
MPInside Reference Guide

007–5780–002

COPYRIGHT
© 2011, 2013, SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner,
in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, Altix, and the SGI logo are are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries in
the United States and other countries.

Intel and Xeon are trademarks or registered trademarks of Intel Corporation. Excel, Microsoft, and Windows are registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks mentioned herein are the property of their respective owners.

Record of Revision

Version Description

001 June 2011
Original Printing.

002 November 2013
Rewrite to support MPInside 3.6.3.

007–5780–002 iii

Contents

About This Manual . xi

Related Publications . xi

Obtaining Publications . xii

Conventions . xii

Reader Comments . xiii

1. About MPInside . 1

About Analyzing Program Performance With MPInside 1

About MPInside Overhead . 2

Obtaining Additional MPInside Information 3

About Using a Spreadsheet Program with MPInside 4

Installing MPInside and Establishing the Computing Environment 4

About the Commands that Start MPInside 5

About MPInside Terminology 6

About MPInside Environment Variables 7

2. Getting Started and Generating Default MPInside Reports 11

About Getting Started . 11

About MPInside Example Programs 11

Analyzing a Program Using MPInside Defaults 12

Generating MPInside Statistics 12

Opening the mpinside_stats Report Within a Spreadsheet 13

Creating Graphics Within the Spreadsheet 14

3. Comparing MPInside Statistics from Multiple Program Runs 19

007–5780–002 v

Contents

About Using Statistics From Multiple Program Runs 19

Gathering Data From Multiple Program Runs 19

Run 1 — Gathering Baseline Statistics 19

Run 2 — Simulating a Perfect Interconnect Environment 23

Run 3 — Analyzing the Amount of Time Spent Waiting 25

4. Using MPInside to Analyze Only Parts of a Program 27

About Analyzing Subsets of a Program 27

Analyzing Subsets of a Program 27

5. Analyzing Call Stack Branches and Program Stiffness 33

About Call Stack Branches and Program Stiffness 33

Interpreting the Call Stack Branch Output 33

Opening the Call Stack Branch Report 34

Branch Statistics . 34

Ancestor Information . 35

Partner Information . 35

Branches With Partners . 37

Branches Without Partners 37

Examples . 38

Communication Stiffness . 39

Generating Statistics to Analyze Call Stack Branches and Program Stiffness 42

Run 1 — Obtaining Baseline Statistics 42

Run 2 — Simulating a Perfect Interconnect Environment 50

Run 3 — Evaluating Send Late Time 52

Run 4 — Examining the Call Stack Branches 55

Appendix A. MPInside Calculations 61

About MPInside and the Collective Functions 61

vi 007–5780–002

MPInside Reference Guide

Interpreting the Statistics for the MPI_Bcast Collective Function 61

Interpreting the Statistics for the MPI_Allreduce Collective Function 62

Index . 63

007–5780–002 vii

Figures

Figure 1-1 Send Late Time . 7

Figure 2-1 Stacked Area Plot — Running Times Per Rank of Various MPI Routines . . 15

Figure 2-2 Stacked Area Selection 17

Figure 5-1 Output for a Program With a Low Stiffness Rating 41

Figure 5-2 Output for a Program With a High Stiffness Rating 41

007–5780–002 ix

About This Manual

This publication describes SGI MPInside, which is an MPI profiling tool.

The default MPInside report, mpinside_stats, includes information about the time
spent cumulatively in each MPI routine. This report also contains size histograms that
show the amount of data transferred between ranks, in terms of both size and time.

MPInside includes many environment variables that enable you to retrieve different
types of data about your application. For example:

• An MPI program’s performance problems often stem from a lack of
synchronization during sends and receives. MPInside can help you determine
which of the MPI send/receive pairs are not executing synchronously. MPInside
measures this unsynchronized time for all of the MPI ranks and for all the MPI
functions involved in the application. Its reports include information about the
actual speeds the MPI engine attained during send/receive communication.

• MPInside reports can include information on a branch basis. A branch is an MPI
function with all its ancestors in the calling sequence. MPInside provides the
routine name and the source file line number for all the routines that define a
branch.

Related Publications
The release notes for the SGI Foundation Suite and the SGI Performance Suite list SGI
publications that pertain to the specific software packages in those products. The
release notes reside in a text file in the /docs directory on the product media. For
example, SGI-MPI-1.x-readme.txt. After installation, the release notes and other
product documentation reside in the /usr/share/doc/packages/product directory.

You might also find the following documentation to be useful:

• Message Passing Toolkit (MPT) User’s Guide

This manual describes the industry-standard message passing protocol as
optimized for SGI computers.

• MPInside(3)

This man page lists all MPInside environment variables.

007–5780–002 xi

About This Manual

Obtaining Publications
You can obtain SGI documentation in the following ways:

• You can access the SGI Technical Publications Library at the following website:

http://docs.sgi.com

Various formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• You can view man pages by typing man title at a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

xii 007–5780–002

MPInside Reference Guide

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in either of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system:

http://www.sgi.com/support/supportcenters.html

SGI values your comments and will respond to them promptly.

007–5780–002 xiii

Chapter 1

About MPInside

This chapter contains the following topics:

• "About Analyzing Program Performance With MPInside" on page 1

• "About MPInside Overhead" on page 2

• "Obtaining Additional MPInside Information" on page 3

• "About Using a Spreadsheet Program with MPInside" on page 4

• "Installing MPInside and Establishing the Computing Environment" on page 4

• "About the Commands that Start MPInside" on page 5

• "About MPInside Terminology" on page 6

• "About MPInside Environment Variables" on page 7

About Analyzing Program Performance With MPInside
MPInside is a Message Passing Interface (MPI) profiling tool. You can use MPInside
to analyze the performance of an MPI application. MPInside provides information
about the MPI communications. MPInside analyzes the process send actions and the
process receive actions and generates data that reveals how closely the send and
receive actions are synchronized. When you analyze the data, you can determine the
areas in the application upon which you want to focus your optimization efforts.

As with any performance analysis tool, remember that MPInside provides data, hints,
and clues. You need an initial hypothesis of your own to guide your path of inquiry.
The statistics that MPInside generates can back up or disprove your hypothesis. Your
own hypothesis combined with the data from multiple MPInside runs can guide you
toward analyzing and modifying your program. When you run MPInside multiple
times with different settings, the different output can guide your tuning.

The information that MPInside generates includes the following:

• The size of each data request

• The number of data requests

007–5780–002 1

1: About MPInside

• The size of the communicator used for MPI collective functions

• The number of times that each rank was the root of a collective function

For the preceding statistics, MPInside reports the size as the sum total for the full run.

MPInside can also provide more advanced information. For example, you can use
MPInside to answer “what if” questions, such as what if the MPI environment
(library and hardware) were perfect? That is, what if bandwidth were infinite and
latency were zero? MPInside can also provide information about the relative lateness
of a send posting with regard to the receive posting.

MPInside reports its timings on a call stack branch, or simply branch, basis. A branch is
a sequence of calls. Specifically, a branch is an MPI function and all of its ancestors in
the calling sequence. To analyze a program’s branches, use the MPInside post
processor called MPInside_post. For each rank, MPInside generates reports named
mpinside_clstk.rank, where rank is the number of the rank. When you run the
MPInside_post command, it generates reports named
mpinside_clstk_post.rank, where rank is the number of the rank. The MPInside
reports include the routine name for all the routines that define a branch. If you
compile the program with -g, the reports also includes source line numbers.

For each CPU’s branch that had a send/receive partnership with another CPU’s
branches, MPInside generates information about each send/receive partnership.
MPInside defines each partner set with the following four numbers:

• Sending rank number

• Sending CPU branch identification

• Percentage of time accounted to the partnership, in relation to the total execution
wait time of the receiving branch

• Percentage of execution wait time attributed to the lack of synchronization

About MPInside Overhead
As with all profiling tools, MPInside generates some overhead when it runs. The
overhead incurred with MPInside is negilible.

For example, problems occur if the application calls the MPI_Wait function billions of
times with a null MPI_REQUEST_NULL request. With a null request, the MPI library
returns to the application in about 0.2 microseconds, so these calls add approximately

2 007–5780–002

MPInside Reference Guide

200 seconds. Even when MPInside runs as lightly as possible, MPInside calls the
timer upon entry and exit. MPInside updates the counter based on these two calls.
For one instance, it takes about 0.3 microseconds to update the counter, so this action
adds approximately 300 seconds. In this case, the action of updating the counter is
more intrusive and more complicated than checking if the request is null, and that is
what the MPI library is doing. In cases such as this, the program incurs
approximately 500 seconds for the MPI_Wait function, and MPInside overhead is
bigger than just the MPI function itself.

Check the size and request statistics gathered during the basic run, and use that
information to find the problems in the application. When you examine your
program in light of the existing statistics, make sure that the program does not call
MPI_Wait billions of times with a null request.

Obtaining Additional MPInside Information
In addition to this manual, you might want to examine the online information about
MPI and MPInside.

The MPI and MPInside man(1) pages are as follows:

• MPI(1), which introduces the Message Passing Interface (MPI). This man(1) page is
available in the SGI MPT package. This man(1) page is not included in the MPI
standard.

• MPInside(3), which introduces the MPInside tool and explains the enviroment
variables that you can set when you use MPInside.

• mpiplace(1), which is a data placement tool.

In addition, the command help ouput contains some feature and usage information.

You can type the following commands on an SGI system to retrieve extended help
output:

• pram -h

007–5780–002 3

1: About MPInside

• MPInside_post -h

About Using a Spreadsheet Program with MPInside
Because of the large amount of statistics that MPInside generates, SGI recommends
that you use a spreadsheet program as an aid to understanding. SGI does not endorse
or recommend any particular spreadsheet program, but the examples in this
documentation use Microsoft Excel from the Microsoft Office 2003 program suite.

Installing MPInside and Establishing the Computing Environment
SGI distributes MPInside as part of the SGI Performance Suite. The SGI Performance
Suite installation process installs MPInside along with the rest of the SGI Performance
Suite software.

The following procedure establishes the computing environment and ensures that you
can retrieve the MPInside man(1) pages.

Procedure 1-1 To establish the computing environment

1. Log into your SGI system.

2. Ensure that MPInside, at its current release level, is included in the list of
directories that include executable programs.

