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About This Guide

A real-time program is one that must maintain a fixed timing relationship to external
hardware. In order to respond to the hardware quickly and reliably, a real-time
program must have special support from the system software and hardware. This
guide describes the facilities of REACT real-time for Linux.

Audience
This guide is written for real-time programmers. You are assumed to be:

• An expert in the C programming language

• Knowledgeable about the hardware interfaces used by your real-time program

• Familiar with system-programming concepts such as interrupts, device drivers,
multiprogramming, and semaphores

You are not assumed to be an expert in Linux system programming, although you do
need to be familiar with Linux as an environment for developing software.

What This Guide Contains
This guide contains the following:

• Chapter 1, "Introduction", describes the important classes of real-time programs,
emphasizing their performance requirements

• Chapter 2, "How Linux and REACT Support Real–Time Programs", provides an
overview of the real-time support for programs in Linux and REACT

• Chapter 3, "Controlling CPU Workload", describes how you can isolate a CPU and
dedicate almost all of its cycles to your program’s use

• Chapter 4, "Optimizing Disk I/O", describes how to set up disk I/O to meet
real-time constraints, including the use of asynchronous I/O

• Chapter 5, "PCI Devices" on page 27, discusses the Linux PCI interface

• Chapter 6, "Installation Overview", lists the RPMs required to run REACT
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About This Guide

• Chapter 7, "Generating a REACT System Configuration", discusses the
reactcfg.pl and reactboot.pl configuration scripts that are provided to
assist you in setting up REACT

• Chapter 8, "Troubleshooting" on page 37, discusses diagnostic tools that apply to
real-time applications

• Appendix A, "Example Application" on page 39, provides excerpts of application
modules to be used with REACT

• Appendix B, "Reading MAC Addresses Example Program" on page 63, provides a
sample program for reading the MAC address from an ethernet card

Related Publications and Sites
The following books may be useful:

• Available from the online SGI Technical Publications Library:

– Linux Configuration and Operations Guide

– Linux Device Driver Programmer’s Guide

– SGI Altix 3000 User’s Guide

– SGI Altix 350 System User’s Guide

– SGI L1 and L2 Controller Software User’s Guide

– SGI ProPack 4 for Linux Start Here

– SUSE LINUX Enterprise Server for SGI Altix Systems

– Porting IRIX Applications to SGI Altix Platforms: SGI ProPack for Linux

– The Linux Programmer’s Guide (Sven Goldt, Sven van der Meer, Scott Burkett,
Matt Welsh)

– The Linux Kernel (David A Rusling)

– Linux Kernel Module Programming Guide (Ori Pomerantz)

• Linux Device Drivers, 2nd Edition, Alessandro Rubini and Jonathan Corbet,
O’Reilly, c June 2001, ISBN: 0-596-00008-1
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For more information about the SGI Altix series, see the following sites:

• http://www.sgi.com/products/servers/altix

• http://www.sgi.com/products/servers/altix/350

Conventions
The following conventions are used throughout this document:

Convention Meaning

[ ] Brackets enclose optional portions of a command or
directive line.

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

... Ellipses indicate that a preceding element can be
repeated.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

variable Italic typeface denotes variable entries and words or
concepts being defined.

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• You can view release notes on your system by accessing the README file(s) for the
product. This is usually located in the /usr/share/doc/productname directory,
although file locations may vary.

007–4746–001 xi



About This Guide

• You can view man pages by typing man title at a command line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.
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Chapter 1

Introduction

This chapter discusses the following:

• "Real-Time Programs" on page 1

• "Real-Time Applications" on page 1

• "REACT Real-Time for Linux" on page 6

Real-Time Programs
A real-time program is any program that must maintain a fixed, absolute timing
relationship with an external hardware device. A hard real-time program is incorrect
and unusable if it fails to meet its performance requirements and therefore falls out of
step with the external device. A soft real-time program is one that can tolerate
occasional periods of slow response time but as long as the answer is accurate and is
delivered within a given threshold of time, then the computation is successful.

A normal-time program is a correct program when it produces the correct output, no
matter how long that takes. Normal-time programs do not require a fixed timing
relationship to external devices. You can specify performance goals for a normal-time
program, such as “respond in at most 2 seconds to 90% of all transactions,” but if the
program does not meet the goals, it is merely slow, not incorrect.

Real-Time Applications
The following are examples of real-time applications:

• "Simulators and Stimulators" on page 2

• "Data Collection Systems" on page 4

• "Process Control Systems" on page 5
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1: Introduction

Simulators and Stimulators

A simulator or a stimulator maintains an internal model of the world. It receives control
inputs, updates the model to reflect them, and outputs the changed model. It must
process inputs in real time in order to be accurate. The difference between them is that
a simulator provides visual output while a stimulator provides nonvisual output. SGI
systems are well-suited to programming many kinds of simulators and stimulators.

Simulators and stimulators have the following components:

• An internal model of the world, or part of it; for example, a model of a vehicle
traveling through a specific geography, or a model of the physical state of a
nuclear power plant.

• External devices to supply control inputs; for example, a steering wheel, a joystick,
or simulated knobs and dials. (This does not apply to all stimulators.)

• An operator (or hardware under test) that closes the feedback loop by moving the
controls in response to what is shown on the display. A feedback loop provides
input to the system in response to output from the system. (This does not apply to
all stimulators.)

Simulators also have the external devices to display the state of the model; for
example, video displays, audio speakers, or simulated instrument panels.

The real-time requirements vary depending on the nature of these components. The
following are key performance requirements:

• Frame rate is the rate at which the simulator updates the display, whether or not
the simulator displays its model on a video screen. Frame rate is given in cycles
per second (hertz, abbreviated Hz). Typical frame rates run from 15 Hz to 60 Hz,
although rates higher and lower than these are used in special situations.

The inverse of frame rate is frame interval. For example, a frame rate of 60 Hz
implies a frame interval of 1/60 second, or 16.67 milliseconds (ms). To maintain a
frame rate of 60 Hz, a simulator must update its model and prepare a new display
in less than 16.67 ms.

• Transport delay is the number of frames that elapses before a control motion is
reflected in the display. When the transport delay is too long, the operator
perceives the simulation as sluggish or unrealistic. If a visual display in a
simulator lags behind control inputs, a human operator can become physically ill.
In the case where the operator is physical hardware, excessive transport delay can
cause the control loop to become unstable.
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Aircraft Simulators

Simulators for real or hypothetical aircraft or spacecraft typically require frame rates
of 30 Hz to 120 Hz and transport delays of 1 or 2 frames. There can be several
analogue control inputs and possibly many digital control inputs (simulated switches
and circuit breakers, for example). There are often multiple video display outputs
(one each for the left, forward, and right “windows”), and possibly special hardware
to shake or tilt the “cockpit.” The display in the “windows” must have a convincing
level of detail.

Ground Vehicle Simulators

Simulators for automobiles, tanks, and heavy equipment have been built with SGI
systems. Frame rates and transport delays are similar to those for aircraft simulators.
However, there is a smaller world of simulated “geography” to maintain in the
model. Also, the viewpoint of the display changes more slowly, and through smaller
angles, than the viewpoint from an aircraft simulator. These factors can make it
somewhat simpler for a ground vehicle simulator to update its display.

Plant Control Simulators

A simulator can be used to train the operators of an industrial plant such as a nuclear
or conventional power generation plant. Power-plant simulators have been built
using SGI systems.

The frame rate of a plant control simulator can be as low as 1 or 2 Hz. However, the
number of control inputs (knobs, dials, valves, and so on) can be very large. Special
hardware may be required to attach the control inputs and multiplex them onto the
PCI bus. Also, the number of display outputs (simulated gauges, charts, warning
lights, and so on) can be very large and may also require custom hardware to
interface them to the computer.

Virtual Reality Simulators

A virtual reality simulator aims to give its operator a sense of presence in a
computer-generated world. A difference between a vehicle simulator and a virtual
reality simulator is that the vehicle simulator strives for an exact model of the laws of
physics, while a virtual reality simulator typically does not.

Usually the operator can see only the simulated display and has no other visual
referents. Because of this, the frame rate must be high enough to give smooth,
nonflickering animation; any perceptible transport delay can cause nausea and
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1: Introduction

disorientation. However, the virtual world is not required (or expected) to look like
the real world, so the simulator may be able to do less work to prepare the display
than does a vehicle simulator

SGI systems, with their excellent graphic and audio capabilities, are well suited to
building virtual reality applications.

Hardware-in-the-Loop Simulators

The operator of a simulator need not be a person. In a hardware-in-the-loop (HWIL)
simulator, the human operator is replaced by physical hardware such as an aircraft
autopilot or a missile guidance computer. The inputs to the system under test are the
simulator’s output. The output signals of the system under test are the simulator’s
control inputs.

Depending on the hardware being exercised, the simulator may have to maintain a
very high frame rate, up to several thousand Hz. SGI systems are excellent choices
for HWIL simulators.

Control Law Processor Stimulator

An example of a control law processor is one that simulates the effects of Newton’s law
on an aircraft flying through the air. When the rudder is turned to the left, the
information that the rudder had turned, the velocity, and the direction is fed into the
control law processor. The processor calculates and returns a response that represents
the physics of motion. The pilot in the simulator cockpit will feel the response and
the instruments will show the response. However, a human did not actually interact
directly with the processor; it was a machine-to-machine interaction.

Wave Tank Stimulator

A wave tank simulates waves hitting a ship model under test. The stimulator must
“push” the water at a certain rhythm to keep the waves going. An operator may
adjust the frequency and amplitude of the waves, or it could run on a
preprogrammed cycle.

Data Collection Systems

A data collection system receives input from reporting devices (such as telemetry
receivers) and stores the data. It may be required to process, reduce, analyze, or
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compress the data before storing it. It must respond in real time to avoid losing data.
SGI systems are suited to many data collection tasks.

A data collection system has the following major parts:

• Sources of data such as telemetry (the PCI bus, serial ports, SCSI devices, and
other device types can be used).

• A repository for the data. This can be a raw device (such as a tape), a disk file, or
a database system.

• Rules for processing. The data collection system might be asked only to buffer the
data and copy it to disk. Or it might be expected to compress the data, smooth it,
sample it, or filter it for noise.

• Optionally, a display. The data collection system may be required to display the
status of the system or to display a summary or sample of the data. The display is
typically not required to maintain a particular frame rate, however.

The first requirement on a data collection system is imposed by the peak data rate of
the combined data sources. The system must be able to receive data at this peak rate
without an overrun; that is, without losing data because it could not read the data as
fast as it arrived.

The second requirement is that the system must be able to process and write the data
to the repository at the average data rate of the combined sources. Writing can proceed
at the average rate as long as there is enough memory to buffer short bursts at the
peak rate.

