sgi

MPInside Reference Guide

007-5780-001

COPYRIGHT

© 2011, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is
granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in
part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, Altix, and the SGI logo are are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in
the United States and other countries.

Intel and Xeon are trademarks or registered trademarks of Intel Corporation. Platform MPI and Scali MPI Connect are trademarks of
Platform Computing, Inc. Microsoft and Microsoft Excel are registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

All other trademarks mentioned herein are the property of their respective owners.

007-5780-001

Record of Revision

Version Description

001 June 2011
Original Printing.

Contents

About This Manual T
Obtaining Publications L. Xi
Related Publications and Other Sources Ce e Xi
Conventions L Lo Xi
Reader Comments C e xii

1. MPInside Profiling Tool
Overview
Non-synchronized Send/Receive Pair Definition and Terminology
Using MPInside Tool
SGI MPT
X86 Intel MPI
X86 HP-MPI
X86 SCALI MPI
Post-Processing
Restraining the Profile to Selected Parts of the Application
Environment Variables and Stack of Features
MPI NSI DE_EVAL_COLLECTI VE_VWAI T
MPI NSI DE_EVAL_SLT
MPI NSI DE_WAI T_TI ME_NO_CROSSREF
MPI NSI DE_CALLSTACK DEPTH <i nt eger nunber >
MPI NSI DE_CROSS_REFERENCE
MPI NSI DE_LI TE e
MPI NSI DE_MATRI CES [EXA | PLA | P2P:[+|-B][SIM
MPI NSI DE_SI ZE DI STRI [T+] nb_bars[:first-1ast]

© ©O© O O ©O© 00 00 N o oo oo o o o N PP

= e
o O

007-5780-001 \Y

Contents

MPI NSI DE_W TH_PERFSUI TE : ALL| QUT (X86-64 only) e 15
MPI NSI DE_PCL_EVENTS : [Q A@<PCL events list> 16
Miscellaneous Environment Variables Ce e 16
MPI NSI DE_CALLSTACK MAX _RECV_ENTRI ES <l nteger value> 16
MPI NSI DE_CALLSTACK_MAX_SEND ENTRI ES <Integer value> 17
MPI NSI DE_CALLSTACK _MAX WAI T_ENTRI ES <l nteger value> 17
MPI NSI DE_CALLSTACK_SKI P Ce e 17
MPI NSI DE_COLLECTI VE_W NDWOW <MPI _col | ecti ve_nane>: <START>: <END>: . 17
MPI NSI DE_COVM TO _WATCH <I nt eger val ue> e 17
MPI NSI DE_COW T_W <I nt eger val ue> e e 18
MPI NSI DE_NON_STOPPI NG_W NDOW Ce e 18
MPI NSI DE_SHOW W <I nt eger val ue> s 18
MPI NSI DE_ CUT_OFF <real value> 18
MPI NSI DE_DELAY AT INIT <Integer val ue> Ce e 18
MPI NSI DE_I NG COLLECTI VE_ BRANCHES 19
MPI NSI DE_| NTERNAL_TAG_START <I nt eger val ue> e 19
MPI NSI DE_LI B: <MPT| | MPI | HPMPI | SCALI MPL> 19
MPI NSI DE_BI NARY_MATRI CES DIR Directory e 19
MPI NSI DE_MAT_START_STOP <start float value: start stop val ue> .o 19
MPI NSI DE_QUTPUT_PREFI X 19
MPI NSI DE_PARTIAL_EXPERIMENT 2
MPI NSI DE_PRI NT_ALL_COLUWNS e .20
MPINSIDE_ PRINT_DIRTY . 2
MPI NSI DE_PRINT_SI Z_I N_K ()
MPI NSI DE_ SHONREAD WRITE 21
MPI NSI DE_ TRANSLATE_PERSI STENTS <Nb_entries, default 128> 21
nmpi nside_stats File L L0 21
User Counters C e 22

Vi 007-5780-001

MPInside Reference Guide

Columns Meaning

Bytes Transferred and Number of Requests Arrays
Point to Point Function
Collective functions

npi nsi de_stats_. M Nfiles

MPInside Binary Transfer Matrices

pr am Utility

npi nsi de_cl st k_post . xxx Files

Partner Branch Kinds

Ordinary Branches

Send Branches
Recv branches
Wait Branches
Communication "Stiffness"
Perfect Interconnect Zero Latency Infinite Bandwidth

2. Using the MPInside Profiling Tool
Selecting a Window of Observation using Re-compilation
Selecting a Window of Observation with a Collective Function Heartbeat

Spy the Collective Functions
Appendix A. MPInside(3) Man Page

Index

007-5780-001

23
24

24
25
26

29
30
30

35
35

35
36
36
38
40

45
45
46
46

49

65

Vii

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13
Figure 1-14
Figure 1-15

007-5780-001

Figures

Non-synchronized Send/Receive Pair Communication
Histogram of the Request Sizes Distribution
Crash Application with 64 CPUs Running SGI MPI 1 of 2
Crash Application with 64 CPUs Running SGI MPI 2 of 2
LINPACK Run on an SGI Altix ICE System
Array of Values Printed in the npi nsi de_st at s File
npi nsi de_st at s User Counters
PoP2 Wait Time Matrix
PoP2 Time Transfer Only
Pop2 (64 CPU run) CPU 9 Dominant Recv Branch
Communication Stiffness Chart 1 of 2
Communication Stiffness Chart 2 of 2
PARATEC Application on Altix ICE 1 of 2
PARATEC Application on Altix ICE 2 of 2

LINPACK Measure versus Perfect Interconnect Timing

12
13
14
15
22
22
28
29
34
38
39
41
42
43

About This Manual

This publication documents the SGI MPInside MPI profiling tool.

Obtaining Publications
You can obtain SGI documentation in the following ways:

= See the SGI Technical Publications Library at: http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

= You can also view man pages by typing man title on a command line.

Related Publications and Other Sources
This section describes documentation you may find useful, as follows:
= Message Passing Toolkit (MPT) User’s Guide

Describes industry-standard message passing protocol optimized for SGI
computers.

e SGI Performance Suite 1.x Start Here

Provides information about the SGI Performance Suite 1.x release. Provides
descriptions of current SGI software and hardware manuals.

Conventions
The following conventions are used throughout this document:

Convention Meaning

conmand This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

007-5780-001 Xi

About This Manual

manpage(x)

variable

user input

[]

Reader Comments

Xii

Man page section identifiers appear in parentheses after
man page names.

Italic typeface denotes variable entries and words or
concepts being defined.

This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

Brackets enclose optional portions of a command or
directive line.

Ellipses indicate that a preceding element can be
repeated.

If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

= Send e-mail to the following address:

techpubs@sgi.com

= Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

= Send mail to the following address:

SGI

Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

007-5780-001

Chapter 1

Overview

007-5780-001

MPInside Profiling Tool

This chapter describes MPInside, which is an MPI profiling tool developed by SGI.

Note: The prefix name of the statistic files resulting from the MPInside command can
be chosen by the user. This document uses the default prefix npi nsi de.

MPInside is an SGI MPI profiling tool that provides valuable information for MPI
application developers to optimize their application. It helps developers figure out
where the MPI Send/Receive pairs are not executed synchronously. With
non-synchronized Send/Receive pairs, the MPI communications can be very slow,
independent of the power of the underlying MPI library/hardware engine. For many
MPI applications, the MPI communication times are due to the lack of
synchronizations of these Send/Receive pairs rather than the speed of the underlying
MPI/hardware engine. MPInside measures this un-synchronized time for all the MPI
ranks involved in the application for all the MPI functions activated. It also allows
you to tell the actual speed at which the MPI engine did such communications,
measured as the ratio Bytes received / (time of the MPI function minus the
synchronization time) accumulated per CPU, as well as, in a CPU x CPU matrix. In
addition, MPInside precisely reports the timing described above on a branch basis,
automatically. A branch is an MPI function, with all of its ancestors in the calling
sequence. MPInside provides the routine name and the source file line number for all
the routines defining a branch.

All branches are put in relation with the other CPU branches that had a Send/Receive
partnership with them. For any CPU, any Received branch performed by that CPU
has partners. A partner set is described by four numbers:

= Sending rank number
= Sending CPU branch identification

= Percentage of time accounted to this partnership, in regard to the total execution
wait time of this Received branch

= Percentage of the execution wait time attributed to the lack of synchronization.

1: MPInside Profiling Tool

The aim of MPInside is to tell you where and how much non-synchronized
communication occurred in your application degrading application performance. In
addition to simple measurement, MPInside is able to model the communications.
Knowing how MPI communication latency and bandwidth changes affect your
application can help you improve its performance.

The MPI nsi de(3) man page contains detailed information on using the MPInside
profiling tool. To see the MPI nsi de(3) man page on-line, make sure the
MPI nsi de/ 3. 3 module is available and loaded, as follows:

uv44-sys: ~ # nodul e avail

------------------------ /usr/share/ modul es/ modul efiles -------------mmommnn

WPl nsi de/ 3. 3 nodul e-info nul | sgi -upc/ 1. 05
chkfeature nmodul es per f boost sgi - upc- devel / 1. 05
dot npi pl ace/ 1. 01 per f cat cher use. own

nodul e- cvs npt/2.04 scotch/5.1.11

uv44-sys: ~ # nmodul e | oad MPI nside/ 3.3
To see a copy of the MPI nsi de(3) man page, perform the following:

uv44-sys: ~ # man MPI nsi de

For your convenience, you can find a copy of the MPI nsi de(3) man page at
Appendix A, "MPInside(3) Man Page" on page 49.

Non-synchronized Send/Receive Pair Definition and Terminology

Figure 1-1 on page 3 shows an example of non-synchronized communication between
a Send/Receive pair.

2 007-5780-001

MPInside Reference Guide

CPUO CPU L CPU are the application

CPU are transfering

— CPU0is waiting
MPI RecV The send from CPU 1
SLT: Send Late Time

SLT Tune

Figure 1-1 Non-synchronized Send/Receive Pair Communication

This section describes MPI communication terminology, as follows:
= Function time (FT)

The time before the call to the MPI function minus time when returning to the
application. This time is equal to SLT + Tt in Figure 1-1 on page 3.

e The Transfer time (Tt)
The time when the data is actually being transferred (see Figure 1-1 on page 3).
e The Function Waiting time (FWT)

In Figure 1-1 on page 3, this time is equal to the FT time because MPl _Recv is a
blocking function. For a non-blocking function, such as MPI _I r ecv, FWT is the
time of the MPI _Wi t function that "finished" the request (in the MPI sense)
corresponding to this function.

007-5780-001 3

1: MPInside Profiling Tool

The Send late time (SLT) is computed as the difference between the time when the
corresponding send entered the MPI send function and the time when the Wait for
the receive was performed.

A branch is defined by a sequence of calls terminated by an MPI function. A
branch has a unique identification number. Such a number could differ from one
CPU to the other even if both refer to exactly the same sequence of calls. The
identification depends on the order they are encountered in the MPInside library.
Some branches have partners.

A part ner is defined by four numbers : A, #B, C, D. There numbers are defined,
as follows:

- A

Rank number that did the MPI Send/I1 send for this branch.
- #B

MPI_Send/Isend Branch ident
- C

Percent of this MPI _Recv that involved this "A" rank "#B" MPI Send branch.
- D

Percent of this MPI _Recv where the corresponding Send was arriving late.
— Ordinary branches

Ordinary branches do not have partners nor are they targets of another branch.
Collective function branches are of this type.

Send branches

Send branches do not get partners but are targets of "Receive branches" or "Wait
branches".

Wait branches

Wait branches connect, as partners, the "Send/Recv branches" that initiated the
MPI requests.

Each "Wait branch" precisely reports, for all the "Send/Recv branches" that were
connected to it, the percentage of (FWT) time to account to a particular

007-5780-001

MPInside Reference Guide

"Send/Recv branch" in regard to the total execution time of this "Wait branch". An
MPI _Wai t branch is a Wait branch as well as a MPl _Recv branch, for example.

= Recv branches
Have Send partners and are target of "Wait branches".

Each "Recv branch" precisely reports, for all the "Send branches" that were with it,
as follows:

— The ranks of such Sends
— The Send branch IDs

— The percentage of execution time (FWT) to account to this particular "Send
branch" in regard to the total WAIT time of this "Recv branch".

— The percentage of time (SLT) such "Send Branches" were arriving late in regard
to the matching Receive posting.

For more detailed information about branches, see the npi nsi de_cl st h_post . xxx
files.

Using MPInside Tool

The MPInside tool does not require any changes to your application, however, it
provides more information if the application was compiled with the - g flag. You
need to set the appropriate environment variable depending on which flavor of MPI
you are running.

SGI MPT
For SGI MPT, perform the following:

setenv MPINSIDE LI B MPT
this is the default you for MPT so you do not need to set
this variable mmirun -np xxx MPInside your_prog [your_args]

007-5780-001 5

1: MPInside Profiling Tool

X86 Intel MPI

X86 HP-MPI

X86 SCALI MPI

Post-Processing

For X86 Intel MPI, perform the following:

setenv MPINSIDE LIB | MPI
npirun -np xx MPInside your_prog [your_args]

For HP-MPI, perform the following:

setenv MPINSIDE LI B HPMPI
npirun -np xx MPInside your_prog [your_args]

For X86 SCALI MPI, perform the following:

setenv MPI NSI DE_LI B SCALI MPI
you need to specify the full path for MPInside
npirun -np xx | NSTALL_DI R/ bi n/ MPI nsi de your _prog [your_args]

Note: HP-MPI was acquired by Platform Computing, Inc. It has been combined with
Scali-MPI, as described on the Platform Computing web site: “Platform MPI 8.1
combines the broad adoption and scalability of HP-MPI with the performance of
Scali-MPI and is fully compliant with the MPI 1.2 and 2.2 standards.”