The following example command displays the content of the $PATH variable and
shows that MPInside/version is not in the path:

% echo $PATH

/usr/lib64/mpi/gcc/openmpi/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/bin/X11:

/usr/X11R6/bin:/usr/games:/opt/kde3/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin

The following example commands add MPInside/3.6.3 to the $PATH variable
and verify success:

% module load MPInside/3.6.3
% echo $PATH

/opt/sgi/MPInside/3.6.3/bin:/usr/lib64/mpi/gcc/openmpi/bin:/usr/bin:/bin:/usr/sbin:/sbin:

/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/kde3/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin

4 007–5780–002

MPInside Reference Guide

To use a different release level, replace 3.6.3 with the release level you want to
use.

3. Ensure that you can retrieve man(1) pages related to MPInside.

For example, the following commands show the correct paths to MPInside man(1)
pages in the $LD_LIBRARY_PATH variable and in the $MANPATH variable:

% echo $LD_LIBRARY_PATH

/opt/sgi/MPInside/3.6.1/lib:/usr/lib64/mpi/gcc/openmpi/lib64

% echo $MANPATH

/opt/sgi/MPInside/3.6.1/man:/usr/lib64/mpi/gcc/openmpi/man:/usr/share/man:/usr/local/man:

/opt/man:/usr/share/catman:/usr/catman:/usr/man

About the Commands that Start MPInside
You can generate an MPInside report without recompiling or relinking your program.
By default, MPInside creates a report called mpinside_stats. When you open the
mpinside_stats report from inside a spreadsheet program, you can see the data
displayed as a series of tables. When you convert the tables to graphics, it is easy to
see the amount of time the program spends on communication.

When you use SGI MPT, you can use either of the following commands to start an
MPI program and generate statistics with MPInside:

• The mpirun(1) command, which is designed for use in interactive environments.
This manual typically uses this command to show how to start program runs that
request MPInside analysis. This command has the following format:

mpirun -np processes MPInside program_name [program_args]

• The mpiexec_mpt(1) command, which is designed for use in batch environments.
The mpiexec_mpt(1) command accepts the same arguments as the mpirun(1)
command and has the following format:

mpiexec_mpt -np processes MPInside program_name [program_args]

The arguments to the preceding commands are the same and are as follows:

• For processes, specify the number of ranks used by the application.

• For program_name, specify the name of the binary program you want to analyze.
The program must have been compiled. For example: a.out.

007–5780–002 5

1: About MPInside

• For program_args, specify any optional arguments that the program requires.

For example, to generate default MPInside statistics, run your compiled program and
include the MPInside parameter on the mpirun command line. For example:

mpirun -np 128 MPInside ./a.out arg1

The mpirun(1) and the mpiexec_mpt(1) commands that this topic shows are part of
the SGI MPT package. Your implementation might have different commands, but you
can still use the MPInside argument to generate MPInside statistics.

If you use the SGI MPT package, the system loads the MPI libraries by default. The
example programming runs in this manual show how to use the MPINSIDE_LIB
environment variable to load a nondefault, package-specific library.

About MPInside Terminology
The MPInside documentation and the MPInside reports use the following terms:

Function time The time before the call to the MPI function minus time
when returning to the application. This time is equal to
send late time + transfer time in Figure 1-1 on page 7.

Transfer time The time when the data is actually being transferred
(see Figure 1-1 on page 7).

Function waiting time In Figure 1-1 on page 7, this time is equal to the
function time because MPI_Recv is a blocking function.
For a nonblocking function, such as MPI_Irecv,
function wait time is the time of the MPI_Wait
function that "finished" the request (in the MPI sense)
corresponding to this function.

Send late time (SLT) Figure 1-1 on page 7 shows unsynchronized
communication between a send/receive pair. In this
communication, Rank 0 issues an MPI_Recv request at
T1, but Rank 1 does not begin to send the data until T2.
The time difference between T2 and T1 is called send late
time (SLT). The actual send time is T3 – T2. Network
latency can affect SLT and send time.

In theory, there is a small amount of time between
when Rank 1 starts the MPI_Send and when Rank 0

6 007–5780–002

MPInside Reference Guide

receives the first data item, but because this amount of
time is negligible, this documentation does not address
or acknowledge this time.

Rank 1 MPI_Send

Rank 0 MPI_Recv

T0 T1

MPI_Recv
Issued

T2

MPI_Send
Start

T3

MPI_Send
Stop

Figure 1-1 Send Late Time

Branch A branch is a sequence of function calls in a user
application that is terminated by an MPI function. A
branch has a unique identification number. Such a
number could differ from one CPU to the other even if
both refer to exactly the same sequence of calls. The
identification depends on the order they are
encountered in the MPInside library.

For more information about branches, run the MPInside_post command after an
MPInside run, and examine the mpinside_clstk_post.rank reports from an
MPInside run.

About MPInside Environment Variables
MPInside supports many environment variables that you can use to modify the
default MPInside behavior. The chapters in this manual contain examples that use
these environment variables to generate different types of MPInside reports. The
MPInside(3) man page lists all the MPInside environment variables that are available
to you.

007–5780–002 7

1: About MPInside

Note: Depending on the shell you use, you might need to export the environment
variables after you declare them. The examples in this manual do not show an export
step. Consult your shell documentation for information about how to export variables.

The following list summarizes the environment variables that are used in the
examples in this documentation:

• MPINSIDE_CALLSTACK DEPTH integer_number

Unwinds the branch call stack to a depth of integer_number, and writes branch
information and statistics to files named mpinside_clstk.rank.

A branch is an MPI function and all of its ancestors in the calling sequence. The
additional reports, one for each rank number, contain information about all the
branches that end with a call to an MPI routine.

• MPINSIDE_CROSS_REFERENCE

When set along with MPINSIDE_CALLSTACK DEPTH, this variable specifies that
call stack branches include data about the ranks that participated on the other end
of the MPI routine. The additional cross referencing output includes the following:

– The total communication time attributable to each partner on the other end of a
given branch

– The total send late time for each branch/partner pair

• MPINSIDE_EVAL_COLLECTIVE_WAIT

Specifies that MPInside perform the following tasks:

– Insert an MPI_Barrier function before all MPI collective operations

– Record the time elapsed for the MPI_Barrier function

• MPINSIDE_EVAL_SLT

Directs MPInside to measure the time for all send actions that are late (send late
time (SLT)) compared to the MPI_Recv-MPI_Wait arrivals.

• MPINSIDE_LITE

Reduces MPInside overhead to the absolute minimum. MPInside overhead is
minimal in most environments, but when you use the MPINSIDE_LITE

8 007–5780–002

MPInside Reference Guide

environment variable, MPInside reduces its overhead to very minimal levels. This
mode of operation can be useful for programs that perform many, small-sized
function calls. The resulting report include timings but not size or request
information.

• MPINSIDE_MATRICES

Directs MPInside to print the transfer topology matrix files.

• MPINSIDE_MODEL

Instructs MPInside to generate statistics that model how the program would
perform in an environment with zero latency, infinite bandwidth, and no time
spent in the MPI routines. This output is useful because it shows how much faster
a program could run if each rank did the same computational work but adopted a
more efficient communication pattern or ran on a system with better networking
hardware.

• MPINSIDE_OUTPUT_PREFIX

Enables you to specify a custom prefix for the MPInside output report. By default,
MPInside writes its report to mpinside_stats in the run directory. When you
specify this environment variable, you can specify a full path to a different
directory, or you can specify a prefix other than mpinside. This environment
variable is useful if you want to run MPInside several times and write the report
to a differently named report each time.

• MPINSIDE_PRINT_ALL_COLUMNS

Prints columns of MPInside statistics with a value of zero (0) when zero values are
generated. By default, MPInside suppresses columns that contain all zeros. When
this variable is set, MPInside output includes all columns of statistics that pertain
to the environment variables that you set. Use this variable if you want to make
sure that a particular column is printed. For example, if you want to run MPInside
more than once, use this variable for each run. When you set this variable, you
ensure that the output contains the same columns of data for all runs.

• MPINSIDE_PRINT_DIRTY

Prints data with full precision but no formatting. The report appears poorly
formatted if you open it in an editor such as vi(1), but you can import the report
into a spreadsheet with readable results.

• MPINSIDE_SHOW_READ_WRITE

007–5780–002 9

1: About MPInside

Generates additional columns in the MPInside report. These columns show the
time, number of characters, and number of calls to libc I/O functions such as
read(), write, open, and fread that the program calls directly. If the
application calls one of the MPI I/O functions, such as MPI_File_read_at(),
setting this variable causes MPInside to include information about the
MPI_File_xxx functions in an additional set of five arrays.

To set this environment variable, specify a 1 as its argument or, for extended I/O
reporting, specify a string of file names. For information about how to specify the
string, see MPInside(3).

• MPINSIDE_SIZE_DISTRI

Generates a table that shows the total number of requests that the program
generated at a given size for each type of MPI communication. Options to this
environment variable enable you to generate a table that shows the total time
spent per each request size and type of communication.

The preceding list defines each of the environment variables very briefly. For more
information, see the MPInside(3) man page.

10 007–5780–002

Chapter 2

Getting Started and Generating Default MPInside
Reports

This chapter contains the following topics:

• "About Getting Started" on page 11

• "About MPInside Example Programs" on page 11

• "Analyzing a Program Using MPInside Defaults" on page 12

About Getting Started
The MPInside reports, mpinside_stats, mpinside_clstk.rank, and
mpinside_clstk_post.rank, contain many statistics. MPInside writes these files as
tab-separated text files.

Because the reports contain so many statistics, SGI recommends that you open the
reports from within a spreadsheet. The example in this chapter explains how to
generate a default mpinside_stats report and open it from within a spreadsheet.

The examples in this manual use a Windows operating system and Microsoft Excel
from the Microsoft Office 2003 product suite, but you can use any spreadsheet
program. On Linux platforms, you can open the reports in some spreadsheet
programs by dragging and dropping the output file into an open spreadsheet
program.

About MPInside Example Programs
SGI includes MPI examples and a script in the following directory:

/usr/share/doc/packages/MPInside-version_number/examples

The examples directory contains the following:

• A README file, which contains information about the example test provided and
the output that it generates.

007–5780–002 11

2: Getting Started and Generating Default MPInside Reports

• The osu_allgather binary, which is an open source MPI latency
microbenchmark.

• The osu_allgather.c, which is the source file for the osu_allgather binary.

• The collect_osu_allgather_statistics.sh script, which generates four
files. The first is the mpinside_stats report. The second file contains
rank-to-rank communication matricies. The script also generates two call stack
reports, one for each rank.