You might specify a desired frame rate for updating the display of the data. However,
there is usually no real-time requirement on display rate for a data collection system.
That is, the system is correct as long as it receives and stores all data, even if the
display is updated slowly.

Process Control Systems

A process control system monitors the state of an industrial process and constantly
adjusts it for efficient, safe operation. It must respond in real time to avoid waste,
damage, or hazardous operating conditions.

007–4746–001 5



1: Introduction

An example of a process control system would be a power plant monitoring and
control system required to do the following:

• Monitor a stream of data from sensors

• Recognize a dangerous situation has occurred

• Visualize the key data, such as by highlighting representations of down physical
equipment in red and sending audible alarms

The danger must be recognized, flagged, and responded to quickly in order for
corrective action to be taken appropriately. This entails a real-time system. SGI
systems are suited for many process control applications.

REACT Real-Time for Linux
REACT provides the following:

• A SUSE LINUX Enterprise Server 9, Service Pack 1 (SLES9 SP1) kernel built by
SGI with several added enhancements to enable low-latency interrupt response

• System configuration scripts reactcfg.pl and reactboot.pl to help you
easily generate a real-time system

• IRIX to Linux REACT compatibility library

Note: Real–time programs using REACT should be written in the C language, which
is the most common language for system programming on Linux.
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Chapter 2

How Linux and REACT Support Real–Time
Programs

This chapter provides an overview of the real-time support for programs in Linux:

• "Kernel Facilities" on page 7

• "Clocks" on page 10

• "Interchassis Communication" on page 11

Kernel Facilities
The Linux kernel has a number of features that are valuable when you are designing
a real-time program. These are described in the following sections:

• "Special Scheduling Disciplines" on page 7

• "Virtual Memory Locking" on page 8

• "Processes Mapping and CPUs" on page 8

• "Interrupt Distribution Control" on page 9

Special Scheduling Disciplines

The default Linux scheduling algorithm is designed to ensure fairness among
time-shared users. The priorities of time-shared threads are largely determined by the
following:

• Their nice value

• The degree to which they are CPU-bound versus I/O-bound

While the earnings-based scheduler is effective at scheduling time-share applications,
it is not suitable for real time. For deterministic scheduling, Linux provides the
following POSIX real-time policies:

• First-in-first-out

• Round-robin

007–4746–001 7



2: How Linux and REACT Support Real–Time Programs

These policies share a real-time priority band consisting of 99 priorities. Tasks
scheduled using the POSIX real-time policies are not subject to “earnings” controls.
For more information about scheduling, see "Real-Time Priority Band" on page 14 and
the sched_setscheduler(2) man page.

Virtual Memory Locking

Linux allows a task to lock all or part of its virtual memory into physical memory, so
that it cannot be paged out and so that a page fault cannot occur while it is running.

Memory locking prevents unpredictable delays caused by paging, but the locked
memory is not available for the address spaces of other tasks. The system must have
enough physical memory to hold the locked address space and space for a minimum
of other activities.

Examples of system calls used to lock memory are mlock(2) and mlockall(2).

Processes Mapping and CPUs

Normally, Linux tries to keep all CPUs busy, dispatching the next ready process to the
next available CPU. Because the number of ready processes changes continuously,
dispatching is a random process. A normal process cannot predict how often or when
it will next be able to run. For normal programs, this does not matter as long as each
process continues to run at a satisfactory average rate. However, real-time processes
cannot tolerate this unpredictability. To reduce it, you can dedicate one or more CPUs
to real-time work using the following steps:

1. Restrict one or more CPUs from normal scheduling, so that they can run only the
processes that are specifically assigned to them.

2. Isolate one or more CPUs from the effects of scheduler load-balancing.

3. Assign one or more processes to run on the restricted CPUs.

A process on a dedicated CPU runs when it needs to run, delayed only by interrupt
service and by kernel scheduling cycles.
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Interrupt Distribution Control

In normal operations, a CPU receives frequent interrupts:

• I/O interrupts from devices attached to, or near, the CPU

• Timer interrupts that occur on every CPU

• Console interrupts that occur on the CPU servicing the system console

These interrupts can make the execution time of a process unpredictable. I/O
interrupt control is done by /proc filesystem manipulation. For more information on
controlling I/O interrupts, see "Redirect Interrupts" on page 16.

You can minimize console interrupt effects with proper real-time thread placement.
You should not run time-critical threads on the CPU that is servicing the system
console.

You can see where console interrupts are being serviced by examining the
/proc/interrupts file:

# cat /proc/interrupts

CPU0 CPU1 CPU2 CPU3
..

233: 0 12498 0 0 SN hub SAL console driver

..

The above shows that 12,498 console driver interrupts have been serviced by CPU 1.
In this case, CPUs 2 and 3 would be much better choices for running time-critical
threads because they are not servicing console interrupts.

Timer processing is always performed on the CPU from which the timer was started
(such as by executing a POSIX timer_settime() call). You can avoid the effects of
timer processing by not allowing execution of any threads other than time-critical
threads on CPUs that have been designated as such. If your time-critical threads start
any timers, the timer processing will result in additional latency when the timeout
occurs.

007–4746–001 9



2: How Linux and REACT Support Real–Time Programs

Clocks
A real-time program sometimes needs a way to create a high-precision time stamp.
For time stamps with a precision of less than 1 microsecond, you can use one of the
following:

• On SGI systems running Linux, the mmtimer driver provides a nonstandard,
nonportable, memory-mapped interface to the unadjusted, system-wide real-time
clock (RTC). For an example, see "rt_sample.c" on page 49 or the
/usr/include/sn/mmtimer.h file (which is installed with the SGI
mmtimer-devel RPM).

• The POSIX clock_gettime() function with the CLOCK_REALTIME value
provides a standard interface to the memory-mapped RTC. Although
CLOCK_REALTIME only reports a resolution of approximately 1 millisecond, the
resolution is much higher and is equivalent to that provided by the mmtimer
driver. Function call overhead has also been all but eliminated for
clock_gettime() with the CLOCK_REALTIME value on SGI systems running
Linux. Unlike direct RTC access, however, CLOCK_REALTIME is fine-tuned based
on clock synchronization to an outside time source via the network time protocol
(NTP) or other means. For more information, see the clock_gettime(3) man
page.

• The interval time counter (ITC) register provides a free-running, 64–bit counter that
counts up to a fixed relationship to the processor clock. For more information, see
"ITC and ITM Registers".

ITC and ITM Registers

SGI systems for Linux have two application registers of importance for time keeping:

• The interval time counter (ITC) register provides a 64–bit counter that is scaled from
the CPU frequency and is intended to allow an accounting for CPU cycles

• The interval timer match (ITM) register allows the generation of an interval timer
when a certain ITC value has been reached.

ITCs in an SGI system for Linux are not necessarily synchronized. These systems can
contain processors with different frequencies. The ITCs may therefore also run at
different frequencies, meaning that the values obtained from the ITC registers cannot
be easily related to one another. Even if some processors run at the same speed, they
may not have the same clock source and therefore their ITC values may experience
drift relative to one another. Systems are then said to have unsynchronized drifty ITCs.
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This configuration is discoverable through the system abstraction layer (SAL), which
provides a standardized way to determine hardware characteristics. To detect this
situation, set the /proc/sal/itc_drift value to 1 in the proc filesystem.

SGI systems for Linux always use the ITC and ITM to generate the timer tick which
in turn moves the system clock forward. Tick processing is only performed using
CPU 0 and therefore regular time processing is not affected by the differences in ITC
values that may exist between CPUs.

For more information, see the information about the interval timer counter in the
Linux Device Driver Programmer’s Guide.

SHub Real-Time Clock (RTC)

Scalable hub (SHub) ASICs are core components to interconnect multiple CPUs in SGI
systems for Linux. They have the capability to maintain a synchronized time clock
called a global clock or the real-time clock (RTC), which is 55 bits wide. At 20Mhz, the
RTC will take 57 years to wrap around to zero and provides a resolution of around 40
nanoseconds.

A special clock pin connects all SHubs in a system. One node is selected to be the
source for the global clock and all other systems then synchronize to that clock
source. Elaborate mechanisms have been designed to ensure that synchronization is
maintained even if the timing signal becomes distorted or silent for a time period.

The RTC is guaranteed to be a monotonic time source.

Interchassis Communication
SGI systems support standard network interfaces that let you send packets or streams
of data over a local network or the Internet.

This section discusses the following:

• "Socket Programming" on page 12

• "Message-Passing Interface (MPI)" on page 12
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Socket Programming

One standard, portable way to connect processes in different computers is to use the
BSD-compatible socket I/O interface. You can use sockets to communicate within the
same machine, between machines on a local area network, or between machines on
different continents.

Message-Passing Interface (MPI)

The Message-Passing Interface (MPI) is a standard architecture and programming
interface for designing distributed applications. For the MPI standard, see:

http://www.mcs.anl.gov/mpi

SGI supports MPI in SGI ProPack for Linux.

The performance of both sockets and MPI depends on the speed of the underlying
network. The network that connects nodes (systems) in an array product has a very
high bandwidth.
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Controlling CPU Workload

This chapter describes how to use Linux kernel features to make the execution of a
real-time program predictable. Each of these features works in some way to dedicate
hardware to your program’s use, or to reduce the influence of unplanned interrupts
on it:

• "Using Priorities and Scheduling Queues" on page 13

• "Minimizing Overhead Work" on page 15

• "Understanding Interrupt Response Time" on page 19

Using Priorities and Scheduling Queues
The default Linux scheduling algorithm is designed for a conventional time-sharing
system. It also offers additional real-time scheduling disciplines that are better-suited
to certain real-time applications.

This section discusses the following:

• "Scheduling Concepts" on page 13

• "Controlling Kernel and User Threads" on page 15

Scheduling Concepts

In order to understand the differences between scheduling methods, you must
understand the following basic concepts:

• "Timer Interrupts" on page 14

• "Real-Time Priority Band" on page 14

For information about time slices and changing the time slice duration, see the
information about the CPU scheduler in the Linux Configuration and Operations Guide.
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Timer Interrupts

In normal operation, the kernel pauses to make scheduling decisions every
1 millisecond (ms) in every CPU. The frequency of this interval is defined in the
/usr/include/asm/param.h file. Every CPU is normally interrupted by a timer
every timer interval. (However, the CPUs in a multiprocessor are not necessarily
synchronized. Different CPUs may take timer interrupts at different times.)

During the timer interrupt, the kernel updates accounting values, does other
housekeeping work, and chooses which process to run next—usually the interrupted
process, unless a process of superior priority has become ready to run. The timer
interrupt is the mechanism that makes Linux scheduling preemptive; that is, it is the
mechanism that allows a high-priority process to take a CPU away from a
lower-priority process.

Before the kernel returns to the chosen process, it checks for pending signals and may
divert the process into a signal handler.

