables

Integer variables used to hold addresses must be changed to INTEGER*8.

32-bit code:

integer iptr, asize
iptr = malloc(asize)

64-bit code:

integer*8 iptr, asize
iptr = malloc(asize)

14 007-4674-001

3: 64-bit ABI Porting Issues

Example 3-2 Enlarging Tables

Tables which hold integers used as pointers must be enlarged by a factor of two.

32-bit code:

integer tableptr, asize, numptrs
numptrs = 100
asize = 100 * 4

tableptr = malloc(asize)

64-bit code:

integer numptrs
integer*8 tableptr, asize

numptrs = 100
asize = 100 * 8

tableptr = malloc(asize)

Example 3-3 Storing %LOC Return Values

%LOC returns 64-bit addresses. You need to use an INTEGER*8 variable to store the
return value of a %LOC call.

INTEGER*8 HADDRESS
C determine memory location of dummy heap array

HADDRESS = %LOC(HEAP)

Example 3-4 Modifying C Routines Called by Fortran

C routines which are called by Fortran where variables are passed by reference must be
modified to hold 64-bit addresses. Typically, these routines used ints to contain the
addresses in the past. For 64-bit use, at the very least, they should use long ints. There are
no problems if the original C routines simply define the parameters as pointers.

Fortran:

call foo(i,j)

C:

foo_(int *i, int *j) or at least
foo_(long i, long j)

Examples of Fortran Portability Issues

007-4674-001 15

Example 3-5 Declaring Fortran Arguments as long ints

Fortran arguments passed by %VAL calls to C routines should be declared as long ints in
the C routines.

Fortran:

call foo(%VAL(i))

C:

foo_(long i)

Example 3-6 Changing Argument Declarations in Fortran Subprograms

Fortran subprograms called by C where long int arguments are passed by address need
to change their argument declarations.

C:

long l1, l2;
foo_(&l1, &l2);

Fortran:

subroutine foo(i, j)
integer*8 i,j

007-4674-001 17

Chapter 4

4. Compiler and Development Tools

This chapter and Chapter 5 describe the similarities and differences between the
development tools environments found on IRIX and ProPack (Linux) on Altix systems.
This chapter concentrates on the compilation process and tools available for Altix
systems while Chapter 5 outlines other development tools. Both chapters provide links
to more detailed information available on the Web as well as in other SGI Technical
Publications.

Development Tool Chain

The development process can be thought of as a chain of processes aided by a variety of
software tools. shows this in table form.

Table 4-1 Development Process

Activity Tools IRIX versions Linux versions

Source code development Editors vi, emacs, jot, etc vi, emacs, etc.

Executable creation Compilers cc, CC, f77, f90 ecc, gcc, efc/ifort, g77

Object file creation Assemblers as ias, as

Linkage Linker ld ld

Archiving Archiver ar ar

Object file inspection Object tools elfdump, dwarfdump objdump

Debugging Debuggers dbx, cvd gdb, idb, ddd, DDT

Performance analysis Profilers SpeedShop, perfex VTUNE, perfmon, histx

Automation Make make, smake, pmake gmake

Environment configuration Scripts/tools modules modules

18 007-4674-001

4: Compiler and Development Tools

Editors

A variety of editors are supported on both IRIX and Linux platforms. The two most
common UNIX editors, vi(1) and emacs(1) are available on both platforms.

Compilers

Compilers for Altix fall into two major categories:

• Proprietary compilers from Intel

• Open Source compilers from the Free Software Foundation (GNU)

Intel Compilers

Intel provides compilers that support C/ C++, and Fortran95. For information, see
http://www.intel.com/software/products/compilers/linux/

As of this writing Intel has delivered the 8.0 Compilers which offer a new Fortran95
front-end compatible with Compaq Visual Fortran 6.6.

Table 4-2 shows the various releases of the Intel compilers. It should be noted that the 8.0
Fortran compiler is not binary compatible with the earlier 7.x compilers and you will
need to recompile your application to work with libraries compiled with Intel Fortran95
version 8.0.

The compilers themselves can be installed in a modules environment (also available on
IRIX), which allows several versions to co-exist.

Table 4-2 Intel Compiler Versions

Version Date of Release

7.0 Compilers November 2002

7.1 Compilers March 2003

8.0 Compilers December 2003

Compilers

007-4674-001 19

The following script called run_latest shows an example of the use of modules. This
script sets up a C-shell modules environment where the 8.0 compilers are configured to
be the default (the 8.0 Intel compilers were installed in a module called
intel-compilers-8):

Example 4-1 Script to Set Up C-shell Modules Environment

%cat run_latest
source /sw/com/modules/init/csh # to set up module command
module avail # to display what are on a system
module load intel-compilers-8 # make 8.0 default compilers

The example /sw/com/modules/init/csh script initializes the modules
environment with locations where the various modules are installed.

Example 4-2 Script to Initialize Modules Environment

% cat /sw/com/modules/init/csh
Generated automatically from csh.in by configure.
if ($?tcsh) then

set modules_shell = “tcsh”
else

set modules_shell = “csh”
endif

set exec_prefix=”/sw/com/modules”

if ($?histchars) then
set histchar = `echo $histchars | cut -c1`
set _histchars = $histchars
alias module ‘unset histchars; \

eval `$exec_prefix/bin/modulecmd $modules_shell ‘$histchar’*`; \
set histchars = $_histchars’

unset histchar
else

alias module ‘eval `$exec_prefix/bin/modulecmd $modules_shell \!*`’
endif

setenv MODULESHOME /sw/com/modules

if (! $?MODULEPATH) then
setenv MODULEPATH /sw/com/modulefiles

endif

if (! $?LOADEDMODULES) then
setenv LOADEDMODULES

endif

20 007-4674-001

4: Compiler and Development Tools

The command names of the compiler are given below. They are different from the cc, CC,
f77 and f90 compiler commands available on IRIX.

The ecc command can be used on both c and C++ filenames, while the efc command
works on a variety of Fortran suffixes. Example 4-3 summarizes the command line
syntax for the Intel 7.x Compilers.

Example 4-3 Compiler Command Line Syntax For Intel Version 7.x Compilers

ecc [option(s)] filename.{c|C|cc|cpp|cxx|i}

efc [option(s)] filename.{f|for|ftn|f90|fpp}

For the Intel 8.0 compilers, the command names have been changed to ifort and icc
respectively though the old names will also be accepted. (A warning will be generated
however, and Intel reserves the right to stop supporting the 7.x command names in a
future release.) Example 4-4 summarizes these commands.

Example 4-4 Compiler Command Line Syntax For Intel Version 8.0 Compilers

icc [option(s)] filename.{c|C|cc|cpp|cxx|i}

ifort [option(s)] filename.{f|for|ftn|f90|fpp}

GNU Compilers

The GNU compilers are provided by the Free Software Foundation. They have been
ported to a variety of architectures and offer easy migration to and from other platforms.
The Linux kernel itself and various other system utilities on ProPack are compiled with
gcc.

The URL http://www.gnu.org/directory/gcc.html is the top level web site for the gcc
compilers.

The GNU compiler command names are different from the MIPSpro compilers on IRIX
and the Intel compilers, though they are standard on all GNU supported platforms.
Example 4-5 summarizes these commands.

Example 4-5 Compiler Command Line Syntax for the GNU Compilers

gcc [option(s)] filename.{c|C|cc|cxx|m|i}

g++ [option(s)] filename.{c|C|cc|cxx|m|i}

g77 [option(s)] filename.{f|for|fpp|F}

Standards Support

007-4674-001 21

Standards Support

Compilers provide common programming environments through the support of
standards. Non-standard features are called extensions. Normally vendors provide
features outside of the standards to provide capabilities that are not possible to achieve
with standard compliant code. Another reason for extensions are to provide access to
unique performance enhancing capabilities. Finally extensions are often provided to
ensure capabilities with obsoleted features that have been removed from more current
standards.

C Language Standard Support

The Intel compilers support the new ANSI C Standard (1999) or C99 with the -c99 flag
(or by setting -std=c99). This is on by default on Altix whereas under MIPSpro 7.4.x on
IRIX the -c99 flag or c99 command had to be used. Also supported is the older ANSI
Standard (1989) c89 as well as Amendment 1 (1990).

The GNU Compilers offer compatibility with the C89 standard and limited support of
C99. For information, see
http://gcc.gnu.org/onlinedocs/gcc-3.3.2/gcc/Standards.html#Standards and
http://gcc.gnu.org/gcc-3.3/c99status.html (which describes what features of c99 are
supported when -std=c99 is used.

The GNU Compilers also offer a variety of extensions to the C language These features
are often used in open source software and can be thought of as a standard in itself. For
more information see:
http://gcc.gnu.org/onlinedocs/gcc-3.3.2/gcc/C-Extensions.html#C%20Extensions.

The Intel C compiler provides a large level of compatibility with gcc. In general one can
freely mix object files compiled with the Intel compilers and those built with gcc. For
more information see: Intel Compilers for Linux: Compatibility with GNU Compilers at
http://www.intel.com/software/products/compilers/techtopics/LinuxCompilersCo
mpatibility702.htm.

22 007-4674-001

4: Compiler and Development Tools

Table 4-3 summarizes the standards compliance by the different compilers.

C++ Language Standard Support

The Intel compilers support the ANSI C++ Standard (1998) with the exception of the
export keyword. In general this is a superset of the ANSI standard compliance provided
by the MIPSpro 7.4.x C++ compiler (under the default -LANG:std=on setting).