You can run the script interactively or you can submit it to a batch scheduler that
is compatible with PBS. You can use this file to generate an MPI report for your
own applications by replacing osu_allgather with the name of your
application and setting the number of ranks appropriately.

When you run the script, it generates output files in the current working directory.

Analyzing a Program Using MPInside Defaults
The following procedures show how to run MPInside with your program and how to
obtain a simple set of output statistics:

• "Generating MPInside Statistics" on page 12

• "Opening the mpinside_stats Report Within a Spreadsheet" on page 13

• "Creating Graphics Within the Spreadsheet" on page 14

Generating MPInside Statistics

The MPInside analysis does not require you to recompile or relink your program. The
following procedure explains how to run an MPI program and request MPInside
statistics.

Procedure 2-1 To generate MPInside statistics

1. Type the following command to load the MPInside module:

% module load MPInside

2. (Optional) Set environment variables.

12 007–5780–002

MPInside Reference Guide

MPInside supports many environment variables. The environment variables
affect the MPInside output with regard to formatting, comprehensiveness, file
naming, and other aspects of performance analysis.

For information about the MPInside environment variables, see the MPInside(3)
man page.

3. Type the mpirun command in the following format:

mpirun -np processes MPInside program_name [program_args]

For processes, specify the number of ranks used by the application.

For program_name, specify the name of the binary program you want to analyze.
The program must have been compiled. For example: a.out.

For program_args, specify any arguments that the program requires. These
arguments are optional and are not required by MPInside.

4. Verify that the mpirun command finished, and locate the following file in the
mpinside_stats working directory.

By default, the report is named mpinside_stats. You can use the
MPINSIDE_OUTPUT_PREFIX environment variable to specify a prefix other than
mpinside.

5. Copy the mpinside_stats report to the computer that hosts the spreadsheet
program you want to use.

Opening the mpinside_stats Report Within a Spreadsheet

The following procedure explains how to open the mpinside_stats report within
Microsoft Excel 2003.

Procedure 2-2 To open the mpinside_stats report

1. Open the spreadsheet program.

2. Within the spreadsheet program, click Data > Import External Data > Import
Data

3. Navigate to the folder in which mpinside_stats resides.

4. In the Files of type field, select All Files (*.*).

5. Select the mpinside_stats report, and click Open.

007–5780–002 13

2: Getting Started and Generating Default MPInside Reports

6. On the Text Import Wizard — Step 1 of 3 pop-up window, select Delimited, and
click Next.

7. On the Text Import Wizard — Step 2 of 3 pop-up window, select Tab.

Make sure that all the other boxes in this window are clear.

8. On the Text Import Wizard — Step 3 of 3 pop-up window, accept the defaults,
and click Finish.

9. On the Import Data pop-up window, make sure that Existing Worksheet is
selected, and click OK.

Creating Graphics Within the Spreadsheet

MPInside creates a large volume of data. It is easier to detect problem areas in your
program if you create graphics within the spreadsheet. You can create a graphic from
any data set in the spreadsheet. The example in this topic creates a graphic from the
data for the first array.

The following procedure explains how to create graphics from the data in the
mpinside_stats report within a spreadsheet program.

Procedure 2-3 To create graphics

1. Locate the data for the first array.

For example, in Microsoft Excel, press CTRL-f, and type CPU in the pop-up
window’s search field.

This action positions the cursor in the CPU cell for the first array.

Within the spreadsheet, each column head is an abbreviation for an MPI function.
At the top of the report, you can see an explanation for each column head.

2. Select all the data for the first array and create a graph.

In this step, your goal is to select all the columns from the Compute column
through the rightmost column. The orientation of the resulting graphic should be
rectangular (horizontal). For example:

14 007–5780–002

MPInside Reference Guide

overhead

T_WR_INT

T_FWRITE

T_WRITE

T_CLOSE

reqfree

start

recvini

senini

gatherV

gather

reduce

allred

bcast

barrier

irecv

isend

wait

waitall

init

Comput

250

200

150

100

50

0

E
la

ps
ed

 ti
m

e
in

 s
ec

on
ds

95908580757065605550454035302520151050

MPI Ranks

Example

Figure 2-1 Stacked Area Plot — Running Times Per Rank of Various MPI Routines

You can drag your mouse to highlight all the rows and columns of data, but if
you have a lot of data, this can be error-prone and tedious.

To highlight all the data automatically, ensure that your cursor is still in the
Compute cell, and press the following keys simultaneously: Shift + End + down
arrow.

007–5780–002 15

2: Getting Started and Generating Default MPInside Reports

If this key combination does not work automatically, press Shift + End + down
arrow to highlight all the rows, and then press Shift + End + right arrow to
highlight all the columns.

3. Click Insert > Chart.

Alternatively, click the chart icon in the menu bar to create the graphic.

4. On the Chart Wizard — Step 1 of 4 — Chart Type pop-up window, on the
Standard Types tab, complete the following steps:

• In the Chart type field, select Area.

• In the Chart sub-type area of the screen, click the Stacked Area icon and click
Next.

Figure 2-2 on page 17 shows the Stacked Area icon in the middle of the first
row with a black background.

16 007–5780–002

MPInside Reference Guide

Figure 2-2 Stacked Area Selection

5. On the Chart Wizard — Step 2 of 4 — Chart Source Data pop-up window, under
Series in, select Columns and click Next.

007–5780–002 17

2: Getting Started and Generating Default MPInside Reports

6. On the Chart Wizard — Step 3 of 4 — Chart Options pop-up window, complete
the following fields and click Next:

• In the Chart title field, type a name for the histogram.

• In the Category (X) axis field, type a label. For example, MPI Ranks.

• In the Category (Y) axis field, type a label. For example, Elapsed Time in
Seconds.

7. On the Chart Wizard — Step 4 of 4 — Chart Location pop-up window, accept
the defaults and click Finish.

18 007–5780–002

Chapter 3

Comparing MPInside Statistics from Multiple
Program Runs

This chapter contains the following topics:

• "About Using Statistics From Multiple Program Runs" on page 19

• "Gathering Data From Multiple Program Runs" on page 19

About Using Statistics From Multiple Program Runs
MPInside includes environment variables that you can use to modify MPInside’s
default output. For example, you can use these environment variables to model a
different execution environment, to generate additional statistics, or to rename the
report. When you use different environment variables for each program run, each
program run generates slightly different statistics. When all the program runs are
complete, you can compare the statistics.

This chapter contains a large example that shows how to use different environment
variables for different programming runs to generate a suite of statistics for you to
examine.

Gathering Data From Multiple Program Runs
The following topics each show one part of a large example that collects statistics
from an MPI program over several program runs:

• "Run 1 — Gathering Baseline Statistics" on page 19

• "Run 2 — Simulating a Perfect Interconnect Environment" on page 23

• "Run 3 — Analyzing the Amount of Time Spent Waiting" on page 25

Run 1 — Gathering Baseline Statistics

In this initial run, your goal is to gather statistics from a typical run in your typical
programming environment.

007–5780–002 19

3: Comparing MPInside Statistics from Multiple Program Runs

The following procedure explains the environment variables to use when you run
MPInside for the first time.

Procedure 3-1 To run MPInside

1. Type the following command to load the MPInside module:

% module load MPInside

2. Rename the MPInside report.

By default MPInside writes to the mpinside_stats report. If you want to run
MPInside only once, there is no need to rename the report. However, in this
example, you want to run MPInside multiple times and compare the results. In
this case, if you permit MPInside to use the default report name, MPInside
overwrites the mpinside_stats report in its successive runs. To preserve each
successive run in a separate file, use different names for the report in each run.

Type the following command to rename the MPInside report to
mpinside_baseline_stats:

% setenv MPINSIDE_OUTPUT_PREFIX mpinside_baseline

3. Type the following command to generate statistics on the request sizes:

% setenv MPINSIDE_SIZE_DISTRI T+12:0-11

By default, MPInside runs with the following specification:
MPINSIDE_SIZE_DISTRI 12:0--0, and the statistics that MPInside generates
show the accumulated total request sizes for all calls for rank zero (0). In this
step, you specify the following:

T+ Generates additional statistics that describe how much time each
type of MPI communication spent in transmitting or receiving a
given request size. The statistics show the timings of the MPI
functions, split by size. These statistics can expose bottlenecks in
the program that occur for particular request sizes. The resulting
statistics appear in a table with two axes, one for the
communication type and one for the request size. You can look at
both axes to determine the cause of an application’s slowness.
These statistics appear in the report after the request sizes.

In the transmission time report, time spent in MPI_Wait,
MPI_Waitall, MPI_Waitany, and MPI_Waitsome is added into

20 007–5780–002

MPInside Reference Guide

the row and column that corresponds to the previous nonblocking
communication request, such as an MPI_Isend, MPI_Irecv call.

If the T+ option is not supplied, the MPInside statistics do not
include the time spent in calls to MPI_wait or MPI_waitall.

12 Specifies the number of rows in the report, excluding the row at the
bottom that tabulates requests of size zero.

0-11 Includes statistics for ranks first-last in the report. In this example,
you request statistics for 12 ranks. If you have 16 ranks and you
want statistics for all ranks, specify 0-15.

4. Type the following commands to set additional environment variables:

% setenv MPINSIDE_SHOW_READ_WRITE

% setenv MPINSIDE_PRINT_ALL_COLUMNS

% setenv MPINSIDE_PRINT_DIRTY

5. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

% setenv MPINSIDE_LIB OPENMPI OpenMPI

6. Type the mpirun command in the following format:

mpirun -np processes MPInside program_name [program_args]

For processes, specify the number of ranks used by the application.

For program_name, specify the name of the binary program you want to analyze.
The program must have been compiled. For example: a.out.

For program_args, specify any arguments that the program requires. These
arguments are optional and are not required by MPInside.

007–5780–002 21

3: Comparing MPInside Statistics from Multiple Program Runs

7. (Conditional) Repeat this programming run with a smaller set of environment
variables.

Perform this step only if the preceding run completed in an excessively long
period of time and you suspect that MPInside introduced overhead.

In most cases, MPInside incurs negligble overhead. However, if you notice that
your program’s run took noticeably longer to complete when MPInside was
invoked, you might want to get an additional run. In this additional run, invoke
MPInside with only minimal environment variables.