Real-Time Priority Band

A real-time thread can select one of a range of 99 priorities (1-99) in the real-time
priority band, using POSIX interfaces sched_setparam() or
sched_setscheduler(). The higher the numeric value of the priority, the more
important the thread. For more information, see the sched_setscheduler(2) man
page.

Many soft real-time applications simply must execute ahead of time-share
applications, so a lower priority range is best suited. Because time-share applications
are scheduled at lower priority than real-time applications, a thread running at the
lowest real-time priority (1) still executes ahead of all time-share applications.

Note: Applications cannot depend on system services if they are running ahead of
system threads, without observing system responsiveness timing guidelines.

Priority 99, the highest real-time priority, should not be used by applications. This
priority should be reserved for any high-priority kernel threads.

Real-time users can use tools such as strace(1) and ps(1) to observe the actual
priorities and dynamic behaviors.
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Controlling Kernel and User Threads

In some situations, kernel threads and user threads must run on specific processors or
with other special behavior. Most user threads and a number of kernel threads do not
require any specific CPU or node affinity, and therefore can run on a select set of
nodes. The SGI ProPack for Linux bootcpuset feature controls the placement of both
kernel and user threads that do not require any specific CPU or node affinity. By
placing these threads out of the way of your time-critical application threads, you can
minimize interference from various external events.

As an example, an application might have two time-critical interrupt servicing
threads, one per CPU, running on a four-processor machine. You could set up CPUs 0
and 1 as a bootcpuset and then run the time-critical threads on CPUs 2 and 3.

Note: You must have the SGI cpuset-*.rpm RPM installed to use bootcpusets. For
configuration information, see the bootcpuset(8) man page.

You can use the reactcfg.pl configuration script to simplify this procedure; see
Chapter 7, "Generating a REACT System Configuration" on page 31.

Minimizing Overhead Work
A certain amount of CPU time must be spent on general housekeeping. Because this
work is done by the kernel and triggered by interrupts, it can interfere with the
operation of a real-time process. However, you can remove almost all such work from
designated CPUs, leaving them free for real-time work.

First decide how many CPUs are required to run your real-time application. Then
apply the following steps to isolate and restrict those CPUs:

• "Avoid the Clock Processor (CPU 0)" on page 16

• "Reduce the System Flush Duration" on page 16

• "Redirect Interrupts" on page 16

• "Select the Console Node for SAL Console Driver Interrupt" on page 17

• "Restrict and Isolate CPUs" on page 17
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Note: The steps are independent of each other, but each needs to be done to
completely free a CPU.

Avoid the Clock Processor (CPU 0)

Every CPU takes a timer interrupt that is the basis of process scheduling. However,
CPU 0 does additional housekeeping for the whole system on each of its timer
interrupts. Real-time users are therefore advised not to use CPU 0 for running
real-time processes.

Reduce the System Flush Duration

In SGI systems running Linux, the scalable hub (SHub) ASIC is responsible for
memory transactions with the processor front-side bus. Periodically, the SHub
initiates a system flush, which can impact real-time performance. The system flush
duration by default is set to a value appropriate for more general purpose computing,
and this default value can interfere with extremely time-sensitive threads that require
interrupt response times measured in microseconds. You can set the system flush
duration to a value appropriate for real-time applications by following step 4 in
Chapter 7, "Generating a REACT System Configuration" on page 31.

Redirect Interrupts

To minimize latency of real-time interrupts, it is often necessary to direct them to
specific real-time processors. It is also necessary to direct other interrupts away from
specific real-time processors. This process is called interrupt redirection.

The /proc/irq/interrupt_number/smp_affinity file shows a bitmask of the CPUs
that are allowed to receive a given interrupt. By writing a bitmask to this file, you can
indicate which CPU is allowed to receive that interrupt. A 1 in the least-significant
bit in this mask denotes that CPU 0 is allowed to receive the interrupt. The most
significant bit denotes the highest-possible CPU that the booted kernel could support.

For example, to redirect interrupt 62 to CPU 1, enter the following:

# echo 2 > /proc/irq/62/smp_affinity
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You can examine the /proc/interrupts file to discover where interrupts are being
received on your system.

An example of how to redirect interrupts is demonstrated by the reactboot.pl
configuration script. SGI recommends that someone with knowledge of the system
configuration use this script to redirect only the interrupts that must be moved. For
more information, see Chapter 7, "Generating a REACT System Configuration" on
page 31.

Select the Console Node for SAL Console Driver Interrupt

The console node you select for the system abstraction layer (SAL) console driver
interrupts depends upon whether your system has an L2 system controller or not:

• If your system has an L2 controller, the SAL console driver interrupt will always
appear on a CPU on the first node.

• If your system does not have an L2 controller, the SAL console driver generates
interrupts that will be directed toward a single CPU on the node where the
console is attached. SGI recommends that you attach the console to a node that
will not be used for time-critical threads. Because the clock processor always runs
on CPU 0, SGI recommends that you use node 0 as the console node.

Note: You cannot select which CPU on the console node will receive interrupts.

For more information, see the SGI L1 and L2 Controller Software User’s Guide.

Restrict and Isolate CPUs

In general, the Linux scheduling algorithms run a process that is ready to run on any
CPU. For best performance of a real-time process or for minimum interrupt response
time, you must use one or more CPUs without competition from other scheduled
processes. You can exert the following levels of increasing control:

• Restricted

• Isolated
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Note: The term isolated, when referring to a CPU in Linux, means to remove the CPU
from load balancing considerations, a time-consuming scheduler operation. It does
not refer to the IRIX definition for isolated CPUs.

You can use the reactcfg.pl configuration script to perform the step required to
restrict or isolate a CPU. For more information, see Chapter 7, "Generating a REACT
System Configuration" on page 31.

Restricting a CPU from Scheduled Work

You can restrict one or more CPUs from running scheduled processes. The only
processes that can use a restricted CPU are those processes that you assign to it, along
with certain per-CPU kernel threads.

To restrict one or more CPUs, do the following (or use the reactcfg.pl
configuration script documented in Chapter 7, "Generating a REACT System
Configuration" on page 31):

1. Configure a bootcpuset as described in "Controlling Kernel and User Threads" on
page 15 and reboot the system.

2. Do one of the following:

• Make a cpuset that encompasses just the CPU that you want to restrict. See
the cpuset(1) man page for more information.

• Run the SGI-provided sysmp(MP_RESTRICT,cpu) call from program control
found in libsgirt. For more information, see the libsgirt(3) man page.

To remove the restriction, allowing the CPUs to execute any scheduled process, you
must reboot the system without the configured bootcpuset.

After restricting a CPU, you can assign processes to it using the SGI cpuset
command.

For example, to run a program on the cpuset named rtcpu3 (which was set up to
include only CPU 3), do the following:

# cpuset --invoke=/rtcpu3 -I ~rt/bin/rtapp

You can also assign a process by using the following libsgirt function:

sysmp(MP_MUSTRUN_PID, cpu, pid)
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For more information, see the cpuset(1) and libsgirt(3) man pages.

Isolating a CPU from Scheduler Load Balancing

You can isolate a CPU so that it is not subject to the effects of scheduler load
balancing. Isolating a CPU removes one source of unpredictable delays from a
real-time program and helps further minimize the latency of interrupt handling.

To isolate one or more CPUs, you must specify them at system boot time. Do the
following (or use the reactcfg.pl configuration script documented in Chapter 7,
"Generating a REACT System Configuration" on page 31):

1. Include the following string in the append argument for the kernel you are
booting, or in the /etc/elilo.conf file:

isolcpus=cpu,..

For example, suppose you have the following existing append argument:

append = "selinux=0 console=ttyS0,115200n8 init=/sbin/bootcpuset"

To isolate CPUs 2 and 3, change the append argument to the following:

append = "selinux=0 console=ttyS0,115200n8 init=/sbin/bootcpuset isolcpus=2,3"

2. If you edited the /etc/elilo.conf file in step 1, run the elilo command to
place a copy of the updated elilo.conf file in the appropriate directory:

# elilo

3. Reboot the system. After the reboot completes, CPUs 2 and 3 will be isolated.

Normally, you would also want to restrict the isolated CPUs. See "Restricting a CPU
from Scheduled Work" on page 18.

Understanding Interrupt Response Time
Interrupt response time is the time that passes between the instant when a hardware
device raises an interrupt signal and the instant when (interrupt service completed)
the system returns control to a user process. Linux guarantees a maximum interrupt
response time on certain systems, but you must configure the system properly to
realize the guaranteed time.
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Maximum Response Time Guarantee

In properly configured systems, interrupt response time is guaranteed not to exceed
30 microseconds (usecs) for SGI systems running Linux.

This guarantee is important to a real-time program because it puts an upper bound
on the overhead of servicing interrupts from real-time devices. You should have some
idea of the number of interrupts that will arrive per second. Multiplying this by
30 usecs yields a conservative estimate of the amount of time in any one second
devoted to interrupt handling in the CPU that receives the interrupts. The remaining
time is available to your real-time application in that CPU.

Components of Interrupt Response Time

The total interrupt response time includes the following sequential parts:

Hardware latency The time required to make a CPU respond to an
interrupt signal.

Software latency The time required to dispatch an interrupt thread.

Device service time The time the device driver spends processing the
interrupt and dispatching a user thread.

Mode switch The time it takes for a thread to switch from kernel
mode to user mode.

Figure 3-1 diagrams the parts discussed in the following sections.
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Figure 3-1 Components of Interrupt Response Time

Hardware Latency

When an I/O device requests an interrupt, it activates a line in the PCI bus interface.
The bus adapter chip places an interrupt request on the system internal bus and a
CPU accepts the interrupt request.

The time taken for these events is the hardware latency, or interrupt propagation delay.

For more information, see Chapter 5, "PCI Devices" on page 27

Software Latency

Software latency is affected by the following:

• "Kernel Critical Sections" on page 22

• "Interrupt Threads Dispatch" on page 22
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Kernel Critical Sections

Certain sections of kernel code depend on exclusive access to shared resources. Spin
locks are used to control access to these critical sections. Once in a critical section,
interrupts are disabled. New interrupts are not serviced until the critical section is
complete.

There is no guarantee on the length of kernel critical sections. In order to achieve
30-usec response time, your real-time program must avoid executing system calls on
the CPU where interrupts are handled. The way to ensure this is to restrict that CPU
from running normal processes. For more information, see "Restricting a CPU from
Scheduled Work" on page 18 and "Isolating a CPU from Scheduler Load Balancing"
on page 19.

You may need to dedicate a CPU to handling interrupts. However, if the
interrupt-handling CPU has power well above that required to service interrupts (and
if your real-time process can tolerate interruptions for interrupt service), you can use
the restricted CPU to execute real-time processes. If you do this, the processes that
use the CPU must avoid system calls that do I/O or allocate resources, such as
fork(), brk(), or mmap(). The processes must also avoid generating external
interrupts with long pulse widths.