The GNU compilers offer a variety of extensions to standard C++. For more information
see:
http://gcc.gnu.org/onlinedocs/gcc-3.3.2/gcc/C-Extensions.html#C++%20Extensions

Fortran Language Standard Support

The Intel compilers support the ANSI FORTRAN77, Fortran90 and Fortran 95 standards.
They also provide support for a new Fortran2003 feature. In addition, the Intel compilers
provide the ability to handle both big and little endian files. This allows the program to
handle data files generated on IRIX (big endian) system. A set of environment variables
control whether files are read in big or little endian mode, as shown in the following
examples:

% setenv F_UFMTENDIAN big # READS and WRITES big endian files

% setenv F_UFMTENDIAN big:10 # perform conversion only on unit 10

On IRIX there were two different Fortran compiler products. MIPSpro FORTRAN77
provided support for the FORTRAN77 standard as well as various VAX extensions.
MIPSpro Fortran90, despite its name, provided support for almost all of Fortran95 in

Table 4-3 C Language Standard Support Summary

Standard Intel MIPSpro GNU

C89 X X X

C99 X X partial

GNU extensions many some X

OpenMP1.0 X X

OpenMP2.0 X X

Standards Support

007-4674-001 23

addition to Fortran90 (as it name implies) and FORTRAN77. The IRIX man page
f77.f90.difs(5) provided detailed information about the differences in language
support between MIPSpro FORTRAN77 and MIPSpro Fortran90.

The GNU compilers provide FORTRAN77 support, some Fortran90 features and some
extensions. For more information see:
http://gcc.gnu.org/onlinedocs/gcc-3.3.2/g77/Language.html#Language

Table 4-4 summarizes the standards compliance and provision of extensions by the
various compilers

Table 4-4 Fortran Language Standard Support Summary

MIPSpro
FORTRAN77

MIPSpro
F90

Intel
Fortran95 g77

Fortran2003 a

a. Some functionality is provided

Fortran95 Xb

b. Some caveats apply

X

Fortran90 X X a

Vax Extensions
%loc
%val
%fill
%ref
TIME intrinsic

X
X
X

X
X

X
X
X
X
X
X

X
X

X

ACCESS=’KEYED’ X

CRAY pointers X X X

VOLATILE keyword X X

FORTRAN77 X X X X

Hollerith constants X X X

Cross Endian support X

POSIX Interfaces a X X

Options for default size of integer and real (-i8, -r8) X X X

24 007-4674-001

4: Compiler and Development Tools

OpenMP Standard Support

OpenMP is a standard set of programming directives, application program interfaces
and environment variables that provide a portable interface for developing parallel
applications on shared memory systems. For more information see
http://www.openmp.org/.

Both the MIPSpro 7.4 Fortran90 and Intel Fortran compilers support the OpenMP 2.0
standard with some restrictions. The MIPSpro compilers will serialize nested parallel
regions. The Intel compiler does not support the WORKSHARE directive. Also, the
MIPSpro compilers supported proprietary data distribution directives which are not
supported by the Intel compilers.

In addition to the standard OpenMP directives and environment variables, the Intel
Compilers support the following environment variables as extensions:

KMP_LIBRARY
Selects the OpenMP run-time library throughput

KMP_STACKSIZE
Sets the number of bytes to allocate for each parallel thread. (Default is
4megabytes) This is similar to the MP_SLAVE_STACKSIZE environment
variable under MIPSpro.

The GNU compilers do not support any OpenMP directives or environment variables.

Compiler Options

Although there are many differences between the set of flags that each compiler
supports, there are also flags common to all three compilers (MIPSpro, Intel, GNU).
Table 4-5 summarizes this list.

Table 4-5 Common Compiler Flags on IRIX and Linux (Both Intel and GNU)

-ansi Support all ANSI standard C programs

-c Compiles but does not link. Creates a .o file.

-Dmacro Define macro on command line

-I dir_name Searches for include files in dir_name

Compiler Options

007-4674-001 25

The MIPSpro and Intel compilers also provide many of the same types of functionality,
often through the use of similar but slightly different flags. Table 4-6 summarizes these
compiler flags.

-g Produces symbolic information for debugging

-help Print list of compiler options. (--help with gcc)

-L dir_name instruct linker to search dir_name for libraries.

-M Generate makefile dependency lines for each source file.

-o file_name Creates output file with file_name..

-O Invokes default optimization level.

-S Creates assembly language (.s) file.

-Umacro Undefine macro.

-v Verbose. Prints the passes as they execute with their arguments and their input
and output files.

-W Suppress warning information.

Table 4-6 Similar Compiler Flags on MIPSpro and Intel compilers

MIPSpro Intel

Automatic parallelization -apo -parallel

Check array bounds -C -CB

Turn warnings into errors -diag_error -Werror

Use Fortran preprocessor -ftpp -fpp

Interprocedural optimization -ipa -ipo

Interpret OpenMP directives -mp -openmp

Select optimizations that enhance performance -Ofast -fast

Set maximum number of times to unroll loops -OPT:unroll_times_max=n -unrolln

Provide compiler version -V (with no file) -V

Table 4-5 Common Compiler Flags on IRIX and Linux (Both Intel and GNU) (continued)

26 007-4674-001

4: Compiler and Development Tools

There is a small set of flags which are common to the MIPSpro and Intel compilers but
which have completely different meanings. These flags are described in Table 4-7.

Finally, there are those flags that are available only on the Intel compilers. Table 4-8
provides a partial list of these flags.

Table 4-7 Conflicting Compiler Options

Flag MIPSpro meaning Intel meaning

-C Check array bounds. Preserve comments in preprocessed source
output.

-mp Cause the compiler to recognize
multiprocessor directives.

Restrict optimizations in floating point
applications to ensure arithmetic conforms to
IEEE standards.

-static Statically allocate all local variables. Use the static library for linking

Table 4-8 Intel-only Flags

-auto Direct all local variables to be automatic (Fortran)

-EP Direct the preprocessor to expand source and output it to standard
output, but #line directives are not included in the output. (-EP is
equivalent to -E -P.)

-convert keyword Specifies format of unformatted files containing numerical data.

-fno-alias Use pointers with no aliasing in C.

-ftz Force flushing of denormalized results to zero.

-IPF_Fltacc Disable optimizations that affect floating-point accuracy.

-opt_report
-opt_report_file file

Generate an optimization report and direct it to stderr (or to file if
-opt_report_file is specified.

-safe_cray_pointer No aliasing for Cray pointers. (Fortran)

-stack_temps Allocate arrays on stack. (Fortran)

-Wp64 Print diagnostics for 64-bit porting.

Compiler Directives

007-4674-001 27

Compiler Directives

Table 4-9 provides s a subset of directives that are supported by the Intel compilers which
may aid in tuning or debugging applications:

The Fortran form for these directives is the following:

cdir$ directive_name

The C form for these directives is the following:

#pragma pragma_name

The directive_name and pragma_name variables are the same. For brevity, Table 4-9
provides the Fortran form only.

For more information about these and other directives supported by the Intel Compilers
see “Chapter 14 Directive Enhanced Compilation, Intel Fortran Language Reference” at
http://www.intel.com/software/products/compilers/flin/docs/for_lang.htm.

Table 4-9 Compiler Directives for Tuning and Debugging

cdir$ ivep Ignore vector dependencies

cdir$ swp Try to software pipeline an inner loop

cdir$ noswp disable software pipelining

cdir$ loop count N Software pipelining hint

cdir$ distribute point Split large loop

cdir$ unroll N Unroll loop N times

cdir$ nounroll Do not unroll loop

cdir$ prefetch A Prefetch Array A

cdir$ noprefetch A Do not prefetch array A

28 007-4674-001

4: Compiler and Development Tools

Assemblers

Both Intel and GNU provide assemblers for IA64. The Intel assembler is called ias; the
GNU assembler is called as. The Intel compiler normally bypasses calling the assembler
by directly compiling into a an object file, while gcc normally creates an assembly
language file (.s) and then calls the assembler to assemble it into an object file.

Since assembly language programming is inherently unportable, you will need to
entirely rewrite assembly language code when porting from IRIX to Altix. A clear
understanding of the machine architecture is required.

More information about the Intel assembler can be found at:
http://www.intel.com/software/products/opensource/tools1/tol_white.htm.

More information about the GNU assembler can be found by consulting its man page:

%man as

Linker

The GNU linker (/usr/bin/ld) is used by both the Intel compiler and gcc to combine
a number of object files and archives into an executable. It supports the standard
-Ldirectory and -lname options to specify which directory to search for libname.a or
libname.so, as well as the -oexecutable option to name the resulting executable file.

The ld linker also supports a variety of options which in general, are different from the
MIPSpro linker. (It should also be mentioned that the GNU linker is more sensitive to the
order of libraries given on the command line than its MIPSpro counterpart.)

For options whose names are a single letter, option arguments must either follow the
option letter without whitespace, or be given as separate arguments immediately
following the option that requires them.

For options whose names are multiple letters, either one dash or two can precede the
option name; for example, -trace-symbol and --trace-symbol are equivalent.

If the linker is being invoked by either the Intel compiler or gcc then all of the linker
command line options should be provided and prefixed by -Wl.

For more information on the GNU linker, consult the ld(1) man page.

007-4674-001 29

Chapter 5

5. Additional Development Tools

As described in Chapter 4, the development process can be thought of as a chain of
processes aided by a variety of software tools. Table 5-1 shows the development tool
chain in table form.

Chapter 4 described the compilation process and tools available for Altix systems. This
chapter outlines other development tools which are mainly used after an application has
been built (or to automate the build process).

Archiver and Other Object file Tools

The archiver (ar) maintains groups of files as a single archive file. Generally, you use this
utility to create and update library files that the linker uses, however, you can use the

Table 5-1 Development Process

Activity Tools IRIX versions Linux versions

Source code development Editors vi, emacs, jot, etc vi, emacs, etc.

Executable creation Compilers cc, CC, f77, f90 ecc, gcc, efc/ifort, g77

Object file creation Assemblers as ias, as

Linkage Linker ld ld

Archiving Archiver ar ar

Object file inspection Object tools elfdump, dwarfdump objdump

Debugging Debuggers dbx, cvd gdb, idb, ddd,DDT

Performance analysis Profilers SpeedShop, perfex VTUNE, perfmon, histx

Automation Make make, smake, pmake gmake

Environment configuration Scripts modules modules

30 007-4674-001

5: Additional Development Tools

archiver for any similar purpose. On Linux, ar is the GNU archiver. The archiver flags
are similar on IRIX and Linux; Table 5-2 summarizes their common flags.