Make sure to retain the mpinside_baseline_stats report file. You do not
want to overwrite mpinside_baseline_stats because it includes important
information about the size and number of requests for which overhead does not
matter. Type the following commands to repeat the programming run and
request minimal MPInside operations:

• Load the MPInside module:

% module load MPInside

• Specify the report name:

% setenv MPINSIDE_OUTPUT_PREFIX mpiniside_lite

• Specify minimal overhead:

% setenv MPINSIDE_LITE

• (Conditional) Specify your MPI library:

% setenv MPINSIDE_LIB lib

This step is not needed if your library is SGI MPT MPI. The default lib is MPT.
An earlier step in this procedure shows the nondefault lib specifications.

• Run the program with MPInside:

% mpirun -np processes MPInside program_name [program_args]

If this run, with MPINSIDE_LITE specified, is still noticeably longer than a run
without MPInside involvement, you need to consider programming problems.

With a null request, the MPI library could return to the application in tens or
hundreds of nanoseconds. For such calls, MPInside’s accounting can take more
processing time than the actions of the MPI library that you wanted to track. If

22 007–5780–002

MPInside Reference Guide

these calls make up a substantial amount of the total MPI calls in your program,
you might end up with an unrealistically long running time due to MPInside
overhead, even when running in lite mode.

Run 2 — Simulating a Perfect Interconnect Environment

If the programming environment had a perfect network and perfect hardware, you
might expect all message passing to occur perfectly, with no waiting. When you
complete this run, you simulate a perfect environment. This run simulates the
amount of waiting that occurs because of unbalanced loads, and that is independent
of the MPI engine.

The following procedure explains the environment variables to use when you run
MPInside for the second time.

Procedure 3-2 To run MPInside

1. Type the following command to load the MPInside module:

% module load MPInside

2. Type the following command to rename the MPInside report to
mpinside_perfect_stats:

% setenv MPINSIDE_OUTPUT_PREFIX mpinside_perfect

3. Type the following command to specify the modeling of a perfect execution
envionment:

% setenv MPINSIDE_MODEL PERFECT+1.0

This environment variable uses the following parameter:

PERFECT+1.0 The 1.0 specifies that you want the CPU to run in
its typical mode, as you would expect it to run.

If you set this higher, for example, to 1.2,
MPInside simulates a CPU that is 20% faster.

007–5780–002 23

3: Comparing MPInside Statistics from Multiple Program Runs

If you set this lower, for example, to 0.8, MPInside
simulates a CPU that is 20% slower, or 80% of its
typical speed.

4. Type the following command to direct MPInside to print the transfer topology
matrix files:

% setenv MPINSIDE_MATRICES EXA:-B:S

This environment variable uses the following parameters:

EXA Includes the exact point-to-point transfers implied by the collective
functions in the matrix files. Specify this parameter only when
running with the SGI MPT MPI library. If you load your program
with libraries other than the SGI MPT MPI library, use the PLA
parameter.

-B Include matrix files in the output in binary format only.

S Separates the collective functions and the point to point matrices in
the binary output.

5. (Conditional) Direct MPInside to merge collectives and point-to-point matrices
into binary files.

Perform this step if you did not use the SGI MPT MPI libraries to compile your
program.

The command is as follows:

% setenv MPINSIDE_MATRICES P2P:-B:M

6. Type the following command to set additional environment variables:

% setenv MPINSIDE_SHOW_READ_WRITE

% setenv MPINSIDE_PRINT_ALL_COLUMNS

% setenv MPINSIDE_PRINT_DIRTY

7. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

24 007–5780–002

MPInside Reference Guide

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

% setenv MPINSIDE_LIB OPENMPI OpenMPI

8. Type the mpirun command in the following format:

mpirun -np processes MPInside program_name [program_args]

For processes, specify the number of ranks used by the application.

For program_name, specify the name of the binary program you want to analyze.
The program must have been compiled. For example: a.out.

For program_args, specify any arguments that the program requires.

Do not try to compare the statistics in this programming run’s
mpinside_perfect_stats report with the true time elapsed during the
programming run. The MPInside times are simulated times, and MPInside
performs more computations when it simulates a perfect environment

For example, if you pass the entire mpirun command in this step to the time(1)
command, the time(1) command returns the time elapsed during this MPInside
programming run. Do not compare the timings in mpinside_perfect_stats
with the output from the time(1) command.

Run 3 — Analyzing the Amount of Time Spent Waiting

In a perfect environment, CPUs would work constantly. The CPUs would pass data
to each other as smoothly as a runner in a relay race passes a baton to the next runner
in line. However, a CPU sometimes has to wait until the information in another CPU
is available to be transferred. The run in this topic enables you to analyze the amount
of time the CPUs spend waiting.

The following procedure explains the environment variables to use when you run
MPInside for the wait analysis.

Procedure 3-3 To run MPInside

1. Type the following command to load the MPInside module:

% module load MPInside

007–5780–002 25

3: Comparing MPInside Statistics from Multiple Program Runs

2. Type the following command to rename the MPInside report to
mpinside_slt_stats:

% setenv MPINSIDE_OUTPUT_PREFIX mpinside_slt

3. Type the following commands to set environment variables:

% setenv MPINSIDE_EVAL_COLLECTIVE_WAIT

% setenv MPINSIDE_EVAL_SLT

% setenv MPINSIDE_SHOW_READ_WRITE

% setenv MPINSIDE_PRINT_ALL_COLUMNS

% setenv MPINSIDE_PRINT_DIRTY

4. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

% setenv MPINSIDE_LIB OPENMPI OpenMPI

5. Type the mpirun command in the following format:

mpirun -np processes MPInside program_name [program_args]

For processes, specify the number of ranks used by the application.

For program_name, specify the name of the binary program you want to analyze.
The program must have been compiled. For example: a.out.

For program_args, specify any arguments that the program requires.

26 007–5780–002

Chapter 4

Using MPInside to Analyze Only Parts of a
Program

This chapter contains the following topics:

• "About Analyzing Subsets of a Program" on page 27

• "Analyzing Subsets of a Program" on page 27

About Analyzing Subsets of a Program
In some cases, you do not need to, or want to, run MPInside against the entire
application from MPI_Init() to MPI_Finalize(). This might be the case if you
have already used MPInside to isolate programming problems and have determined
the parts of your program that you want to change. You can also use the procedure in
this chapter if you are responsible for only parts of a program, not the entire program.

To create a targeted MPInside analysis, insert MPInside calls into your program and
recompile your program. When the program runs, MPInside generates statistics for
only the parts of the program that require deeper analysis. The set of calls you need
to use depends on how much of your program you want MPInside to analyze. This
chapter includes an example that shows you how to enable and disable MPInside
analysis.

Analyzing Subsets of a Program
The following procedure explains how to run MPInside with a reduced amount of
analysis.

Procedure 4-1 To reduce the amount of MPInside analysis

1. Determine the scope of the analysis that is needed.

Does one large part of your program require analysis? You can divide a program
like this into three areas, as follows:

Initialization — no analysis needed
Computation — analysis needed
Finalization — no analysis needed

007–5780–002 27

4: Using MPInside to Analyze Only Parts of a Program

Do many small parts of your program require analysis? You can divide a
program like this into two or more small areas, as follows:

Initialization — no analysis needed
Computation phase 1 — analysis needed
Computation phase 2 — no analysis needed
Computation phase 3 — analysis needed
Computation phase 4 — no analysis needed
Computation phase 5 — analysis needed
Finalization — no analysis needed

2. Open your program file and insert function calls to MPInside.

For a program with one large part that needs analysis, insert calls as follows:

• For a C program:

Initialization
(void) mpinside_start();
Computation — analysis needed
(void) mpinside_end();
Finalization

• For a Fortran program:

Initialization
Call mpinside_start
Computation — analysis needed
Call mpinside_end()
Finalization

For a program with many small parts that need analysis, insert calls as follows:

• For a C program:

Initialization — no analysis needed
(void) mpinside_start();
Computation phase 1 — analysis needed
mpinside_suspend()
Computation phase 2 — no analysis needed
mpinside_resume()
Computation phase 3 — analysis needed
mpinside_suspend()
Computation phase 4 — no analysis needed

28 007–5780–002

MPInside Reference Guide

mpinside_resume()
Computation phase 5 — analysis needed
(void) mpinside_end();
Finalization — no analysis needed

• For a Fortran program:

Initialization — no analysis needed
Call mpinside_start
Computation phase 1 — analysis needed
Call mpinside_suspend()
Computation phase 2 — no analysis needed
Call mpinside_resume()
Computation phase 3 — analysis needed
Call mpinside_suspend()
Computation phase 4 — no analysis needed
Call mpinside_resume()
Computation phase 5 — analysis needed
Call mpinside_end()
Finalization — no analysis needed

Note the following regarding the function calls:

• The mpinside_start(), mpinside_end(), mpinside_suspend(), and
mpinside_resume() calls must involve all ranks. That is, these calls must be
MPI_COMM_WORLD collective calls, or you may experience unexpected results.

• MPInside’s analysis ends when it encounters an mpinside_end() call. If the
program calls MPI_Finalize() before it calls mpinside_end(), the
program ends as expected, and the MPInside report contains statistics through
the MPI_Finalize() call.

• If your program includes an mpinside_suspend() call toward the end, but
does not includes an mpinside_end() call, the analysis continues from the
last mpinside_suspend() call through to the MPI_Finalize() call.

3. Compile the program.

4. Link the program.

Make sure that the MPInside environment is properly set in order to be able to
link your program with libMPInside_stub.so.

The example that follows this procedure contains a link step.

007–5780–002 29

4: Using MPInside to Analyze Only Parts of a Program

5. Type the following command to set the MPINSIDE_PARTIAL_EXPERIMENT
environment variable:

% setenv MPINSIDE_PARTIAL_EXPERIMENT

This environment variable ensures that MPInside starts its analysis after it
encounters the mpinside_start() call.

For information about environment variables, see the MPInside(3) man page.

6. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

% setenv MPINSIDE_LIB OPENMPI OpenMPI

7. Type the following command to run your program:

% mpirun -np processes program_name program_args

Example. The following commands link and run a C++ program that uses the
SGI MPT MPI library:

• Type the following command to load SGI’s MPT module:

% module load mpt

• Type the following command to load the MPInside module:

% module load MPInside

This step ensures that LD_LIBRARY_PATH includes the MPInside library’s
directory.

