
SGI Cpuset Software Guide

007–5945–001

COPYRIGHT
© 2013 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is
granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in
part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
SGI, the SGI logo, and Supportfolio are trademarks or registered trademarks of Silicon Graphics International Corp. or its subsidiaries
in the United States and other countries.

Linux is a registered trademark of Linus Torvalds. UNIX and the X Window System are registered trademarks of The Open Group in
the United States and other countries.

All other trademarks mentioned herein are the property of their respective owners.

New Features

This revision is the first publication of this manual.

Information in this manual was previously incuded in the Linux Resource
Administation Guide, publication 007–4413–017.

007–5945–001 iii

Record of Revision

Version Description

001 November 2013
Original publication.

007–5945–001 v

Contents

About This Guide . xi

Related Publications . xi

Ordering Publications . xi

Conventions . xi

Reader Comments . xii

1. Introduction . 1

About cpusets . 1

Cpuset Advantages . 1

2. Cpusets on Linux . 3

Cpuset Working Environment 4

Linux 2.6 Kernel Support for Cpusets 4

Cpuset Facility Capabilities 5

Initializing Cpusets . 6

How to Determine if Cpusets are Installed 6

Fine-grained Control within Cpusets 7

Cpuset Interaction with Other Placement Mechanism 7

Cpusets and Thread Placement 9

Safe Job Migration and Cpusets 10

Application Performance on Large SGI UV Systems 11

mem_exclusive . 11

mem_spreadpage . 11

mem_hardwall . 12

007–5945–001 vii

Contents

Cpuset File System Directories 12

Exclusive Cpusets . 17

Notify on Release Flag . 17

Memory Pressure of a Cpuset 18

Memory Spread . 20

Memory Migration . 21

Mask Format . 22

List Format . 22

Cpuset Permissions . 23

CPU Scheduling and Memory Allocation for Cpusets 23

Linux Kernel CPU and Memory Placement Settings 24

Manipulating Cpusets . 25

Using Cpusets at the Shell Prompt 25

Cpuset Command Line Utility 27

Boot Cpuset . 32

Creating a Bootcpuset . 32

bootcpuset.conf File . 33

Configuring a User Cpuset for Interactive Sessions 34

Cpuset Text Format . 37

Modifying the CPUs in a Cpuset and Kernel Processing 38

Using Cpusets with Hyper-Threads 39

Cpuset Programming Model . 42

System Error Messages . 43

Appendix A. Cpuset Library Functions 45

Basic Cpuset Library Functions 45

Extensible Application Programming Interface 46

viii 007–5945–001

SGI Cpuset Software Guide

Advanced Cpuset Library Functions 47

Index . 53

007–5945–001 ix

About This Guide

This manual describes how to use cpusets. The cpuset software is part of the SGI®

Performance Suite software package.

You can use cpusets to restrict the number of processors and the amount of memory
that a process or a set of processes can use.

Related Publications
The release notes for the SGI Foundation Suite and the SGI Performance Suite list SGI
publications that pertain to the specific software packages in those products. The
release notes reside in a text file in the /docs directory on the product media. For
example, SGI-MPI-1.x-readme.txt. After installation, the release notes and other
product documentation reside in the /usr/share/doc/packages/product directory.

The following publication contains additional information that may be helpful:

• CPUSETS for Linux at http://www.bullopensource.org/cpuset/

Ordering Publications
You can obtain SGI documentation in one of the following ways:

• From the SGI Technical Publications Library at http://docs.sgi.com, you can find
the most recent and most comprehensive set of online books, release notes, man
pages, and other information. Various formats are available.

• On your SGI system, you can view man pages by typing man title on the
command line.

Conventions
The following conventions are used throughout this document:

007–5945–001 xi

About This Guide

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

GUI This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog boxes,
menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in either of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system:

http://www.sgi.com/support/supportcenters.html

xii 007–5945–001

SGI Cpuset Software Guide

SGI values your comments and will respond to them promptly.

007–5945–001 xiii

Chapter 1

Introduction

This chapter contains the following topics:

• "About cpusets" on page 1

• "Cpuset Advantages" on page 1

About cpusets
A cpuset defines a list of CPUs and memory nodes. A process contained in a cpuset
can only execute on the CPUs in that cpuset and can only allocate memory on the
memory nodes in that cpuset. Essentially, cpusets provide you with a CPU and
memory containers, or soft partitions, within which you can run sets of related tasks.