Example 5-1 shows how to use the -q option to build an archive file and the -t option
to list its contents.

Example 5-1 Building an Archive

%gcc -c foo1.c # creates foo1.o
%gcc -c foo2.c # creates foo2.o
%ar -q archive.a foo1.o foo2.o # creates archive.a
%ar -t archive.a # lists contents of archive
foo1.o
foo2.o

Table 5-3 provides a summary of other commands that can be used to inspect and
manipulate object files. Like ar(1), these commands are GNU based. It should be noted
that dis is actually an alias for objdump -d rather than a separate command. Likewise
there is no elfdump on Linux but there is objdump. It should also be noted that the
functionality and flags accepted by the various commands differ between IRIX and

Table 5-2 IRIX and Linux Common Archiver Options

-d Deletes specified object

-m Moves specified object to the end of the archive

-p Prints the specified members of the archive to stdout

-q Appends specified object to the end of the archive

-r Replaces an earlier version of the object in the archive

-t Lists the table of contents of the archive

-x Extracts a file from the archive

Debuggers

007-4674-001 31

Linux. For more information, see the man pages for the various commands (e.g. %man
objdump).

Debuggers

Debuggers on IRIX and Linux fall into two categories:

• Command line (text based) debuggers

• GUI (windowed) debuggers

On IRIX the ProDev WorkShop tools provides the dbx command line debugger and the
CaseVision cvd GUI debugger. Both are able to debug programs compiled by any
MIPSpro compiler and also support debugging of multi-threaded code. A second GUI
debugger, TotalView is available from Etnus Corp (www.etnus.com). TotalView is also
available from Etnus for Altix machines.

Altix Command Line Debuggers

Debuggers that ship with Altix machines are provided by Intel and GNU. The Intel
debugger is called idb. Like its GNU counterpart, gdb, it is a command line debugger

Table 5-3 Additional Object File Tools

IRIX Linux Function

file file Lists the general properties of the file

size size Lists the size of each section of the object file

elfdump readelf Lists the contents of an ELF object file

ldd ldd Lists the shared library dependencies

nm nm Lists the symbol table information

elfdump objdump Dump object file information contents

dis objdump -d Disassemble the source code

strip strip Remove the symbol table and relocation information

c++filt c++filt Demangle names for C++ (nm -C)

32 007-4674-001

5: Additional Development Tools

that can attach to a running process or debug a core file. It supports debugging programs
written in all of the languages supported by the Intel compilers and has been improved
in the area of debugging multithreaded applications (OpenMP or pthreads). By default,
it supports dbx commands though it can also (via option) support gdb commands.
Table 5-4 lists some of the more commonly used commands of these debuggers.

A full set of commands supported by the idb and gdb debuggers can be found by listing
their respective man pages idb(1) and gdb(1). Documentation on gdb is available at the
GNU web site: http://www.gnu.org/software/gdb/documentation/.

Table 5-4 Command Line Debugger Commonly Used Commands

MIPSpro dbx and idb Default Command gdb Command Function

run run Start program

continue continue Continue stopped program

attach pid attach pid Attach to running process

stop in function break func Set breakpoint in function

stop at line break line Set breakpoint on line #

status info Print breakpoints

delete N delete Delete breakpoint

print expr print expr Print expression value

step step Single step (into functions)

next next Single step (over functions)

return finish Continue running until current
function returns

printregs info registers Print register values

address/Ni disassemble Disassemble source code

list list List source code

exit Exit debugger

Debuggers

007-4674-001 33

GUI Debuggers on Altix.

In addition to the previously mentioned Etnus TotalView debugger (a discussion of
which is beyond the scope of this manual), there also exists a graphical front-end
interface to either gdb (by default) or idb called DataDisplayDebugger or ddd. (For
information, see http://www.gnu.org/software/ddd/.)

To invoke ddd running idb in dbx mode type, execute the following:

% ddd --debugger idb --dbx ./a.out

This creates a debugger console window where debugger commands can be typed. This
also creates window panes for the source code, disassembled code, and array values. You
can use the View menu to switch these panes on and off.

Figure 5-1 shows a typical ddd display.

Figure 5-1 Typical ddd display

Some commonly used commands from Table 5-4 are found in the Program pull-down
menu and command.

34 007-4674-001

5: Additional Development Tools

The following site contains a thorough repository of information about ddd:
http://www.gnu.org/manual/ddd/html_mono/ddd.html. The ddd(1) man page is
also useful.

Another GUI debugger available for Altix is called the distributed debugging tool (DDT),
available from Streamline Computing. DDT focuses on providing support for debugging
parallel applications. For more information see:
http://www.streamline-computing.com/softwaredivision_1.shtml.

Timing

A variety of hardware and software support is provided for timing on IRIX and Altix
systems. Understanding their implementation is critical to avoiding faulty conclusions
when measuring application performance. Under IRIX systems, this support is
summarized in the timers(5) man page. The rest of this discussion focuses on Altix
systems and briefly outlines the differences between the systems.

On Altix platforms the IA64 processor has a high-resolution timer register that operates
at the clock speed of the processor. This timer is available through the application register
AR.ITC, and is commonly referred to as the itc. While providing 1 nanosecond
resolution (at 1GHz), the itc registers are not synchronized across processors. Likewise
the Altix Numalink hardware provides a timer that currently gives 40 nanosecond
resolution. This timer is the SN.RTC and its value is synchronized across processors on
Altix.

The basic LINUX gettimeofday() system call uses a pointer to a timeval structure
containing two long integers used to return the time of day in seconds and microseconds
since midnight (00:00) Coordinated Universal Time (UTC), January 1, 1970. The
following example illustrates its use:

Example 5-2 Using gettimeofday()

%cat td.c
#include <stdio.h>
#include <sys/time.h>

main()
{

int i;
struct timeval T;
i= gettimeofday(&T,0);

Timing

007-4674-001 35

if (i==0)
printf(“gettimeofday returned %ld seconds and %ld

microseconds\n”,T.tv_sec, T.tv_usec);

}

%icc td.c
%./a.out
gettimeofday returned 1078969017 seconds and 370026 microseconds

The gettimeofday values are updated by on every timer interrupt in the kernel.
Currently this occurs at the rate of 1024 interrupts per second. If better resolution is
required, variants of clock_gettime() can be used.

Clock_gettime() and Clock_getres()

The clock_gettime function returns the current value for the specified clock (passed
in by the first parameter clock_id). The value is returned through a pointer to a
timespec structure consisting of two long integers containing values for seconds and
nanoseconds.

Depending on the clock’s resolution, it may be possible to obtain the same time value
with consecutive reads of the clock. The time value may also have a higher precision then
the resolution of the clock.

The resolution of any clock can be obtained by calling the clock_getres() function.
The resolution of the clock will be returned through a pointer to a timespec structure.

On Altix systems the list of supported clocks differs from those on IRIX. These clocks are:

CLOCK_REALTIME
The system’s notion of the current time is obtained with this clock. It is
currently implemented by calling gettimeofday and thus has the
same resolution. This clock is also supported on IRIX systems.

CLOCK_PROCESS_CPUTIME_ID
The processes elapsed time is obtained with this clock. It is currently
implemented by reading the SN.RTC timer which is synchronized
across nodes. As such it has submicrosecond resolution which can be
obtained by the clock_getres() call. This clock is not supported on
IRIX systems.

36 007-4674-001

5: Additional Development Tools

CLOCK_THREAD_CPUTIME_ID
The thread’s elapsed time exclusive of its parent is obtained with this
clock. It is also currently implemented by reading the SN.RTC timer
which is synchronized across nodes. As such it has sub microsecond
resolution which can be obtained by the clock_getres() call.

This clock is not supported on IRIX systems.

The CLOCK_SGI_CYCLE and CLOCK_SGI_FAST supported on IRIX systems are not
supported on Altix system.

Example 5-3 gets the resolution of these clocks and then uses
CLOCK_PROCESS_CPUTIME_ID to time how long it took to do so.

Example 5-3 Determining clock resolution time

%cat tr.c

#include <stdio.h>
#include <time.h>

main()
{

int i;
struct timespec N;

i = clock_getres(CLOCK_REALTIME, &N);
if (i == 0)

printf(“Resolution is %ld seconds and %lld nanoseconds for
CLOCK_REALTIME \n”,N.tv_sec, N.tv_nsec);

i = clock_getres(CLOCK_PROCESS_CPUTIME_ID, &N);
if (i == 0)

printf(“Resolution is %ld seconds and %lld nanoseconds for
CLOCK_PROCESS_CPUTIME_ID\n”,N.tv_sec, N.tv_nsec);

i = clock_getres(CLOCK_THREAD_CPUTIME_ID, &N);
if (i == 0)

printf(“Resolution is %ld seconds and %lld nanoseconds for
CLOCK_THREAD_CPU_TIME_ID\n”,N.tv_sec, N.tv_nsec);

i = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &N);
if (i == 0)

printf(“Elapsed time is %ld seconds and %lld nanoseconds
\n”,N.tv_sec, N.tv_nsec);

}

%icc tr.c -lrt

Timing

007-4674-001 37

%./a.out
Resolution is 0 seconds and 976562 nanoseconds for CLOCK_REALTIME
Resolution is 0 seconds and 40 nanoseconds for
CLOCK_PROCESS_CPUTIME_ID
Resolution is 0 seconds and 40 nanoseconds for
CLOCK_THREAD_CPU_TIME_ID
Elapsed time is 0 seconds and 9125600 nanoseconds

As mentioned before, the CLOCK_REALTIME clock calls gettimeofday and has a
resolution of 1/1024 seconds. The other two clocks provide much better resolution.

MPI Timing Routines

MPI applications can take advantage of two portable timing routines provided with the
library calls MPI_Wtime() and MPI_Wtick(). Both calls return double precision floating
point numbers which represent the time and resolution in seconds respectively. They also
read the SN.RTC and have submicrosecond resolution that is synchronized across nodes.

The following is a Fortran example that uses these timing routines.