30 007–5780–002

MPInside Reference Guide

• Type the following command to invoke the Intel C++ Compiler:

% icc -o prog_with_stub prog.c -l mpi -l MPInside_stub

• Type the following command to run the program:

% mpirun -np 128 ./prog_with_stub args

• Type the following command to run the program with MPInside:

% mpirun -np 128 MPInside ./prog_with_stub args

007–5780–002 31

Chapter 5

Analyzing Call Stack Branches and Program
Stiffness

This chapter contains the following topics:

• "About Call Stack Branches and Program Stiffness" on page 33

• "Interpreting the Call Stack Branch Output" on page 33

• "Communication Stiffness" on page 39

• "Generating Statistics to Analyze Call Stack Branches and Program Stiffness" on
page 42

About Call Stack Branches and Program Stiffness
Certain environment variables enable you to generate call stack information and to
generate information about program stiffness. A program is said to be stiff when it
contains serialized communication dependencies, and MPInside output can help you
analyze these dependencies.

This chapter explains how to interpret the statistics that describe call stack branches
and stiffness. This chapter also contains an example that shows the programming
runs used when gathering these statistics.

Note: Some of the output examples in this chapter are very wide. To accommodate
inclusion in this documentation, some have been wrapped, and column alignment in
examples might differ from your output.

Interpreting the Call Stack Branch Output
When you use the MPINSIDE_CALLSTACK_DEPTH environment variable, the
MPInside report contains call stack information. Each mpinside_clstk.rank file is a
call stack branch report. These reports list call stack branch information. Each branch
consists of an MPI function, followed by all of its call stack ancestors. The report sorts
the branches and provides data about the time spent in a particular MPI function.

007–5780–002 33

5: Analyzing Call Stack Branches and Program Stiffness

The reports can also contain information about branch partners. The following topics
explain the call stack branch reports:

• "Opening the Call Stack Branch Report" on page 34

• "Branch Statistics" on page 34

• "Ancestor Information" on page 35

• "Partner Information" on page 35

Opening the Call Stack Branch Report

Like the MPInside statistics report (mpinside_stats), the call stack branch report
(mpinside_clstk.rank) is a tab-separated report that contains a very large amount
of data. SGI recommends that you open the mpinside_clstk.rank file from a
spreadsheet. For information about how to open this file in a spreadsheet, use the
information in the following topic:

"Opening the mpinside_stats Report Within a Spreadsheet" on page 13

Branch Statistics

The call stack branch contains columns of data for each function. You can interpret
the column headings as follows:

Column Heading Meaning

MPI_FUNCTION The function name. For example, MPI_Allreduce or
MPI_Send.

Branch ID The unique branch identification number.

Receive Time(s) The time spent on the receive function itself.

Self% The percentage of the total execution time that is
accountable to this branch.

Specifically, this is a percentage accounting of how
much time was spent on a certain branch out of the run
time of the whole program.

Self totals The sum of the Self% for all earlier branches plus the
Self% for the current branch.

34 007–5780–002

MPInside Reference Guide

#Send reqs The number of send requests from this branch.

#Recv reqs The number of receive requests from this branch.

Ave MBs sent Average data amount sent, in Mbytes, from this branch.

For this column, and for the Ave MBs received
column, the exact meaning depends on the specific MPI
function.

See the preamble of the MPInside report for
information specific to the MPI function.

Ave MBs received Average data amount received, in Mbytes, from this
branch.

For this column, and for the Ave MBs sent column,
the exact meaning depends on the specific MPI function.

Ave partner wait
time(s)

The Receive Time(s) column shows the time spent
for the receive function itself. The Ave partner wait
time(s) column shows the wait time associated with a
request. For a function like MPI_Recv(), these two
times are equal. For a function like MPI_Irecv(),
these two times are not equal.

Ancestor Information

If the MPINSIDE_CROSS_REFERENCE environment variable is set, the call stack
branch output contains an additional line that appears after the columns of timing
data. This additional line is headed by the keyword Ancestors. If the application
was compiled with the -g option, MPInside prints the line number for each function
at the end of the line for each routine in the Ancestors section.

Partner Information

Some branches have partners. Branch partners consist of complementary pairs of
operations. The partner for a particular call stack is the corresponding call stack
branch in one or more other ranks. The call stack in the other rank performs the
corresponding action in that other rank. The partners are two halves of a
communication pair.

007–5780–002 35

5: Analyzing Call Stack Branches and Program Stiffness

For example, assume that one application uses three ranks, and the ranks contain the
following calls:

• Rank 0

Main > func_a > MPI_Recv

Main > func_b > MPI_Recv

• Rank 1

• Rank 2

MPInside tracks the following for these calls:

• Two call stacks, one for each MPI_Recv that is issued from Rank 0.

• Two, three, or four branch partners. Rank 0 issues the MPI_Recv functions. Rank
0’s MPI_Recv calls could receive data from Rank 1, from Rank 2, or from both
Rank 1 and from Rank 2. MPInside reports all branch partners, so the statistics
report could show the following branch partners:

– Main > func_a > MPI_Recv and the returned data from Rank 1

– Main > func_a > MPI_Recv and the returned data from Rank 2

– Main > func_b > MPI_Recv and the returned data from Rank 1

– Main > func_b > MPI_Recv and the returned data from Rank 2

If rank 0 sends data to rank 1, then rank 0 has a call stack that ends with an
MPI_Send that partners with an MPI_Recv call in rank 1.

The MPInside call stack branch output contains partner information, where
appropriate, in the following format:

A:#B:C:D

A The rank number of the partner that initiated the MPI_Send or
MPI_Isend for this branch.

B The MPI_Send or MPI_Isend branch identifier (ID) of the partner. You
can find this ID in the mpinside_clstk.rank report.

C The percentage of receive or wait time that MPInside can attribute to
rank A and MPI send branch #B.

36 007–5780–002

MPInside Reference Guide

D The percentage of MPI_Recv time for which the corresponding send
arrived late (send late time) in C.

The partners connect the wait/receive branches to their corresponding request/send
branches. MPInside generates partner information for the MPI_Recv, MPI_Wait, and
MPI_Test functions. Partners for these functions are always MPI_Send, MPI_Isend,
and so on. It is possible for an MPI_Recv, MPI_Wait, or MPI_Test branch to have
several partners.

The following topics describe partners in more detail:

• "Branches With Partners" on page 37

• "Branches Without Partners" on page 37

• "Examples" on page 38

Branches With Partners

Wait branches connect, as partners, the send/recieve branches that initiate MPI
requests. For all the send/receive branches that were connected to it, each wait
branch reports the percentage of function waiting time to account to a particular
send/receive branch in regard to the total execution time of a particular wait branch.
For example, an MPI_Wait branch is a wait branch as well as a MPI_Recv branch.

Receive branches have send partners and are targets of wait branches. Each receive
branch reports, for all the send branches that were with it, as follows:

• The ranks of the sends

• The send branch IDs

• The percentage of execution time (function waiting time) to account to this
particular send branch in regard to the total wait time of this Recv branch.

• The percentage of time (send late time) such send branches were arriving late in
regard to the matching receive posting.

Branches Without Partners

Some call stacks do not have partners.

Ordinary branches do not have partners nor are they targets of another branch.
Collective function branches are of this type.

007–5780–002 37

5: Analyzing Call Stack Branches and Program Stiffness

Send branches do not have partners. Send branches are targets of receive branches or
wait branches.

Examples

The following two examples show MPInside output and include partner information
after the ancestor information. For more information about this kind of output, see
"Run 4 — Examining the Call Stack Branches" on page 55.

Note: The following output examples are very wide. The rightmost two columns are
wrapped and shown below the main body of the output for inclusion in this
documentation.

Example 1. In the following output, in the Partners line at the end, the first
100.00 indicates that the branch spent 100% of its time partnering with rank 0,
branch 2. The second 100.00 in this line indicates that 100% of the time was spent
waiting on a late send.

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Recv #258 2.003 39.72 39.7 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:20

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:38

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

Partners_1_0: 0:#2:100.00:100.00

The last two columns of output are as follows:

Ave MBs received Ave partner wait time(s)

0 2.003513

Example 2. In the MPI_Recv in following output, the report shows that this branch,
with the level_2() call on line 20, was a partner to the matching MPI_Send from
rank 0, branch 1. This MPI_Send was executed following the second call (line 20) of
the level_2() routine. This partnership accounted for 100% of the MPI_Recv
branch, and 99.88% of the time was just wait.

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Recv #257 1.026 20.34 60.1 0 1 0

38 007–5780–002

MPInside Reference Guide

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:20

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:37

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

Partners_1_0: 0:#1:100.00:99.88

The last two columns of output are as follows:

Ave MBs received Ave partner wait time(s)

0 1.027300

Communication Stiffness
Communication stiffness measures an application’s sensitivity to point-to-point
communication dependency chains. Stiffness is a conceptual rating of how sensitive
the running time of each rank is to waiting for other ranks to send the data that the
rank needs to proceed.

MPInside measures the communication stiffness as a proxy for the performance effect
of dependent communication chains in an MPI program. The stiffness rating is not an
absolute timing; stiffness does not describe, in terms of wall clock time, how fast a
given application can run. An application’s communication strategy is stiff if the ranks
spend an unnecessary amount of time waiting for data before the ranks can proceed.

For example, consider a physical simulation that involves a rectangular region of
space. The rectangle is a region of space composed of a one-dimensional set of n
cubes, such that each of n ranks is responsible for the communication and
computation that pertains to the particles in one cube. The following are different
communication strategies:

• A communication strategy with an optimal (low) stiffness rating is one in which
(1) a rank containing a particle moving out of its physically contained region
sends that particle’s data directly to the other rank that will contain the particle in
the next time step and (2) each rank receives data only from ranks that will send
them particles in this time step.

• In a less optimal strategy, rank 0 sends data about all of its outgoing particles to
rank 1 before rank 1 can send data about its particles to rank 2, and then from
rank 2 to rank 3, and so on. In this case, rank n-1 sends data to rank 0 before the
end of the time step. With this programming strategy, each time step involves a

007–5780–002 39

5: Analyzing Call Stack Branches and Program Stiffness

chain of n–dependent MPI communications, which gives the application a higher
stiffness rating.

Applications that include dependency chains that affect performance have the
following characteristics:

• Poor scalability

• Transfers that introduce load imbalances

MPInside uses two numbers to calculate the stiffness rating. The first number is the
SDC counter, which is the Size of the Dependency Chain. MPInside keeps an SDC
counter for each rank. The second number is the TNSR counter. The TNSR counter is
the sum of the Total Number of Sends and Receives. The TNSR number reflects the
number of point-to-point operations performed by the rank. These numbers form the
stiffness rating, as follows:

• When a send occurs, MPInside increments the SDC counter for that rank by one
and includes the new value in the message header.