The cpuset facility allows a system administrator or a workload manager, such as PBS
Pro or MOAB/Torque, to restrict the number of processor and memory resources that
a process or set of processes can use.

If you use cpusets on an SGI UV system, for example, you can improve memory
locality, memory access times, and an application’s performance and runtime
repeatability. Restraining all other jobs from using any of the CPUs or memory
resources assigned to a critical job minimizes interference from other jobs on the
system. For example, Message Passing Interface (MPI) jobs frequently consist of a
number of threads that communicate using message passing interfaces. All threads
need to be executing at the same time. If a single thread loses a CPU, all threads stop
making forward progress and spin at a synchronization or communication function.

Cpuset Advantages
Cpusets can eliminate the need for a gang scheduler, provide isolation of one such job
from other tasks on a system, and facilitate providing equal resources to each thread
in a job. This results in both optimum and repeatable performance.

In addition to their traditional use to control the placement of jobs on the CPUs and
memory nodes of a system, cpusets also provide a convenient mechanism to control
the use of Hyper-Threading Technology.

007–5945–001 1

1: Introduction

Cpusets are represented in a hierarchical virtual file system. Cpusets can be nested
and they have file-like permissions.

The sched_setaffinity, mbind, and set_mempolicy system calls allow you to
specify the CPU and memory placement for individual tasks. On smaller or
limited-use systems, these calls may be sufficient.

The kernel cpuset facility provides additional support for system-wide management
of CPU and memory resources by related sets of tasks. It provides a hierarchical
structure to the resources, with filesystem-like namespace and permissions, and
support for guaranteed exclusive use of resources.

You can have a boot cpuset running the traditional daemon and server tasks and a
second cpuset to hold interactive telnet, rlogin and/or secure shell (SSH) user
sessions called the user cpuset.

Creating a user cpuset provides additional isolation between interactive user login
sessions and essential system tasks. For example, a user process in the user cpuset
consuming excessive CPU, system file buffer cache, or memory resources will not
seriously impact essential system services in the boot cpuset. For more information,
see "Configuring a User Cpuset for Interactive Sessions" on page 34.

2 007–5945–001

Chapter 2

Cpusets on Linux

This chapter contains the following topics:

• "Cpuset Working Environment" on page 4

• "Cpuset File System Directories" on page 12

• "Exclusive Cpusets" on page 17

• "Notify on Release Flag" on page 17

• "Memory Pressure of a Cpuset" on page 18

• "Memory Spread" on page 20

• "Memory Migration" on page 21

• "Mask Format" on page 22

• "List Format" on page 22

• "Cpuset Permissions" on page 23

• "CPU Scheduling and Memory Allocation for Cpusets" on page 23

• "Using Cpusets at the Shell Prompt" on page 25

• "Cpuset Command Line Utility" on page 27

• "Boot Cpuset" on page 32

• "Configuring a User Cpuset for Interactive Sessions" on page 34

• "Cpuset Text Format" on page 37

• "Modifying the CPUs in a Cpuset and Kernel Processing" on page 38

• "Using Cpusets with Hyper-Threads" on page 39

• "Cpuset Programming Model" on page 42

• "System Error Messages" on page 43

007–5945–001 3

2: Cpusets on Linux

Cpuset Working Environment
This section covers the following topics:

• "Linux 2.6 Kernel Support for Cpusets" on page 4

• "Cpuset Facility Capabilities" on page 5

• "Initializing Cpusets" on page 6

• "How to Determine if Cpusets are Installed" on page 6

• "Fine-grained Control within Cpusets" on page 7

• "Cpuset Interaction with Other Placement Mechanism" on page 7

• "Cpusets and Thread Placement" on page 9

• "Safe Job Migration and Cpusets" on page 10

Linux 2.6 Kernel Support for Cpusets

The Linux 2.6 kernel provides the following support for cpusets:

• Each task has a link to a cpuset structure that specifies the CPUs and memory
nodes available for its use.