Example 5-4 Using MPI Timing Routines

%cat m.f
PROGRAM M
INCLUDE “mpif.h”
DOUBLE PRECISION TME1
DOUBLE PRECISION TME2
DOUBLE PRECISION ELAPSED
DOUBLE PRECISION RES
INTEGER error

CALL MPI_INIT(error)

TME1=MPI_WTIME()
RES=MPI_WTICK()
PRINT *,”RESOLUTION IS “,RES
PRINT *,”TIME1 IS “,TME1

TME2=MPI_WTIME()
PRINT *,”TIME2 IS “,TME2
ELAPSED = TME2-TME1
PRINT *,”ELAPSED TIME IS “,ELAPSED
CALL MPI_FINALIZE(error)
END

38 007-4674-001

5: Additional Development Tools

%ifort m.f -o m -lmpi
%mpirun -np 1 m
RESOLUTION IS 4.000000000000000E-008
TIME1 IS 207612.193793240
TIME2 IS 207612.196069960
ELAPSED TIME IS 2.276720013469458E-003

Performance Analysis Tools

Performance analysis tools typically work in two phases. First, the application is run and
performance data is collected. Typically, this data is created by one of three methods:

• Periodically interrupting a running application and capturing the program counter
(PC-sampling) or the entire stack frame (Call-stack Sampling).

• Instrumenting the executable program to generate performance data as it executes
certain (or all) parts of the program.

• Using hardware to detect and track certain events.

On Itanium based systems the third category is particularly important. The Itanium 2
Performance Monitoring Unit (PMU) defines over four hundred different events that can
be measured in four 48-bit counters. The different types of events that can be measured
fall into the following categories:

• Basic Events (Clock cycles, Retired instructions)

• Instruction Dispersal Events

• (18 events; FP_OPS_RETIRED, FP_FLUSH_TO_ZERO)

• Instruction Execution Events

• Stall Events

• Branch Events

• Memory Hierarchy

• System Events

• TLB Events

• System Bus Events

• Register Stack Engine Events

Performance Analysis Tools

007-4674-001 39

In the second phase, the collected data is analyzed and presented to the user. As with
debuggers, the presentation of performance analysis tools is classified into two
categories:

• Command Line (text based)

• GUI (windowed)

On IRIX, tools such as perfex(1), SpeedShop(1) and prof fall into the first category
while cvperf (in ProDev WorkShop) falls in the latter.

Performance Tools on Altix

Performance Tools on Altix are available from both Intel and the open source community
(including SGI contributions). The following sections briefly document the following
tools:

• VTune (Intel)

• gprof (GNU)

• pfmon (HP labs)

• profile.pl (SGI)

• histx (SGI)

VTune

VTune (see: http://www.intel.com/software/products/vtune/vlin/) provides call
stack sampling as well as comprehensive support for event based sampling of the
Itanium PMU. Two versions of the tool are available. The first requires that the collected
data be copied from the Altix to Windows based machine where the analysis takes place
under a GUI framework. The second is a command line tool natively hosted on the
Itanium system where the data was collected.

For additional information, see
http://ssales.corp.sgi.com/products/servers/altix350/intelfaq.html and scroll down to
find the comparison chart for VTune 7.1 versus VTune 2.0.

40 007-4674-001

5: Additional Development Tools

gprof

The gprof tool requires that the application being analyzed be compiled with the -pg
option of gcc. When run, the resulting program creates a gmon.out file which contains
information that can be used to generate three types of reports by the command line
based gprof tool:

Flat Profile Shows how much time your program spent in each function, and how
many times that function was called.

Call Graph Shows, for each function, which functions called it, which other
functions it called, and how many times.

Annotated Source
Shows how many times each line of the programs source code was
executed.

For further information, see the gprof man page (%man gprof).

pfmon

The pfmon tool uses the Itanium Performance Monitoring Unit (PMU) to count and
sample during runs made on unmodified binaries. It can function on a per-process basis
or take a system-wide view on a dedicated CPU or a set of CPUs. It also can monitor
events at the user level or at the system level.

The -l option topfmon lists the (currently 475) supported events. These event names can
then be used as arguments to the -e option which specifies which events to monitor. For
example, executing the following command will monitor four different events:

%pfmon -ecpu_cycles,ia64_inst_retired_this,nops_retired, \
back_end_bubble_all a.out

Note: that there is no space between the -e option and the name of the first event or
between the commas.

This is recommended as the first step in using pfmon to count cycles, instructions, NOPs
and back-end stall cycles.

More information about pfmon can be found in its man page (%man pfmon) and a user
guide normally installed under
/usr/share/doc/pfmon-2.0/pfmon_usersguide.txt.

Performance Analysis Tools

007-4674-001 41

profile.pl

profile.pl is a Perl script interface to pfmon. It uses dplace to bind the application
to specific processors and invoke other Perl scripts to generate a readable report. It
requires that the application contain symbol table information (i.e., not be stripped).
Table 5-5 shows some commonly used options to profile.pl.

For more information see the profile.pl(1), analyze.pl(1), and makemap.pl(1)
man pages.

SGI Histx

SGI Histx is a performance analysis tool designed to complement pfmon. The software
is designed to run on Altix systems only. Used internally by SGI developers and
benchmarkers, the product is offered as a service to SGI customers with a no fee end-user
proprietary license via the SGI Download Cool Software (DCS) Web site. Customers
wishing to use SGI Histx should be aware that there is no support planned for this
product and customers who use it accept it “as is”.

Histx consists of a group of tools:

First there are three data collection programs:

libfpm This tool resembles the perfex tool on IRIX. It supports individual
threads and MPI processes reporting counts of specified events for the
entire run of the program.

samppm Similar to libfpm, it tracks counts of events as a function of time. The
binary output file is then processed by dumppm into a report.

Table 5-5 profile.pl Flags

Option Meaning

-Cprocessor_list Used by dplace to bind processes to processors

-Eevent pfmon event name (CPU_CYCLES is the default)

-Nnumber Controls how often sampling is done

-Ofilename Puts analysis file into filename (profile.out is the default)

-K Keep each CPU sample file and produce a separate report for each CPU

42 007-4674-001

5: Additional Development Tools

histx Provides PC (or more accurately instruction pointer, or ip) sampling and
call stack sampling

Then there are three filters for performance data postprocessing and display:

dumppm Formats samppm data into a report.

iprep Formats histx PC (ip) sampling data into a report

csrep Formats histx call stack sampling data into a report that resembles an
IRIX SpeedShop “butterfly” report.

The histx command does not have a man page; however, typing the command by itself
(or %histx -h) will print relevant options. For example:

%histx
usage: histx [-b width] [-f] [-e source] [-h] [-k] -o file [-s type]
[-t signo] command args...

-b specify bin bits when using ip sampling: 16,32 or 64 (default:
16)

-e specify event source (default: timer@1)
-f follow fork (default: off)
-h this message (command not run)
-k also count kernel events for pm source (default: off)
-l include line level counts in ip sampling report (default: off)
-o send output to file.<prog>.<pid> (REQUIRED)
-s type of sampling (default: ip)
-t `toggle’ signal number (default: none)

Event sources:
timer@N profiling timer events. A sample is recorded

every N ticks.
pm:<event>@N performance monitor events. A sample is

recorded whenever the number of occurrences of
<event> is N larger than the number of occurrences
at the time of the previous sample.

dlatM@N A sample is recorded whenever the number of
loads whose latency exceeded M cycles is N larger
than the number at the time of the previous
sample. M must be a power of 2 between 4 and
4096

Types of sampling:
ip Sample instruction pointer
callstack[N] Sample callstack. N, if given, specifies

the maximum callstack depth (default: 8)

Performance Analysis Tools

007-4674-001 43

Notes:
A list of valid performance monitor <event>s can be found
in Intel manuals.
`command’ must not be compiled using the `-p’ compiler flag
One tick is about 0.977 milliseconds

Thus

%histx -e timer@1 -o out ./a.out

will generate the output file out.a.out.XXXX (where XXXX is the process id) which
provides the number of timer ticks for each function in the a.out file.

007-4674-001 45

Chapter 6

6. Message Passing on IRIX and Linux

This chapter describes the differences in support for the Message Passing Toolkit (MPT)
on IRIX and Linux systems. For general information on using MPT under Linux, see the
Message Passing Toolkit (MPT) User’s Guide.

Compiling MPI Programs on Linux

The compile and link syntax for MPI programs is similar on IRIX and Linux systems. See
the mpi(1) man page for more specific information and compiler command syntax.

SHMEM Program Launch

On Linux, SHMEM programs are launched using the mpirun command on one or more
Altix partitions or hosts. On IRIX, SHMEM programs were started by setting the NPES
environment variable and running the executable program directly.

On IRIX systems, SHMEM processes start via a fork in the start_pes() function call. On
Linux systems, the SHMEM processes are MPI processes that are forked prior to entry of
the main program.

See the shmem(3) man page for more information.

NUMA Placement

On IRIX systems, MPI will automatically distribute the program’s processes in a
reasonable way across the CPUs within the system or a cpuset using the Memory
Management Control Interface (MMCI) interface provided in IRIX.

46 007-4674-001

6: Message Passing on IRIX and Linux

On Linux systems, MPI will distribute the processes from CPU 0 to N-1 on the system or
within a cpuset when exclusive execution mode is selected. MPI’s exclusive execution
mode can be activated in a couple ways. One way is for the user to set the
MPI_DSM_DISTRIBUTE environment variable. Alternatively, when LSF launches an
MPI program into cpusets that are dedicated to this program, it will set exclusive
execution mode in the launched MPI program.

See the mpi(1) man page for more information.

dplace Command

The dplace command can also be used to specify NUMA placement of MPI, OpenMP,
and other parallel programs on IRIX and Linux systems. The dplace command syntax
is substantially revised on Linux systems.

On IRIX, MPI programs were started this way using dplace:

%mpirun -np 4 dplace -place placement_file a.out

On Linux, MPI programs were started this way using dplace:

%mpirun -np 4 dplace -s1 a.out

See the dplace(1) man page for more information.