In general, processes in a CPU that services time-critical interrupts should avoid all
system calls except those for interprocess communication and for memory allocation
within an arena of fixed size.

Interrupt Threads Dispatch

The primary function of interrupt dispatch is to determine which device triggered the
interrupt and dispatch the corresponding interrupt thread. Interrupt threads are
responsible for calling the device driver and executing its interrupt service routine.

While the interrupt dispatch is executing, all interrupts at or below the current
interrupt’s level are masked until it completes. Any pending interrupts are
dispatched before interrupt threads execute. Thus, the handling of an interrupt could
be delayed by one or more devices.

In order to achieve 30-usec response time on a CPU, you must ensure that the
time-critical devices supply the only device interrupts directed to that CPU. For more
information, see "Redirect Interrupts" on page 16.
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Device Service Time

Device service time is affected by the following:

• "Interrupt Service Routines"

• "User Threads Dispatch"

Interrupt Service Routines

The time spent servicing an interrupt should be negligible. The interrupt handler
should do very little processing; it should only wake up a sleeping user process and
possibly start another device operation. Time-consuming operations such as allocating
buffers or locking down buffer pages should be done in the request entry points for
read(), write(), or ioctl(). When this is the case, device service time is minimal.

User Threads Dispatch

Typically, the result of the interrupt is to make a sleeping thread runnable. The
runnable thread is entered in one of the scheduler queues. This work may be done
while still within the interrupt handler.

Mode Switch

A number of instructions are required to exit kernel mode and resume execution of
the user thread. Among other things, this is the time when the kernel looks for
software signals addressed to this process and redirects control to the signal handler.
If a signal handler is to be entered, the kernel might have to extend the size of the
stack segment. (This cannot happen if the stack was extended before it was locked.)

Minimizing Interrupt Response Time
You can ensure interrupt response time of 30 usecs or less for one specified device
interrupt on a given CPU provided that you configure the system as follows:

• The CPU does not receive any other SN hub device interrupts.

• The interrupt is handled by a device driver from a source that promises negligible
processing time.

• The CPU is isolated from the effects of load balancing.
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• The CPU is restricted from executing general Linux processes.

• Any process you assign to the CPU avoids system calls other than interprocess
communication and allocation within an arena.

When these things are done, interrupts are serviced in minimal time.
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Optimizing Disk I/O

A real-time program sometimes must perform disk I/O under tight time constraints
and without affecting the timing of other activities such as data collection. This
chapter covers techniques that can help you meet these performance goals:

• "Memory-Mapped I/O" on page 25

• "Asynchronous I/O" on page 25

Memory-Mapped I/O
When an input file has a fixed size, the simplest as well as the fastest access method
is to map the file into memory. A file that represents a database (such as a file
containing a precalculated table of operating parameters for simulated hardware) is
best mapped into memory and accessed as a memory array. A mapped file of
reasonable size can be locked into memory so that access to it is always fast.

You can also perform output on a memory-mapped file simply by storing into the
memory image. When the mapped segment is also locked in memory, you control
when the actual write takes place. Output happens only when the program calls
msync() or changes the mapping of the file at the time that the modified pages are
written. The time-consuming call to msync() can be made from an asynchronous
process. For more information, see the msync(2) man page.

Asynchronous I/O
You can use asynchronous I/O to isolate the real-time processes in your program
from the unpredictable delays caused by I/O. Asynchronous I/O in Linux strives to
conform with the POSIX real-time specification 1003.1-2003.

This section discusses the following:

• "Conventional Synchronous I/O" on page 26

• "Asynchronous I/O Basics" on page 26
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Conventional Synchronous I/O

Conventional I/O in Linux is synchronous; that is, the process that requests the I/O is
blocked until the I/O has completed. The effects are different for input and for output.

For disk files, the process that calls write() is normally delayed only as long as it
takes to copy the output data to a buffer in kernel address space. The device driver
schedules the device write and returns. The actual disk output is asynchronous. As a
result, most output requests are blocked for only a short time. However, since a
number of disk writes could be pending, the true state of a file on disk is unknown
until the file is closed.

In order to make sure that all data has been written to disk successfully, a process can
call fsync() for a conventional file or msync() for a memory-mapped file. The
process that calls these functions is blocked until all buffered data has been written.
For more information, see the fsync(2) and msync(2) man pages.

Devices other than disks may block the calling process until the output is complete. It
is the device driver logic that determines whether a call to write() blocks the caller,
and for how long.

Asynchronous I/O Basics

A real-time process must read or write a device, but it cannot tolerate an
unpredictable delay. One obvious solution can be summarized as “call read() or
write() from a different process, and run that process in a different CPU.” This is
the essence of asynchronous I/O. You could implement an asynchronous I/O scheme
of your own design, and you may wish to do so in order to integrate the I/O closely
with your own configuration of processes and data structures. However, a standard
solution is available.

Linux supports asynchronous I/O library calls that strive to conform with the POSIX
real-time specification 1003.1-2003. You use relatively simple calls to initiate input or
output.

For more information, see the aio_read(3) and aio_write(3) man pages.
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PCI Devices

The Linux pci interface provides a mechanism to access the PCI bus address spaces
from user programs.

Performing programmed I/O on pci devices on SGI Linux systems involves the
following steps:

1. Examine /proc/bus/pci/devices and obtain offsets for the base address
registers (BARs) of the devices that you want to map. The format of the lines is as
follows: (with field widths in the number of hexadecimal characters shown, and
line breaks added for readability):

bus:2x (slotnumber<<3_|_fn):2x vend:8x bar0 bar1 bar2 bar3 ...

For example:

if ((fptr = fopen( "/proc/bus/pci/devices", "r")) == NULL) {

printf( "Unable to open /proc/bus/pci/devices\n" );

}

while(fgets(buf, sizeof(buf) - 1, fptr)) {

sscanf( buf, "%2x%2x %8x %*x %lx %*lx %*lx %*lx %*lx %*lx %*lx %*lx

%*lx %*lx %*lx %*lx %*lx %*lx",

&sbus, &sdevfn, &svend, &sbar[0], &sbar[1], &sbar[2], &sbar[3],

&sbar[4], &sbar[5], &sbar[6], &sbar[7]);

if(( sbus == bus ) && (sdevfn == devfn)) {

/* This is the bus, slot and function we’re looking for,

* so save the base address register offset information. */

for(int i=0; i> 16;

device = svend & 0xffff;

}

}

fclose( fptr );

2. Open the appropriate device file for the bus, slot, and function in which you are
interested. The device files are named as follows:

/proc/bus/pci/bus/slot.function
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For example:

memfile = (char*) malloc( 32 );
sprintf( memfile, "/proc/bus/pci/%02d/%02d.%d", bus, slot, function );

fd = open( memfile, O_RDWR );

3. Set the memory map state for the file to MEM space using the
PCIIOC_MMAP_IS_MEM request to the ioctl() system call.

For example:

ioctl(fd, PCIIOC_MMAP_IS_MEM);

4. Map the opened file, using the offset obtained in step 1 as the offset parameter.

For example:

tmpPtr = (char *) mmap( NULL, (size_t) len, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, (off_t) offset[bar]);

For a complete example, see Appendix B, "Reading MAC Addresses Example
Program" on page 63.
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Installation Overview

To install REACT, do the following:

1. Install SUSE LINUX Enterprise Server 9, Service Pack 1 (SLES9 SP1) as outlined in
the SGI ProPack 4 for Linux Start Here.

Note: Do not install a kernel other than the default Linux kernel.

2. Install the appropriate SGI ProPack 4 for Linux RPMs for your site, including at
least the following:

cpuset-*.rpm

The following RPM is optional but recommended:

mmtimer-devel

Note: Do not install a kernel and kernel module RPMs other than the defaults. In
step 3 below, the REACT kernel and modules will be installed over the defaults.

For more information, see SGI ProPack 4 for Linux Start Here.

3. Install the following RPMs from the REACT CD:

• REACT kernel (required):

kernel-rt-*.rpm

• REACT sample system configuration scripts (required to run reactcfg.pl
and reactboot.pl):

react-configuration-*.rpm

• REACT kernel source (required to build rt_sample_mod discussed in
Appendix A, "Example Application" on page 39):

kernel-rt-source-*.rpm

• IRIX to Linux REACT compatibility library:

libsgirt-*.rpm
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• REACT documentation:

react-docs-*.rpm

• SLES9 SP1 modules built for the REACT kernel:

km-rt-arsess-*.rpm
km-rt-csa-*.rpm

km-rt-job-*rpm

km-rt-numatools-*.rpm

km-rt-xpmem-*.rpm

km-rt-xvm-standalone-*.rpm

For more information, see the following file on the REACT CD:

/usr/share/doc/sgi-react-1.0/README.relnotes
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Generating a REACT System Configuration

This chapter explains how to configure restricted and isolated CPUs on a system
running the REACT real-time for Linux product.

This procedure uses the following configuration scripts to assist in generating a
simple REACT configuration:

• reactcfg.pl is a Perl script that edits the /etc/bootcpuset.conf and
/etc/elilo.conf scripts. "Example reactcfg.pl Output" on page 34 shows
the script workflow.

Note: The script places backup files in /etc/elilo.conf.rtbak and
/etc/bootcpuset.conf.rtbak before making any changes to the original files.

• reactboot.pl is a Perl script that sets the cpusets and redirects interrupts. See
"Example reactboot.pl Output" on page 36.

These scripts as released make assumptions about how your system is configured.
You should use them in their default state as an aid to learning the configuration
procedure. No configuration changes are made to your system until you confirm the
action to overwrite the /etc/elilo.conf file, at which point both
/etc/bootcpuset.conf and /etc/elilo.conf will be overwritten.

After you understand the overall procedure and the REACT system configuration,
you can modify the scripts to meet your specific needs and generate your final
production configuration. If you only have a single system to configure, you may
prefer to edit the /etc/elilo.conf and /etc/bootcpuset.conf files directly
rather than modify the reactcfg.pl script. However, if you have multiple systems
to modify, it may be more efficient to modify the script and then reuse it on the other
systems. The reactboot.pl script is meant to be run after every reboot; therefore,
you should modify the script as necessary or write a new script.
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Note: This procedure assumes that, at a minimum, you have installed the following
RPMs from the SGI ProPack for Linux and REACT CDs:

cpuset-*.rpm

kernel-rt-*.rpm
react-configuration-*.rpm

You must have at least these RPMs installed before beginning this procedure.