Platform MPI uses the same npi . h include file as the product fomerly called
Scali-MPI. You can use MPInside with Platform MPI. Use the environment variable
setenv MPINSI DE LI B SCALI MPI, as described above.

At the end of the run, you will get at least one npi nsi de_st at s file and if the
correct feature is activated, a set of npi nsi de_st at s. N_Mfiles. When running with
less that 255 CPUs, only one npi nsi de_st at s. 0- 254 file is produced. These files
are described below. When the MPI NSI DE_CALLSTACK DEPTH variable is set to a
value greater than zero, you will get one file per rank, xx, named

npi nsi de_cl st k. xx . These npi nsi de_cl st k. xx files need to be post processed

007-5780-001

MPInside Reference Guide

by the MPI nsi de_post command which builds a set of npi nsi de_cl st k_post . xx
files described below. The MPI nsi de_post syntax is, as follows:

MPI nsi de_post [-s starting_rank] [-e ending_rank] [-c cutoff] [-1] \
[-a]report_prefix
-s starting_rank: default =0

-a
A: #B: C. D. (def aul t)

-c cutoff

-e ending_rank : default =0

print source file line numbers if available
in the binaries. The default is to only
print routine names

print Recv Branch partners as a set of

A : CPU nunber
B : Send branch Id
C: Wit time (FW) due to this send branch
(Y% otal wait branch)
D: Time (SLT) this send was late (% of O
If -ais set print an array of a:#B |lines
with C and D columms with values in second instead of %
di scard line that are responsible of
cutoff % of the total MPI time default = 0.50 %
report ouputs are named report_prefix_post.xx

Restraining the Profile to Selected Parts of the Application

007-5780-001

MPInside provides ways to restrain the profile to selected parts of the application.
This can be done without re-compilation using the functionality activated by the
environment variable MPI NSI DE_COLLECTI VE_W NDOWor by inserting calls inside
the application source code (npi nsi de_start () and npi nsi de_end()), along
with the setting of the environment variable MPI NSI DE_PARTI AL_EXPERI MENT. By
default, the application is terminated when the window set by these mechanism is
complete. Inside the window of observation, (which can be the whole program, see
Chapter 2, "Using the MPInside Profiling Tool" on page 45), collecting statistics can be
suspended by calling nmpi nsi de_suspend() and then resumed by calling

npi nsi de_r esune() . These four calls MUST be collective calls involving all ranks.
You must ensure that after calling the npi nsi de_start (), npi nsi de_end(),

npi nsi de_suspend() and npi nsi de_r esune() that no pending MPI requests
still remain. For example, a request generated by a MPl _I r ecv call before calling one
of the four functions without the corresponding MPI _\i t being called.
Unpredictable results may happen if this constraint is not respected. When building

1: MPInside Profiling Tool

the binary, link with | i b\MPI nsi de_st ub. so. This library must be in a directory
listed in the LD LI BRARY_PATH variable if the built binary is not run prefixed by the
MPInside launcher. In this case, the four functions described above will have no
effect. It is a fatal error to call npi nsi de_r esume() if npi nsi de_suspend() was
not previously called. It is a fatal error to call npi nsi de_suspend() if the profiling
was not started. For example, if MPI NSI DE_PARTAI L_EXPERI MENT is set, it is a fatal
error to call npi nsi de_suspend() before calling npi nsi de_start ().

Environment Variables and Stack of Features

Most of the MPInside features can be stacked. This section describes the environment
variables that command that stack, ordered by the least amount of information to the
highest amount of information.

By default (with no environment variables set), MPInside creates at least a file named
npi nsi de_st at s. This file contains five set of columns which can be easily
exploited by a spreadsheet like Excel, as follows:

= Set 1: Time outside MPI + all the MPI functions timing

e Set 2-3: Amount of char transmitted plus the number of requests with the Send
attribute

e Set 4-5: Same as Set 2-3 but with the Recv attribute

For more information on the mi pi nsi de_st at s file, see "npi nsi de_st at s File" on
page 21.

VPI NSI DE_EVAL_COLLECTI VE_WAI' T

If set, MPI nsi de puts an MPl _Barri er (and times it) before any MPI collective
operation. This assumes that the time of a collective operation is the time of all
processors to synchronize plus the time of the operation. This is not always true, but it
is true in most of the cases. The time to really perform the collective operation is very
short compared to the synchronization time. In the npnsi de_st at s file, the column
"b_xxx" will give the MPl _barri er time of the corresponding "xxx" MPI collective
function and "xxx" the remaining time. When MPI NSI DE_PARTNER_MATCH is set to
TOKEN, setting MPI NSI DE_EVAL_COLLECTI VE_WAI T will also lead to evaluate the
"Stiffness" of the application (see "Communication "Stiffness"" on page 38).

007-5780-001

MPInside Reference Guide

MPI NSI DE_EVAL_SLT

If set, MPInside will measure the time the Sends were late (SLT) compared to the
Recv-Wai t arrivals. Such time will be w_xxx in the npnsi de_st at s file. xxx could,
for example, be MPI _Wait or MPl _Recv. It cannot be MPI _I r ecv, because the Send
late time, if any, will be for this last function accounted in an MPl _Wai t -like function.
MPI NSI DE_EVAL_SLT is equivalent to MPl NSI DE_CALLSTACK_ DETH equals one plus
MPI NSI DE_CROSS_REFERENCE, except no npi nsi de_cl st k. xxx files are created.

MPI NSI DE_WAI T_TI ME_NO_CROSSREF

MPI NSI DE_WAI T_TI ME_NO_CROSSREF operation is deprecated, use
MPI NSI DE_EVAL_SLT instead.

MPI NSI DE_CALLSTACK _DEPTH <i nt eger nunber >

If set, MPInside will unwind the stack up to the depth specified and a set of

npi nsi de_cl st k. xxx files will be created (one per rank). These files will contain
statistics about all the branches (see definition above) that have an MPI function as
leaf. The nmpi nsi de_cl st k. xxx files only contain raw addresses. The
address-Routine name matching is performed by MPI nsi de_post command that
produces npi nsi de_cl st k_post . xxx files (see more information about the format
of such files below). If MPI nsi de_post is run with the - -1 flag, the source file line
numbers are also printed (provided the application was compiled with the - - g flag).
Note that most of the overhead of the tool is imputable to unwind the stack. You
should be careful not to set this variable to a number bigger than necessary.

VPI NSI DE_CROSS_REFERENCE

MPI NSI DE_LI TE

007-5780-001

If set, MPInside instruments the Branches with "partners" providing timed cross CPU
branches information. (See mpi nsi de_cl st h_post file.)

The MPInside overhead is very low. Nevertheless, with applications doing a lot of
calls to functions like MPI _Test or MPI pr obe, the MPInside overhead may be
sizeable. With this variable set, the overhead is reduced to a minimum. In this case,
only the timings will be reported in the npi nsi de_st at s file. No size and request

1: MPInside Profiling Tool

information will be printed and the only MPInside variables recognized will be
MPI NSI DE_QOUTPUT_PREFI X, MPI NSI DE_VERBGCSE,

MPI NSI DE_NON_STOPPI NG_W NDOW MPI NSI DE_SHOW READ WRI TE, and

MPI NSI DE_PARTI AL EXPERI MENT.

MPI NSI DE_MATRI CES [EXA | PLA | P2P:[+|-B][SI M

Print transfer matrices files. Default is not to print any matrices files. Option: None:
Only point to point operation will be reported. (See npi nsi de_st at s. M_N) below
for the format of the output files). The MPI NSI DE_MATRI CES syntax is, as follows:

EXA Matrices will include exact P2P transfers implied by
Collective functions. (MPT only)

PLA Matrices will include generic P2P transfers implied by
Collective functions. This is the best choice for these
matrices to be input to an automatic placement tool.

+B In addition to the npi nsi de_stats. M-N. The
transfer matrices size and request will be print in
binary format to be used as input for the placement
tool Sergeant. There will be one file per rank (see the
MPI NSI DE_BI NARY_MATRI CES_DI R below and the
MPInside binary transfer matrices section).

-B Binary files will be the only ones produces. Use the
pr amutility, described in the mpi nsi de_stats. M_N
to get ASCII files similar to the npi nsi de. N-N ones.

S Collectives and P2P matrices are separated in the
binary files.

M Collectives and P2P matrices are merged in the binary
files.

Usage Example

setenv MPI NSI DE_MATRI CES PLA: -B: S

MPI NSI DE_SI ZE DI STRI [T+] nb_bars[:first-1last]

An histogram of the request sizes distribution will be printed at the end of
npi nsi de_st at s for rank first to last: Default 12:0-0 (only rank zero and bar size :

10 007-5780-001

MPInside Reference Guide

007-5780-001

0, 128, 256, 512, ... 65536. The cumulus of the calls for all rank is then terminated in
the report. This cumulus is always printed even if the variable is not set. If T+ is
specified, each histogram of the request sizes is followed by a size distribution time
histogram. On such a histogram, the time taken by functions like MPI _\Wi t or

MPI Wi tal | is not accounted to these functions but to the MPl _| send and

MPI _I r ecv functions that generated the request passed that will next lead to a Wi t
function call.

Usage Example
setenv MPINSIDE_SI ZE DI STRI T+12 :0-16

Figure 1-2 on page 12 shows an example of the date with the options, above (reduced
to CPU 15).

11

1: MPInside Profiling Tool

Sizes isend irecy
B5536] 1]
32768] 1]
16384 0 0
8192 0 0
4096] 0
2048 72008 72008
1024 0 0

512 2485006 2485096
256 11234010 11234010
128] 5
b4 0 1]
32 0 0
0 0 0
-5 Rank 0 Size

Sizes isend irecy
65536 0 0
32768 0 0
16384] 0
8192 o 1]
4096 0 0
2048 0201448 1.211336
1024 0 0

812 1.96275 14.99569

256 1084234 36.72976

128 0.000008 0.000003
54 0 0
32] 1]
] 0

L e e e e

718

o
0
o0
0
o
o0
0
0
o0
o0
0

0

bcast

m
OuUomooooooooo

3

distributior times<<<
bcast

CDoooooooo

0.000018
0.000209
0

0 0.013708 0.007757

allred
1]
1]
0
0
0
1]
0
0
0
1]
1]
0
821656
allred
0
0
0
1]
0
0
0
1]
0
0
0
1]

19.4962 0.000002 0.00058

Figure 1-2 Histogram of the Request Sizes Distribution

Figure 1-3 on page 13 shows an example of the kind of chart that can be produced

comgroup

Wwoooo oo o000 oo o

comgroup

(o o e o o T Y o e o o o Y

from the npi nsi de_st at s file using an Excel spreadsheet.

12

comcrea

wooooooooo ooo

comcrea

0
0
0
0
0
0
0
0
0
0
0
0
2

007-5780-001

MPInside Reference Guide

007-5780-001

Crash Application 64 CPU SGI MPI

overhead
90 mreduce
b reduce
80 Ho_
w allred
70 = b_alred
60 W bcast
o
- 50 = b _bcast
[
"] .
E' 40 irecy
‘ misend
30
msend
20 v ait
10 s _wal
0 W recy
e ¢ s 0 0 A - - - I T B =W _recy
MPI ranks
m Comput
Figure 1-3 Crash Application with 64 CPUs Running SGI MPI 1 of 2

Figure 1-4 on page 14 shows the exact same data as Figure 1-3 on page 13. The only

difference is the "Y" axis. The chart on the left on both figures was run with
MPI NSI DE_EVAL_SLT. The charts on the right of both figures were run with the

addition of MPI NSI DE_EVAL_COLLECTI VE_WAI T function.

13

1: MPInside Profiling Tool

14

elapse (s}

L]

Crash Application 64 CPU Altix SGI MPI

aoverhead
mreduce
mb_reduce
mallred
=h_alred
mhcast
=h_hcast

irecy
Wisend
msend
mwait
B it
Hrecy
B W _recy

LRI R R R N R R R W Comput

MPIranks

Figure 1-4 Crash Application with 64 CPUs Running SGI MPI 2 of 2

For example, b_al | red (b like barrier or before) in the right charts is the time taken
by the MPI _Bar ri er function performed before the MPl _Al | _Reduce (al | r ed)
function. This b_al | r ed time is null in the left charts. W Recv (Wlike Wi t) is the
time the MPI _Recv function was blocked just because the associated Send was not
yet performed by the sending CPU. Recv is the time when the data is actually being
transferred.

The charts shown in Figure 1-3 on page 13 and Figure 1-4 on page 14 demonstrate the
following:

= The MPInside tool induces very little overhead.

= The global MPI profile is not altered because of the MPInside features
stacking(Figure 1-3 on page 13).

< Most MPI _Bcast and MPI _Reduce times are related to process synchronization.

007-5780-001

MPInside Reference Guide

< Most of the MPI _Recv and MPI _wai t times are related to send late arrivals.

Figure 1-5 on page 15 shows another example of a chart that can be made with a few
Microsoft Excel operations on columns. This is a LINPACK run on an SGI Altix ICE
system with 992 Intel® Xeon® 5320 Series processors (code name Clovertown) running
SGI MPT. It shows the bandwidth actually achieved by the MPI1/hardware when
subtracting the Send late time, so Tt as defined, above. This is not at all the
bandwidth seen by the application. Rather, this is the true bandwidth the application
could expect if all the requests were perfectly synchronized.