Performance Tuning Tools

On IRIX systems, SGI SpeedShop and perfex are available for monitoring performance
of parallel programs. On Linux, the profile.pl tool is available for this purpose. You
can run profile.pl with MPI in this way:

%mpirun -np 4 profile.pl -s1 a.out

MPT Release Documentation

On IRIX systems, the relnotes command could be used to read MPT release notes. On
Linux systems, you can find the name of the file containing release notes information
using this command:

Performance Impact of Partitioning

007-4674-001 47

%rpm -ql sgi-mpt | grep relnotes

Performance Impact of Partitioning

On IRIX systems, the optimized MPI data transfer methods were never implemented for
MPI programs that are run across multiple partitions. On Linux systems, the latency and
bandwidth of MPI communication is the same whether you are communication inside a
single host or between partitions. The only effect on performance will arise from the
number of hardware routers that lie in the path between the CPUs that are running the
MPI processes.

Software Modules Differences

You can install SCSL, MPT, and other library packages in alternate locations using
Software Modules on Linux. However, the rich set of compiler wrapper scripts (for
example. cc and f77) do not exist on Linux. Therefore, you need to specify the -I and
-L options when compiling or linking with libraries that are installed in alternate
locations.

48 007-4674-001

6: Message Passing on IRIX and Linux

System-Specific MPT Features

The following table summarizes the MPT features that are available on IRIX only and the
MPT features that are available on Linux only.

Table 6-1 System-Specific MPT features

IRIX only Linux only

Support for 48p x 128p clusters Optimized MPI send/ across partitions

Support for up to 512p single hosts MPI one-sided across partitions

Support for checkpoint and restart (CPR) SHMEM across partitions

Fortran 90 compile-time MPI interface checking

MPI-2 capabilities

Support for MPI_Comm_spawn and
MPI_Comm_spawn_multiple

Thread safety

USEM MPI Fortran 90 statement support

007-4674-001 49

Chapter 7

7. POSIX Threads (pthreads) Implementations

A thread is a sequence of instructions to be executed within a program. Normal UNIX
processes consist of a single thread of execution, along with system resources (such as
open files) and a virtual address space. The overhead associated with process creation,
destruction and context switching led to the development of various “lightweight
process” and threading libraries. They sought to minimize this overhead by having the
threads share various resources and thus the operating system would have less to do on
thread creation etc.

Historically, various vendors have implemented their own proprietary versions of
lightweight processes and threads. For example IRIX implemented shared lightweight
processes or sprocs. These implementations differed substantially from each other
making it difficult for programmers to develop portable applications.

In 1995 the IEEE provided a standardized thread based programming interface, POSIX
1003.1c (also known as ISO/IEC 9945-1:1996), referred to as POSIX threads or P-threads.
The standard provides a variety of application programming interfaces that fall into
three categories:

• Thread creation and destruction

• Thread synchronization and resource locking

• Thread management and scheduling

This chapter outlines differences between the Pthreads implementations on IRIX 6.5 and
the latest version of ProPack. It must be noted that the Linux information is highly
dependent on the version of the kernel and threading library being supported. The
ProPack 2.4 release and glibc 2.2.4 supported the LinuxThreads library. The ProPack 3.0
release and glibc 2.3+ support the Natice Posix Thread Library for Linux (NPTL).

50 007-4674-001

7: POSIX Threads (pthreads) Implementations

Implementation Differences

As of The IRIX 6.5.20 release, IRIX is Unix98 conformant and fully compliant with the
POSIX 1003.1c standard. It implements an M:N threading model whereby M threads are
mapped onto N kernel processes. This allows the ability to create both kernel and user
level threads and to quickly switch between thousands of them. At the same time, it does
complicate the implementation.

LinuxThreads (http://pauillac.inria.fr/~xleroy/linuxthreads), on the other hand,
adopts a 1:1 threading model where each thread is mapped onto a kernel process.
Although this, in theory, should increase switching times, the LinuxThreads designers
point to the overall low switching overhead of the Linux kernel. They also point to a
simplified design that performs well when most threads are blocked or when there is not
a large number of runnable threads. While LinuxThreads does implement all of the APIs
from the POSIX 1003.1c standard, LinuxThreads is not standard conformant in the area
of signal handling.

The Native Posix Thread Library (described in
http://people.redhat.com/drepper/nptl-design.pdf) provides performance
improvements and increased scalability and it aims to overcome most of the deficiencies
of Linux Threads while remaining as compatible as possible to the Linux Thread API. It
is also a 1:1 (rather than M:N) threading model, but it corrects many of the issues with
signal handling in Linux Threads and is thus much more standard conformant.
Applications that rely on behavior where the LinuxThreads implementation deviates
from the POSIX standard will need to be fixed. These behavior differences include the
following:

• Signal handling has changed from per-thread signal handling to POSIX process
signal handling.

• getpid() returns the same value in all threads.

• Thread handlers registered with pthread_atfork are not run if vfork() is used.

• There is no manager thread.

If an application does not work properly with NPTL, it can be run using the old
LinuxThreads implementation by setting the following environment variable:

LD_ASSUME_KERNEL=kernel-version

The following versions are available:

Differences in Cancellation

007-4674-001 51

2.4.19 -- Linuxthreads with floating stacks

Note that software using errno, h_errno, and _res must #include the appropriate
header file (errno.h, netdb.h, and resolv.h respectively) before they are used.
However, LD_ASSUME_KERNEL=2.4.19 can be used as a workaround until the
software can be fixed.

Differences in Cancellation

Cancellation is the mechanism by which a thread can send a request to terminate the
execution of another thread. Depending on its settings the target thread can then either
ignore the request, honor it immediately, or defer it till it reaches a cancellation point.
Cancellation points are those points in the program execution where a test for pending
cancellation requests is performed and cancellation is executed if positive.

Under IRIX the following functions are cancellation points:

accept(2)
aio_suspend(3)
close(2)
connect(2)
creat(2)
fcntl(2)
fsync(2)
getmsg(2)
getpmsg(2)
lockf(3C)
mq_receive
mq_send
msgrcv(2)
msgsnd(2)
msync(2)
nanosleep(2)
open(2)
pause(2)
poll(2)
pread(2)
pthread_cond_timedwait(3P)
pthread_cond_wait(3P)
pthread_join(3P)
pthread_testcancel(3P)
putmsg(2)

52 007-4674-001

7: POSIX Threads (pthreads) Implementations

putpmsg(2)
pwrite(2)
read(2)
readv(2)
recv(2)
recvfrom(2)
recvmsg(2)
select(2)
sem_wait
semop(2)
send(2)
sendmsgsendto(2)
sigpause(2)
sigsuspend(2)
sigtimedwait(3)
sigwait(3)
sigwaitinfo(3)
sleep(3C)
system(3S)
tcdrain(3t)
usleep(3C)
wait(2)
wait3(2)
waitid(2)
waitpid(2)
write(2)
writev(2)

In contrast the following are cancellation points under Linux:

pthread_join(3)
pthread_cond_wait(3)
pthread_cond_timedwait(3)
pthread_testcancel(3)
sem_wait(3)
sigwait(3)

In particular note that no system call is a cancellation point under Linux. In contrast,
under IRIX the system call wrapper checks the caller and enables and disables
cancellation around the particular system call.

For more information see the following man pages on IRIX and Linux:
pthread_cancel(3P), pthread_setcancelstate(3P)

Differences in Mutex Implementations

007-4674-001 53

Differences in Mutex Implementations

A Mutex (or mutual exclusion point) controls whether threads can execute a critical
region of code or modify a shared variable. They are a primary means of thread
synchronization under Pthreads.

A mutex variable acts like a “lock” protecting access to a shared resource, such as shared
memory or file descriptors. Only one thread can lock (or own) a mutex variable at any
given time. If several threads try to lock a mutex, only one thread will succeed. The other
threads will not be granted the mutex until the owner releases it.

A mutex has attributes that control its behavior. Under IRIX the function
pthread_mutexattr_settype() defines the type of mutex. The type value may be
one of PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_SPINBLOCK_NP, or
PTHREAD_MUTEX_DEFAULT.

LinuxThreads supports only one mutex attribute: the mutex kind, which is either
PTHREAD_MUTEX_FAST_NP for fast mutexes, PTHREAD_MUTEX_RECURSIVE_NP for
recursive mutexes, or PTHREAD_MUTEX_ERRORCHECK_NP for error checking. mutexes.
In all cases the NP suffix refers to “Non Portable” extensions to the Posix standard.

IRIX also implements a process-shared attribute (PTHREAD_PROCESS_SHARED) to
permit a mutex to be operated upon by any thread that has access to the memory where
the mutex is allocated, even if the mutex is allocated in memory that is shared by multiple
processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the mutex
will only be operated upon by threads created within the same process as the thread that
initialized the mutex; if threads of differing processes attempt to operate on such a
mutex, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE. For more information on IRIX (see:
pthread_mutexattr_setpshared(3P)). This feature is not implemented under
LinuxThreads (glibc 2.2.x) but is supported by NPTL (glibc 2.3+)

It should be pointed out that both IRIX and Linux support optimized atomic operations
that are much faster than the following code sequence:

pthread_mutex_lock (&count_mutex);
count++;

pthread_mutex_unlock (&count_mutex);

54 007-4674-001

7: POSIX Threads (pthreads) Implementations

On IRIX __fetch_and_add while under Linux __sync_fetch_and_add (gcc) or
_InterlockedIncrement (Intel compiler) would be much faster.

Condition Variables

Condition variables allow threads to suspend execution until some condition is satisfied.
Functions are provided to wait on a condition variable and to wake up threads that a
waiting on the condition variable.