Procedure
Do the following:

1. Log in as root.

2. Decide which CPUs you want to restrict for real-time use.

Examining /proc/interrupts can aid in determining these CPUs. You should
choose CPUs that are not already servicing any regular interrupts beyond the
per–CPU interrupts (such as timer and IPI). You cannot use CPU 0 for real
time. Although the reactboot.pl script attempts to redirect all interrupts to
CPUs that are not used for real time, certain interrupts cannot be moved,
including the console interrupt.

Note: Interrupt affinity changes are temporary and are not retained across system
reboots. SGI recommends that you run a set-up script equivalent to
reactboot.pl after every reboot to set up your real-time cpusets and set the
affinity of device interrupts.

3. Run the reactcfg.pl script, supplying a comma-separated list of individual
real-time CPUs, a range of real-time CPUs, or a mixture of both:

reactcfg.pl real-time-CPU-list

The script will set up the appropriate /etc/bootcpuset.conf and
/etc/elilo.conf files based on the CPUs listed and the number of CPUs on
your system. As an example, on an 8–processor system, the following command
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line will set up CPUs 0, 1, 4, 5, and 6 in the bootcpuset, with CPUs 2, 3 and 7
restricted and isolated for real-time use:

# reactcfg.pl 2-3,7

It will also create a new section labeled rt in your /etc/elilo.conf file and
make this the default boot section for your system.

4. Reduce the Altix system flush duration:

a. Reboot the machine but interrupt the boot process when the EFI Boot
Manager menu comes up and select the following:

EFI Shell [Built-in]

b. Enter power-on diagnostic (POD) mode by using the pod command:

Shell> pod

c. Enter the following (with quotes) to turn the system flush duration down to a
single clock tick (the default is 8 ):

0 000: POD SysCt (RT) Cac> setallenv SysFlushDur "1"

Note: Use this procedure only for systems running time-critical real-time
applications. (There is a slight chance that heavily subscribed systems
running with extremely heavy NUMAlink traffic could experience system
hangs.) This setting is static across system boots.

d. Exit POD mode:

0 000: POD SysCt (RT) Cac> exit

e. Reset the system to allow the new SysFlushDur setting to take effect and
allow the system to reboot. All but a few CPU-specific threads will be
running within the bootcpuset. The real-time CPUs will be isolated from the
effects of load balancing.

5. When the system comes back up, run the reactboot.pl script to determine
how to do the run-time set up of your system:

# reactboot.pl
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The reactboot.pl script does the following:

• Creates cpusets labeled rtcpuN for each CPU that is not part of the
bootcpuset. You can use these cpusets to run your real-time threads. You will
find these cpusets in /dev/cpuset, along with the bootcpuset set up by
reactcfg.pl.

• Redirects interrupts to the CPUs contained in the bootcpuset. This is just a
working approximation; someone familiar with your site’s hardware
configuration and system requirements should set up the interrupt redirection.
To set up the interrupt redirection, echo the correct values to the
/proc/irq/interrupt/smp_affinity cpumasks. For more information, see
"Redirect Interrupts" on page 16.

SGI recommends that you run a set-up script equivalent to reactboot.pl after
every reboot to set up your real-time cpusets and set the affinity of device
interrupts. You can modify reactboot.pl to configure interrupt affinity and
cpusets according to your own needs.

To run a process on a restricted CPU, you must invoke or attach it to a real-time
cpuset (that is, a cpuset containing a CPU that does not exist in the bootcpuset, such
as the /dev/cpuset/rtcpuN cpusets created above).

For more information, see the cpuset(1) and libcpuset(3) man pages and the
set_affinity_cpuset() function in the rt_sample application in Appendix A,
"Example Application" on page 39.

Example reactcfg.pl Output
Following is an example of the output generated by reactcfg.pl (line breaks
added here for readability). The script modifies the bootcpusets based on the CPUs
you provide, adds the rt label, and changes the append values. (The script output
also contains information currently contained in the /etc/elilo.conf file, such as
comments.)

# reactcfg.pl 2-3

realtime cpus 2 3

bootcpuset cpus 0 1

bootcpuset mems 0

/etc/bootcpuset.conf
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cpus 0,1
mems 0

Does the above /etc/bootcpuset.conf look OK? (y=yes)y

/etc/elilo.conf:

# This file has been transformed by /sbin/elilo.

# Please do NOT edit here -- edit /etc/elilo.conf instead!

# Otherwise your changes will be lost e.g. during kernel-update.

#

# Modified by YaST2. Last modification on Fri Nov 5 16:32:33 2004

prompt

timeout = 80

read-only
relocatable

default = rt

append = "selinux=0 console=ttyS0,115200n8 kdb=on splash=silent elevator=cfq

thash_entries=2097152"

image = vmlinuz
###Don’t change this comment - YaST2 identifier: Original name: linux###

label = Linux

initrd = initrd

root = /dev/sdb6

image = vmlinuz

###Don’t change this comment - YaST2 identifier: Original name: failsafe###

label = Failsafe

initrd = initrd

root = /dev/sdb6
append = "ide=nodma nohalt noresume selinux=0 barrier=off"

image = vmlinuz

label = rt

initrd = initrd

root = /dev/sdb6
append = "selinux=0 console=ttyS0,115200n8 kdb=on splash=silent elevator=cfq

thash_entries=2097152 init=/sbin/bootcpuset isolcpus=2,3"
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Does the above elilo.conf look OK? (y=yes overwrites /etc/elilo.conf)y

Backup files are /etc/elilo.conf.rtbak and /etc/bootcpuset.conf.rtbak
Please reboot your system to restrict and isolate cpus

Remember to change the SysFlushDur during reboot if not done already,

from pod mode, run ’setallenv SysFlushDur "1"’,

see the React Realtime for Linux documentation for details.

Example reactboot.pl Output
Following is an example of the output generated by reactboot.pl:

# reactboot.pl

CPUSET /dev/cpuset/rtcpu2 created

CPUSET /dev/cpuset/rtcpu3 created
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Troubleshooting

You can use the following diagnostic tools:

• Use the cat(1) command to view the /proc/interrupts file in order to
determine where your interrupts are going:

cat /proc/interrupts

For an example, see "Running the Sample Application" on page 59.

• Use the profile.pl(1) Perl script to do procedure-level profiling of a program
and discover latencies. For more information, see the profile.pl(1) man page.

• Use the following ps(1) command to see where your threads are running:

ps -FC processname

For an example, see "Running the Sample Application" on page 59. For more
information, see the ps(1) man page.

• Use the top(1) command to display the largest processes on the system. For more
information, see the top(1) man page.

• Use the strace(1) command to determine where an application is spending most
of its time and where there may be large latencies. The strace command is a
very flexible tool for tracing application activities and can be used for tracking
down latencies in an application. Following are several simple examples:

– To see the amount of time being used by system calls in the form of histogram
data for a program named hello_world, use the following:

$ strace -c hello_world

execve("./hello_world", ["hello_world"], [/* 80 vars */]) = 0

Hello World

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

27.69 0.000139 28 5 3 open
20.92 0.000105 15 7 mmap

10.76 0.000054 54 1 write

7.57 0.000038 13 3 fstat

6.57 0.000033 17 2 1 stat

5.98 0.000030 15 2 munmap
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4.58 0.000023 12 2 close
4.38 0.000022 22 1 mprotect

4.18 0.000021 21 1 madvise

2.99 0.000015 15 1 read

2.39 0.000012 12 1 brk

1.99 0.000010 10 1 uname
------ ----------- ----------- --------- --------- ----------------

100.00 0.000502 27 4 total

– You can record the actual chronological progression through a program with
the following command (line breaks added for readability):

$ strace -ttT hello_world

14:21:03.974181 execve("./hello_world", ["hello_world"], [/* 80 vars */]) = 0

..

14:21:03.976992 mmap(NULL, 65536, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x2000000000040000 <0.000007>

14:21:03.977053 write(1, "Hello World\n", 12Hello World

) = 12 <0.000008>

14:21:03.977109 munmap(0x2000000000040000, 65536) = 0 <0.000009>

14:21:03.977158 exit_group(0) = ?

The timestamps are displayed in the following format:

hour:minute:second.microsecond

The execution time of each system call is displayed in the following format:

<second>

Note: You can use the -p option to attach to another already running process.

For more information, see the strace(1) man page.
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Example Application

This appendix provides excerpts from a sample real-time application to be used with
REACT. The application is composed of two different parts:

• Example kernel module, which shows a simple example of creating and building a
driver with a standard miscellaneous device interface. It is provided primarily to
service the example user-space application.

The example kernel module provides two modes of operation:

– A thread can wait for an interrupt to be sent to the CPU on which it last ran

– A thread can send an interrupt to a specific CPU

Upon receiving an interrupt, the waiting process will simply read the system
real-time clock (RTC) and return that value to user-space.

• Example user-space application, which shows examples of the following concepts:

– Creating cpusets and assigning threads to them, thereby changing thread/CPU
affinity

– Changing thread/CPU affinity without cpusets

– Changing scheduling policies and priorities

– Reading the system RTC via the memory-mapped mmtimer driver

– Locking memory

This program runs as a dual process:

– A sending process (IPI_send) that does the following:

1. Sets its CPU affinity either via cpusets or via the sched_setaffinity()
call. For more information, see the sched_setaffinity(2) man page.

2. Sets its scheduling policy and priority.

3. Uses the example kernel module driver to repeatedly send interrupts to a
given destination CPU.
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– A receiving process (main) that does the following:

1. Locks its current and future memory (if requested).

2. Sets its CPU affinity via cpusets.

3. Sets its scheduling policy and priority.

4. Uses the example kernel module driver to do the following:

• Wait for interrupts

• Retrieve kernel RTC readings

• Read the memory-mapped RTC for comparison readings

Note: Header information has been truncated from the examples for readability.

This example application requires that the SGI ProPack for Linux mmtimer-devel
RPM is installed on the system.

Building and Loading a Kernel Module
To build the rt_sample_mod application kernel module, do the following on the
target system:

1. Log in to the target system as root.

2. Set up a kernel module development environment:

a. Ensure that the kernel-rt-source-*.rpm RPM is installed.

b. Ensure that the kernel-rt kernel is in use.

c. Change to the source directory:

# cd /lib/modules/‘uname -r‘/source

d. Create the configuration file:

# make cloneconfig

e. Build the kernel:

# make compressed
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3. Make the rt_sample_mod directory:

# mkdir /root/rt_sample_mod

4. Change to the rt_sample_mod directory:

# cd /root/rt_sample_mod

5. Copy the rt_mod_sample source files to the target system. For example:

# scp bob@server:~/rt_sample/rt_sample_mod/* .

6. Build the rt_sample_mod.ko file:

# make -C /lib/modules/‘uname -r‘/source SUBDIRS=$PWD modules

7. Copy the rt_sample_mod.ko file to the ‘uname -r‘ directory:

# cp rt_sample_mod.ko /lib/modules/‘uname -r‘

For more information, see the uname(1) man page.