M=z

1600
1400

e LV LT ELAE L 0T
o0 MR NIR R IR
oo MU RN IR
400
300

Linpack 8G1 1CE 992 Clavertown CPLU
Effective MFI_Recy handwidth

7
54
a1

108

eI = R =] [T e e~ <R v T B S = I} r— & - L B = T =T B = T o~ (= - =4
B e RRaRES YRR eaniErRiEREERREEE
MPi ranks

Figure 1-5 LINPACK Run on an SGI Altix ICE System

MPI NSI DE_W TH_PERFSUI TE : ALL| OUT (X86-64 only)

007-5780-001

If set to ALL, the Perfsuite profiler will be activated concurrently to the MPInside
process for the execution Window. If set to OUT, the Perfsuite profiler will be
activated by MPInside when the application is outside of the MPI functions. If
running on a patched kernel or kernel higher than 2.6.32 that allows perf _event s, it
may be of great interest to get some processor internal or PAPI counter reports not
polluted by the MPI internal processing. In both cases, the usual Perfsuite output files
will be created in addition to the MPInside ones. The Perfsuite outputs will have to
be post-processed by pspr ocess. The way Perfsuite runs, in a such case, can be
controlled by the Perfsuite environment variables. In particular, the Perfsuite
configuration file used will be pointed to by the PS_HWPC _CONFI G environment

15

1: MPInside Profiling Tool

variable. You need to ensure that the Perfsuite environment is properly installed and
that the Perfsuite library is in the LD LI BRARY_PATH list.

MPI NSI DE_PCL_EVENTS : [0 A@<PCL events |ist>

For system running the Linux 2.6.32 kernel or higher, CPU counters are available to
end-user applications without any kernel patch or additional kernel modules.
MPInside will dynamically open | i bf pm4. so. MPInside is not linked with this
library. You need to download this library from http://perfmon2.sourceforge.net/,
install it, and to set the LD LI BRARY_PATH variable to include the install path in its
list. The |i bf pma. so library, written by Stephane Eranian, allows access by explicit
names to numerous native counters. A list of such counters can be viewed by
running the showevt i nf o command included with | i bf pn4. so and bundled in the
MPInside environment. This list of explicit counter names is far more complete than
the one available with the per f command. Counting is performed only inside the
MPInside window of observation. The specified counting occurs for the whole
program. Counter values are displayed at the bottom of the npi nsi de_st at s file
(with post processing and displayed with a spreadsheet).

Usage Example
set env MPI NSI DE_PCL_EVENTS A@PERF_COUNT_HW | NSTRUCTI ONS, LLC_REFERENCES

Note that in this example the first counter is a standard generic per f _event counter
while the second is Intel Xeon Processor 5500 Series (code name Nehalem) specific.

Another example is, as follows:

setenv MPI NSI DE_PCL_EVENTS O@PERF_COUNT_HW. | NSTRUCTI ONS, LLC_REFERENCES

Miscellaneous Environment Variables

This section describes miscellaneous MPInside environment variables.

MPI NSI DE_CALLSTACK_MAX_RECV_ENTRI ES <I nt eger val ue>

Maximum number of Recv branches that the tool can manage Default: 256

16 007-5780-001

MPInside Reference Guide

MPI NSI DE_CALLSTACK_MAX_SEND ENTRI ES <I nt eger val ue>

Maximum number of Send branches the tool can manage Default: 256

MPI NSI DE_CALLSTACK_MAX_WAI T_ENTRI ES <I nt eger val ue>

Maximum number of Wi t branches the tool can manage Default: 256

VPI NSI DE_CALLSTACK_SKI P

VPI NSI DE_COLLECTI

MPI NSI DE_COVM TO_

007-5780-001

Number of ancestors the tool ignores starting from the MPI function leaf. For
example, MPI SGI/IMPI MPI Fortran calls its C equivalent. There is no need to
manage the Fortran calls. Setting this variable to 1 does not lose any information and
can reduce the tool overhead.

VE_W NDWOW <MPI _col | ecti ve_nanme>: <START>: <END>

MPI collective calls to watch or to start or stop the tool. It starts MPInside when the
watched routine reaches the counter START. It stops MPInside and the application
when the watched routine reaches the counter END. If the END counter is not reached,
the application will stop at MPl _Fi nal i ze.

Usage Example

setenv MPI NSI DE_COLLECTI VE_W NDWOW MPI _Bcast : 300: 4321

WATCH <I nt eger val ue>

Communicator to watch with for the collective function selected with
MPI I NSI DE_COLLECTI VE_W NDOW Default is MPI _COVM WORLD. You must set this
communicator to a communicator number that contains all the ranks.

Special values are, as follows:

= Any communicator. If so you must set MPl NSI DE_COLLECTI VE_W NDOW
<col l ective function>;0:300000000. That is, starts at M°l _| ni t and ends
at MPl _Fi nal i ze. This could be useful in conjunction with MPI NSI DE_SHOW W
described just below. Results are unpredictable if
MPI NSI DE_COLLECTI VE_W NDOWis not set the way just described.

17

1: MPInside Profiling Tool

< Any communicator that is a duplication (created with MPI _Comm dup) of

MPI _COVM WORLD

MPI NSI DE_COW T_W <I nt eger val ue>

Identical to MPI NSI DE_COVM TO WATCH. Deprecated, use
MPI NSI DE_COVWM TO_WATCH instead.

VPI NSI DE_NON_STOPPI NG_W NDOW

By default, if a partial experiment is requested, either using the

MPI NSI DE_COLLECTI VE_W NDOW variable or by inserting an explicit call to

npi nsi de_start (), npi nsi de_end() in the source code, the application is
terminated immediately after writing the MPInside reports. If

MPI NSI DE_NON_STOPPI NG_W NDOWis set the program will continue normally up to
the MPI _Fi nal i ze() call. Hangs could happen when using this variable with

MPI NSI DE_EVAL_SLT or MPI NSI DE_MODEL. It should work fine for basics
experiments or/and with MPI NSI DE_EVAL_COLLECTI VE_WAI T.

MPI NSI DE_SHOW W <I nt eger val ue>

VPI NSI DE_CUT_OFF

If set, a print to st dout will be done at each MPI NSI DE_SHOW Wcalls of the
watching function. This is one way you can use to figure out which counter to set in
order to select a window of observation allowing profiling the application only for
some reduced meaningful steps. An example print output is, as follows:

Rank 0 1000 calls to MPI_Bcast with comm =2 conm sz=64 El apse: 1532. 004

<real val ue>

Do not print branches whose time is lower than MPI NSI DE_CUT_OFF percent of the
total communication time. Default is 0, 01, 1%.

MPI NSI DE_DELAY_AT_INI T <Integer val ue>

18

For debugging. Sleep this long (time value in seconds) in order to get time to attach
some process to a debugger like gdb. Default: do not sleep

007-5780-001

MPInside Reference Guide

MPI NSI DE_| NG_COLLECTI VE_BRANCHES

Ignore collective routines from the Callstack management in order to reduce the
overhead and to concentrate on Send/Recv pairs

MPI NSI DE_|I NTERNAL_TAG_START <I nt eger val ue>

Starting tag value for MPInside exclusive usage: Default: 2**30

MPI NSI DE_LI B: <MPT| | MPI | HPMPI | SCALI MPI >

MPI library used by the application. If this variable is not set, MPT is assumed.

MPI NSI DE_BI NARY_MATRICES DIR Directory
Directory on to put binary matrix files. Default: MPI NSI DE_NMAT_DI R

MPI NSI DE_MAT_START_STOP <start float value: start stop val ue>

If set, MPInside will start populating the matrices of transfer at time start and flush
them at time stop and will terminate the run. The purpose of this variable is to be
able to get representative matrices of transfer for input to the placement tool sergeant
that skip the initialization and run few application steps. Some other ways to reduce
the run with MPInside : MPI NSI DE_PARTI AL_EXPERI MENT,

MPI NSI DE_COLLECTI VE_W NDOW the former needing to change the source code, the
latter needing to detect an MPI collective function involving all ranks that is called
regularly during steps. The MPI NSI DE_MAT_START_STOP allows shortening the run
in any case. Note that the binary matrices will be the only files produced.

VPI NSI DE_OUTPUT_PREFI X

Output prefix used by MPInside. Default: npi nsi de Note that this could be a full
path name allowing dispatching outputs in different directories.

007-5780-001 19

1: MPInside Profiling Tool

VPI NSI DE_PARTI AL_EXPERI MENT

If set, MPInside will only start if the application calls npi nsi de_start () and will
end either when MPI _Fi nal i ze() is called or when npi nsi de_end() is called.
Note that the application will end as soon as npi nsi de_end() is called except if the
variable MPI NSI DE_NON_STOPPI NG_W NDOWis set. In this last case, the profile is
frozen, the application will continue normally and the report will be written when
MPI _Fi nal i ze will be called. Note also that these two calls MUST be collective calls
involving all ranks. You must ensure that when calling npi nsi de_start () and

npi nsi de_end() that no pending MPI requests still remain. For example, a request
generated by a MPI _I r ecv call before calling one of the two functions without the
corresponding MPI _Wai t called before calling the two functions. When building the
binary, link with | i bMPI nsi de_st ub. so. This library must be in a directory listed
in the LD_LI BRARY_PATH variable if the built binary is not run prefixed by the
MPInside launcher. In such a case, the two functions above will have no effect.

VPI NSI DE_PRI NT_ALL_COLUWNS

Depending on the feature activated and the xxx MPI function activated some w_xxx
or b_xxx columns are present in the nmpi nsi de_st at s file. If this variable is set,
and if xxx was activated, and if a w_xxx column or b_xxx may exist then such these
columns will be reported even with full zero. Using this variable allows easier chart
comparisons (same legends, same colors) between a basis run and a perfect run, for
example.

MPI NSI DE_PRI NT_DI RTY

Print data with full precision but no formatting. With this option, the columns will
look bad (not aligned) if edited with a text editor like vi . But they will be
automatically well formatted again when imported into a spreadsheet.

MPI NSI DE_PRI NT_SI Z_I N K

20

Print transfer sizes in Kbytes instead of Mbytes (the default) in the nmpi nsi de_st at s
file.

007-5780-001

MPInside Reference Guide

VPI NSI DE_SHOW READ WRI TE

Include in the nmpi nsi de_st at s file two columns indicating the time, number of
char, and number of calls to the | i bc read(), and wite() functions. Note that
this time is already excluded from the "conput " column. This is also "conmput " time’
that is, time spent outside MPI.

MPI NSI DE_TRANSLATE_PERSI STENTS <Nb_entries, default 128>

Off, by default, for basic experimentations. On for MPI NSI DE_MODEL or

MPI NSI DE_EVAL_SLT. By default, functions like MPl _xxx_Init, MPl _Start, are
just executed. When on, MPInside keeps the calls that were set at the MPl _xxx_i ni t
calls and runs the corresponding MPI _I xxx function. For example, a sequence like:
MPI _Recv_I nit (buff, count, datatype, dest,tag, comrequest); MPl _Start (request)
MPI Wit _Request will be executed

MPI _Recv_I nit (buff, count, dat atype, dest,tag, comrequest) with only
MPInside internal setting and then

MPI _Irecv(buff, count, dat at ype, dest, t ag, com r equest) instead of

MPl _Start (request) and then MPl _Wai t (no changed). This option is on when
MPI NSI DE_MODEL or MPI NSI DE_EVAL_SLT is set but can also work with basic
profiling.

Usage Example

set env MPI NSI DE_TRANSLATE_PERSI STENTS
set env MPI NSI DE_TRANSLATE_PERSI STENTS 25

npi nsi de_st at s File

007-5780-001

This section describes the npi nsi de_st at s file.

Note: The prefix name of the statistics files resulting from the MPInside command
can be chosen using the MPI NSI DE_OUTPUT _PREFI X environment variable. We are
using the default prefix npi nsi de here.

Figure 1-6 on page 22 an example of the array of values printed in the
npi nsi de_st at s file.

21

1: MPInside Profiling Tool

e Elapse times in (s coLe
CPRL Comput wi_recy recy w_wait wait send iIrecy iprohe
0 260021 372 0.7912 0.382 0502 7 356 0019 3.51584
1 260324 3. B5a8 0.7169 0.5747 05538 7 644 00211 28284
2 2633472 3. 5806 0.6415 0.7484 0535 74803 00175 29643
e Mhytes with send attribute =<=<
—PU Comput wrecy recy wwiait wait send irecy iprobe
0 - a a 1] 1] 495 a a
32 Mumber of requests with Send attribute<<<=<
CPU Comput w_recy recy W wiait wait send irecy iprabe
0 - a a 0 0 165008 a a
e Mhytes with Fecv attribute =<=<
—PU Comput wrecy recy wwiait wait send irecy iprobe
0 - a 535 1] 1] 1] 443 a
e Mumber of requests with Recy attribute=<<=
CPU Comput w_recy recy W wiait wait send irecy iprabe
1] a03 a03 8062 14464 1] 14464 12075883

User Counters

Figure 1-6 Array of Values Printed in the npi nsi de_st at s File

A set of four user counters is available allowing user time measurement to be
included in the nmpi nsi de_st at s file. Figure 1-7 on page 22 shows an example.

CPU Cl:-rlnpul
0 207 B50
1 210723

HostcntD hostent! recy waitall wait
12.483 £6.937 8.119 0.004 75 605
14.798 45 876 1.645 0.00& 74.165

22

Figure 1-7 npi nsi de_st at s User Counters

007-5780-001

MPInside Reference Guide

Columns Meaning

007-5780-001

C
voi d npi nsi de_host_counter (int counter, int step)

Fortran

MPI NSI DE_HOST_COUNTER(count er, step)
| NTEGER COUNTER, STEP

Step = -1: start counter;
Step = 1: stop counter

Note these counters are already accounted in the MPInside counters (conput ,
MPI _Recv) The number of pair requests to this function comes in the Send request set.