• Hooks in the sched_setaffinity system call, used for CPU placement, and in
the mbind system call, used for memory placement, ensure that any requested
CPU or memory node is available in that task’s cpuset.

• All tasks sharing the same placement constraints reference the same cpuset.

• Kernel cpusets are arranged in a hierarchical virtual file system, reflecting the
possible nesting of "soft partitions".

• The kernel task scheduler is constrained to only schedule a task on the CPUs in
that task’s cpuset.

• The kernel memory allocation mechanism is constrained to only allocate physical
memory to a task from the memory nodes in that task’s cpuset.

• The kernel memory allocation mechanism provides an economical, per-cpuset
metric of the aggregate memory pressure of the tasks in a cpuset. Memory pressure
is defined as the frequency of requests for a free memory page that is not easily

4 007–5945–001

SGI Cpuset Software Guide

satisfied by an available free page. For more information, see "Memory Pressure of
a Cpuset" on page 18.

• The kernel memory allocation mechanism provides an option that allows you to
request that memory pages used for file I/O (the kernel page cache) and
associated kernel data structures for file inodes and directories be evenly spread
across all the memory nodes in a cpuset. Otherwise, they are preferentially
allocated on whatever memory node that the task first accessed the memory page.

• You can control the memory migration facility in the kernel using per-cpuset files.
When the memory nodes allowed to a task by cpusets changes, any memory
pages no longer allowed on that node may be migrated to nodes now allowed.
For more information, see "Safe Job Migration and Cpusets" on page 10.

Cpuset Facility Capabilities

A cpuset constrains the jobs (set of related tasks) running in it to a subset of the
system’s memory and CPUs. The cpuset facility allows you and your system service
software to do the following:

• Create and delete named cpusets.

• Decide which CPUs and memory nodes are available to a cpuset.

• Attach a task to a particular cpuset.

• Identify all tasks sharing the same cpuset.

• Exclude any other cpuset from overlapping a given cpuset, thereby, giving the
tasks running in that cpuset exclusive use of those CPUs and memory nodes.

• Perform bulk operations on all tasks associated with a cpuset, such as varying the
resources available to that cpuset or hibernating those tasks in temporary favor of
some other job.

• Perform sub-partitioning of system resources using hierarchical permissions and
resource management.

007–5945–001 5

2: Cpusets on Linux

Initializing Cpusets

The kernel, at system boot time, initializes one cpuset, the root cpuset, containing the
entire system’s CPUs and memory nodes. Subsequent user space operations can
create additional cpusets.

Mounting the cpuset virtual file system (VFS) at /dev/cpuset exposes the kernel
mechanism to user space. This VFS allows for nested resource allocations and the
associated hierarchical permission model.

You can initialize and perform other cpuset operations, using any of the these three
mechanisms, as follows:

• You can create, change, or query cpusets by using shell commands on
/dev/cpuset, such as echo(1), cat(1), mkdir(1), or ls(1) as described in "Using
Cpusets at the Shell Prompt" on page 25.

• You can use the cpuset(1) command line utility to create or destroy cpusets or to
retrieve information about existing cpusets and to attach processes to existing
cpusets as described in "Cpuset Command Line Utility" on page 27.

• You can use the libcpuset C programming application programming interface
(API) functions to query or change them from within your application as
described in Appendix A, "Cpuset Library Functions" on page 45. You can find
information about libcpuset at
/usr/share/doc/packages/libcpuset/libcpuset.html.

How to Determine if Cpusets are Installed

You can issue several commands to determine whether cpusets are installed on your
system, as follows:

1. Use the grep(1) command to search the/proc/filesystems for cpusets, as
follows:

% grep cpuset /proc/filesystems

nodev cpuset

2. Determine if cpuset tasks file is present on your system by changing directory
to /dev/cpuset and listing the content of the directory, as follows:

% cd /dev/cpuset

Directory: /dev/cpuset

6 007–5945–001

SGI Cpuset Software Guide

% ls
cpu_exclusive cpus mem_exclusive mems notify_on_release

pagecache_list pagecache_local slabcache_local tasks

3. If the /dev/cpuset/tasks file is not present on your system, it means the
cpuset file system is not mounted (usually, it is automatically mounted when the
system was booted). As root, you can mount the cpuset file system, as follows:

% mount -t cpuset cpuset /dev/cpuset

Fine-grained Control within Cpusets

Within a single cpuset, use facilities such as taskset(1), dplace(1), first-touch
memory placement, pthreads, sched_setaffinity and mbind to manage processor
and memory placement to a more fine-grained level.