8. Make a dependency file:

# depmod

For more information, see the depmod(8) man page.

9. Load the rt_sample_mod module:

# modprobe rt_sample_mod

For more information, see the modprobe(8) man page.

You can then use the rt_sample_mod kernel module with the rt_sample
application.

Makefile

Following is a portion of the kernel-space Makefile:

CFLAGS += -D__KERNEL__ -DMODULE -g

obj-m += rt_sample_mod.o

rt_sample_mod-objs := rt_samplemod.o ipi.o
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rt_samplemod.h

Following is a portion of the rt_samplemod.h file:

#define MAXCPUS 64

/* We might store more information here if we were measuring response

* times at different points.

*/

typedef struct rttask_struct {

unsigned long long rtctime; /* Time waiting while thread is woken */
struct semaphore sysrt_sema; /* Mutex to wait on */

int ready; /* Waiting for interprocessor interrupt (IPI)*/

} rttask_t;

extern int rt_register_percpu_irq(void);
extern void rt_send_IPI_single (int);

extern void rt_free_percpu_irq(void);

extern rttask_t * rttasks[MAXCPUS];

#define IA64_IPI_RT 0xfc /* Interprocessor interrupt for real-time test */

rt_samplemod.c

Following is a portion of the rt_samplemod.c file:

#include <linux/miscdevice.h>

#include <linux/fs.h>

#include <asm/uaccess.h>

#include <asm/sn/addrs.h>
#include <asm/sn/shub_mmr.h>

#include <asm/sn/clksupport.h>

#include "rt_samplemod.h"

MODULE_LICENSE("GPL");

#define RTMOD_NAME "rt_sample_mod"

static ssize_t rt_samplemod_run(struct file * file, const char * buf, size_t count,
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loff_t *f_pos);
/*

* Avoid the big kernel lock (BKL) by making rt_samplemod_run() a ’write’ call rather

* than an ioctl(), to avoid introducing latency.

*/

static struct file_operations rt_samplemod_fops = {
owner: THIS_MODULE,

write: rt_samplemod_run,

};

static struct miscdevice rt_samplemod_miscdev = {

152,

RTMOD_NAME,
&rt_samplemod_fops

};

#define RT_INTR_WAIT 1

#define RT_SEND_IPI 2

rttask_t * rttasks[MAXCPUS];

int rt_samplemod_init(void) {

memset(rttasks, 0, sizeof(rttasks));

/* Register this device */

strcpy(rt_samplemod_miscdev.devfs_name, RTMOD_NAME);

if (misc_register(&rt_samplemod_miscdev)) {

printk(KERN_ERR "%s: failed to register device\n", RTMOD_NAME);
return -1;

}

/* Set up the interrupt request */

rt_register_percpu_irq();

printk(KERN_INFO "%s has been initialized\n",RTMOD_NAME);

return 0;

}

void rt_samplemod_exit(void) {
int i;
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rt_free_percpu_irq();
for (i=0; i<MAXCPUS; i++) {

if (rttasks[i] != NULL) kfree(rttasks[i]);

}

misc_deregister(&rt_samplemod_miscdev);

printk(KERN_INFO "%s exit\n",RTMOD_NAME);

}

/*

* Avoid the BKL by making rt_samplemod_run() a

* ’write’ call rather than an ioctl(), to avoid introducing latency.
* Pass everything in as ’buf’, ignoring everything else.

*/

static ssize_t

rt_samplemod_run(struct file * file, const char * buf, size_t count,

loff_t *f_pos)
{

int error = 0;

unsigned long long cmd;

unsigned long long arg1;

unsigned long long * argp = (unsigned long long *)(buf+sizeof(cmd));

if (copy_from_user(&cmd, (void *)buf, sizeof(cmd))) {

return -EFAULT;

}

if (__get_user(arg1, argp)) {

return -EFAULT;
}

switch (cmd) {

case RT_INTR_WAIT:

{
rttask_t * curr;

unsigned long cpu = smp_processor_id();

/* First time here on this CPU */

if (rttasks[cpu] == NULL) {
/* Allocate and initialize the per-cpu data area */

curr = kmalloc(sizeof(rttask_t),GFP_KERNEL);
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if (curr == NULL) {
error = -ENOMEM;

break;

}

curr->ready = 0;

init_MUTEX_LOCKED(&curr->sysrt_sema);
rttasks[cpu] = curr;

} else {

curr = rttasks[cpu];

}

/* The send will not happen until ’ready’ is set and

* the semaphore is down, so there is no race.
*/

curr->ready = 1;

down_interruptible(&curr->sysrt_sema);

/* This is how we read the RTC time in the kernel.
* Note that we are only measuring the time to go from

* kernel space to user space. An actual interrupt response

* measurement would take RTC time readings at other

* points within this driver.

*/

curr->rtctime = rtc_time();
argp = (unsigned long long *)(buf+sizeof(cmd));

/* Copy RTC reading to user space */

error = __put_user(curr->rtctime, argp);

}

break;
case RT_SEND_IPI:

{

int cpuid = arg1; /* Destination cpu */

rttask_t * tsk = rttasks[cpuid];

if ((tsk == NULL) || (!tsk->ready) ||

(tsk->sysrt_sema.count.counter != -1)) {

error = -ENOMEM;

break;

}

/*
* Only single threaded here per CPU, so no race with

* above.
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*/
tsk->ready = 0;

rt_send_IPI_single(cpuid);

}

break;

default:
error = -EINVAL;

break;

}

return error;

}

module_init(rt_samplemod_init);

module_exit(rt_samplemod_exit);

ipi.c

Following is a portion of the ipi.c file:

#include <linux/irq.h>

#include <asm/sn/clksupport.h>
#include <asm/sn/intr.h>

#include <asm/hw_irq.h>

#include "rt_samplemod.h"

/*
* This is the actual interrupt handler. We could get an RTC reading

* here if we were measuring response times

*/

static irqreturn_t

rt_handle_IPI (int irq, void *dev_id, struct pt_regs *regs)
{

int this_cpu = get_cpu(); /* Disable preemption and get CPU number */

rttask_t * tsk = rttasks[this_cpu];

mb();

up(&tsk->sysrt_sema); /* Raise the semaphore */
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put_cpu(); /* Re-enable preemption */

return IRQ_HANDLED;

}

static inline void

rt_send_IPI(int cpuid, int vector, int delivery_mode)

{

long physid;

physid = cpu_physical_id(cpuid);

sn_send_IPI_phys(physid, vector, delivery_mode);

}

/*
* Replaces send_IPI_single, but no per-CPU operation bit is set.

* It also disables preemption and interrupt requests itself, and calls

* rt_send_IPI rather than the nonexported platform_send_ipi

* (which becomes sn2_send_IPI).

* Caller must ensure the existence of the rttasks element.

*/
void

rt_send_IPI_single (int dest_cpu)

{

unsigned long s;

get_cpu(); /* Prevent preemption. */

/* For performance, make sure we are not interrupted until the IPI is sent */

local_irq_save(s);

rt_send_IPI(dest_cpu, IA64_IPI_RT, IA64_IPI_DM_INT);

local_irq_restore(s);
put_cpu();

}

/* Register our interrupt request */

int

rt_register_percpu_irq(void)
{

/* With SA_PERCPU_IRQ, this becomes similar to register_percpu_irq */

007–4746–001 47



A: Example Application

return request_irq(IA64_IPI_RT, rt_handle_IPI, SA_PERCPU_IRQ,
"Realtime IPI", NULL);

}

/* Free our interrupt request */

void
rt_free_percpu_irq(void)

{

free_irq(IA64_IPI_RT,NULL);

}

Building and Loading a User-Space Application
To build and load the user-space module, enter the following:

[user@linux user]$ make

Makefile

Following is a portion of the user-space Makefile:

TARGETS=rt_sample

COMFILES=common.c mmtimer.c
COMOBJECTS=$(COMFILES)

SFILES=rt_sample.c

SOBJECTS=$(SFILES)

default: $(TARGETS)

rt_sample: $(SOBJECTS) $(COMOBJECTS) -lcpuset
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rt_sample.c

Following is a portion of the rt_sample.c file:

#include <stdio.h>
#include <errno.h>

#include <fcntl.h>

#include <pthread.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>
#include <signal.h>

#include <sys/mman.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/ioctl.h>
#include <sn/mmtimer.h>

#include "common.h"

#define SLEEPTIME 3000 /* usecs to sleep between interrupts */

extern unsigned long * open_mmtimer(void);

/* name of the device, usually in /dev */

#define RTMOD_NAME "rt_sample_mod"

#define DEFAULT_RUN_TIME 60 /* Run for 60 seconds default */
#define RT_INTR_WAIT 1

#define RT_SEND_IPI 2

typedef signed short cpuid_t; /* cpuid */

typedef struct parm_s {
unsigned long cmd;

unsigned long arg1;

} parm_t;

cpuid_t cpu = 2;

cpuid_t ipi_cpu = 3;

int memlock = 0;

/* These externs get set in mmtimer.c */
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extern unsigned long period;
extern unsigned long mask;

int rt_fd;

char * usage =
"usage: rt_sample [-chm] [-p rcv_processor] [-o snd_processor] [-t seconds]\n"

" -c IPI src processor is in cpuset\n"

" -h print usage instructions\n"

" -m lock memory\n"

" -p# receiving processor\n"

" -o# IPI src processor\n"
" -t# total run time (secs)\n";

/*

* Print out the command line options and quit.
*/

static void

usage_exit(void)

{

fprintf(stderr, "%s", usage);

exit(0);
}

/* This routine sends IPIs to the receiving CPU. */

void

IPI_send(int cpuset)
{

parm_t rti;

struct timespec req;

if (cpuset)
set_affinity_cpuset(ipi_cpu);

else

set_affinity(ipi_cpu);

set_scheduling(10, SCHED_RR);

sleep(5); /* Give other IPI_send processes a chance to start if
they are on the same CPU */
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req.tv_sec = 0; req.tv_nsec = SLEEPTIME * 1000;
rti.cmd = RT_SEND_IPI;

rti.arg1 = cpu;

while (1) {

/* Send interrupt */

if (write(rt_fd, &rti, 0) != 0) {
/* printf("Send not successful\n"); */

continue;

}

nanosleep(&req, NULL);

}

}

int

main(int argc, char **argv)

{

unsigned long max_delta = 0;
unsigned long min_delta = 0x7ffffffffffffff;

unsigned long total_time = DEFAULT_RUN_TIME; /* sec */

unsigned long start;

unsigned long run_time;

unsigned long * ptimer;

int cid = 0; /* default to no cpusets for IPI source CPU */
pid_t child;

int opt;

static char* opt_string = "cmp:o:t:h";

while ((opt = getopt(argc, argv, opt_string)) >= 0) {
switch (opt){

case ’c’:

cid = 1;

break;

case ’m’:
memlock = 1;

break;

case ’p’:

cpu = atoi(optarg);

break;

case ’o’:
ipi_cpu = atoi(optarg);

break;