In order to get columns well aligned on a text file, the name of the MPI functions are
shortened. The following describes such abbreviations.

b <Coll ective function>

Time spent by the MPI _Barri er inserted before the collective
function if the MPI NSI DE_EVAL_COLLECTI VE_WAI T environment
variable was set. In this case the total time for the collective function
isb <Collective function> + <Collective function>.
This assumes the real <Col | ecti ve_functi on> time was not too
polluted by this change. This is true in most cases.

w <wait_or_receive_func>

Time where Sends were late in regard to they matching MPl _Recv
of MPI _WAit for receive. This is equal to

hour _ent eri ng_mat chi ng_send_function -

hour _entering_wait_or_receive_func. If this quantity is
positive, the time reported in the receive (MPl _Recv) or wait

(MPI _Wi t) columns is the time of the effective transfers, that is, the
times taken by the receives when the sends were ready (or said
another way posted prior the MPI _Wai t call).

23

1: MPInside Profiling Tool

MPI _Sendr ecv
MPI _Sendr ecv_r epl ace functions

In order to figure out the amount of wait time involved with these
functions they are executed the following way on both sides.

MPI _| send: reported as MPl _Sendrecv_S /
MPl _Sendrecv_repl ace_S

MPl _Recv: reported as MPl _Sendrecv_R /
MPI _Sendrecv_repl ace_R

MPI Wit on the MPI _i send request : reported as
MPI _Sendrecv_W5 / MPI _Sendrecv_repl ace_W5.

The total elapsed time is the sum of the conput column and all the MPI columns
(excluding the last | _r ecv column).

The wnxxx columns (only if MPI NSI DE_PARTNER_MATCH is set to TAG or CHECKSUM
are the times from the xxx functions that cannot be matched with any matching send.
This time is a part of the xxx time but not an error for it. This number allows you to
figure out the accuracy of the W xxx time reported. For a given receive, MPInside
knows very precisely the time of the function.

Bytes Transferred and Number of Requests Arrays

Following the arrays reporting the elapse time for the functions are 2 set of 2 aligned
arrays.

Set Send

>>>> Ch_send array: Kbytes with send attribute <<<< >>>> R send array: Nunber of requests with Send attribute<<<<
Set Recei ve:

>>>> Ch_recv array: Kbytes with Recv attribute <<<< >>>> R recv array: Nunber of requests with Recv attribute<<<<

Point to Point Function

Point to point functions, like MPl _Send and MPI _Recv, are easily dispatched into
this two logical set of arrays. A function like MPI _Wi t is not of this last kind and so
is arbitrarily assigned to the Recv set. The section below describes the choice taken
for this kind of function. For point to point functions, the cumulated sizes reported
are the true size transferred. For collective operations, things are more complicated.
MPInside does its best to dispatch the more information it can on these two sets with
the rules described in "Collective functions" on page 25.

24 007-5780-001

MPInside Reference Guide

Collective functions
This section describes collection functions, as follows:

= Communicator size is cumulated in the "R_send array: Number of requests with
Send attribute".

= The number of calls to the collective function is always in "Ch_r ecv Number of
requests with Recv attribute".

For collective with root (for example MPI _Bcast), as follows:

= "Ch_send array: Kbytes with Send attribute" gets the number of time the caller
rank was root.

= "Ch_recv array Kbytes with Send attribute" gets the size argument.
For non rooted functions (for example MPI _Al | r educe), as follows:

= "Ch_send array: Kbytes with Send attribute" gets the sendcount argument (if any)
or the average if sendcounts.

< "Ch_recv array Kbytes with Send attribute" gets the size revcount argument (if
any) or the average if sendcounts.

In addition, a string at the beginning of the npi nsi de_st at s file reports the way
things are dispatched.

Here a example on eight CPU system calling MPI _Al | t oal | with MPI _COVM WORLD
as communicator:

>>> col umm neani ngs <<<<

alltoal : Mpi _Al | t oal |

Ch_send+=sencount, R send+=comm sz; Ch_r ecv+=recvcount, R recv++
send : MPI _Send :
recv : MPlI _Recv

>>>> Ch_send array: Kbytes with send attribute <<<<

CPU Conput al | t oal send recv
0000 ------ 8 0 14
0007 ------ 8 14 0

>>>> R_send array: Nunber of requests with Send attribute<<<<
0000 ------ 16 0 7

007-5780-001 25

1: MPInside Profiling Tool

0007 ------ 16 7 0

>>>> Ch_recv array: Kbytes with Recv attribute <<<<
0000 ------ 8 14 0

0007 ------ 8 0 14

>>>> R recv array: Nunber of requests with Recv attribute<<<<

0000 ------ 2 7 0
0007 ------ 2 0 7
The string

"Ch_send+=sencount, R send+=comm sz; Ch_recv+=recvcount, R recv++"
does the following, for each call to MPI _Al | t oal | , the array Ch_send is
incremented by the sendcount argument of the function, the R_send array is
incremented by the size of the communicator (here eight), The Ch_r ecv array is
incremented by the r ecvcount argument of the function and the R recv is just
incremented by 1.

The example, above, shows two calls to MPI _Al | t oal | with communication Size 8 =
16/2 and sizes argument were 8K. This 8K is to compare with the 14K reported for 7
calls to MPI _Sendand MPI _Recv. These two last functions are certainly not those
that transfer the more bytes. As MPl _Al | t oal | average communicator size is 8 the
amount of char transferred both sides is in the other of 8x8=64K even if last size
depends on the algorithm used by the MPI library.

npi nsi de_stats_. M Nfiles

These files contain matrices with N columns and total number of CPU lines. For a
run with less that 255 CPUs (say N), only one file is produced:

Mpi nsi de_cl st k. 0- (N-1). The file is reduced to 256 columns in order to be
imported into a spread sheet.

To get such files the MPI NSI DE_MATRI CES variable must be set.

e Wait Times Matrix

26 007-5780-001

MPInside Reference Guide

007-5780-001

The time (FWT) the CPUs are waiting for Recv. This is the time viewed by the
application. It doesn’t include the collectives functions. WT(l,J) = Time CPU "J"
was waiting for CPU "I".

e Send_Late Matrix

The Time (SLT) of the above wait because the Sender was just late. This matrix is
only available with MPI NSI DE_EVAL_SLT or MPI NSI DE_CALLSTACK DEPTH > 1
and MPI NSI DE_CROSS_REFERENCE.

= Mbytes received
Mo(1,J) = Moytes received By CPU "J* from CPU "I".
< Number of requests
Nr(l,1) = Number of requests preformed by CPU "J" With "I" as sender.

These matrices can be easily combined in the spreadsheet to provide other metrics,
such as: Time to account to the MPI1/hardware only = "Wait Times Matrx" —
"Send_Late Matrix".

Figure 1-8 on page 28 shows the Wait time matrix chart.

27

1: MPInside Profiling Tool

28

Chart type:

M Column -
E Bar

|ﬁ Line

(& Fie

|_ 2Y (Scatter)
‘ Area

@ Doughnut
ﬁf Radar

Plvre

Chart sub-;vpe;'

®3 Bubble

PoP2 Wait time matrix

0 — kW k= 3
IR T T SN SR SR |

senders

mE-7
mahb
m4-5
o3-4
az2-a
mi-2

ao-1

Figure 1-8 PoP2 Wait Time Matrix

Figure 1-9 on page 29 shows the MPI/hardware only matrix.

007-5780-001

MPInside Reference Guide

Pop2 Time transfer only

BE-7
056
B 4-5
03-4
023
m1-2
oo-1

receivers

Figure 1-9 PoP2 Time Transfer Only

The following section describes the accounting of Collective operations in these files.

MPInside Binary Transfer Matrices

When the MPI NSI DE_MATRI CES value contains the "B" flag, binary files are written,
one per rank in the . / MPI NSI E_MAT_DI R directory or elsewhere if

MPI NSI DE_BI NARY_MATRI CES DI Ris set. From these files, the pr amutility,
depending of the option chosen, can extract a set of ranks to build a text file
equivalent to the npi nsi de_st at s. M N file described above, it can summarize the
activity to the node level. But the main purpose of these files is to be input for the
MPI placement tool "Sergeant”. For this purpose, these files may not exactly report
what is transferred but may report what is important for placement the lighter way as
possible. The pr amutility, in the following section, describes exactly what is reported.

007-5780-001 29

1: MPInside Profiling Tool

pr am Utility
The syntax for the pr amutility is, as follows:

pram[-h] [-i] [-s] [-RI[-mM [-f first_colum] [-e last_colum] [-o0 output_nane] [-c cpu_list]
[-n nb_cpu_per_node] [-S nb_node_per_switch] [-k kind_of _report] [input_dir]
Print Ascii array report fromBinary MPInside matrices

-h : this usage

-i: print input file information

-s @ symetrize Matrices as Sergeant Placenent tool

-R : reverse line order, off by default

-m : nerge P2P and collective, default keep them separated

-f first_colum : first colum, default O

-e last_colum,default ncpu-1 if -k RANK nb_nodes -1 otherw se

-0 output_nane, default npinside_mat_frb

-c cpu_list,for exanpl e: $PBS_NODEFI LE

-n nb_cpu_per_node,if -c not specified, default 8

-k RANK| NODE, default RANK. For exanple -k NODE : node to node transfer nmatrice
input_dir: Directory where binary file are. Default MPINSIDE MAT D R

npi nsi de_cl st k_post . xxx Files

Note: The prefix name of the statistics files resulting from the MPInside command
can be chosen. This manual uses the default prefix "npi nsi de".

When run with the MPI NSI DE_CALLSTACK DEPTH variable set to a value at least 2,
the MPInside tool produces a set of npi nsi de_cl st k. xxx files (one per MPI ranks)
containing a sorted list of branches that have to be post processed by

MPI nsi de_post to produce a set of nmpi nsi de_cl st k_post . xxx readable files. A
branch consists of an MPI function as leaf followed by all its "Callstack™" ancestors.
The branches are sorted by the measured time spent in this particular MPI function.

Each branch comes with the following statistics:

MPI _FUNCTION Brid Tinme(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR Wm ss% Rcv_Ws)

Brid Unique identification of this branch
#reqs_S / #regs_R Number of send/Recv requests accountable to this
branch

30 007-5780-001

MPInside Reference Guide

avr_szS / avr_szR

W m ss%

Rev_W(s)

Average size sent in Mbytes accountable to this branch
(meanings are depending of the MPI functions. See the
descriptions for the nmpi nsi de_st at s file described in
"npi nsi de_st at s File" on page 21.

For "Recv branches" this is the percentage of the wait
time corresponding to this "Recv branches" that
MPInside was not able to match with any Send Branch.
(See "wm_xxx" functions in "Columns Meaning" on
page 23 for more information about these misses) This
value is always zero for other kind of branches.

The "Ti me(s) " column gives the time spent for the
receive function itself. The "Rcv_Ws) " gives the wait
time associated. For functions, such as, MPl _Recv(),
these two times are equal. They are not equal for
functions like MPl _Irecv().

This line is followed by the name of leaf ancestors. When called with the -1 flag, the
MPInside post also reports the full path of the source code and the line number of
that call, provided that this information is available in the binary (compiled with the

- g flag).
An example is, as follows:

MPI _FUNCTION Brid
MPI _Recv
Ancestors:

Time(s) Self%

#1214 3.923 15.94 15.9

MPI _FUNCTION Brid
MPI _Recv #1559
Ancestors:

Time(s) Self%
3.582 14.56 30.5

MPI _FUNCTION Brid
MPI _Recv #1226
Ancestors:

Time(s) Self%
1.719 6.99 37.5

MPI _FUNCTION Brid
MPI _Recv #1368
Ancestors:

Time(s) Self%
1.324 5.38 42.9

MPI _FUNCTION Brid
MPl _Recv #1491

Time(s) Self%
0.880 3.58 46.5

007-5780-001

Tot % #reqs_S #reqs_R avr_szS avr_szR

0 66598 0 836

npp_recv_real 8_scal ar nmpp_do_update_ol d_r8_3d npp_updat e_donmai n2d_r 8_3d

Tot % #reqs_S #reqs_R avr_szS avr_szR

0 364 0 949846

npp_recv_real 8_scal ar nmpp_do_gl obal _fi el d2dol d_r8_3d npp_gl obal _fiel d2d_r8_3d

Tot % #reqs_S #reqs_R avr_szS avr_szR

0 11874 0 1950

npp_recv_real 8_scal ar nmpp_do_update_ol d_r8_3d npp_updat e_donmai n2d_r 8_3d

Tot % #reqs_S #reqs_R avr_szS avr_szR

0 3600 0 6016

npp_recv_real 8_scal ar nmpp_do_update_ol d_r8_3d npp_updat e_donmai n2d_r 8_3d

Tot % #reqs_S #reqs_R avr_szS avr_szR

0 66 0 112800

31

1: MPInside Profiling Tool

Ancestors :npp_recv_real 8_scal ar npp_do_update_ol d_r8_3d npp_updat e_donai n2d_r 8_3d
The same example with with the MPI nsi de_post -1 flag is, as follows:

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPI _Recv #1214 3.923 15.94 15.9 0 66598 0 836
Ancestors: npp_recv_real 8_scalar /Tnpp/include/ npp_transmt.inc: 168
npp_do_update_ol d_r8_3d /Tnpp/incl ude/ npp_do_updat e_ol d. h: 338
npp_updat e_domai n2d_r8_3d / Trpp/ i ncl ude/ npp_updat e_donai ns2D. h: 114

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPI _Recv #1559 3.582 14.56 30.5 0 364 0 949846
Ancestors: npp_recv_real 8_scalar /Tnpp/include/ nmpp_transmit.inc:168
npp_do_gl obal _fiel d2dol d_r8_3d /Tnpp/incl ude/ npp_do_gl obal _fiel d_ol d. h: 146
npp_gl obal _field2d_r8_3d /Trpp/include/ mpp_gl obal _field. h: 87