• When a receive completes, MPInside increments the SDC counter for the receiving
rank by one. If the new value for the receiving rank is lower than the SDC value
of the sending rank, MPInside assigns the SDC value of the sending rank to the
receiving rank.

• The stiffness rating is the ratio of SDC/TNSR.

When you run the program with the following environment variables, the
MPInside report includes a stiffness rating:

– MPINSIDE_EVAL_SLT

– MPINSIDE_MODEL PERFECT+1.0

A stiffness rating of 1 is good and signifies very little program stiffness. Higher
numbers indicate a higher probability of dependency chains in the program and
worsening program stiffness.

Figure 5-1 on page 41 shows a program with an acceptable, or good, stiffness rating
of 1. The value within each box shows SDC changes for each send/receive operation.
The TNSR for each rank is 3.

40 007–5780–002

MPInside Reference Guide

0-1 1-2 2-3

0-1 1-2 2-3

0-1 1-2 2-3

0-1 1-2 2-3

Compute

Send

Wait

stiffness 3/3 = 1

Ranks

Time

Figure 5-1 Output for a Program With a Low Stiffness Rating

Figure 5-2 on page 41 shows a program with scalability problems. This program
includes a bottleneck in that a token is passed back and forth. This program has a
higher stiffness rating of 3.

Ranks

Time

0-1 1-2

Compute

Send

Wait

stiffness 6/2 = 3

Receive

0-1

1-2 2-3

2-3 3-4

4-5 5-6

5-6

3-4 4-5

Figure 5-2 Output for a Program With a High Stiffness Rating

007–5780–002 41

5: Analyzing Call Stack Branches and Program Stiffness

Generating Statistics to Analyze Call Stack Branches and Program Stiffness
The following topics contain procedures that explain how to use the stiffness data in
the MPInside report. The topics are as follows:

• "Run 1 — Obtaining Baseline Statistics" on page 42

• "Run 2 — Simulating a Perfect Interconnect Environment" on page 50

• "Run 3 — Evaluating Send Late Time" on page 52

• "Run 4 — Examining the Call Stack Branches" on page 55

Run 1 — Obtaining Baseline Statistics

The first run collects baseline statistics about how the program performs in a typical
programming environment.

The following procedure explains the MPInside output for a particular C program
called example.

Procedure 5-1 To create the program and generate output

1. Use a text editor to create the following C program, called program example:

1 #include
2 #include

3 #include

4 #include

5

6 #define BUFF_SZ 1024

7 int buff_S[BUFF_SZ], buff_R[BUFF_SZ];
8 int dest, src,me, World_size;

9

10

11 void level_2(int load_unbalance)

12 {
13 MPI_Status status;

14

15 if(me % 2 == 0) {

16 (void) sleep(load_unbalance);

17 (void) MPI_Send (buff_S, BUFF_SZ/2, MPI_INT,
18 dest, 13, MPI_COMM_WORLD);

42 007–5780–002

MPInside Reference Guide

19 }
20 else { // note Receive size is 2 time send size

21 (void) MPI_Recv(buff_R, BUFF_SZ,MPI_INT,

22 src, 13, MPI_COMM_WORLD, &status);

23 (void) sleep(load_unbalance);

24 }
25

26 (void) MPI_Allreduce(buff_S, buff_R, BUFF_SZ,

27 MPI_INT, MPI_SUM, MPI_COMM_WORLD);

28

29 if(me == 0) (void) sleep(1);

30 (void) MPI_Bcast(buff_S, BUFF_SZ/4, MPI_INT,
31 0, MPI_COMM_WORLD);

32

33 }

34

35 void level_1()
36 {

37 level_2(1);

38 level_2(2);

39 }

40

41 int
42 main(int argc, char **argv)

43 {

44

45 (void) MPI_Init(&argc,&argv);

46
47 (void) MPI_Comm_size(MPI_COMM_WORLD, &World_size);

48 (void) MPI_Comm_rank(MPI_COMM_WORLD, &me);

49

50 bzero(buff_S, BUFF_SZ * sizeof(int));

51
52 dest = me + 1;

53 src = me - 1;

54

55 level_1();

56

57 (void) MPI_Finalize();
58 }

007–5780–002 43

5: Analyzing Call Stack Branches and Program Stiffness

Note the following about the preceding program:

• This program runs a cascade of calls and then calls several MPI functions in
the level_2() routine.

• After the program runs, MPInside writes the mpinside_stats report. The
information in the mpinside_stats report about the work in routine
level_2(int load_unbalance) shows that the sleep() routine calls
introduce a huge load imbalance to the computation and add to the MPI
function time.

2. Type the following commands to compile the program and to generate baseline
statistics:

% gcc -g -o example example.c -lmpi
% setenv MPINSIDE_ECHO_INPUT

% setenv MPINSIDE_PRINT_DIRTY

% setenv MPINSIDE_ADD_COLUMN_MEANING

% setenv MPINSIDE_SIZE_DISTRI T+12:0-3

3. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

% setenv MPINSIDE_LIB OPENMPI OpenMPI

4. Type the following command to run the program with MPInside:

% mpirun -np 4 MPInside ./example

5. Open the mpinside_stats report within a spreadsheet.

For information about how to open an mpinside_stats report from within a
spreadsheet, see the following:

44 007–5780–002

MPInside Reference Guide

"Opening the mpinside_stats Report Within a Spreadsheet" on page 13

6. (Optional) Scan the preamble.

The preamble in the mpinside_stats report contains metadata about the
programming run and explains how MPInside calculates some of its statistics.

In example’s case, you specified the MPINSIDE_ECHO_INPUT environment
variable, so the preamble lists the environment variables you used during this
program run. Otherwise, however, it does not contain a lot of program-specific
information. The preamble for example is as follows:

MPInside 3.6.3 standard(Sep 6 2013 14:06:40) Input variables:

MPINSIDE_PRINT_DIRTY : Set

MPINSIDE_ADD_COLUMN_MEANING : Set

MPINSIDE_SIZE_DISTRI : T+12:0-3

>>> column meanings <<<<

MPI_Init: MPI_Init

Recv: MPI_Recv

Send: MPI_Send

Bcast: MPI_Bcast: Calls sending data+=comm_sz,Calls receiving data++;Root:Bytes sent++:Bytes received+=count

Allreduce: MPI_Allreduce: Calls sending data+=comm_sz;Bytes received+=count,Calls receiving data++

#calls: Number of calls to the MPI function

#count: Number of bytes transfered (P2P functions)

#comm_sz: Sum of the communicator size for collective functions;Remote group size if intercomm

#recvcnt: Bytes received parameter(collective functions, average for V functions)

#sendcnt: Bytes_sent_parameter(collective functions,average for V functions)

#root: Number of time rank was root of the collective function

For information about how MPInside calculates the Bcast and Allreduce data,
see Appendix A, "MPInside Calculations" on page 61.

7. Analyze the Communication time totals area of the report.

The statistics in this part of the report summarize timings, in seconds, for the
whole program. The following is an example of this area:

>>>> Communication time totals (s) 0 1<<<<

CPU Compute MPI_Init Recv Send Bcast Allreduce

0000 5.002315 0.000218 0.000000 0.000025 0.000033 3.013441

0001 3.004462 0.000201 3.004253 0.000000 2.000165 0.008992

007–5780–002 45

5: Analyzing Call Stack Branches and Program Stiffness

0002 3.007882 0.000219 0.000000 0.000048 2.000170 3.009974
0003 3.004205 0.000195 3.007667 0.000000 2.000175 0.005770

Take a look at this area and ask yourself the following questions:

• Do the statistics seem balanced?

The rows show the number of seconds that each rank spends in the following
specific activities:

– Total compute time

– Processing MPI_Init functions

– Processing MPI_Recv functions

– Processing MPI_Send functions

– Processing MPI_Bcast functions

– Processing MPI_Allreduce functions

In the case of program example, the mpinside_stats report shows that
rank 0’s computing time is much higher (at 5+ seconds) than the computing
time for the other ranks (at 3+ seconds, each). In most cases, you want to
design your program to balance computing time evenly across all ranks. In
this case, the additional time is not expected, so this is something that you
want to investigate.

• What kind of communication traffic occurs between the ranks?

Generally, you want to balance the send times among the ranks. In program
example, the send times are balanced between ranks 0 and 2, and the receive
times are balanced between ranks 1 and 3. If, for example, ranks 0 and 2 sent
the same amount of data but rank 0’s send took longer to complete than rank
2’s send, that might indicate network contention or load balancing problems.

In program example, note the sleep() routine that occurs before the
MPI_Send() function in the level_2() routine for rank 0 and rank 2. The
sleep() routine forces rank 1 and rank 3 to wait 3 seconds for the matching
MPI_Recv(). A clearly asymmetric set of timings for the sends and receives
suggests that the receivers might be spending a long time waiting for sends. In a
larger program of, for example, 1000 ranks and more subtle imbalances, you
could not conclude so quickly that a large MPI_Recv() time contributes so
greatly to the load imbalance problem or to the performance of the pure transfers.

46 007–5780–002

MPInside Reference Guide

Additional programming runs that use more advanced MPInside features can
help you to find the causes of performance problems more easily.

8. Analyze the Bytes sent area of the report, which is as follows in program
example:

>>>> Bytes sent <<<<

CPU Compute MPI_Init Recv Send Bcast Allreduce

--- ------ -------- -------- #bytes #root --------

0000 ------ 0 0 4096 2 0
0001 ------ 0 0 0 0 0

0002 ------ 0 0 4096 0 0

0003 ------ 0 0 0 0 0

The preceding output conveys the following information:

• Ranks 0 and 2 sent 4096 bytes using a call to MPI_Send.

• Rank 0 sent out 2 bytes during calls to MPI_Allreduce.

• Ranks 1 and 3 did not send any data during any calls to MPI_Send.

With regard to the data for your program, does this match your expectations?

9. Analyze the Calls sending data area of the report, which is as follows in
program example:

>>>> Calls sending data <<<<

CPU Compute MPI_Init Recv Send Bcast Allreduce
--- ------ -------- -------- #calls #comm_sz #comm_sz

0000 ------ 1 0 2 8 8

0001 ------ 1 0 0 8 8

0002 ------ 1 0 2 8 8

0003 ------ 1 0 0 8 8

The preceding output conveys the following information:

• Each rank called MPI_init once.