The type of condition variable used is determined by the attribute structure attr passed
with the call to pthread_cond_init(). On IRIX these attributes are set by calls to
pthread_condattr_init() and the various condition variable attribute functions
such as pthread_condattr_init() and pthread_condattr_setpshared(). If
attr is null (or the condition variable is statically initialized) the default attributes are
used. The IRIX implementation supports the process-shared attribute. If this attribute is
set to PTHREAD_PROCESS_SHARED it allows a condition variable to be operated upon by
any thread that has access to the memory where the condition variable is allocated, even
if the condition variable is allocated in memory that is shared by multiple processes. If
the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the condition variable
will only be operated upon by threads created within the same process as the thread that
initialized the condition variable. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

The LinuxThreads implementation supports no attributes for conditions, hence the
cond_attr parameter is ignored by pthead_cond_init(). Likewise
pthread_condattr_init() and pthread_condattr_destroy() under
LinuxThreads do nothing and are only included for compliance with the POSIX API’s.

NPTL supports the process-shared attribute for condition variables.

For more information see the pthread_cond_wait(3) and
pthread_condattr_init(3) man pages.

Read-Write Locks

A read-write lock is a software object that gives one thread the right to modify some data,
or multiple threads the right to read that data. The pthreads library on IRIX implements

Signals

007-4674-001 55

several functions for initializing and using read-write locks. For more informations see
pthread_rwlock_init(3) pthread_rwlock_rdlock(3) and
pthread_rwlock_wrlock(3).

Read-write locks are extensions to the POSIX standard and are not implemented on
LinuxThreads but are supported by NPTL.

Signals

A signal is an asynchronous notification of an event.

Each thread has a signal mask that specifies the signals it is willing to receive. This mask
can be changed in a pthreads program by calling the pthread_sigmask() function.

As mentioned earlier in this chapter, signal handling in LinuxThreads does not conform
to the POSIX standard and is thus significantly different than the IRIX implementation.
NPTL, on the other hand, is standard compliant.

According to the standard, external signals are addressed to the whole process (the
collection of all threads), which then delivers them to the one particular thread. However,
since each thread is actually a kernel process with its own process ID (PID) in
LinuxThreads, external signals are always directed to one particular thread. If, for
instance, another thread is blocked in sigwait on that signal, it will not be restarted.
NPTL overcomes this by performing signal-handling for multi-threaded processes in the
kernel. Signals sent to the process are now delivered to one of the available threads.

The LinuxThreads implementation of sigwait installs dummy signal handlers for the
signals in set for the duration of the wait. Since signal handlers are shared between all
threads, other threads must not attach their own signal handlers to these signals, or
alternatively they should all block these signals.

Another difference between the implementations is that IRIX uses SIGPTRESCHED and
SIGPTINTR for scheduling and cancellation whereas LinuxThreads uses SIGRTMIN and
SIGRTMIN+1. NPTL uses SIGRTMIN

56 007-4674-001

7: POSIX Threads (pthreads) Implementations

Scheduling Pthreads

Pthreads are scheduled by their scope, policy and priority. These variables are set initially
when the thread is created though policy and priority can also be modified at runtime by
the pthread_setschedparam() function.

Scope

IRIX supports three different contention scopes. System and bound scope threads are
scheduled by the IRIX kernel, and compete with all other threads on the system. System
scope threads are suitable for real-time programming and may only be created by
privileged users, whereas bound scope threads are not suitable for real-time
programming and do not require special privileges to create. Process scope threads are
scheduled by the Pthreads library, and compete with one another for process timeslices.
By default Pthreads are created with process scope.

The only scope supported by LinuxThreads is the system scope.

Policy

IRIX supports the following policies:

• SCHED_RR (default; round robin scheduling)

• SCHED_FIFO (first in first out)

• SCHED_TS (time sharing same as SCHED_RR)

• SCHED_OTHER (same as SCHED_RR)

LinuxThreads supports these policies

• SCHED_OTHER (regular non-realtime scheduling)

• SCHED_FIFO (realtime, first-in first out)

• SCHED_RR (realtime, round robin)

Environment Variables

007-4674-001 57

Priority

IRIX supports priorities between 0-255. The range on LinuxThreads is 1-99. Larger
numbers represent higher priorities on both implementations.

Environment Variables

IRIX supports the PT_CORE and PT_SPINS environment variables.PT_CORE permits a
core file to be generated in certain situations which are otherwise not permitted by the
Pthreads library, but should generally not be used unless debugging an application.
PT_SPINS determines how many times a lock is tried before sleeping.

For more information see the IRIX pthreads(5) man pages. Neither are supported on
Linux.

58 007-4674-001

7: POSIX Threads (pthreads) Implementations

Summary of Differences in Supported Features

A chart that illustrates various pthreads features that are supported by different variants
of Unix can be found at: http://www.tldp.org/FAQ/Threads-FAQ/OSsCompared.html

Table 7-1 reproduces a portion of this chart and includes what is supported on IRIX and
ProPack 3.0 (NPTL) and ProPack 2.4 (LinuxThreads) respectively.

Table 7-1 IRIX 6.5 vs. Linux Pthread Feature Comparison

Feature IRIX NPTL Linux Threads

User(U)/Kernel(K)-space K&U K K

Cancellations Yes Yes Yes

Priority Scheduling Yes Yes Yes

Priority Inversion Handling [A] Yes Yes No

Mutex Attributes Yes Yes Yes

Shared and Private Mutexes [B] Yes Yes No

Thread Attributes Yes Yes Yes

Synchronization Yes Yes Yes

Stack Size Control Yes Yes No

Base Address Control Yes No [1] No [1]

Detached Threads Yes Yes Yes

Joinable Threads Yes Yes Yes

Per-Thread Data Handling Function Yes Yes Yes

Per-Thread Signal Handling Yes Yes Yes

Condition Variables Yes Yes Yes

Semaphores Yes Yes No

Thread ID Comparison Yes Yes Yes

Call-Once Functions Yes Yes Yes

Thread Suspension No [2] Yes Yes

Summary of Differences in Supported Features

007-4674-001 59

Feature Definitions:
[A] As threads get blocked on I/O, provide a temporary reprioritization of threads.
[B] Having separate spaces for mutexes
[C] The ability to identify which threads will be multiprocessed.
[D] The ability to designate a specific thread to a specific processor.
[E] A flag which forces all thread-creation calls to be forks with shared memory.

Notes:
[1] Using cpusets or dplace could accomplish much the same thing
[2] Only the whole process.
[3] You can specify how much user-level threads you will use at once. The number of kernel-level
threads (i.e. concurrency level) is then determined as min([max number of threads to use],[number
of available processors]).
[4]Via pthread_setrunon_np(3P).
[5] Available through the IRIX-specific sproc() call. However, it should be noted that sproc’s and
pthreads are not compatible under IRIX and cannot be intermixed.

Specifying Concurrency [C] Yes [3] Yes No

Reader/Writer Share Locking Yes Yes No

Processor-specific Thread Allocation [D] Yes [4] Yes No

Fork All Threads [E] No [5] No No

Fork Calling Thread Only Yes Yes Yes

Table 7-1 IRIX 6.5 vs. Linux Pthread Feature Comparison (continued)

Feature IRIX NPTL Linux Threads

007-4674-001 61

Chapter 8

8. Miscellaneous Porting Concerns

This chapter provides a list of issues that you may need to address when porting an
application from an IRIX to a Linux system.

I/O Controls

The IRIX syssgi(2) system call is not available on Linux systems. In some cases, you can
replace the functionality of a syssgi call with the sysctl() function.

For example, the following IRIX code will need to be modified:

syssgi(SGI_CELL, SGI_GET_CLUSTER_CONFIG, &clconfig)

On Linux, the following code provides the same functionality:

if(cis_syssgi(SGI_CELL, SGI_GET_CLUSTER_CONFIG,
PTR_TO_U64(&clconfig), PTR_TO_U64(NULL),
PTR_TO_U64(NULL), PTR_TO_U64(NULL),
PTR_TO_U64(NULL), PTR_TO_U64(NULL)))

Where cis_syssgi is the following routine:

62 007-4674-001

8: Miscellaneous Porting Concerns

int
cis_syssgi(int64_t cmd, int64_t arg1, int64_t arg2, int64_t arg3,

int64_t arg4, int64_t arg5, int64_t arg6, int64_t arg7)
{
int r;
uint64_t args[8];
int name[] = {CTL_KERN, CTL_SYSSGI, 1};

args[0] = cmd; args[1] = arg1; args[2] = arg2; args[3]
= arg3;
args[4] = arg4; args[5] = arg5; args[6] = arg6; args[7]
= arg7;

r = sysctl(name, 3, NULL, NULL, args,
sizeof(args));

return r;
}

Some variable definitions for the above code are as follows:

#define SGI_CELL 1060
#define SGI_GET_CLUSTER_CONFIG 22

Additionally, the IRIX sysmp(2) call is not available on Linux systems. The following
examples show some equivalent Linux functionality:

• To find number of processors, replace sysmp(MP_NPROCS) with:
sysconf(_SC_NPROCESSORS_CONF).

• To pin a process to a CPU, replace sysmp(MP_MUSTRUN, pCpu) with the
following:

unsigned long cpuMask[8];
int offset, bit, ullen = sizeof(unsigned long);

memset(cpuMask, 0, ullen * 8);
offset = pCpu / (ullen * 8);
bit = pCpu % (ullen * 8);
cpuMask[offset] = ((unsigned long)1) << bit;
return syscall(__NR_sched_setaffinity, getpid(), ullen * 8, cpuMask
);

ATT Korn Shell vs. Public Domain Korn Shell

007-4674-001 63

• To find the number of nodes replace sysmp(MP_NUMNODES) with a function:

int getNumNodes() {
int nodeCount = 0;
int goOn=1;
struct stat statData;
char path[128];

do
{

snprintf(path, 128, “/proc/sgi_sn/node%d”, nodeCount);
if(stat(path, &statData) == 0) nodeCount++;
else goOn = 0;

} while(goOn);

if(nodeCount == 0) nodeCount == -1;
return nodeCount;

}

Additionally, in some circumstances you may need to replace syssgi(2) calls with
ioctl(2) calls.

ATT Korn Shell vs. Public Domain Korn Shell

If you are porting code from the ATT Korn shell on IRIX to a public domain Korn shell
on Linux, you may need to modify your scripts.