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPI _Recv #1226 1.719 6.99 37.5 0 11874 0 1950
Ancestors: npp_recv_real 8_scalar /Tnpp/include/ npp_transmit.inc:168
npp_do_update_ol d_r8_3d /Tnpp/incl ude/ npp_do_updat e_ol d. h: 338
npp_updat e_domai n2d_r8_3d / Trpp/ i ncl ude/ npp_updat e_donai ns2D. h: 114

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPI _Recv #1368 1.324 5.38 42.9 0 3600 0 6016
Ancestors: npp_recv_real 8_scalar /Tnpp/include/ npp_transmit.inc:168
npp_do_update_ol d_r8_3d /Tnpp/incl ude/ npp_do_updat e_ol d. h: 338
npp_updat e_domai n2d_r8_3d / Trpp/ i ncl ude/ npp_updat e_donai ns2D. h: 114

With MPI NSI DE_CALLSTACK_DEPTH >= 2, if the MPI NSI DE_CROSS_REFERENCE
variable is also set, some branches (depending of the MPI function leaf) have partners.
Partners connect branches together. Partners are sorted by the time they induced for
the MPI functions. The following is an example for a system with eight CPUs:

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR

MPl _Recv #1214 4.751 16.47 16.5 0 66598 0 836
Ancestors: npp_recv_real 8 scal ar npp_do_update_ol d_r8_3d npp_updat e_donai n2d_r 8_3d
Partners_I| _O: 3: #190: 49. 29: 99. 22 5: #190: 18. 92: 99. 86 2: #190: 10. 78: 96. 60 6: #194: 9. 28: 94. 30
1:#189:5.79:91.97 7:#192: 5. 46: 86. 87

32 007-5780-001

MPInside Reference Guide

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPI _Al |l reduce #3207 0.060 0.21 87.7 50 0 8 0
Ancestors: npp_sumreal 8 scal ar npp_gl obal _sumr8_2d vol ume_conservation

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPl | send #6 0.003 0.01 98.0 852 0 818 0
Ancestors: npp_send_real 8_scal ar npp_do_update_ol d_r8_3d npp_updat e_donai n2d_r 8_3d

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPl it #2448 0.001 0.00 99.4 0 88 0 0
Ancestors: npp_sync_self get_1 fromxgrid_repro get_sidel fromxgrid
Partners | _O: 0: #454.98. 32 0: #417:1. 68

The following is another example of a "Recv Br anch" post-processed with the - - a
- -1 flags of MPI nsi de_post . It shows the partner information in a different, less
compact, format for easy plotting with Excel, as shown in Figure 1-10 on page 34:

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR Wniss% Rcv_WSs)
MPl Irecv #375 0.055 0.93 64.4 0 35280 0 497 0.0 0. 505315
Ancestors: boundary_np_boundary_2d_dbl _??unw /tnp/ipo_ifortGVIw.f:0
step_nod_np_step_??unw /tnp/ipo_ifortGVIW.f:0
MAIN __ ??2:0
main ??2:0

CPU: #bri d Sel f% Wit(s) Send_l at(s)
57: #54 79.02 0. 3993 0. 3906
56: #54 7.01 0. 0354 0. 0051
8: #119 6. 83 0. 0345 0. 0000
1: #119 4.13 0. 0209 0. 0157
2: #119 1.84 0. 0093 0. 0070
58: #54 0. 66 0. 0033 0. 0005
0: #119 0.50 0. 0025 0. 0000

007-5780-001 33

1: MPInside Profiling Tool

34

elapse(s)

Pop2 (64 CPU run) CPU 9 Dominant Recv
branch
0.5
04
0.3 1 @ ait(s)
02 H mSend_lat(s)
0,1 H
I:I T I_I_ T |_| T '__ T === T T
ar#sd AEF04 D119 1#F19 #1119 S84 014
CPU #branch Id

Figure 1-10 Pop2 (64 CPU run) CPU 9 Dominant Recv Branch

The partner information consists of four numbers (Recv branches) or 3 numbers

(Wait branches) separated by ":":

A part ner is defined by four numbers A:#B:C:D There numbers are defined, as
follows:

- A
Rank number that did the MPI Send/I send for this branch.
- #B
MPI _Send/I send Branch i dent (#bri d)
- C
Percent of this MPI _Recv that involved this "A" rank "#B" MPI Send branch.
- D

Percent of this MPI _Recv where the corresponding Send was arriving late.

007-5780-001

MPInside Reference Guide

For example:
3: #190: 49. 29: 99. 22

This MPl _Recv branch id 1214 was "partner” with the rank 3 MPI _Send branch ID
#190 (below such branch from the npi nsi de_cl st k_post . 3 file) and this
partnership is accountable for 49.29% of this MPI_Recv branch communication time
and 99.22 % of this 49.29% was just wait because the sends were arriving late.

MPI _FUNCTION Brid Time(s) Self% Tot% #reqs_S #reqs_R avr_szS avr_szR
MPl _Isend #190 0.189 0.66 82.5 82998 0 820 0
Ancestors: npp_send_real 8_scal ar npp_do_update_ol d_r8_3d npp_updat e_donai n2d_r 8_3d

There are four kinds of branches depending on the MPI leaf, some have partners,
some do not have any partners. The interpretation of the timings of such partners
also depends on the leaf kind.

Partner Branch Kinds

This section describes various CPU branch partners.

Ordinary Branches

Such branches have no partner and cannot be a target with Recv or Wai t branches
(see "Recv branches" on page 36 and "Wait Branches" on page 36). All collectives
operations are ordinary branches.

Send Branches

Such branches have no partner but are the target of Recv or Wi t branches. Leaves
for this kind of branch are, as follows:

MPI | bsend
MPI _Irsend
MPI | send

MPI | ssend

WPl _Sendrecv_repl ace_S
WPl _Sendrecv_repl ace_W5
MPI _Rsend

007-5780-001 35

1: MPInside Profiling Tool

Recv branches

Wait Branches

36

MPI _Sendrecv_S
MPI _Sendrecv_W5
MPl _Send

MPI _Ssend

Such branches are targets of the Wai t branches and have Send branches partners.
Leaves for this kind of branch are, as follows:

MPlI _Irecv

The "C" partner value means the percentage to account to this particular
partnership in regard to the total WAI T time (The time of the MPI _Wai t and

MPI _Wai tal | that processed the MPI _I r ecv request. This is not the time of the
MPI I recv itself).

MPlI _Recv

The "C" partner value means the percentage to account to this particular
partnership in regard to the total MPl _Recv time of this branch.

MPl _Sendrecv_repl ace_R
MPI _Sendrecv_R

Like MPl _Recv, these leaves are related to MPl _Sendr ecv and
MPl _Sendrecv_repl ace (see "Columns Meaning" on page 23 for how such
functions are performed with MPInside)

The partners format is : A#B:C:D is described in "Non-synchronized Send/Receive
Pair Definition and Terminology" on page 2.

Such branches have partners on the same processors. The partners connect the wait
branches to their corresponding requests. Targets for them are "Send leaves" and
"Recv leaves". The partners format is : A#B:C, as follows:

A

A is always equal to xxx for a particular npi nsi de_cl st k_post . xxx file.

007-5780-001

MPInside Reference Guide

007-5780-001

- #B

#B is always a branch that can be found in the very same
npi nsi de_cl st k_post . xxx file.

- C
C is the percentage of time of this Wi t branch that relies to the #B branch.

For wait branches that involve multiple requests (MPl _Wai tal |, MPl _Wi t sorre,
and so on) this time is prorated between the corresponding branches. The following
paragraphs describe how things are done on a particular MPI function basis:

MPI _Testall,
MPI _Test any,
MPI _Test sone,
MPI _Test

The time of all the MPI _t est xxx functions is accounted accurately in the

npi nsi de_st at s file but the Wai t time accounted to the partners only includes the
last successful MPI _t est xx. So the Wi t time reported here has no meaning. It still
allows to connect the MPI _Test xxx function to its corresponding Send or Recv
branch. Such "non wait time meaning" also applies to the corresponding Recv or
partners.

MPI Vi tal

Properly dispatching the timings for such function is a big issue. MPInside does not
try to dispatch them. It describes, in this case, how time is dispatched between
partners. In reverse, the times reported in the MPI _\Wai t al | (wai t al |) column in the
npi nsi de_st at s file must correct (this is the FWT time defined in introduction).
The w_wt al | time must also be correct. So the partner timings are meaningless but
the A:#B partner fields are correct. The timings in the matrices are incorrect. They are
not correct on a CPU x CPU basis in the matrices but must be correct in the

npi nsi de_st at s files that reports all what were received.

MPI Wi t any

The request that is successful will get the wait times. This is fair if we consider that if
the matching send of such request was posted sooner the wait time would have been
reduced. This is not fair if we consider the other request are even late and do not get
any wait times.

MPI Wi t sone

37

1: MPInside Profiling Tool

All matching sends are assumed to have come prior to this MPl _Wi t sone posting.
The *C’ wait time is prorated over the requests that have completed. Said another
way, the tool gave up providing SLT information for such function.

MPl Wi t
MPl _Sendr ecv_W5
MPl _Sendrecv_repl ace_W5

The wait times are accurate.

Communication "Stiffness"

38

T N 70 = oD o
’ !. /

Each thread maintains two counters, as follows:
= Total number of send r ecv (TNSR)

= The size of the dependency chain (SDC) by language abuse.

When a send occurs the SDC is incremented by one and this value is included in the
message header. When a r ecv completes its SDC is incremented by one and if this
value is still lower that the sending SDC, the receiver SDC gets the sender SDC.

The Stiffness is defined to be the ratio SDC/TNSR. The lower the better. The following
chart (see Figure 1-11 on page 38) shows "good" communication Stiffness = 1.

B comput

stiffness 3/3 =1

Figure 1-11 Communication Stiffness Chart 1 of 2

007-5780-001

MPInside Reference Guide

The following charts (see Figure 1-12 on page 39) a barrier implementation by token
passing back and forth shows a "bad" communication Stiffness = 3.

007-5780-001

W comiput
W wait
W Send

W Aey

Figure 1-12 Communication Stiffness Chart 2 of 2

An application having a Stiffness growing with the number of CPU will probably
have scalability issues.

Communication stiffness for the following codes are, as follows:

= PARATEC (PARAIllel Total Energy Code) running on a system with 256 CPUs:
Stiffness is close to 1 for all threads.

= STAR-CD running on a system with 256 CPUs:Stiffness is very different from one
thread to the other between 1.5 and 15

= LINPACK running on a system with 992 CPUs: Stiffness is close to 10 for all
threads

MPInside is able to give these numbers with the following environmental variable
settings:

setenv MPI NSI DE_PARTNER MATCH TOKEN
setenv MPINSI DE_EVAL_SLT
setenv MPI NSI DE_EVAL_COLLECTI VE WAI T

In such a case : the Total number of send recv (TNSR) is reported in the "Number of
request with the send attribute" array in the npi nsi de_st at s file in the "Stiffness"
column and the size of the dependency chain (SDC) is reported on the same column
in the "Number of request with the r ecv attribute" array.

39

1: MPInside Profiling Tool

Perfect Interconnect Zero Latency Infinite Bandwidth

40

All the MPInside reports, described above, are also available with the communication
modeled instead of being measured. In particular, MPInside is able to determine the
communication value with a perfect interconnect. Knowing this asymptotic value is
very useful. It can tell you if it is worth trying optimizing the application, trying
another library, or spending money to acquire a machine with better MPI
performance for a particular application.

To activate perfect interconnect modeling, simply run the following commands:

setenv MPI NSI DE_ MODEL PERFECT+1. 0
npi run -np xxx MPI nside Your_prog Prog_args

All the reports previously described are available in this mode. Setting

MPI NI SDE_MATRI CES will create the nmpi nsi de_st at s. M N files and in this model
mode if MPI NSI DE_MATRI CES is set to FULL, the "MB receive array" will include all
the one to one communications generated by the MPT library to perform collectives
operations.

Figure 1-13 on page 41 shows PARATEC running on an SGI Altix ICE system with
Intel Xeon E5410 processors (code name Harpertown). The chart on the left is the
result of running MPInside without any environment variable. The chart on the right
is the result of running MPInside with the mentioned environment variable. All are
measurements.

007-5780-001

MPInside Reference Guide

PARATEC 256 CPU Hapertown ICE+

200

Aallred
mb_alred
= beast
h_hcast
Oirecy
W isend
send
Twait
gt
T recy
W _recy
wCompuat

Elpase{s)

F— = — 0 w o o
Lo BT R = R e B N s
—_ = =

[im)
— =t
(]

MPIranks

Figure 1-13 PARATEC Application on Altix ICE 1 of 2

The measurements shown in Figure 1-13 on page 41 indicate that MPl _Al | r educe
spent little time to synchronize. Most of the time is transferring (al | r ed dominates
b_al | red). In reverse, there is very little time spent transferring in MPl _ Wi t
(w_wai t domi nates wait). What is responsible for all this Send late time

(w_wai t). Is it the application itself that introduced load unbalancing or the
interconnect ? The following chart that is the result of a perfect interconnect run gives
us the answer (see Figure 1-14 on page 42). The application itself does not carry much
load unbalance. This load unbalance depends on the interconnect performance.