The user–level bitmask library supports convenient manipulation of multiword
bitmasks useful for CPUs and memory nodes. This bitmask library is required by and
designed to work with the cpuset library. You can find information on the bitmask
library on your system at
/usr/share/doc/packages/libbitmask/libbitmask.html.

Cpuset Interaction with Other Placement Mechanism

The Linux 2.6 kernel supports additional processor and memory placement
mechanisms, as follows:

Note: Use the uname(1) command to print out system information to make sure you
are running the Linux 2.6.x sn2 kernel, as follows:

% uname -r -s

Linux 2.6.16.14-6-default

• The sched_setaffinity(2) and sched_getaffinity(2) system calls set and
get the CPU affinity mask of a process. This determines the set of CPUs on which
the process is eligible to run. The taskset(1) command provides a command line
utility for manipulating the CPU affinity mask of a process using these system
calls. For more information, see the appropriate man page.

007–5945–001 7

2: Cpusets on Linux

• The set_mempolicy system call sets the NUMA memory policy of the current
process to policy. A NUMA machine has different memory controllers with
different distances to specific CPUs. The memory policy defines in which node
memory is allocated for the process.

The get_mempolicy(2) system retrieves the NUMA policy of the calling process
or of a memory address, depending on the setting of flags. The numactl(8)
command provides a command line utility for manipulating the NUMA memory
policy of a process using these system calls.

• The mbind(2) system call sets the NUMA memory policy for the pages in a
specific range of a task’s virtual address space.

Cpusets are designed to interact cleanly with other placement mechanisms. For
example, a workload manager can use cpusets to control the CPU and memory
placement of various jobs; while within each job, these other kernel mechanisms are
used to manage placement in more detail. It is possible for a workload manager to
change a job’s cpuset placement while preserving the internal CPU affinity and
NUMA memory placement policy, without requiring any special coding or awareness
by the affected job.

Most jobs initialize their placement early in their time slot, and jobs are rarely
migrated until they have been running for a while. As long as a workload manager
does not try to migrate a job at the same time as it is adjusting its own CPU or
memory placement, there is little risk of interaction between cpusets and other kernel
placement mechanisms.

The CPU and memory node placement constraints imposed by cpusets always
override those of these other mechanisms.

Calls to the sched_setaffinity(2) system call automatically mask off CPUs that
are not allowed by the affected task’s cpuset. If a request results in all the CPUs being
masked off, the call fails with errno set to EINVAL. If some of the requested CPUs are
allowed by the task’s cpuset, the call proceeds as if only the allowed CPUs were
requested. The disallowed CPUs are silently ignored. If a task is moved to a different
cpuset, or if the CPUs of a cpuset are changed, the CPU affinity of the affected task or
tasks is lost. If a workload manager needs to preserve the CPU affinity of the tasks in
a job that is being moved, it should use the sched_setaffinity(2) and
sched_getaffinity(2) calls to save and restore each affected task’s CPU affinity
across the move, relative to the cpuset. The cpu_set_t mask data type supported by
the C library for use with the CPU affinity calls is different from the libbitmask
bitmasks used by libcpuset, so some coding will be required to convert between
the two, in order to calculate and preserve cpuset relative CPU affinity.

8 007–5945–001

SGI Cpuset Software Guide

Similar to CPU affinity, calls to modify a task’s NUMA memory policy silently mask
off requested memory nodes outside the task’s allowed cpuset, and will fail if that
results in requested an empty set of memory nodes. Unlike CPU affinity, the NUMA
memory policy system calls to not support one task querying or modifying another
task’s policy. So the kernel automatically handles preserving cpuset relative NUMA
memory policy when either a task is attached to a different cpuset, or a cpusets mems
value setting is changed. If the old and new mems value sets have the same size, the
cpuset relative offset of affected NUMA memory policies is preserved. If the new
mems value is smaller, the old mems value relative offsets are folded onto the new
mems value, modulo the size of the new mems. If the new mems value is larger, then
just the first N nodes are used, where N is the size of the old mems value.