007–4746–001 51



A: Example Application

case ’t’:
total_time = atoi(optarg);

break;

case ’h’:

default:

usage_exit();
}

}

/* Open rt_sample_mod sample driver */

if ((rt_fd = open("/dev/"RTMOD_NAME,O_RDWR)) == -1) {

printf("Failed to open /dev/%s\n",RTMOD_NAME);

exit(1);
}

/* Open mmtimer driver and get memory mapped RTC address */

if (!(ptimer = open_mmtimer())) {

exit(1);

}

/* Fork off the IPI sender */

child = fork();

if (child==0) {

IPI_send(cid);

exit(0);
}

/* Do not allow paging if selected */

if (memlock &&

(mlockall(MCL_CURRENT | MCL_FUTURE) < 0)) {
perror("memlock");

exit(1);

}

/* Create and attach to a single CPU cpuset for this CPU. */
set_affinity_cpuset(cpu);

/* Change the scheduling to priority and policy. */

set_scheduling(30, SCHED_FIFO);

/* Read the RTC via mmtimer */
start = *ptimer;
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/* Loop for total_time receiving IPIs from IPI_send */
do {

time_t ct;

struct timespec thrwake_ts, current_ts;

unsigned long current;

parm_t rti;

unsigned long delta;

rti.cmd = RT_INTR_WAIT;

rti.arg1 = 0;

/* Wait to be signaled that an interrupt has arrived */

if (write(rt_fd, &rti, 0) != 0) {

perror("write to rt_fd failed");

continue;

}

/* The rest of this loop represents whatever processing

* must be done on the data from the driver.

*

* This simple example just takes the RTC time difference

* between the RTC value measured in the kernel and the
* current RTC time.

*/

/* Read the RTC via mmtimer */

current = *ptimer;

/* delta is in nsec */

delta = ((current & mask) - (rti.arg1 & mask)) * period;

if (delta > max_delta) {

max_delta = delta;
}

if (delta < min_delta) {

min_delta = delta;

}

/* elapsed time so far is in sec */

run_time = (((current & mask) - (start & mask)) * period) / 1e9;
} while (run_time < total_time);
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if (kill(child, SIGTERM)) {
perror("Unable to kill child process\n");

}

wait(child, NULL, 0);

printf("Minimum delta %ld nsec\n",min_delta);

printf("Maximum delta %ld nsec\n",max_delta);
return 0;

}

common.h

Following is a portion of the common.h file:

extern void set_affinity(int);

extern void set_affinity_cpuset(int);

extern void set_scheduling(int, int);

common.c

Following is a portion of the common.c file:

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sched.h>

#include <bitmask.h>
#include <cpuset.h>

/* NR_CPUS is size kernel is configured for */

#define NR_CPUS 512

#define BITMASK_SIZE NR_CPUS/64

/* Set the current process to run on CPU <cpu>.

* Note that this CPU must not be part of a cpuset other than the

* one the current process is in.

*/

void set_affinity(int cpu) {
unsigned long cpus[BITMASK_SIZE];

if (cpu > (NR_CPUS-1)) {

printf("set_affinity: Invalid cpu %d\n",cpu);
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exit(1);
}

cpus[cpu/64] = 1 << (cpu % 64);

if (sched_setaffinity(0, sizeof(cpus), cpus)) {

perror("set_affinity");
exit(1);

}

}

/*

* Set up a cpuset with cpus==<cpu> and mems==<cpu>/2.
* Then set the current process to run on CPU <cpu> in cpuset ’rtcpu<cpu>’

* For more information about mems, see the cpuset(1) man page.

*/

void set_affinity_cpuset(int cpu) {

char path[50];
struct cpuset *cp;

struct bitmask *cpus;

struct bitmask *mems;

sprintf(path, "/rtcpu%d", cpu);

cp = cpuset_alloc();
if (cp == NULL) {

printf("cpuset_alloc failed\n");

exit(1);

}

cpus = bitmask_alloc(cpuset_cpus_nbits());
mems = bitmask_alloc(cpuset_mems_nbits());

/* Set up bitmasks for cpus and mems */

bitmask_setbit(cpus, cpu);

bitmask_setbit(mems, cpu/2);

/* Set the ’cpus’ value in the cpuset structure */

if (cpuset_setcpus(cp, cpus) == -1) {

perror("cpuset_setcpus");

exit(1);

}
/* Set the ’mems’ value in the cpuset structure */

if (cpuset_setmems(cp, mems) == -1) {
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perror("cpuset_setmems");
exit(1);

}

/* Create the actual cpuset in /dev/cpuset */

if (cpuset_create(path, cp) == -1) {

if (errno != EEXIST) {
perror("cpuset_create");

exit(1);

}

}

cpuset_free(cp);
bitmask_free(cpus);

bitmask_free(mems);

/* Move the process into the cpuset */

if (cpuset_move(getpid(), path) == -1) {
perror("cpuset_move");

exit(1);

}

}

/* Change the scheduling policy and priority <pri>

A priority of -1 passed in selects the maximum priority.

*/

void set_scheduling(int pri, int policy) {

struct sched_param param;
int maxpri;

if (policy != SCHED_FIFO && policy != SCHED_RR) {

printf("Bad policy %d set!\n", policy);

exit(1);
}

/* Get the maximum priority value for this policy */

maxpri = sched_get_priority_max(policy);

if (pri==-1)

param.sched_priority = maxpri;
else

param.sched_priority = pri > maxpri ? maxpri : pri;
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/* Change the priority and policy if pri != 0 */

if ((pri==0) || (sched_setscheduler(0, policy, &param)==-1)) {

perror("Unable to set sched policy");

} else {

printf("Sched policy set to %d, pri=%d\n",
policy, param.sched_priority);

}

}

mmtimer.c

Following is a portion of the mmtimer.c file:

#include <stdio.h>

#include <errno.h>
#include <fcntl.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include <sys/mman.h>
#include <sys/types.h>

#include <sys/stat.h>

#include <sys/ioctl.h>

#include <cntl.h>

#include <n/mmtimer.h>

#include "common.h"

unsigned long period;

unsigned long mask = 0xffffffffffffffff;

/*

* Open RTC interface and get parameters.

*/

unsigned long * open_mmtimer(void) {

int fd, result, offset;

unsigned long * iotimer_addr64;
unsigned long val = 0;

007–4746–001 57



A: Example Application

if((fd = open("/dev/"MMTIMER_NAME, O_RDONLY)) == -1) {
printf("failed to open /dev/%s", MMTIMER_NAME);

return NULL;

}

/*
* Can we mmap in the counter?

*/

if ((result = ioctl(fd, MMTIMER_MMAPAVAIL, 0)) != 1) {

printf("mmap unavailable\n");

return NULL;

}

/*

* Get the offset for each clock

*/

if ((offset = ioctl(fd, MMTIMER_GETOFFSET, 0)) == -ENOSYS) {
printf("offset unavailable for clock\n");

return NULL;

}

/*

* Get the frequency in Hz and calculate the period in nsec
*/

if((result = ioctl(fd, MMTIMER_GETFREQ, &val)) != -ENOSYS)

if(val < 10000000) /* less than 10 MHz? */

printf("ERROR: frequency only %ld MHz, should be >= 10 MHz\n", val/1000000);

else {
printf("frequency: %ld MHz\n", val/1000000);

}

else

printf("ERROR: failed to get frequency\n");

/*

* Get the resolution in femtoseconds (1e-15) and save period in nsec.

*/

if((result = ioctl(fd, MMTIMER_GETRES, &val)) == -ENOSYS) {

printf("ERROR: failed to get resolution\n");

return NULL;
}

period = (val/1e+6);
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printf("period: %lld nsec\n",period);

/*

* Get the number of valid bits and compute the mask.

*/

if((result = ioctl(fd, MMTIMER_GETBITS, 0)) == -ENOSYS) {
printf("ERROR: can’t get number of bits in counter\n");

return NULL;

}

mask = ~(0xffffffffffffffff << result);

/*
* Map the clock.

*/

iotimer_addr64 = (unsigned long *)mmap(0, 0x4000, PROT_READ,

MAP_PRIVATE, fd, 0);

if (iotimer_addr64 <= 0) {
printf("failed to mmap /dev/%s",MMTIMER_NAME);

return NULL;

}

iotimer_addr64 += offset;

close(fd);

return iotimer_addr64;

}

Running the Sample Application
To run the rt_sample user-space application, do the following:

1. Ensure that you have the rt_sample_mod module loaded by using the lsmod(1)
command, which should show it in the module list:

# lsmod

Module Size Used by

rt_sample_mod 72784 0

..

If the output does not include rt_sample_mod, follow the instructions in
"Building and Loading a Kernel Module" on page 40.
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2. Execute the rt_sample command as desired.

The rt_sample command has the following options:

-c Specifies that the CPU sending the interrupt must be in
the cpuset. By default, the CPU does not have to be in
a cpuset.

-h Prints the usage instructions.

-m Locks memory. By default, memory is not locked.

-p receiving_CPU Specifies the number of the CPU that is receiving; this
CPU must be in a cpuset. The default is CPU 2.

-o sending_CPU Specifies the CPU sending the interrupt. The default is
CPU 3.

-t seconds Specifies the total run time in seconds. The default is 60
seconds.

Therefore, to run rt_sample for 60 seconds (the default) with CPU 3 as the sender in
a cpuset and CPU 2 as the receiver (which always must be in a cpuset), enter the
following:

rt_sample -c -p 2 -o 3 -m

You can monitor the IPI interrupts produced and received by examining the
/proc/interrupts file. Doing so for the above example should result in output
similar to the following:

# cat /proc/interrupts

CPU0 CPU1 CPU2 CPU3

28: 10 10 10 10 LSAPIC cpe_poll
..

252: 0 0 6839 0 LSAPIC Realtime IPI

..
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To see where the threads are running, use the -F option to the ps command (the
seventh column, PSR, shows the last processor on which the thread ran). For example:

# ps -FC rt_sample

UID PID PPID C SZ RSS PSR STIME TTY TIME CMD

root 6407 6151 0 185 2880 2 15:04 pts/0 00:00:00 rt_sample -c -p 2 -o 3 -m

root 6408 6407 0 185 1248 3 15:04 pts/0 00:00:00 rt_sample -c -p 2 -o 3 -m

^

^
displays the last CPU on which the thread ran
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Reading MAC Addresses Example Program

This appendix provides a sample program for reading the MAC address from an
ethernet card on an SGI system for Linux (line breaks added for readability). It
demonstrates how to memory map and interact with hardware devices from user
space.