007-5780-001 41

1: MPInside Profiling Tool

280

PARATE C 256 CPU Hapertown ICE+

200

dapsg=s)

o3
=)

B3 eeoaBREgE L
- T T ™ ™ - - =

MFPI ranks

228
285

+ allred
im bast
Wirecy
Wisend
send
Hunait
Hrecy

m Comput

Figure 1-14 PARATEC Application on Altix ICE 2 of 2

This high load unbalance, due to the interconnect, does not happen with LINPACK on
an SGI Altix ICE 8200 or an SGI Altix ICE 8400 system with 992 processors (see Figure
1-15 on page 43). On both machines, most of the communication time is from the
application. The Wai t time is not highly reduced with the perfect interconnect. Note
the non-negligible MPI _Send (send) time. This time is not related to the interconnect
but to the fact that, because of the big transfer sizes used, the sends are not buffered
so the MPI _Send only complete when the received are done. The perfect interconnect
assumes infinite bandwidth and zero latency so the MPI _Send (send) time disappears.

42

007-5780-001

MPInside Reference Guide

007-5780-001

Elapse()

Linpack 992 CPU Clovertown4CE Hapertown<CE+

500
450
400
350
300
250
200
140
100

50

MPI ranks

mirecy
msend
it
iy A it
H FRCY
mw recy
miprobe
m Cormput

Figure 1-15 LINPACK Measure versus Perfect Interconnect Timing

43

Chapter 2

Using the MPInside Profiling Tool

This chapter describes how to select a window of observation using the MPInside
profiling tool.

Selecting a Window of Observation using Re-compilation
This section describes how to select a window of observation using re-compilation.
With re-compilation

C
(void) npinside_start();
(voi d) npinside_end();

Fortran:
Cal | nmpinside_start
Cal I mpi nsi de_end()

They nust be calls involving ALL ranks
The application term nates when npi nside_end() is encountered
If MPI _Finalize() is called prior to npinside_end() the application

will end normally with statistics fromnpinside_start to MPI _finalize
Li nk

$(LD) ... -L MPInside_install _dir/lib -1 MPInside_stub

Executi on:

setenv LD LI BRARY_PATH MPI nside_install _dir/lib:${LD LI BRARY_PATH}
Wthout the MPInside | auncher the application will run normally. The calls to
npi nsi de_start (), npinside_end() will have no effect.

Set MPInside options as usual

Tell MPInside to wait for the npinside_start call to gather statistics
set env MPI NSI DE_PARTI AL_EXPERI MENT

Run MPI nsi de as usual

npirun -np xx MPInside your_apps [your args]

007-5780-001 45

2: Using the MPInside Profiling Tool

Selecting a Window of Observation with a Collective Function Heartbeat

This section describes how to select a window of observation with a collective
function heartbeat.

setenv MPI NSI DE_COLLECTI VE_W NDOW <Col | ective function>:<# call to start>:<#call to end>
Exanpl es:

setenv MPI NSI DE_COLLECTI VE_W NDOW MPI _Al | r educe: 1000: 1300

setenv MPI NSI DE_COLLECTI VE_ W NDOW WMPI _Barrier: 0: 2000000005

setenv MPI NSI DE_COVM TO WATCH <conuni cator to watch>
speci al values: default :MPI_COVW WORLD, any communi cator: -1, any MPI _COW WORLD duplication : -2
Exanpl es:

setenv MPI NSI DE_COW TO WATCH 2

setenv MPI NSI DE_COWM TO WATCH 114685088
setenv MPI NSI DE_COW TO WATCH -2

Run MPI nsi de as usual

If <#call to start>Wis O collecting statistics starts with MPI _Init()
If MPI_Finalize is called before the <#call to end> the application
will terminate normally with the MPInside report.

If application is built with npinside_start(), npinside_end():
i f MPI NSI DE_PARTI AL_EXPERI MENT is not set
The two above variabl es (MPI NSI DE_COLLECTI VE_W NDOW and MPI NSI DE_COVM _TO_WATCH)

wi Il be honored and the calls to npinside_start(), npinside_end() will have no other effect
but a warning nessage will be printed in stderr
el se

The application will abort at the MPI _Init() tine
Using such feature only works if, as follows:

= At least one collective function is called regularly enough with a communicator or
some communicators involving ALL ranks. True in most cases, but not always.

Spy the Collective Functions

Selecting the collective function and the communicator can be an issue. In order to
help this selection, MPInside provides some ways to spy the collective functions.

To spy the collective functions, perform the following:

46 007-5780-001

MPInside Reference Guide

007-5780-001

= Obtain a basic MPInside report, in order to see how often the collective functions
are called.

= Select a collective function that is often called by the same number of CPUs. Such
information is available in the "Nunber of calls with the receive
attri but e" array inside the nmpi nsi de_st at s file.

= Assume, for example, that the MPI _Al | r educe function looks like a good
candidate. Obtain an MPInside run with the following:

— Watch from start to end:
setenv MPI NSI DE_COLLECTI VE_W NDOW MPI _Al | r educe: 0: 1000000000

— Watch any communicator duplication of MPI _COVM WORLD:
setenv MPI NSI DE_COVM TO WATCH - 2

— Have a print on st dout for each 100 calls to the watched collective function:
set env MPNSI DE_SHOW W 100

Note that the application is run two times. The first report is useful. You could run
the application only once if you knew the collective function to watch. You can check
if the application actually calls some Collective MPI functions by running the
following command:

nm executable_file |grep MPI _

47

2: Using the MPInside Profiling Tool

An st dout example with POP2 using Intel MPI is, as follows:

End of initialization

rank 0 13300 calls to MPI_Allreduce with comr 1140850688 comm sz=256 el apse 45. 022756
Step nunber 100
Dat e : 02 jan 0000
Hour : 18
M nut e : 6
Second : 33
Ti me(days) : 1. 754545
Rank 0 13400 calls to MPI _Allreduce wth comm 1140850688 comm si ze=256 el apse 45. 512763
Rank 0 13500 calls to MPI_Allreduce wth comm= 1140850688 comm si ze=256 el apse 45. 566929
Step nunber 200
Dat e : 04 jan 0000
Hour : 12
M nut e : 13
Second : 5
Ti me(days) : 3.509091
Rank 0 24800 calls to MPI_Allreduce wth comm 1140850688 comm si ze=256 el apse 86.473298

Because of the strong "St ep" meaning and by correlating the elapsed time between
St ep nunmber 13400 and 24800 with the global time, it is clear that the MPI profile
can be captured between MPI _Al | r educe 13400 and 24800. This reduces the run
to few seconds instead of hours, with these setting:

setenv MPI NSI DE_COLLECTI VE_W NDOW MPI _Al | r educe: 13400: 24800
set env MPI NSI DE_COVM TO WATCH -2
#set env MPI NSI DE_SHOW W 100

48 007-5780-001

Appendix A

MPInside(3) Man Page

This appendix provides a copy of the MPI nsi de(3) man page for your convenience.

To see the MPI nsi de man page online, make sure the MPI nsi de/ 3. 3 module is
loaded, as follows:

uv44-sys: ~ # nodul e avail

------------------------ /usr/share/ modul es/ modul efiles -------------mmommnn

WPl nsi de/ 3. 3 nodul e-info nul | sgi -upc/ 1. 05
chkfeature nmodul es per f boost sgi - upc-devel / 1. 05
dot npi pl ace/ 1. 01 per f cat cher use. own

nodul e- cvs npt/2.04 scotch/5.1.11

uv44-sys: ~ # nmodul e | oad MPI nside/ 3.3
The see a copy of the MPI nsi de(3) man page online, perform the following:

uv44-sys: ~ # man MPI nsi de
MPI nsi de(3) MPI nsi de(3)

MPI nside - Performance MPI data collection tool

DESCRI PTI ON
MPl nside is sinply invoked by prefixing the unnodified MPI application executable by MInside.
Features are triggered using environnent variables. For exanple:

mpirun -np 128 MPI nside apps apps_arg

MPI nsi de by default (with no environnent variables set) creates at least a file naned npinside_stats.
This file contains 5 sets of colums which can be easily exploited by a spreadsheet |ike Excel:

Set 1 : Time outside MPI + all the MPI functions timng
Set 2-3 : Named Ch_send-R_send, Anpunt of char transmtted + nunber of requests with the Send attribute

Set 4-5 : Named ch_recv-R recv, Sane as Set 2-3 but with the Recv attribute.

007-5780-001 49

A: MPInside(3) Man Page

ENVI RONIVENT

50

Di spaching sizes and requests for point to point operation is natural.
Things are nore conplicated for MPI collective functions.

A string explaining what is actually cumulated in the 2-5 sets is printed on top of the npin-

side_stats file. Here an exanple for MPI _Alltotall:

MPlI _Alltoall: Ch_send+=sendcount, R send+=comm sz; Ch_recv+=recvcount, R recv++

It

says: Ch_send is increnented with the specified send count, R send is increnented

with the size of the MPI comunicator, Ch_recv is incremented with the passed receive count

and R recv is just increnented.

MPI nsi de can al so be activated by using the LD PRELOAD facility directly. For exanple:

setenv LD PRELQAD /opt/sgi/npinside/lib/libMInside_npt.so

mpirun -np 128 MPI nside apps apps_arg

To coexist with libFFIO so this |ast mechani smnust be used to activate MPInside and the
MPInside library nmust appear before the FFI O one. For exanple:

setenv LD PRELQAD /opt/sgi/nmpinside/lib/libMIlnside_npt.so:/usr/lib64/libFFIQO so

MPI NSI DE_EVAL_COLLECTI VE_WAI T

if set, MInside wll put an MPI_Barrier (and will tine it) before

any MPl collective operation.

This assunes that the time of a collective operation is the tine of all processors
to synchronize + the tine of the operation. This is not always true but it

is true nobst of the cases and the tine to really perform

the collective operation is very short conmpared to the synchronization tinme.

In the npnside_stats file, the colum "b_xxx" will give the MPl_barrier tine
of the correspondi ng "xxx" MPl collective function and

"xxx" the remaining time. Wen MPINSI DE_PARTNER MATCH is set to TOKEN,

setting MPINSIDE_EVAL_COLLECTIVE_WAIT will also lead to evaluate the "Stiffness"
of the application (see bel ow)

MPI NSI DE_EVAL_SLT

If set, MPInside will neasure the time the Sends were late (SLT) conpared
to the Recv-Wait arrivals.

Such time will be wxxx in the npnside_stats file. xxx could for exanple be MPI_Wit or

MPI _Recv.

007-5780-001

MPInside Reference Guide

It cannot MPl _Irecv, because the Send late tine, if any, will be, for this last function,
accounted in an MPI _Wait-like function. MPINSIDE_EVAL_SLT is equival ent

to MPINSIDE_CALLSTACK DETH = 1 + MPI NSI DE_CROSS REFERENCE

except no npinside_clstk.xxx files will be created.

MPI NSI DE_WAI T_TI ME_NO_CROSSREF
deprecated, use MPINSIDE_EVAL_SLT i nstead.

MPI NSI DE_CALLSTACK_DEPTH <i nteger nunber>
If set, MInside wll unwind the stack up to the depth specified and a set
of npinside_clstk.xxx files will be created (one per rank).
These files will contain statistics about all the branches (see definition
above) that have an Ml function as |eaf. The npinside_clstk.xxx files
only contain raw addresses. The address-Routine nane matching is perforned by MPInside_post
that produces npinside_clstk_post.xxx files
(see more information about the format of such files below).
If MPInside_post is run with the "<96>l" flag, the source file Iine nunbers
will be also printed (provided the application was conpiled with the <96>g flag).
Note that npst of the overhead of the tool is inmputable to unwi nd the stack.
One shoul d take care not to set this variable to a nunber bigger than necessary.

MPI NSI DE_CROSS_REFERENCE
If set, MPInside instrunents the Branches with "partners" providing tinmed
cross CPU branches infornation. (
See npi nsi de_cl st h_post bel ow)

MPI NSI DE_LI TE
The MPInside overhead is very low Nevertheless with applications
doing a lot of calls to functions Iike MPI_Test, MPlprobe..... ,
it may happen the MPInside overhead accounts.
Wth this variable set the overhead is reduced to m ninmm
In such case only the timnmngs
will be reported in the npinside_stats file. No size and request information will be printed
and the only MPlnside variable recognized wll be MPINSIDE OUT-
PUT_PREFI X, MPI NSI DE_VERBOSE, MPI NSI DE_NON_STOPPI NG_ W NDOW MPI NSI DE_SHOW READ WRI TE,
MPI NSI DE_PARTI AL EXPERI MENT.

MPI NSI DE_TRANSLATE_PERSI STENTS <Nb_entries, default 128>
Of by default for Basic experinmentations. On for MPINSI DE_MODEL or MPI NSIDE _EVAL_SLT.
By default functions Ilike MPl_xxx_Init, MPl_Start, are just executed.
When On MPInside keeps what were set at the

007-5780-001 51

A: MPInside(3) Man Page

MPl _xxx_init <calls and run the corresponding MPI _Ixxx function.
For example a sequence like:

MPI _Recv_Init (buff, count, dat at ype, dest, tag, com request);

MPl _Start(request); MPI_WAit_Request will be executed

MPl _Recv_lInit (buff, count, dat at ype, dest, t ag, com r equest)

with only MPInside internal setting and then

MPI _I recv(buff, count, dat at ype, dest, tag, com request) instead of MPlI_Start(request)
and then MPI_Wait (no changed). This option is On

when MPI NSI DE_MODEL or MPI NSI DE_EVAL_SLT

is set but can also work with basic profiling.

Usage exanples: setenv MPI NSI DE_TRANSLATE_PERSI STENTS.

Set env MPI NSI DE_TRANSLATE_PERSI STENTS 256.