Cpusets and Thread Placement

If your job uses the placement mechanisms described in "Cpuset Interaction with
Other Placement Mechanism" on page 7 and operates under the control of a workload
manager, you cannot guarantee that a migration will preserve placement done using
the mechanisms. These placement mechanisms use system wide numbering of CPUs
and memory nodes, not cpuset relative numbering and the job might be migrated
without its knowledge while it is trying to adjust its placement. That is, between the
point where an application computes the CPU or memory node on which it wants to
place a thread and the point where it issues the sched_setaffinity(2), mbind(2)
or set_mempolicy(2) call to direct such a placement, the thread might be migrated
to a different cpuset, or its cpuset changed to different CPUs or memory nodes,
invalidating the CPU or memory node number it just computed.

The libcpuset library provides the following mechanisms to support cpuset relative
thread placement that is robust even if the job is being migrated using a batch
scheduler.

If your job needs to pin a thread to a single CPU, you can use the convenient
cpuset_pin function. This is the most common case. For more information on
cpuset_pin, see the libcpuset(3) man page.

If your job needs to implement some other variation of placement, such as to specific
memory nodes, or to more than one CPU, you can use the following functions to
safely guard such code from placement changes caused by job migration, as follows:

• cpuset_get_placement

• cpuset_equal_placement

007–5945–001 9

2: Cpusets on Linux

• cpuset_free_placement

For information about the placement functions, see libcpuset_placement(3).

Safe Job Migration and Cpusets

Jobs that make use of cpuset aware thread pinning described in "Cpusets and Thread
Placement" on page 9 can be safely migrated to a different cpuset or have the CPUs
or memory nodes of the cpuset safely changed without destroying the per-thread
placement done within the job.

Procedure 2-1 Safe Job Migration Between Cpusets

To safely migrate a job to a different cpuset, perform the following steps:

1. Suspend the tasks in the job by sending their process group a SIGSTOP signal.

2. Use the cpuset_init_pidlist function and related pidlist functions to
determine the list of tasks in the job.

3. Use sched_getaffinity(2) to query the CPU affinity of each task in the job.

4. Create a new cpuset, under a temporary name, with the new desired CPU and
memory placement.

5. Invoke cpuset_migrate_all function to move the job’s tasks from the old
cpuset to the new cpuset.

6. Use cpuset_delete to delete the old cpuset.

7. Use rename(2) on the /dev/cpuset based path of the new temporary cpuset to
rename that cpuset to the to the old cpuset name.

8. Convert the results of the previous sched_getaffinity(2) calls to the new
cpuset placement, preserving cpuset relative offset by using the
cpuset_c_rel_to_sys_cpu and related functions.

9. Use sched_setaffinity(2) to reestablish the per-task CPU binding of each
thread in the job.

10. Resume the tasks in the job by sending their process group a SIGCONT signal.

The sched_getaffinity(2) and sched_setaffinity(2) C library calls are limited
by C library internals to systems with 1024 CPUs or less. To write code that will work

10 007–5945–001

SGI Cpuset Software Guide

on larger systems, you should use the syscall(2) indirect system call wrapper to
directly invoke the underlying system call, bypassing the C library API for these calls.

The suspend and resume operation are required in order to keep tasks in the job from
changing their per thread CPU placement between steps three and six. The kernel
automatically migrates the per-thread memory node placement during step four. This
is necessary, because there is no way for one task to modify the NUMA memory
placement policy of another task. The kernel does not automatically migrate the
per-thread CPU placement, as this can be handled by the user level process doing the
migration.

Migrating a job from a larger cpuset (more CPUs or nodes) to a smaller cpuset will
lose placement information and subsequently moving that cpuset back to a larger
cpuset will not recover that information. This loss of CPU affinity can be avoided as
described above, using sched_getaffinity(2) and sched_setaffinity(2) to
save and restore the placement (affinity) across such a pair of moves. This loss of
NUMA memory placement information cannot be avoided because one task (the one
doing the migration) cannot save nor restore the NUMA memory placement policy of
another. So if a workload manager wants to migrate jobs without causing them to
lose their mbind(2) or set_mempolicy(2) placement, it should only migrate to
cpusets with at least as many memory nodes as the original cpuset.