A common procedure in a sh/ksh script is in the following format:

1 Some-command | while read a b c; do
2 [set var foo to something]
3 done
4 echo $foo

In PD ksh, the while-loop will be in a subshell and when foo is set at line 2 it will be in
the subshell. The foo at line 4 will not reflect the change that happened at line 2. This
behavior may not be expected.

Note that this situation holds in for-loops as well.

The workaround works for PD ksh as well as the AT&T ksh that runs on Irix is to modify
the script as follows:

1 some-command |&

64 007-4674-001

8: Miscellaneous Porting Concerns

2 while read -p a b c; do
3 [Set var foo to something]
4 done
5 echo $foo

This arrangement flips things around, pushing “some-command” into the subshell and
allowing the while-loop to be in the main shell. Now any change to foo at line 3 will be
seen at line 5.

The |& syntax and the matching read -p provide an example of ksh co-processes and
reading from pipes.

While most Linux distributions use PD ksh, the AT&T ksh is also open-source and you
may choose to install that in place of the PD kshd.

AT&T ksh can find it at http://www.kornshell.com/. The source is free, but the license
is not GPL or BSD.

Serial Port Devices

Serial port devices have a different naming scheme under IRIX than under Linux. A
/dev/ttyd[N] device in IRIX corresponds to /dev/ttyS[N-1] in Linux.

Table 8-1 IRIX and Linux device naming examples

IRIX device name Linux device name

serial port 1 /dev/ttyd1 /dev/ttyS0

serial port 2 /dev/ttyd2 /dev/ttyS1

Security

007-4674-001 65

Security

Table 8-2 summarizes the system security available on IRIX and Altix systems.

Table 8-2 IRIX and Linux Security Features

IRIX Linux

Password length yes yes

Password aging yes yes

Password composition yes yes

Logging Login/Logout yes yes

Logging Failed Login yes yes

Lockout of accounts after multiple
failed logins

yes yes

Logging password changes yes requires audit trails

Logging access to security relevant
objects

yes requires audit trails

Logging security policy changes yes requires audit trails

Audit trails yes Coming soon

Displaying banners on login screens yes yes

Proper permissions set on security
relevant files

yes yes

Access Control Lists yes yes

Common Criteria Security CAPP
certification

EAL3 Planning underway, please
contact SGI

Common Criteria Security LSPP
certification

EAL3 for Trusted IRIX Planning underway, please
contact SGI

NISPOM Chapter 8 yes Available in SGI ProPack 3.0 for
Linux with patch

DII-COE yes Planning underway, please
contact SGI

007-4674-001 67

Chapter 9

9. Frequently Asked Questions

This chapter gathers frequently asked questions and provides quick answers. When
possible, supplementary reference material is provided.

Q. I did not see any references to Java in ProPack. What should I do?

A. Java for IA64 Linux is available from BEA Systems. See their websites:

For Downloads see
http://commerce.bea.com/showallversions.jsp?family=WLJR.

For redistribution terms see:
http://commerce.bea.com/products/weblogicjrockit/support_services.jsp

A version is also available from Sun at: http://java.sun.com/j2se/1.4.2/download.html

Q. I profiled my application, and got a list of functions that I could not find
documentation for. The list of functions is:

__kmp_wait_sleep

__kmp_yield

__kmp_static_yield

__kmp_ia64_pause

__kmp_fork_call

__kmp_acquire_bootstrap_lock

What are they?

A. These are internal functions in Intel’s libguide. They are not documented.

68 007-4674-001

9: Frequently Asked Questions

Q. I want to use a “perfex like” performance analysis tool on Altix. What should I use?

A. Tools such as pfmon, profile.pl and histx fall into this category. See Chapter 5
for more information.

Q. How do I disassemble my binary? There is no dis(1).

A. Use objdump -d.

Q. Can I read big-endian formatted files with my Fortran program?

A. Yes, set the F_UFMTENDIAN environment variable to big.

Q. Is there the equivalent of the MP_SLAVE_STACKSIZE environment variable on Altix?

A. KMP_STACKSIZE

see http://developer.intel.com/software/products/kappro/kappro_manual.pdf (page
76)

Q. I have a subroutine that the Intel compiler asserts cannot be optimized at any level
(-O0 through -O3 using various 7.1 versions) because of resource constraints. Is there a
magic flag, like -OPT:Olimit=0 in the MIPSpro compilers, that I can use to get some
optimization out of the compiler for this routine?

A. The -override_limits flag sometimes helps in these cases.

Q. The following fragment of Fortran code compiled with version 7.1 of the Intel
compilers (and with MIPSpro) but does not with version 8 of the Intel compilers. What
is the matter?

subroutine foo(x, n)
implicit none
real x(n)
integer n
end

A. Version 8 sees the implicit none and determines that n is of an undefined type.
Reversing the declarations of x and n will compile.

007-4674-001 69

Q. What tools are available that will help me port my 32-bit application to 64-bits?

A. The compiler helps the most in this regard. Pay special attention to the warnings
generated. A script that may help in this is the following:

#!/usr/bin/env python
#
Copyright (c) 2004 Hewlett-Packard Development Company, L.P.
David Mosberger <davidm@hpl.hp.com>
#
Scan standard input for GCC warning messages that are likely to
source of real 64-bit problems. In particular, see whether there
are any implicitly declared functions whose return values are later
intepreted as pointers. Those are almost guaranteed to cause
crashes.
#
import re
import sys

implicit_pattern = re.compile(“([^:]*):(\d+): warning: implicit declaration “
+ “of function `([^’]*)’”)

pointer_pattern = re.compile(“([^:]*):(\d+): warning: “
+ “(assignment”
+ “|initialization”
+ “|return”
+ “|passing arg \d+ of `[^’]*’”
+ “|passing arg \d+ of pointer to function”
+ “) makes pointer from integer without a cast”)

while True:
line = sys.stdin.readline()
if line == ‘’:

break
m = implicit_pattern.match(line)
if m:

last_implicit_filename = m.group(1)
last_implicit_linenum = int(m.group(2))
last_implicit_func = m.group(3)

else:
m = pointer_pattern.match(line)
if m:

pointer_filename = m.group(1)
pointer_linenum = int(m.group(2))
if (last_implicit_filename == pointer_filename

and last_implicit_linenum == pointer_linenum):
print “Function `%s’ implicitly converted to pointer at “ \

70 007-4674-001

9: Frequently Asked Questions

“%s:%d” % (last_implicit_func, last_implicit_filename,
last_implicit_linenum)

This Python script scans the output of gcc -Wall -O for warnings that are almost
guaranteed to cause crashes on ia64. This won’t help much for applications that are
hopelessly 64-bit-dirty, but it will help those applications that are basically 64-bit clean,
save for some silly oversights (like missing header file includes).

Here is an example:

$ check-implicit-pointer-functions < ./log
Function `strdup’ implicitly converted to pointer at e-pilot-util.c:42
Function `e_path_to_physical’ implicitly converted to pointer at
mail-importer.c:98

Q. Does the cpio command on Altix support the -K IRIX feature?

A. The IRIX cpio -K option turns on use of the extended format and is required for files
larger than 2 Gigabytes. IRIX cpio gives a warning message whenever a non-standard
cpio file is written. This option is not available on Altix. As an alternative there, use the
GNU tar command which can archive files up to 64 gigabytes.

007-4674-001 71

Appendix A

A. Application Programming Interface (API)
Differences: libc

This chapter summarizes the library routines that are available on IRIX but missing on
Linux.

This chapter covers only the routines in the Standard C libraries (libc). Issues
surrounding porting of MPI libraries are documented in Chapter 6, and POSIX threading
libraries (libpthread) are documented in Chapter 7. Other libraries will be added in
subsequent releases of this manual.

IRIX has a variety of library calls in libc that are either missing in the Linux libc or in a
different library. The following attempts to group the differences into categories.

Arena memory allocations routines:

• acreate

• adelete

• afree

• amallinfo

• amalloc

• amallocblksize

• amallopt

• amemalign

• arealloc

• arecalloc

• usdetach

• usadd

• usinit

72 007-4674-001

A: Application Programming Interface (API) Differences: libc

• uscalloc

• usfree

• usmallinfo

• usmalloc

• usmallopt

• usrealloc

Selected asynchronous I/O functions:

• aio_hold

• aio_hold64

• aio_sgi_init

• aio_sgi_init64

Selected Time conversion functions:

• ascftime

• cftime

BSD compatibility routines:

• BSDalphasort

• BSDchown

• BSDclosedir

• BSDdup2

• BSDfchown

• BSDgetgroups

• BSD_getime

• BSDgetpgrp

• BSDgettimeofday

• BSDinitgroups

• BSDlongjmp

007-4674-001 73

• BSDopendir

• BSDreaddir

• BSDscandir

• BSDseekdir

• BSDsetgroups

• BSDsetjmp

• BSDsetpgrp

• BSDsettimeofday

• BSDsignal

• BSDsigpause

• BSDtelldir

Capabilities related Routines:

• cap_acquire

• cap_clear

• cap_copy_ext

• cap_copy_int

• cap_dup

• cap_envl

• cap_envp

• cap_free

• cap_from_text

• cap_get_fd

• cap_get_file

• cap_get_flag

• cap_get_proc

• cap_init

• cap_set_fd

74 007-4674-001

A: Application Programming Interface (API) Differences: libc

• cap_set_file

• cap_set_flag

• cap_set_proc

• cap_set_proc_flags

• cap_size

• cap_surrender

• cap_to_text

• cap_value_to_text

Library routines for dealing with creation and manipulation of CLIENT handles:

• clnt_broadcast_exp

• clnt_broadmulti

• clnt_broadmulti_exp

• clnt_create_vers

• clnt_dg_create

• clnt_multicast

• clnt_multicast_exp

• clnt_raw_create

• clnt_setbroadcastbackoff

• clnt_syslog

• clnt_tli_create

• clnt_tp_create

• clnt_vc_create

Select routines that maintain key/content pairs in a data base:

• dbm_clearerr64

• dbmclose64

• dbm_close64

• dbm_delete64

007-4674-001 75

• dbm_error64

• dbm_fetch64

• dbm_firstkey64

• dbm_forder

• dbm_forder64

• dbminit64

• dbm_open64

• dbm_store64

• delete

• delete64

• firstkey

• firstkey64

• nextkey

• nextkey64

Long double conversion routines:

• ecvtl

• fcvtl

• gcvtl

• ecvtl_r

• fcvtl_r

Networking file entry manipulation routines:

• fgethostent

• fgethostent_r

• fgetnetent

• fgetnetent_r

• fgetprojall

• fgetprojuser

76 007-4674-001

A: Application Programming Interface (API) Differences: libc

• fgetprotoent

• fgetprotoent_r

• fgetrpcent

• fgetrpcent_r

• fgetservent

• fgetservent_r

Hardware Inventory entry functions:

• getinvent

• setinvent

• endinvent

• scaninvent

• getinvent_r

• setinvent_r

• endinvent_r

Networking configuration database entry functions:

• getnetconfig

• endnetconfig

• getnetconfigent

• freenetconfigent

• nc_perror

• nc_sperror

• setnetpath

• getnetpath

• endnetpath

Job limits functions:

• killjob

007-4674-001 77

• makenewjob

• waitjob

• setwaitjobpid

• jlimit_startjob

• getjlimit

• setjlimit

Three byte integer conversion routines:

• l3tol

• ltol3

MAC label manipulator functions:

• mac_clearance_error

• mac_cleared

• mac_cleared_fl

• mac_cleared_fs

• mac_clearedlbl

• mac_cleared_pl

• mac_cleared_ps

• mac_demld

• mac_dominate

• mac_dup

• mac_equal

• mac_free

• mac_from_mint

• mac_from_msen

• mac_from_msen_mint

• mac_from_text

• mac_get_fd

78 007-4674-001

A: Application Programming Interface (API) Differences: libc

• mac_get_file

• mac_get_proc

• mac_is_moldy

• mac_label_devs

• mac_set_fd

• mac_set_file

• mac_set_moldy

• mac_set_proc

• mac_size

• mac_to_text

• mac_to_text_long

• mac_valid

MINT label manipulator functions:

• mint_dom

• mint_equal

• mint_free

• mint_from_mac

• mint_from_text

• mint_size

• mint_to_text

• mint_valid

Memory Locality Domain Operations:

• mld_create

• mld_create_special

• mldset_create

• mldset_create_special

• mldset_destroy

007-4674-001 79

• mldset_place

• process_mldlink

Message queue descriptor functions:

• mq_close

• mq_getattr

• mq_notify

• mq_open

• mq_receive

• mq_send

• mq_setattr

• mq_unlink

MSEN label manipulator functions:

• msen_dom

• msen_equal

• msen_free

• msen_from_mac

• msen_from_text

• msen_size

• msen_to_text

• msen_valid

Lightweight process creation routines:

• pcreatel

• pcreatelp

• pcreatev

• pcreateve

• pcreatevp

80 007-4674-001

A: Application Programming Interface (API) Differences: libc

• sproc

• sprocsp

Process module routines:

• pm_attach

• pm_create

• pm_create_simple

• pm_create_special

• pm_filldefault

• pm_getall

• pm_getdefault

• pm_getstat

• pm_setdefault

• pm_setpagesize

Functions to execute a file on a remote call

• rexecl

• rexecle

• rexeclp

• rexecv

• rexecve

• rexecvp

Functions to send a signal to a process or a group of processes:

• sig2str

• sigflag

• sigpoll

• sigsend

• sigsendset

007-4674-001 81

• sigwaitrt

System routines:

• sysget

• sysid

• sysmips

• sysmp

• syssgi

Trusted networking functions:

• tsix_get_mac

• tsix_get_solabel

• tsix_get_uid

• tsix_off

• tsix_on

• tsix_recvfrom_mac

• tsix_sendto_mac

• tsix_set_mac

• tsix_set_mac_byrhost

• tsix_set_solabel

• tsix_set_uid

Universal Unique Identifier Functions:

• uuid_create

• uuid_create_nil

• uuid_equal

• uuid_from_string

• uuid_hash

• uuid_hash64

82 007-4674-001

A: Application Programming Interface (API) Differences: libc

• uuid_is_nil

• uuid_to_string

Selected wide character type (wchar_t) string operations and type transformations:

• isnumber

• isphonogram

• isideogram

• isenglish

• isspecial

• issubdir

• iswascii

• wcstok_r

• wscat

• wschr

• wscmp

• wscpy

• wscspn

• wslen

• wsncat

• wsncmp

• wsncpy

• wspbrk

• wsrchr

• wsspn

• wstostr

007-4674-001 83

Index

Symbols

#ifdef operations, 9
%LOC Fortran extension, 13
%VAL Fortran extension, 13

A

application programming interface (API) differences,
71

archiver
options, 30
tool, 29

AR.ITC register, 34
as assembler, 28
assembler

as, 28
IA64, 28
ias, 28

C

C data type sizes, 9
C language standards support, 21
C++ language standards support, 22
clock_gettime function, 35
CLOCK_PROCESS_CPUTIME_ID, 35
CLOCK_REALTIME, 35
CLOCK_SGI_CYCLE, 36

CLOCK_SGI_FAST, 36
CLOCK_THREAD_CPUTIME_ID, 36
compiler

directives, 27
options, 24
tools, 17

compilers
comparison, 2
gcc, 20
GNU, 20, 21, 22, 23
Intel, 18, 21, 22

cpio command, 70

D

DataDisplayDebugger (ddd), 33
DDT, see distributed debugging tool
debuggers, 31

Altix
command line, 31
GUI, 33

DataDisplayDebugger, 33
distributed debugging tool (DDT), 34

development tool chain, 17
development tools, 17
devices, serial port, 64
dis command, 68
distributed debugging tool (DDT), 34
documentation, SGI, xv
dplace command, 46

84 007-4674-001

Index

E

editors, 18
emacs, 18
vi, 18

emacs editor, 18
endian order, 5

F

F_UFMTENDIAN environment variable, 68
Fortran language standards support, 22, 23
functions, internal, 67

G

gcc compiler, 20
gdb debugger, 31
gettimeofday() system call, 34
GNU compilers, 20, 21, 22, 23
gprof, 40

H

hardware platform, 1
header file, 11
Histx, SGI, 41

I

IA64 assembler, 28
ias assembler, 28
idb debugger, 31
Intel compilers, 18, 21, 22
internal functions, 67

inttypes.h header file, 12
I/O controls, 61
IPF ABI, 9
IPF processor, 2

J

Java, 67

K

KMP_STACKSIZE environment variable, 68
Korn shell, 63

L

libc routines, 71
linker

GNU, 28
ld, 28

LinuxThreads, 50
lock_getres() function, 35

M

message passing, 45
Message Passing Toolkit (MPT), 45

features, 48
middleware, 1
MIPS processor, 2
MP_SLAVE_STACKSIZE environment variable, 68
MPI , compiling programs, 45
MPI timing routines, 37
MPI_Wtick library call, 37

007-4674-001 85

Index

MPI_Wtime library call, 37
Mutex implementations, 53

N

Native Posix Thread Library, 50
NUMA placement, 45
NUMAlink, 2

O

object file tools, 31
OpenMP standards support, 24
override_limits flag, 68

P

perfex, 46
performance analysis tools, 38
pfmon, 40
platform

Altix, 2
comparison, 2
definition, 1
hardware, 1
layer porting issues, 3
Origin 3000, 2

porting, definition, 2
POSIX threads (pthreads), 49
profile.pl, 41, 46
Pthread feature comparison, 58

R

read-write locks, 54

S

security features, 65
serial port devices, 64
SGI SpeedShop, 46
SHMEM programs, 45
signals, event, 55
standards support, 21

C language, 21
C++ language, 22
Fortran, 22
OpenMP, 24

stdint.h header file, 11, 12
syssgi calls, 61

T

timing routine, MPI, 37
timing support, 34
typedef, 12
typedef statement, 11

V

vi editor, 18
VTune, 39

	Record of Revision
	Figures
	Tables
	Examples
	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	Porting Overview
	Endian Order
	A Case of Endianness
	Examples

	64-bit ABI Porting Issues
	32-bit and 64-bit Differences
	Writing C Code Portable to 64-Bit Platforms
	Writing Fortran Code Portable to 64-Bit Platforms
	Examples of Fortran Portability Issues

	Compiler and Development Tools
	Development Tool Chain
	Editors
	Compilers
	Intel Compilers
	GNU Compilers

	Standards Support
	C Language Standard Support
	C++ Language Standard Support
	Fortran Language Standard Support
	OpenMP Standard Support

	Compiler Options
	Compiler Directives
	Assemblers
	Linker

	Additional Development Tools
	Archiver and Other Object file Tools
	Debuggers
	Altix Command Line Debuggers
	GUI Debuggers on Altix.

	Timing
	Clock_gettime() and Clock_getres()
	MPI Timing Routines

	Performance Analysis Tools
	Performance Tools on Altix
	VTune
	gprof
	pfmon
	profile.pl
	SGI Histx

	Message Passing on IRIX and Linux
	Compiling MPI Programs on Linux
	SHMEM Program Launch
	NUMA Placement
	dplace Command
	Performance Tuning Tools
	MPT Release Documentation
	Performance Impact of Partitioning
	Software Modules Differences
	System-Specific MPT Features

	POSIX Threads (pthreads) Implementations
	Implementation Differences
	Differences in Cancellation
	Differences in Mutex Implementations
	Condition Variables
	Read-Write Locks
	Signals
	Scheduling Pthreads
	Scope
	Policy
	Priority

	Environment Variables
	Summary of Differences in Supported Features

	Miscellaneous Porting Concerns
	I/O Controls
	ATT Korn Shell vs. Public Domain Korn Shell
	Serial Port Devices
	Security

	Frequently Asked Questions
	Application Programming Interface (API) Differences: libc
	Index