MPI NSI DE_NMATRI CES [EXA | PLA| P2P: [+ -B][SIM
Print transfer matrices files. Default is not to
print any matrices files. Option:

None: Only point to point operation will be reported. (See npinside_stats. MN)
bel ow for the format of the output files)

EXA : Matrices will include exact P2P transfers inplied by Collective functions. (MPT only)

PLA : Matrices wll include generic P2P transfers inplied by Collective functions.
This is the best choice for thses matrice to be input to an automatic placenment tool

+B : In addition to the npinside_stats. M N The transfer nmatrices size

and request will be print in binary format to be used as input for

the placenment tool Sergeant. There will be one file per rank (see the MPI N

S| DE_BI NARY_MATRI CES_DI R bel ow and the MPInside binary transfer matrices section).

-B :Binary files will be the only ones produced
S : Collectives and P2P natrices are separated in the binary files
M : Collectives and P2P natrices are merged in the binary files

Usage exanpl e: setenv MPI NSI DE_MATRI CES PLA: -B: S.

MPI NSI DE_SI ZE_DI STRI [T+] nb_bars[:first-1ast]
An hi stogram of the request sizes distribution will be printed at

52 007-5780-001

MPInside Reference Guide

the end of npinside_stats for rank first

to last: Default 12:0-0 (only rank zero and bar size : 0, 128, 256, 512,..... , 65536.
The curmul us of the calls for all rank is then ternminated the report.

This curmulus is always preinted even if the variable is

not set. If T+ is specified each histogram of the request sizes if followed

by a size distribution time histogram On such histogramthe tinme taken by function
like MPI_Wait, MPI_Waitall. is not accounted to

these functions but to the MPI _Isend, MPI _Irecv,.. functions

that generated the request passed to the Wit

function. Usage exenple; setenv MPINSIDE_SIZE DI STRI T+120:-16

MPI NSI DE_W TH_PERFSUI TE : ALL| OUT (x86 onl y)

If set to ALL, the Perfsuite profiler will be activated
concurrently to the MPInside process
for the execution Wndow If set to OUT the Perfsuite profiler will be activated

by MPInsi de when the application is outside of the MPI functions.

If running on a patched kernel or or kernel higher than 2.6.32 that allows
perf_events, it nmay be of great interest to get sone processor internal

or PAPI counter reports not polluted by the MPI internal processing In both cases,
the usual Perfsuite output files will be created

in addition to the MPInside ones. The Perfsuite outputs will have to

be post-processed by psprocess. The way Perfsuite will run in such case can be controlled
by the Perfsuite env. variables In particular, the Perfsuite .config file. used
will be pointed by the PS HWC CONFI G env. variable. This is the user responsi-
bility to ensure the Perfsuite enevironment is properly installed and

that the Perfsuite library are in the LD LIBRARY_PATH Iist.

MPI NSI DE_PERFSUI TE_QUTSI DE_MPI

(x86 only) This variable is deprecated use MPI NSI DE_W TH_PERFSUI TE i nst ead

MPI NSI DE_SHOW LATE_RECV

007-5780-001

This 1is not available is MPI NSI DE_PARTNER MATCH is set to TOKEN.

It is available if this last variable is set to TAG or CHECKSUM

or MPI NSI DE_MODEL is set and MPINSIDE EVAL_SLT or

(MPI NSI DE_CALLSTACK_DEPTH >= 1 and MPI NSI DE_CROSS_REFERENCE) .

I f MPINSI DE_SHOW LATE_RECV is set the last colum "I _recv"' will report

the total time the MPI_Recv or the MPI_Wait for receive functions were posted
ahead their matching sends.

If the MPI_Send are properly buffered their tinmes are very |ow.

In case the MPI _Send ("send" colum in the npinside_stats file) is high

it could be interested to conpare this MPI_Send tinme to the time the Received
were |late reported in the | _recv colum.

53

A: MPInside(3) Man Page

MPI NSI DE_PCL_EVENTS : [A@<PCL events |ist>
For systemrunning 2.6.32 kernel or higher,
CPU counters are avail able to user
wi t hout any kernel patch or additional kernel nodul es.
MPInside is linked with I'i bf pmd witten
by Stephane Eranian that allows access
by explicit names to nunerous native counters.
A list of such counters can be viewed by running the show
evtinfo comand coming with |ibfpnm
and bundl ed in the MInside environnent.
This list of explicit counter nanes is far
more conplete than the one available
with the perf command . Counting is performed only
i nsi de the MPInside wi ndow of observation.
The <event list> is a list of events
separated by .,.. |If O@is set counting
occurs outside MPI only.
if A@or just an <event list> is specified
counting occurs for the whole program
Counter val ues are displayed at the bottom of
the npinside_stats file (with still in
mnd a post processing with a spreadsheet).
Exanpl es: setenv MPI NSI DE_PCL_EVENTS . PERF_COUNT_HW | NSTRUCTI ONS, LLC_ REFERENCES. .
Note in this exanple the first counter
is a standard generic perf_event counter
whi l e t he second is Nehal em specific.
Anot her exanpl e: setenv MPI NSI DE_PCL_EVENTS O@
PERF_COUNT_HW | NSTRUCTI ONS, LLC_REFERENCES.

M scel | aneous envi ronment vari abl es
MPI NSI DE_CALLSTACK_MAX_RECV_ENTRI ES <I nt eger val ue>
Maxi mum nunber of Recv branches the tool can nanage (default : 256)

MPI NSI DE_CALLSTACK_MAX_SEND_ENTRI ES <I nt eger val ue>
Maxi mum nunber of Send branches the tool can nanage (default : 256)

MPI NSI DE_CALLSTACK_MAX_WAI T_ENTRI ES <I nteger val ue>

Maxi mum nunber of Wit branches the tool can nanage (default : 256)
<l nt eger val ue> Maxi num nunber of Recv branches the tool can nanage (default : 256)

54 007-5780-001

MPInside Reference Guide

MPI NSI DE_CALLSTACK_MAX_SEND_ENTRI ES <I nt eger val ue>
Maxi mum nunber of Send branches the tool can nanage (default : 256)

MPI NSI DE_CALLSTACK_MAX_WAI T_ENTRI ES <I nt eger val ue>
Maxi mum nunber of Wit branches the tool can nanage (default : 256)

MPI NSI DE_CALLSTACK_SKI P
nunber of ancestors the tool ignores starting fromthe MPI function |eaf.
For example MPI SA/IMPI MPI Fortran calls its C equivalent.
There is no need to nanage the Fortran calls. In such case, setting this
variable to 1 won'tlose any information and can reduce the tool overhead.

MPI NSI DE_CHECKSUM MATCH <i nt _t o_check>
deprecated. Use MPI NSI DE_PARTNER_MATCH i nst ead.
MPI NSI DE_CLOCK_| S_SYNCRHO
This can be used on nmachi ne having a synchroni zed cl ock
like the 1A64 Altix single imge.
O herwise if MPINSIDE_PATTERN MATCH is set to TAG or CHECKSUM
MPI nsi de nust built translation tables and calibration
tables to maintain a correlation between the different clock sources.
These are not built without incertitude so it is best not to use such tables
if a synchronized clock is avail able.

MPI NSI DE_COLLECTI VE_W NDWOW <MPI _col | ecti ve_nane>: <START>: <END>
MPI collective calls to watch or to start/stop the tool.
It starts MPlnside when the watched routine
reaches the counter START. It stops MPInside AND the application
when the watched routine reaches the
counter END except if the variable MPINSI DE_NON_STOPPI NG WNDOW i s set.
In this last case the profile is witten but the application
will continue normally.
If the END counter is not reached, the application
will stop at MPI_Finalize.
Exanpl e : setenv MPINSI DE_COLLECTI VE_W NDWOW MP| _Bcast : 300: 4321
calls to watch or to start/stop the tool.
I't starts MPlInside when the watched routine reaches the counter START.
It stops MPInside AND the application when
the watched routine reaches the counter END.

If the END counter is not reached, the application will stop at MPI_Finalize.

Exanpl e : setenv MPINSI DE_COLLECTI VE_W NDWOW MPI _Bcast : 300: 4321

007-5780-001

55

A: MPInside(3) Man Page

MPI NSI DE_COVM _TO_WATCH <l nt eger val ue>
Communi cator to watch with for the collective function sel ected
with MPI _I NSI DE_COLLECTI VE_ W NDOW Default is MPl_COVW WORLD.
You must set this communicator to a comruni cator number that contains all the ranks.
Speci al val ues:

-1: Any comunicator. |If so you nust set

MPI NSI DE_COLLECTI VE_W NDOW <col | ective function>:0:300000000.

l.e. starts at Ml _Init

and ends at MPl_Finalize. This could be useful in conjunction with MPINSIDE SHOW W descri bed
just below. Results are unpredictable if MPINSIDE_COLLECTI VE_W NDOW

is not set the way just described.

-2: Any comunicator that is a duplication (created with MPI _Conm dup) of MPI_COVM WORLD.

MPI NSI DE_SHOW W <I nt eger val ues>
If set, a print to stdout will be done at each

MPI NSI DE_COW T_W <l nt eger val ue> : ldentical to MPINSIDE_COVWM TO WATCH.
Deprecat ed, use MPI NSI DE_COW TO WATCH i nst ead.

If set, a print to stdout will be done at each MPI NSI DE_SHON W cal | s

of the watching function.

One can this way figure out which counter to set in order

to select a window of observation allow ng profiling

the application only for sonme reduced neani ngful steps. Exanple of such print:

Rank O 1000 calls to MPI _Bcast with conm =2 conm sz=64 El apse: 1532.004
= MPI NSI DE_CROSS_PARTNER_STACK_SI ZE <i nt eger val ue>

Only neani ngful if MPINSIDE_PARTNER MATCH is set to TAG or CHECKSUM

In order to provide partner informa-

tion, Minside mnmust force the sending CPU to send sone information

to the receiving one for any calls.

Such exchanges are stacked to reduce the overhead

(same time to send/recv 0 bytes or 64 bytes). Note that

such supplenmental nessages are sent/received perfectly synchronized.

By this |ast sentence we nean the

reception of the supplenmental nessage occurs at a nonent

where we are sure the matching send is done

(default : 64)

56 007-5780-001

MPInside Reference Guide

MPI NSI DE_CUT_COFF <real val ue>

Do not print branches whose time is |lower than
MPI NSI DE_CUT_OFF % of the total communication tine
(default is 0,01, 1%

MPI NSI DE_DELAY_AT_INIT i nteger val ue>

For debugging. Sleep this long (time value in seconds) in order to get time
to attach some process to a

debugger like gdb. (default : do not sleep)

MPI NSI DE_I NG_COLLECTI VE_BRANCHES

Ignore collective routines fromthe Callstack managenent
in order to reduce the overhead and to concen-
trate on Send/ Recv pairs

MPI NSI DE_| NTERNAL_TAG_START <i nt eger val ue>

Starting tag value for MPInside exclusive usage: default : 2**30

MPI NSI DE_LI B: <MPT| | MPI | HPMPI | SCALI MP| >

MPl library used by the application. If this variable is not set MPT is assuned

MPI NSI DE_BI NARY_MATRI CES DI R Directory:

directory on to put binary matrix files. Default : MPINSIDE_ MAT_DIR directory on
to put binary matrix files. Default : MPINSIDE MAT_D R

The pramutility allows to convert such binary matrices to ascii formt

suitabl e for spreadsheets. This utility also allows to reduce

the rank-to-rank matrices to node-to-node

matrices. To help the visualization of big matrices an utility:

nmpi nsi de2wr | that converts the MPInside

matrices to viimformat is also provided.

The files created could then be visualized by a tool |like

vrlmviewthat is freely available on the internet

MPI NSI DE_MAT_START_STOP <start float value: start stop val ue>

007-5780-001

If set MlInside will start populating the matrices of transfer

at time start and flush themat time stop

and will terminate the run. The purpose of this variable is to be able

to get representative nmatrices of

transfer for input to the placement tool sergeant

that skip the initialization and run few application

steps. Some other ways to reduce the run

with MInside : Ml NSIDE_PARTI AL_EXPERI MENT, MPI NSI DE_COLLECTI VE_W NDOW

57

A: MPInside(3) Man Page

the forner needing to change the source code, the |latter needing

to detect an MPl collective

function involving all ranks that is called regularly during steps.

The MPI NSI DE_MAT_START_STOP al | ows

shortening the run in any case. Note the Binary matrices will be the only files produced.

MPI NSI DE_QUTPUT_PREFI X <file path prefix>
Qutput prefix used by MPInside. (Default npinside.
Note this could be a full path name allow ng di spatch-
ing outputs in different directories.

MPI NSI DE_PARTNER_MATCH <TOKEN | TOKENRI SK | TAG | CHECKSUM i nt >

TOKEN : This is the default. It works with a idea sinilar to the one we use

with the MPINSIDE EVAL_COLLECTIVE_WAIT feature. The Send late tine is eval uated

by sending a zero size nmessage (actually a 3 integers nmessage

but this doesn<92>t take longer tine than a zero size message)

prior to the "Data nessage". The tine to receive

this zero nessage ninus a tinme calibrated by MPInside is the time the send

was late (the one reported in the w xxx colums). The time reported in the xxx columm is
the true time for a receive when the sending message is ready.

TOKENRISK : Wth TOKEN the MPI _Recv time (recv) is always accurate.
In revenge the other w xxx colums (w_wait
for exanple) nay be biased. This is because there is a risk of deadlock in sone situation

TAG : MPInside matches Send/ Recv according to the transfer MPI Tag.

CHECKSUM <i nt nunber> : If the application doesn<92>t check received requests
in the order they were sent (that

is perfectly standard) and uses identical MPI Tags, the TAG option way

for matching nessages may fail. If CHECKSUMis set the Send/recv matching

is based on the xor of the <int_to_check> first integer of the Send/recv
buffers. Use this heuristic wth application using identical tags:

Except when running on a |1 A64 Altix single

i mmge machi ne that have a synchroni zed cl ock the TAG or CHECKSUM opti on nust be
used in conjunction wth the

MPI NSI DE_I NI T_CAL and MPI NSI DE_SYNCHRO_CLOCK vari abl e.