Application Performance on Large SGI UV Systems

This section describes cpuset settings you should pay particular attention to when
running applications on large SGI UV 1000 or SGI UV 2000 series systems.

mem_exclusive

Flag (0 or 1). If set (1), the cpuset has exclusive use of its memory nodes (no sibling
or cousin may overlap). Also if set (1), the cpuset is a hardwall cpuset. See
“Hardwall” section in the cpuset(7) man page for more information. By default, this
is off (0). Newly created cpusets also initially default this to off (0).

mem_spreadpage

Flag (0 or 1). If set (1), pages in the kernel page cache (file-system buffers) are
uniformly spread across the cpuset. By default, this is off (0) in the top cpuset, and
inherited from the parent cpuset in newly created cpusets. See the “Memory Spread”
section in the cpuset(7) man page for more information.

007–5945–001 11

2: Cpusets on Linux

mem_hardwall

Flag (0 or 1). If set (1), the cpuset is a Hardwall cpuset. See “Hardwall” section in the
cpuset(7) man page for more information. Unlike mem_exclusive, there is no
constraint on whether cpusets marked mem_hardwall may have overlapping
memory nodes with sibling or cousin cpusets. By default, this is off (0). Newly
created cpusets also initially default this to off (0).

Cpuset File System Directories
Cpusets are named, nested sets of CPUs and memory nodes. Each cpuset is
represented by a directory in the cpuset virtual file system, normally mounted at
/dev/cpuset, as described earlier.

The state of each cpuset is represented by small text files in the directory for the
cpuset. These files may be read and written using traditional shell utilities such as
cat(1) and echo(1) or using ordinary file access routines from programming
languages, such as open(2), read(2), write(2) and close(2) from the C
programming library.

To view the files in a cpuset that can be either read or written, type the following
commands:

% cd /dev/cpuset

% ls

Descriptions of the files in the cpuset directory are, as follows:

Cpuset Directory File Description

tasks List of process IDs (PIDs) of tasks
in the cpuset. The list is formatted
as a series of ASCII decimal
numbers, each followed by a
newline. A task may be added to a
cpuset (removing it from the cpuset
previously containing it) by writing
its PID to that cpuset’s tasks file
(with or without a trailing newline.)

Note that only one PID may be
written to the tasks file at a time. If

12 007–5945–001

SGI Cpuset Software Guide

a string is written that contains
more than one PID, all but the first
are ignored.

notify_on_release Flag (0 or 1) - If set (1), the
/sbin/cpuset_release_agent
binary is invoked, with the name
(/dev/cpuset relative path) of
that cpuset in argv[1], when the
last user of it (task or child cpuset)
goes away. This supports automatic
cleanup of abandoned cpusets.

cpus List of CPUs that tasks in the
cpuset are allowed to use. For a
description of the format of the
cpus file, see "List Format" on page
22. The CPUs allowed to a cpuset
may be changed by writing a new
list to its cpus file. Note, however,
such a change does not take affect
until the PIDs of the tasks in the
cpuset are rewritten to the cpuset’s
tasks file.

cpu_exclusive Flag (0 or 1) - The cpu_exclusive
flag, when set, automatically
defines scheduler domains. The
kernel performs automatic load
balancing of active threads on
available CPUs more rapidly within
a scheduler domain than it does
across scheduler domains. By
default, this flag is off (0). Newly
created cpusets initially default this
flag to off (0).

mems List of memory nodes that tasks in
the cpuset are allowed to use. For a
description of the format of the
mems file, see "List Format" on page
22.