/* Sample code to map in PCI memory for a specified device and display

the contents of a (hard coded) register. */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <linux/pci.h>
#include <sys/types.h>

#include <sys/stat.h>

#include <sys/ioctl.h>

#include <sys/mman.h>

#include <errno.h>

int main( int argc, char **argv )

{

char path[128];
char buf[1024];

int fd;

FILE *fptr;

unsigned int bus, device, function, devfn;

unsigned int sbus=0, sdevfn=0, svend;

unsigned long bar, sbar =0;
char *ptr;

unsigned int *data;

if( argc != 4 )

{
printf( "Must supply bus slot and function\n" );

exit( 1 );

}
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bus = atoi( argv[1] );
device = atoi( argv[2] );

function = atoi( argv[3] );

devfn = PCI_DEVFN( device, function );

errno = 0;
if( (fptr = fopen( "/proc/bus/pci/devices", "r" )) == NULL )

{

perror( "Unable to open /proc/bus/pci/devices" );

exit( 1 );

}

while( fgets( buf, sizeof(buf) - 1, fptr ) )

{

sscanf( buf, "%2x%2x %8x %*x %lx %*lx %*lx %*lx %*lx %*lx %*lx %*lx

%*lx %*lx %*lx %*lx %*lx %*lx",

&sbus, &sdevfn, &svend, &sbar);
if( ( sbus == bus ) && (sdevfn == devfn) )

{

bar = sbar & ~0xf;

printf( "Found matching bar %lx\n", bar );

}

sbar = 0;
}

fclose( fptr );

if( !bar ) exit(1); /* did not find */

sprintf( path, "/proc/bus/pci/%02d/%02d.%d", bus, device, function );
printf( "path is :%s\n", path );

fd = open( path, O_RDWR );

if( fd == -1 ) perror( "Couldn’t open device file" );

ioctl( fd, PCIIOC_MMAP_IS_MEM );

ptr = mmap( NULL, getpagesize(), PROT_READ | PROT_WRITE, MAP_SHARED, fd, (off_t) bar);

if( ptr == MAP_FAILED )

{

perror( "mmap failed!" );

exit( 1 );
}
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data = (unsigned int*) (ptr + 0x414);
printf( "ptr is %p, data is %p\n", ptr, data );

printf( "MAC is %08x\n", *data );

}
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address space

The set of memory addresses that a process may legally access. The potential address
space in Linux is 264; however, only addresses that have been mapped by the kernel
are legally accessible.

arena

A segment of memory used as a pool for allocation of objects of a particular type.

asynchronous I/O

I/O performed in a separate process so that the process requesting the I/O is not
blocked waiting for the I/O to complete.

average data rate

The rate at which data arrives at a data collection system, averaged over a given
period of time (seconds or minutes, depending on the application). The system must
be able to write data at the average rate, and it must have enough memory to buffer
bursts at the peak data rate.

control law processor

A type of stimulator provides the effects of laws of physics to a machine.

device driver

Code that operates a specific hardware device and handles interrupts from that device.

device service time

The time the device driver spends processing the interrupt and dispatching a user
thread.

device special file

The symbolic name of a device that appears as a filename in the /dev directory
hierarchy. The file entry contains the device numbers that associate the name with a
device driver.
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file descriptor

A number returned by open() and other system functions to represent the state of
an open file. The number is used with system calls such as read() to access the
opened file or device.

frame rate

The frequency with which a simulator updates its display, in cycles per second (Hz).
Typical frame rates range from 15 to 60 Hz.

frame interval

The inverse of frame rate, that is, the amount of time that a program has to prepare
the next display frame. A frame rate of 60 Hz equals a frame interval of 16.67
milliseconds.

guaranteed rate

A rate of data transfer, in bytes per second, that definitely is available through a
particular file descriptor.

hard real-time program

A program that is incorrect and unusable if it fails to meet its performance
requirements, and so falls out of step with the external device.

hardware latency

The time required to make a CPU respond to an interrupt signal.

hardware-in-the-loop (HWIL) simulator

A simulator in which the role of operator is played by another computer.

interrupt

A hardware signal from an I/O device that causes the computer to divert execution
to a device driver.

interrupt propagation delay

See hardware latency.
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interrupt response time

The total time from the arrival of an interrupt until the user process is executing
again. Its main components are hardware latency, software latency, device service time,
and mode switch.

interval time counter (ITC)

A 64–bit counter that is scaled from the CPU frequency and is intended to allow an
accounting for CPU cycles.

interval timer match (ITM) register

A register that allows the generation of an interval timer when a certain ITC value
has been reached.

locks

Memory objects that represent the exclusive right to use a shared resource. A process
that wants to use the resource requests the lock that (by agreement) stands for that
resource. The process releases the lock when it is finished using the resource. See
semaphore.

mode switch

The time it takes for a thread to switch from kernel mode to user mode.

overrun

When incoming data arrives faster than a data collection system can accept it and
therefore data is lost.

pages

The units of real memory managed by the kernel. Memory is always allocated in
page units on page-boundary addresses. Virtual memory is read and written from the
swap device in page units.

page fault

The hardware event that results when a process attempts to access a page of virtual
memory that is not present in physical memory.
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peak data rate

The instantaneous maximum rate of input to a data collection system. The system
must be able to accept data at this rate to avoid overrun. See also average data rate.

process

The entity that executes instructions in a Linux system. A process has access to an
address space containing its instructions and data.

segment

Any contiguous range of memory addresses. Segments as allocated by Linux always
start on a page boundary and contain an integral number of pages.

semaphore

A memory object that represents the availability of a shared resource. A process that
needs the resource executes a p operation on the semaphore to reserve the resource,
blocking if necessary until the resource is free. The resource is released by a v
operation on the semaphore. See also locks.

simulator

An application that maintains an internal model of the world. It receives control
inputs, updates the model to reflect them, and outputs the changed model as visual
output.

stimulator

An application that maintains an internal model of the world. It receives control
inputs, updates the model to reflect them, and outputs the changed model as
nonvisual output.

soft real-time program

A program that can tolerate occasional periods during which response time may be
an order of magnitude longer than the average time. If the answer is accurate and is
delivered within a threshold of time, then the computation is successful.

software latency

The time required to dispatch an interrupt thread.
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transport delay

The time it takes for a simulator to reflect a control input in its output display. Too
long a transport delay makes the simulation inaccurate or unpleasant to use.
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append argument, 19
asynchronous I/O, 25
average data rate, 5

B

bootcpuset, 15, 33
bootcpuset.conf, 33

C

C language, 6
clock pin, 11
clock processor, 16
clocks, 10
compatibility library (IRIX to Linux) RPM, 29
configuration, 31
configuration script RPMs, 29
configuration scripts, 31
console driver, 17
console interrupts, 9
console node, 17
control law process stimulator, 4
CPU

isolating, 19
restricting, 8, 18
workload control, 13

CPU 0, 16, 17
CPU-bound, 7
cpumasks, 34
cpuset, 15, 34
cycles per second, 2

D

data collection system, 4
device service time, 20, 23
disciplines, 7
disk I/O optimization, 25
distributed applications, 12
documentation RPM, 30
drifty ITCs, 11

E

earnings-based scheduler, 7
elilo, 19
/etc/elilo.conf, 19, 33

F

feedback loop, 2
first-in-first-out, 7
flush duration, 16
frame interval, 2
frame rate, 2
fsync, 26

G

generating a REACT system configuration, 31
ground vehicle simulator, 3

H

hard real-time program, 1
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hardware latency, 20, 21
hardware–in–the–loop simulator, 4
Hz (hertz, cycles per second), 2

I

I/O interrupts, 9
I/O-bound, 7
include file, 10
installation, 29
interchassis communication, 11
interrupt control, 9
interrupt propagation delay, 21
interrupt redirection, 16
interrupt response time

components, 20
definition of, 19
minimizing, 23

interval
See "frame interval", 2

interval time counter (ITC), 10
interval timer match (ITM), 10
introduction, 1
IRIX compatibility library, 29
isolating a CPU, 19
isolcpus, 19

K

kernel critical section, 22
kernel facilities for real-time, 7
kernel RPM, 29
kernel scheduling, 13
kernel thread control, 15

L

L2 system controller, 17
latency, 20, 21

libcpuset, 34
libsgirt, 18
load balancing, 19
locking virtual memory, 8

M

maximum response time guarantee, 20
memory locking (virtual), 8
memory-mapped I/O, 25
Message-Passing Interface (MPI), 12
mlock(), 8
mlockall(), 8
mmtimer, 10
mmtimer_devel, 10
mode switch, 20, 23
monotonic time source, 11
MPI, 12
ms (milliseconds), 2
msync, 25, 26

N

nice value, 7
normal-time program, 1

O

operator, 2
overhead work, 15
overrun, 5

P

page fault, 8
param.h, 14
peak data rate, 5
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physical memory requirements, 8
POSIX real-time policies, 7
POSIX real-time specification 1003.1-2003, 26
power plant simulator, 3
priorities, 13
priority 99, 14
priority band, 14
/proc manipulation, 9
/proc/interrupts, 17, 32
/proc/sal/itc_drift, 11
process control, 5
process mapping to CPU, 8
programming language for REACT, 6
propagation delay, 21
ps, 15

R

rate
See "frame rate", 2

reactboot.pl, 17
reactcfg.pl, 15–19, 31
README.relnotes, 30
real-time applications, 1
real-time clock (RTC), 11
real-time priority band, 14
real-time program, 1
release notes, 30
response time, 19
response time guarantee, 20
restricting a CPU, 18
round-robin, 8
RPMs, 29

S

SAL console driver, 17
sample system configuration script RPMs, 29
sample system configuration scripts, 31
sched_setparam(), 14

sched_setscheduler(), 8, 14
scheduling, 13
scheduling disciplines, 7
script RPMs, 29
scripts, 31
SHub, 11
simulator, 2
SLES9, 29
SLES9 SP1 modules, 30
SN hub device interrupts, 23
socket programming, 12
soft real-time program, 1
software latency, 20, 21
special scheduling disciplines, 7
stimulator, 2
strace, 15, 37
SUSE LINUX, 29
system abstraction layer (SAL) console driver, 17
system configuration generation, 31
system configuration script RPMs, 29
system configuration scripts, 31
system controllers, 17
system flush duration, 16

T

thread control, 15
time slices, 14
time stamp creation, 10
time-share applications, 7
timer interrupts, 9, 14
transport delay, 2
troubleshooting, 37

U

unsynchronized drifty ITCs, 11
usecs (microseconds), 20
user thread control, 15
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user thread dispatch, 23
/usr/include/asm/param.h, 14

V

virtual memory locking, 8

virtual reality simulator, 3

W

wave stimulator, 4
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