• Ranks 0 and 2 called MPI_Send two times. These are point-to-point calls. No
other ranks called MPI_Send.

007–5780–002 47

5: Analyzing Call Stack Branches and Program Stiffness

• From the listing, we know that program example performs collective
operations with MPI_COMM_WORLD with four ranks. The 8s in the last two
columns are the product of 2 X 4. In the MPI_Bcast column, this represents 2
ranks multiplied by 4 MPI_Bcast calls. In the MPI_Allreduce column, this
represents 2 ranks multiplied by 4 MPI_Allreduce calls.

With regard to the data for your program, does this match your expectations?

10. Analyze the Bytes received area of the report, which is as follows in program
example:

>>>> Bytes received <<<<
CPU Compute MPI_Init Recv Send Bcast Allreduce

--- ------ -------- #bytes -------- #bytes #bytes

0000 ------ 0 0 0 2048 8192

0001 ------ 0 4096 0 2048 8192

0002 ------ 0 0 0 2048 8192
0003 ------ 0 4096 0 2048 8192

The preceding output conveys the following information:

• Ranks 1 and 3 received 4096 bytes of data.

• Ranks 0–4 (all ranks) received 2048 bytes from MPI_Bcast calls, which is the
result of 1024 bytes received from each of the two MPI_Bcast calls that Rank
0 initiated.

• The 8192 bytes that each rank received came from the two MPI_Allreduce
calls. 4 ranks participated in each call, each contributing 1024 bytes of data.

11. Analyze the Calls receiving data area of the report, which is as follows in
program example:

>>>> Calls receiving data <<<<
CPU Compute MPI_Init Recv Send Bcast Allreduce

--- ------ -------- #calls -------- #calls #calls

0000 ------ 0 0 0 2 2

0001 ------ 0 2 0 2 2

0002 ------ 0 0 0 2 2

0003 ------ 0 2 0 2 2

Ranks 1 and 3 each called MPI_Recv twice.

48 007–5780–002

MPInside Reference Guide

Each rank received data from two MPI_Broadcast calls and two
MPI_Allreduce calls.

12. Examine the output in the SIZE HISTOGRAMS area of the report.

The MPINSIDE_SIZE_DISTRI environment variable generates the SIZE
HISTOGRAMS area of the report. All times are in seconds. All units for non-timing
tables are expressed as the number of calls. The following is the MPInside output
for program example for Rank 0 and Rank 1:

>>> Rank 0 Sizes distribution <<<

Sizes Send Bcast Allreduce
65536 0 0 0

32768 0 0 0

16384 0 0 0

8192 0 0 0

4096 0 0 2
2048 2 0 0

1024 0 2 0

512 0 0 0

256 0 0 0

128 0 0 0

64 0 0 0
32 0 0 0

0 0 0 0

>>> Rank 0 Size distribution times (in s) <<<

Sizes Send Bcast Allreduce

65536 0.000000 0.000000 0.000000
32768 0.000000 0.000000 0.000000

16384 0.000000 0.000000 0.000000

8192 0.000000 0.000000 0.000000

4096 0.000000 0.000000 3.013441

2048 0.000025 0.000000 0.000000
1024 0.000000 0.000033 0.000000

512 0.000000 0.000000 0.000000

256 0.000000 0.000000 0.000000

128 0.000000 0.000000 0.000000

64 0.000000 0.000000 0.000000

32 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000

>>> Rank 1 Sizes distribution <<<

007–5780–002 49

5: Analyzing Call Stack Branches and Program Stiffness

Sizes Recv Bcast Allreduce
65536 0 0 0

32768 0 0 0

16384 0 0 0

8192 0 0 0

4096 0 0 2
2048 2 0 0

1024 0 2 0

512 0 0 0

256 0 0 0

128 0 0 0

64 0 0 0
32 0 0 0

0 0 0 0

>>> Rank 1 Size distribution times (in s) <<<

Sizes Recv Bcast Allreduce

65536 0.000000 0.000000 0.000000
32768 0.000000 0.000000 0.000000

16384 0.000000 0.000000 0.000000

8192 0.000000 0.000000 0.000000

4096 0.000000 0.000000 0.008992

2048 3.004253 0.000000 0.000000

1024 0.000000 2.000165 0.000000
512 0.000000 0.000000 0.000000

256 0.000000 0.000000 0.000000

128 0.000000 0.000000 0.000000

64 0.000000 0.000000 0.000000

32 0.000000 0.000000 0.000000
0 0.000000 0.000000 0.000000

In the preceding output, look for numbers that are uneven. The block of
information called Rank 0 Size distribution times shows an
MPI_Allreduce of 4096 bytes that took 3+ seconds to complete, compared with
MPI_Send and MPI_Bcast times of much less than a second. This indicates that
you should look in your program for an MPI_Allreduce with a 4K data payload.

Run 2 — Simulating a Perfect Interconnect Environment

If the programming environment had a perfect network and perfect hardware, you
might expect all message passing to occur perfectly, with no waiting. When you
complete this run, you simulate a perfect environment. This run simulates the

50 007–5780–002

MPInside Reference Guide

amount of waiting that occurs because of unbalanced loads and that is independent
of the MPI engine.

The following procedure explains the environment variables to use when you run
MPInside for the second time.

Procedure 5-2 To simulate a perfect interconnect environment

1. Type the following command to load the MPInside module:

% module load MPInside

2. Type the following command to rename the MPInside report to
mpinside_perfect_stats:

% setenv MPINSIDE_OUTPUT_PREFIX mpinside_perfect

3. Type the following commands to specify that you want to run MPInside in a way
that simulates a perfect computing environment:

% setenv MPINSIDE_ECHO_INPUT
% setenv MPINSIDE_PRINT_DIRTY

% setenv MPINSIDE_ADD_COLUMN_MEANING

% setenv MPINSIDE_MODEL PERFECT+1

4. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

% setenv MPINSIDE_LIB OPENMPI OpenMPI

5. Type the following command to run the program with MPInside:

% mpirun -np 4 MPInside ./example

007–5780–002 51

5: Analyzing Call Stack Branches and Program Stiffness

6. Compare the mpinside_perfect_stats report from this run to the
mpinside_stats report from the previous program run.

The preamble is nearly identical in both reports. The only difference is the echoed
environment variables.

The Communication time totals area shows the time spent by the MPI
function if the MPI engine operated in a perfect environment with zero latency
and infinite bandwidth. The timings in this perfect environment are very similar
to the baseline run. This simulation running time is a little shorter because of the
huge load imbalance that is introduced with the sleep() function. The true
transfer for the run is almost nothing in regard to the load imbalance. The
statistics are as follows:

>>>> Communication time totals (s) 0 1<<<<

CPU Compute MPI_Init Recv Send Bcast Allreduce Stiffness

0 5.0172 0.000131 0 0 0 3.020069 0
1 3.011644 0.000141 3.008671 0 2.008501 0.008452 0

2 3.012449 0.000144 0 0 2.008501 3.016319 0

3 3.016353 0.000136 3.012414 0 2.008501 0 0

In the preceding output, notice the new column, Stiffness. For information
about program stiffness, see the following:

"Communication Stiffness" on page 39

The Bytes sent, Calls sending data, Bytes received, and Calls
receiving data areas are identical to the baseline statistics.

Run 3 — Evaluating Send Late Time

Send late time (SLT) refers to the amount of time a rank waits for data to be received
from another rank. For more information about send late time, see "About MPInside
Terminology" on page 6.

The following procedure shows a programming run that generates SLT statistics.

Procedure 5-3 To generate send time late statistics

1. Type the following command to load the MPInside module:

% module load MPInside

52 007–5780–002

MPInside Reference Guide

2. Type the following command to rename the MPInside report to
mpinside_slt_stats:

% setenv MPINSIDE_OUTPUT_PREFIX mpinside_slt

3. Type the following commands to specify that you want to run MPInside in a way
that generates SLT statistics:

% setenv MPINSIDE_ECHO_INPUT

% setenv MPINSIDE_PRINT_DIRTY

% setenv MPINSIDE_ADD_COLUMN_MEANING

% setenv MPINSIDE_EVAL_SLT

% setenv MPINSIDE_EVAL_COLLECTIVE_WAIT

4. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

% setenv MPINSIDE_LIB OPENMPI OpenMPI

5. Type the following command to run the program with MPInside:

% mpirun -np 4 MPInside ./example

6. Compare the mpinside_slt_stats report from this run to the
mpinside_stats report from the previous program run.

The preamble of the mpinside_slt_stats report contains information about
the following additional statistics:

b_Bcast: b_MPI_Bcast: Barrier before MPI_bcast

b_Allreduce: b_MPI_Allreduce: Barrier before MPI_Allreduce

w_MPI_Recv: w_MPI-Recv: Send Late Time for MPI_Recv
unwind_overhead: unwind_overhead: Overhead Unwinding stack

007–5780–002 53

5: Analyzing Call Stack Branches and Program Stiffness

mpinside_overhead: mpinside_overhead: Various MPInside overheads
Stiffness: Stiffness: Bytes sent=Stiffness=(Nb_Requests Att. Send)/(Nb_Request Att. Recv

Note: The following output example is very wide. The rightmost two columns are
wrapped and shown below the main body of the output for inclusion in this
documentation.

In this run, the Communication time totals area shows the new timings and
is as follows:

>>>> Communication time totals (s) 0 1<<<<

CPU Compute MPI_Init w_MPI_Recv Recv Send b_Bcast Bcast b_Allreduce Allreduce unwind_overhead

0000 5.004536 0.000181 0.000000 0.000000 0.000072 0.000002 0.000022 3.024744 0.031092 0.000003

0001 3.000160 0.000181 3.006710 0.000040 0.000000 2.001051 0.000021 0.031649 0.024031 0.000004

0002 3.005915 0.000185 0.000000 0.000000 0.000102 2.018046 0.000018 3.023915 0.020045 0.000004

0003 3.000141 0.000183 2.997876 0.000058 0.000000 2.015068 0.005942 0.021838 0.021981 0.000003

The last two columns of output are as follows:

mpinside_overhead Stiffness

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

In the preceding statistics, you can interpret all time in columns w_MPI_Recv,
b_Bcast and b_Allreduce to be pure wait time. The pure, or real, physical
transfer times are the timings in the Recv, Bcast, and Allreduce columns.