007–5945–001 13

2: Cpusets on Linux

mem_exclusive Flag (0 or 1) - The mem_exclusive
flag, when set, automatically defines
constraints for kernel internal
memory allocations. Allocations of
user space memory pages are
strictly confined by the allocating
task’s cpuset. Allocations of kernel
internal pages are only confined by
the nearest enclosing cpuset that is
marked mem_exclusive. By
default, this flag is off (0). Newly
created cpusets also initially default
this flag to off (0).

memory_migrate Flag (0 or 1). If set (1), memory
migration is enabled. For more
information, see "Memory
Migration" on page 21.

memory_pressure A measure of how much memory
pressure the tasks in this cpuset are
causing. Always has value zero (0)
unless
memory_pressure_enabled is
enabled in the top cpuset. This is a
read-only file. The
memory_pressure mechanism
makes it easy to detect when the
job in a cpuset is running short of
memory and needing to page
memory out to swap. For more
information, see "Memory Pressure
of a Cpuset" on page 18.

memory_pressure_enabled Flag (0 or 1). This file is only
present in the root cpuset, normally
at /dev/cpuset. If set (1),
memory_pressure calculations are
enabled for all cpusets in the
system. For more information, see
"Memory Pressure of a Cpuset" on
page 18.

14 007–5945–001

SGI Cpuset Software Guide

memory_spread_page Flag (0 or 1). If set (1), the kernel
page cache (file system buffers) are
uniformly spread across the cpuset.
For more information, see "Memory
Spread" on page 20.

memory_spread_slab Flag (0 or 1). If set (1), the kernel
slab caches for file I/O (directory
and inode structures) are uniformly
spread across the cpuset. For more
information, see "Memory Spread"
on page 20.

A new file has been added to /proc file system, as follows:

/proc/pid/cpuset

For each task (PID), list its cpuset path, relative to the root of the
cpuset file system. This is a read-only file.

There are two control fields used by the kernel scheduler and memory allocation
mechanism to constrain scheduling and memory allocation to the allowed CPUs.
These are two fields in the status file of each task, as follows:

/proc/pid/status

Cpus_allowed A bit vector of CPUs on which this task
may be scheduled

Mems_allowed A bit vector of memory nodes on which
this task may obtain memory

There are several reasons why a tasks Cpus_allowed and Mems_allowed values
may differ from the values in the cpus and mems file for that are allowed in its
current cpuset, as follows:

• A task might use the sched_setaffinity, mbind, or set_mempolicy
functions to restrain its placement to less than its cpuset.

• Various temporary changes to cpus_allowed values are done by kernel internal
code.

• Attaching a task to a cpuset does not change its mems_allowed value until the
next time that task needs kernel memory.

007–5945–001 15

2: Cpusets on Linux

• Changing a cpuset’s cpus value does not change the Cpus_allowed of the tasks
attached to it until those tasks are reattached to that cpuset (to avoid a hook in the
hotpath scheduler code in the kernel).

User space action is required to update a task’s Cpus_allowed values after
changing its cpuset. Use the cpuset_reattach routine to perform this update
after a changing the CPUs allowed to a cpuset.

• If the hotplug mechanism is used to remove all the CPUs, or all the memory
nodes, in a cpuset, the tasks attached to that cpuset will have their
Cpus_allowed or Mems_allowed values altered to the CPUs or memory nodes
of the closest ancestor to that cpuset that is not empty.

The confines of a cpuset can be violated after a hotplug removal that empties a
cpuset, until, and unless, the system’s cpuset configuration is updated to
accurately reflect the new hardware configuration, and in particular, to not define
a cpuset that has no CPUs still online, or no memory nodes still online. The kernel
prefers misplacing a task, over starving a task of essential compute resources.

There is one other condition under which the confines of a cpuset may be violated. A
few kernel critical internal memory allocation requests, marked GFP_ATOMIC, must
be satisfied immediately. The kernel may drop some request or malfunction if one of
these allocations fail. If such a request cannot be satisfied within the current task’s
cpuset, the kernel relaxes the cpuset, and looks for memory anywhere it can find it. It
is better to violate the cpuset than stress the kernel operation.

New cpusets are created using the mkdir command at the shell (see"Using Cpusets at
the Shell Prompt" on page 25) or via the C programming language (see Appendix A,
"Cpuset Library Functions" on page 45). Old cpusets are removed using the rmdir(1)
command. The above files are accessed using read(2) and write(2) system calls, or
shell commands such as cat(1) and echo(1).

The CPUs and memory nodes in a given cpuset are always a subset of its parent. The
root cpuset has all possible CPUs and memory nodes in the system. A cpuset may be
exclusive (CPU or memory) only if its parent is similarly exclusive.