MPI NSI DE_PARTI AL_EXPERI MENT
If set MInside wll only start if the application calls npinside_start()

58 007-5780-001

MPInside Reference Guide

and will end either when
MPl _Finalize() is called or when npinside_end() is called.
Note the application will end as soon as npin-

side_end() is called except if the variable MPINSIDE_NON STOPPI NG WNDOWis set.

In this last case the

profile is witten but the application will continue normally.
Note al so that these two calls MJST be col -

lective calls involving all ranks. Wen building the binary,
link with IibMInside_stub.so. This library

must be in a directory listed in the LD LI BRARY_PATH variable if
the built binary is not prefixed by the

MPI nsi de |l auncher. In such a case the 2 functions above will have no effect.

MPI NSI DE_PRI NT_ALL_COLUWNS

Depending of the feature activated and the xxx MPl function activated

sone W_XxX or b_xxx col ums

are present in the npinside_stats file. If this variable is set if xxx
and if a w xxx colum or b_xxx may exist then such these col ums

will be reported even with full zero.

Using this variable allows easier chart conparisons(sane | egends, sane
between a basis run and a perfect run for exanple.

Print data with full precision but no formatting. Wth this option the
will look bad (not aligned)

if edited with a text editor like "vi". But they will be automatically
wel | formatted again when inported into a Spreadsheet.

MPI NSI DE_PRI NT_SI Z_I N_K
Print transfer sizes in Kbytes instead of Mytes (the default) in the

MPI NSI DE_SHOW READ WRI TE

was acti vated

col ors)

col ums

mpi nsi de_stats file.

Include in the npinside_stats file two colums indicating the tine, nunber of char,

and nunber of calls to

the libc read(), wite(.TP MPINSIDE PRINT_DIRTY Print data with full precision

but no formatting. Wth this option the colums will |ook bad (not
with a text editor like "vi". But they will

be automatically well formatted again when inported into a Spreadsheet.

MPI NSI DE_PRI NT_SI Z_I N_K
Print transfer sizes in Kbytes instead of Mytes (the default) in the

MPI NSI DE_SHOW READ WRI TE

007-5780-001

aligned) if edited

mpi nsi de_stats file.

59

A: MPInside(3) Man Page

Include in the npinside_stats file two colums indicating the tine, nunber of char,

and number of calls to

the libc read(), wite() functions. Note this time is already

excluded fromthe "conmput" colum. Anyway this is also "conmput” tine, i.e., tine spent outside MI.

MPI NSI DE_I NI T_CAL MPI NSI DE_SYNCHRO_CLOCK
The purpose of these environment variables is to deal
with cluster non synchroni zed cl ocks. They are only
meani ngful if MPINSIDE_ CLOCK | S SYNCHRO i s not set
or if MPINSIDE PATTERN MATCH is not set to TOKEN

MPI NSI DE_I NI T_CAL <i nt eger val ues>
If set MInside wll sleep for this tinme value in seconds just
after the MPI _Init() call to be able to
calibrate clocks. See al so MPI NSI DE_SYNCHRO CLOCK for clock calibration

MPI NSI DE_SYNCHRO CLOCK <Col | ective MPI function>: heartbeat: net hod
By default th e clock translation tables are just built when experimentation starts.
On Altix or future ICE system the clocks are/will be hardware synchronized.
This is not t he case on current clusters. So
sone translation tables have to be built (see MPINSIDE_SYNCHRO RETRIES).
Unfortunately the clocks may
deviate for few mcro seco nds wth tinme.
To have a 1000 microsecond devi ation after 1000 seconds of
el apsed tine is not uncomon. This deviation is not inportant
when using only intra-CP Utiming. This is
dramatic when adding this amount of error thousand
of times as MPInside does to evaluate the "Send Late
time". By setting this variable,
the timng translation tables are reinitialized
every heartbeat count to the specified Collective MI
function with the right communicator (see MPINSIDE_ COWM T_W. Method :

a : Synchronize with no correction every heartbeat
after the start of the experinmentation .

c: Synchronize after the first heartbeat follow ng
the start of the experinmentation (see MPINSIDE COLLECTI VE_W NDWOW and use the correction

el enents built here for the rest of the experinmented run.

A: Synchroni ze every heartbeat following the start of the experinentation

60 007-5780-001

MPInside Reference Guide

and use the new correction elenents
built here up to the next heartbeat.

i : Synchronize after the first heartbeat following the start of the
program (not the start of the experinenta-

tion) and use the correction elenents built

here for the rest of the experimented run

d: Wrk with the default (no synchronization, no correction)
but just print a message on stdout every heartbeat
regardl ess of the "nethod"

In addition to any Ml collective function one can set "MPINSIDE Collective_call".
I'n such case the heartbeat

wi Il be based on the nunber of call the MPINSIDE Collective_call ()

the user inserted in his source code. Note the

function wll do nothing but incrementing a counter

but is has to be fully collective. Note the application nust

be linked with this Iibnpinside_stub.so library in case of a call to this routine.

Exanpl es: setenv MPI NSI DE_SYNCHRO CLOCK MPI _Al | gat her: 100: c;
setenv MPI NSI DE_SYNCHRO CLOCK MPINSIDE_Col | ective_call:50:a

MPI NSI DE_SYNCHRO RETRI ES <RETRI ES>: <TARGET_ERROR(Aus) >

MPI nside has to be able to translate any rank clock to another rank<92>s cl ock.
Est abl i shi ng a one-to-one
function with the right communicator (see MPINSIDE_ COWM T_W. Method :

a : Synchronize with no correction every heartbeat after the start of the experinmentation .

c: Synchronize after the first heartbeat follow ng
the start of the experinmentation (see MPINSIDE COLLEC
TI VE_W NDWOW and use the correction elenents built here for the rest of the experinmented run.

A: Synchroni ze every heartbeat following the start
of the experinmentation and use the new correction elenents
built here up to the next heartbeat.

i : Synchronize after the first heartbeat follow ng

the start of the program (not the start of the experinenta-
tion) and use the correction elenents built here for the rest of the experimented run

007-5780-001 61

A: MPInside(3) Man Page

Mbdel i ng

Not es

62

d :

Wrk with the default (no synchronization, no correction)

but just print a message on stdout every heartbeat
regardl ess of the "nethod"

In addition to any Ml collective function one can set "MPINSI
I'n such case the heartbeat

wi Il be based on the nunber of call the MPINSIDE Collective_call ()
in his source code. Note the function wll do nothing but increne
but is has to be fully collective. Note the application nust

be linked with this |ibnpinside_stub.so library in case of a call

Exanpl es: setenv MPI NSI DE_SYNCHRO CLOCK MPI _Al | gat her: 100: c;
setenv MPI NSI DE_SYNCHRO CLOCK MPI NSI DE_Col | ective_call:50:a

MPI NSI DE_SYNCHRO RETRI ES <RETRI ES>: <TARGET_ERROR(Aus) >

MPI nside has to be able to translate any rank cl ock
to anot her rank<92>s cl ock. Establishing a one-to-one
comon point is necessary for that. This common point can be nore

or less fuzzy. Mlnside wll nake

RETRIES attenpts to get an error |ess than TARGET- ERROR
Then the target error will be increased by 5 Aus

for RETRIES attenpts and so on <85>. Take care not to set
a too low value as this wll result in several

attenpts. Exanple 16:10.0. Default is 8:20.

MPI NSI DE_MODEL PERFECT+<CPU_BOOTS>

If set MlInside, instead of neasuring conmunications,
will nmodel themas if the communi cati on engine

(hardware+MPl) was perfect: Zero latency, infinite bandw dth.
For exanple MPINSIDE PERFECT+1.20 is the

value we used to get the Paratec perfect interconnect tine
on an Hapertown systemw th a run on a C overtown system

MPI nsi de uses library preloading to initialize perfornmance neasurenent

and therefore can only be used with exe-
cut abl es that have been |inked dynam cally.

DE Col | ective_call".

the user inserted
nting a counter

to this routine.

007-5780-001

MPInside Reference Guide

See al so
i bFFI O so(3)

The following file and conmand are listed relative to the MPInside installation path.

doc/ npi nsi de_3. 3_ref_manual . pdf

bin/pram -h bin/npinside2w!| -h : Uilities to extract
information fromBinary transfer matrices

Uility to extract information fromBinary transfer matrices

AUTHOR
Dani el Thonas

COPYRI GHT
Copyright A© 2009 Silicon Gaphics Inc.

MPI nsi de Tool August 2010 MPI nsi de(3)

007-5780-001

63

Index

C

communication stiffness, 38

E

environment variables, 8
miscellaneous, 16
environmental variables and stack of features, 8

introduction, 1

L

loading the MPInside module, 2

M

miscellaneous environment variables, 16
MPI communication terminology
branch, 4
branch partner, 4
function time (FT), 3
function waiting time (FWT), 3
ordinary branches, 4
recv branches, 5
send branches, 4
send late time (SLT), 4
transfer time (Tt), 3
wait branches, 4
MPInside Binary Transfer Matrices, 29

007-5780-001

MPInside(3) man page, 49
mpinside_clstk_post.xxx files, 30
mpinside_stats file, 21
bytes transferred and number of requests
arrays, 24
columns meaning, 23
user counters, 22

N

non-synchronized send/receive pair definition
and terminology, 3

O

obtain an MPInside report
see how often collective functions are called, 47
overview, 1

P

partner branches
ordinary, 35
recv, 36
send, 35
wait, 36
perfect interconnect zero latency infinite
bandwidth, 40
pinside_stats_.M-N files, 26
post-processing, 6
pram utility, 30

65

Index

R environmental variables and stack of features, 8
post-processing, 6
restraining the profile to selected parts of the SGI MPT, 5
application, 7 X86 HP-MPI, 6

X86 Intel MPI, 6
X86 SCALI MPI, 6

S
see how often collective functions are called, 47 V
select a window of observation
re-compilation, 45 viewing the MPInside(3) man page, 2
spy the collective functions, 46
U

using the MPInside tool

66 007-5780-001

	Table of Contents
	List of Figures

	About This Manual
	Obtaining Publications
	Related Publications and Other Sources
	Conventions
	Reader Comments

	1. MPInside Profiling Tool
	Overview
	Non-synchronized Send/Receive Pair Definition and Terminology
	Using MPInside Tool
	SGI MPT
	X86 Intel MPI
	X86 HP-MPI
	X86 SCALI MPI

	Post-Processing
	Restraining the Profile to Selected Parts of the Application
	Environment Variables and Stack of Features
	MPINSIDE_EVAL_COLLECTIVE_WAIT
	MPINSIDE_EVAL_SLT
	MPINSIDE_WAIT_TIME_NO_CROSSREF
	MPINSIDE_CALLSTACK_DEPTH —integer number–
	MPINSIDE_CROSS_REFERENCE
	MPINSIDE_LITE
	MPINSIDE_MATRICES [EXA − PLA − P2P:[+−-B][S−M]
	MPINSIDE_SIZE_DISTRI [T+]nb_bars[:first-last]
	MPINSIDE_WITH_PERFSUITE : ALL−OUT (X86-64 only)
	MPINSIDE_PCL_EVENTS : [O−A@]—PCL events list–

	Miscellaneous Environment Variables
	MPINSIDE_CALLSTACK_MAX_RECV_ENTRIES —Integer value–
	MPINSIDE_CALLSTACK_MAX_SEND_ENTRIES —Integer value–
	MPINSIDE_CALLSTACK_MAX_WAIT_ENTRIES —Integer value–
	MPINSIDE_CALLSTACK_SKIP
	MPINSIDE_COLLECTIVE_WINDWOW —MPI_collective_name–:—START–:—END–:
	MPINSIDE_COMM_TO_WATCH —Integer value–
	MPINSIDE_COMM_T_W —Integer value–
	MPINSIDE_NON_STOPPING_WINDOW
	MPINSIDE_SHOW_W —Integer value–
	MPINSIDE_CUT_OFF —real value–
	MPINSIDE_DELAY_AT_INIT —Integer value–
	MPINSIDE_ING_COLLECTIVE_BRANCHES
	MPINSIDE_INTERNAL_TAG_START —Integer value–
	MPINSIDE_LIB: —MPT−IMPI−HPMPI−SCALIMPI–
	MPINSIDE_BINARY_MATRICES_DIR Directory
	MPINSIDE_MAT_START_STOP —start float value: start stop value–
	MPINSIDE_OUTPUT_PREFIX
	MPINSIDE_PARTIAL_EXPERIMENT
	MPINSIDE_PRINT_ALL_COLUMNS
	MPINSIDE_PRINT_DIRTY
	MPINSIDE_PRINT_SIZ_IN_K
	MPINSIDE_SHOW_READ_WRITE
	MPINSIDE_TRANSLATE_PERSISTENTS —Nb_entries, default 128–

	mpinside_stats File
	User Counters
	Columns Meaning
	Bytes Transferred and Number of Requests Arrays
	mpinside_stats_.M-N files
	MPInside Binary Transfer Matrices
	pram Utility
	mpinside_clstk_post.xxx Files

	Partner Branch Kinds
	Ordinary Branches
	Send Branches
	Recv branches
	Wait Branches

	Communication †Stiffness†
	Perfect Interconnect Zero Latency Infinite Bandwidth

	2. Using the MPInside Profiling Tool
	Selecting a Window of Observation using Re-compilation
	Selecting a Window of Observation with a Collective Function Heartbeat
	Spy the Collective Functions

	A. MPInside(3) Man Page
	Index