The real transfer times vary little with the example program. This is common in
applications that show a load imbalance of this degree.

The output includes the Stiffness column. For information about program
stiffness, see "Communication Stiffness" on page 39.

The Bytes sent, Calls sending data, Bytes received, and Calls
receiving data areas are identical to the baseline statistics.

54 007–5780–002

MPInside Reference Guide

Run 4 — Examining the Call Stack Branches

Call stack branches, or branches, show the paths in the program that led to various types
of communication. In its output, MPInside organizes the call stack branch information
by rank. The MPInside report includes information about the activity at the other end
of the commmunication (the call stack partner) and how much of the total run time
was consumed by each of these communication-generating program paths.

The following procedure shows how to generate and analyze information about call
stack branches in MPInside reports.

Procedure 5-4 To generate and analyze call stack branch reports

1. Type the following command to load the MPInside module:

% module load MPInside

2. Type the following command to rename the MPInside report to
mpinside_branches_stats:

% setenv MPINSIDE_OUTPUT_PREFIX mpinside_branches

3. Type the following commands to specify that you want to run MPInside in a way
that generates call stack branch information:

% setenv MPINSIDE_ECHO_INPUT

% setenv MPINSIDE_PRINT_DIRTY

% setenv MPINSIDE_ADD_COLUMN_MEANING

% setenv MPINSIDE_CALLSTACK_DEPTH 6
% setenv MPINSIDE_CROSS_REFERENCE

4. (Conditional) Set the MPINSIDE_LIB environment variable to your MPI
implementation.

Perform this step if your MPI implementation is something other than SGI’s MPT
MPI. The default setting is MPINSIDE_LIB MPT, which assumes that SGI MPT is
your MPI implementation.

If you use an implementation that is not SGI’s MPT MPI implementation, type
the one command from the following list that pertains to your implementation:

Command MPI Implementation

% setenv MPINSIDE_LIB IMPI X86 Intel MPI

% setenv MPINSIDE_LIB HPMPI X86 HP MPI

007–5780–002 55

5: Analyzing Call Stack Branches and Program Stiffness

% setenv MPINSIDE_LIB OPENMPI OpenMPI

5. Type the following command to run the program with MPInside:

% mpirun -np 4 MPInside ./example

6. Type the following command to process the additional files that contain
information about the MPInside call stack branches:

% MPInside_post - s0 - e3 -l mpinside_clstk

In addition to the expected MPInside report named
mpinside_branches_stats, this MPInside run created the following call stack
files:

mpinside_clstk.0
mpinside_clstk.1

mpinside_clstk.2

mpinside_clstk.3

There are four call stack reports because there are four ranks in the example
program.

The MPInside_post command processes the call stack files and creates the
following reports:

mpinside_clstk_post.0
mpinside_clstk_post.1

mpinside_clstk_post.2

mpinside_clstk_post.3

7. Analyze the call stack branch reports.

The call stack branch reports show timing and partner information for each MPI
function. For information about how to analyze these reports, see "Interpreting
the Call Stack Branch Output" on page 33.

Note: The output in Example 1 and Example 2, which follows, is very wide. The
rightmost column, or the rightmost two columns, are wrapped and shown below the
main body of the output for inclusion in this documentation.

56 007–5780–002

MPInside Reference Guide

Example 1. The mpinside_clstk_post.0 report for this run is as follows:

MPInside report rank 0

Send Branches Ids : 1 - 255

RECV Branches Ids : 257 - 511

WAIT Branches Ids : 513 - 771

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #771 2.011 66.10 66.1 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:28

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:38

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

4096

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #769 1.008 33.14 99.2 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:28

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:37

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

4096

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #1 0.023 0.75 100.0 1 0 2048

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:16

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:37

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

0

007–5780–002 57

5: Analyzing Call Stack Branches and Program Stiffness

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #2 0.000 0.00 100.0 1 0 2048

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:16

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:38

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

0

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #770 0.000 0.00 100.0 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:32

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:37

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

1024

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #772 0.000 0.00 100.0 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:32

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:38

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

1024

Example 2. In the following output, notice that some branches are followed with
information about the branch partners:

MPInside report rank 1

Send Branches Ids : 1 - 255

RECV Branches Ids : 257 - 511

WAIT Branches Ids : 513 - 771

58 007–5780–002

MPInside Reference Guide

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Recv #258 2.003 39.72 39.7 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:20

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:38

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

Partners_1_0: 0:#2:100.00:100.00

The last two columns of output are as follows:

Ave MBs received Ave partner wait time(s)

0 2.003513

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Recv #257 1.026 20.34 60.1 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:20

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:37

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

Partners_1_0: 0:#1:100.00:99.88

The last two columns of output are as follows:

Ave MBs received Ave partner wait time(s)

0 1.027300

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Bcast #772 1.004 19.91 80.0 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:32

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:38

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

1024

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Bcast #770 1.004 19.91 99.9 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:32

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:37

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

007–5780–002 59

5: Analyzing Call Stack Branches and Program Stiffness

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

1024

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #771 0.005 0.10 100.0 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:28

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:38

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

4096

MPI_FUNCTION Branch ID Receive Time(s) Self% Self totals #Send reqs #Recv reqs Ave MBs sent

MPI_Allreduce #769 0.001 0.02 100.0 0 1 0

Ancestors: level_2 /home/bryce6/dthomas/MPInside/TESTS/example.c:28

level_1 /home/bryce6/dthomas/MPInside/TESTS/example.c:37

main /home/bryce6/dthomas/MPInside/TESTS/example.c:56

__libc_start_main ??:?

The last column of output is as follows:

Ave MBs received

4096

For Branch ID 258, for example, notice the following:

• The MPI_Recv call (with the level_2() call on line 38) was the partner (the
matching send for this receive branch) with rank 0 branch ID 2. Function
main calls level_1, which calls level_2, which calls MPI_Recv. The exact
source files and line numbers that led to the call to MPI_Recv are
.../TESTS/example.c.20 (where the 20 means line 20) and
.../TESTS/example.c.38.

• The line Partners_1_0: 0:#2:100.00:100.00 shows that this branch
spent 100% of its time partnering with rank 0, branch 2. The second 100.00
in this line reports that 100% of the time spent was waiting on a late send.

60 007–5780–002

Appendix A

MPInside Calculations

This appendix section contains the following topics:

• "About MPInside and the Collective Functions" on page 61

• "Interpreting the Statistics for the MPI_Bcast Collective Function" on page 61

About MPInside and the Collective Functions
The collective functions perform across the network. In its output, MPInside considers
the number of individual point-to-point operations that were needed for each
collective function. When MPInside generates a count for these collective functions,
the way the count is created depends on where the count appears in the output.

Interpreting the Statistics for the MPI_Bcast Collective Function
The MPInside output contains statistics for the MPI_Bcast functions used in the
program. These statistics appear in the five tables of output that MPInside generates
by default every time it runs. The following list includes each table title and explains
how to interpret the statistic for the MPI_Bcast function in that table.

Table MPI_Bcast Statistic’s Meaning

Bytes sent The number of times each rank acted as the root of an
MPI_Bcast function.

Calls sending data A count of the number of calls to the MPI_Bcast
function multiplied by the number of ranks that
participated in the function.

Bytes received The number of bytes received by each rank as the result
of an MPI_Bcast function.

007–5780–002 61

A: MPInside Calculations

Calls receiving
data

A count of the number of ranks that received data as
the result of an MPI_Bcast function.

Interpreting the Statistics for the MPI_Allreduce Collective Function
The MPInside output contains statistics for the MPI_Allreduce functions used in the
program. These statistics appear in the five tables of output that MPInside generates
by default every time it runs. The following list includes each table title and explains
how to interpret the statistic for the MPI_Allreduce function in that table.

Table MPI_Allreduce Statistic’s Meaning

Bytes sent This field contains 0. For calls to the MPI_Allreduce,
the BYTES SENT field is meaningless.

Calls sending data The count of the number of calls to the
MPI_Allreduce function multiplied by the number of
ranks that participated in the function.

Bytes received The number of bytes received by all ranks as the result
of an MPI_Allreduce function.

Calls receiving
data

The count of the number of times the rank called the
MPI_Allreduce function.

62 007–5780–002

Index

B

Branch, 7

F

Function time, 6
Function waiting time, 6

M

MPI communication terminology, 6

N

non-synchronized send/receive pair definition
and terminology, 6

O

Ordinary branches, 37

R

Recv branches, 37

S

Send branches, 38
Send late time (SLT), 6

T

Transfer time, 6

W

wait branches, 37

007–5780–002 63

	Table of Contents
	List of Figures

	About This Manual
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. About MPInside
	About Analyzing Program Performance With MPInside
	About MPInside Overhead
	Obtaining Additional MPInside Information
	About Using a Spreadsheet Program with MPInside
	Installing MPInside and Establishing the Computing Environment
	About the Commands that Start MPInside
	About MPInside Terminology
	About MPInside Environment Variables

	2. Getting Started and Generating Default MPInside Reports
	About Getting Started
	About MPInside Example Programs
	Analyzing a Program Using MPInside Defaults
	Generating MPInside Statistics
	Opening the mpinside_stats Report Within a Spreadsheet
	Creating Graphics Within the Spreadsheet

	3. Comparing MPInside Statistics from Multiple Program Runs
	About Using Statistics From Multiple Program Runs
	Gathering Data From Multiple Program Runs
	Run 1 | Gathering Baseline Statistics
	Run 2 | Simulating a Perfect Interconnect Environment
	Run 3 | Analyzing the Amount of Time Spent Waiting

	4. Using MPInside to Analyze Only Parts of a Program
	About Analyzing Subsets of a Program
	Analyzing Subsets of a Program

	5. Analyzing Call Stack Branches and Program Stiffness
	About Call Stack Branches and Program Stiffness
	Interpreting the Call Stack Branch Output
	Opening the Call Stack Branch Report
	Branch Statistics
	Ancestor Information
	Partner Information

	Communication Stiffness
	Generating Statistics to Analyze Call Stack Branches and Program Stiffness
	Run 1 | Obtaining Baseline Statistics
	Run 2 | Simulating a Perfect Interconnect Environment
	Run 3 | Evaluating Send Late Time
	Run 4 | Examining the Call Stack Branches

	A. MPInside Calculations
	About MPInside and the Collective Functions
	Interpreting the Statistics for the MPI_Bcast Collective Function
	Interpreting the Statistics for the MPI_Allreduce Collective Function

	Index