Each task has a pointer to a cpuset. Multiple tasks may reference the same cpuset.
Requests by a task, using the sched_setaffinity(2) system call to include CPUs in
its CPU affinity mask, and using the mbind(2) and set_mempolicy(2) system calls
to include memory nodes in its memory policy, are both filtered through that task’s
cpuset, filtering out any CPUs or memory nodes not in that cpuset. The scheduler
will not schedule a task on a CPU that is not allowed in its cpus_allowed vector

16 007–5945–001

SGI Cpuset Software Guide

and the kernel page allocator will not allocate a page on a node that is not allowed in
the requesting task’s mems_allowed vector.

Exclusive Cpusets
If a cpuset is marked cpu_exclusive or mem_exclusive, no other cpuset, other
than a direct ancestor or descendant, may share any of the same CPUs or memory
nodes.

A cpuset that is cpu_exclusive has a scheduler (sched) domain associated with it.
The sched domain consists of all CPUs in the current cpuset that are not part of any
exclusive child cpusets. This ensures that the scheduler load balancing code only
balances against the CPUs that are in the sched domain as described in"Cpuset File
System Directories" on page 12 and not all of the CPUs in the system. This removes
any overhead due to load balancing code trying to pull tasks outside of the
cpu_exclusive cpuset only to be prevented by the Cpus_allowed mask of the
task.

A cpuset that is mem_exclusive restricts kernel allocations for page, buffer, and
other data commonly shared by the kernel across multiple users. All cpusets, whether
mem_exclusive or not, restrict allocations of memory for user space. This enables
configuring a system so that several independent jobs can share common kernel data,
such as file system pages, while isolating the user allocation of each job to its own
cpuset. To do this, construct a large mem_exclusive cpuset to hold all the jobs, and
construct child, non-mem_exclusive cpusets for each individual job. Only a small
amount of typical kernel memory, such as requests from interrupt handlers, is
allowed to be taken outside even a mem_exclusive cpuset.

Notify on Release Flag
If the notify_on_release flag is enabled (1) in a cpuset, whenever the last task in
the cpuset leaves (exits or attaches to some other cpuset) and the last child cpuset of
that cpuset is removed, the kernel runs the /sbin/cpuset_release_agent
command, supplying the path name (relative to the mount point of the cpuset file
system) of the abandoned cpuset. This enables automatic removal of abandoned
cpusets.

The default value of notify_on_release in the root cpuset at system boot is
disabled (0). The default value of other cpusets at creation is the current value of
their parents notify_on_release setting.

007–5945–001 17

2: Cpusets on Linux

The /sbin/cpuset_release_agent command is invoked, with the name
(/dev/cpuset relative path) of that cpuset in argv[1] argument. This supports
automatic cleanup of abandoned cpusets.

The usual contents of the /sbin/cpuset_release_agent command is a simple
shell script, as follows:

#!/bin/sh

rmdir /dev/cpuset/$1

By default, the notify_on_release flag is off (0). Newly created cpusets inherit
their notify_on_release flag setting from their parent cpuset. As with other flag
values, this flag can be changed by writing an ASCII number 0 or 1 (with optional
trailing newline) into the file, to clear or set the flag, respectively.

Memory Pressure of a Cpuset
The memory_pressure of a cpuset provides a simple per-cpuset metric of the rate
that the tasks in a cpuset are attempting to free up in use memory on the nodes of the
cpuset to satisfy additional memory requests. This enables workload managers,
monitoring jobs running in dedicated cpusets, to efficiently detect what level of
memory pressure that job is causing.

This is useful in the following situations:

• Tightly managed systems running a wide mix of submitted jobs that may choose
to terminate or re-prioritize jobs trying to use more memory than allowed on the
nodes to which they are assigned.

• Tightly coupled, long running, massively parallel, scientific computing jobs that
will dramatically fail to meet required performance goals if they start to use more
memory than allowed.

This mechanism provides a very economical way for the workload manager to
monitor a cpuset for signs of memory pressure. It is up to the workload manager or
other user code to decide when to take action to alleviate memory pressures.

If the memory_pressure_enabled flag in the top cpuset is (0), that is, it is not set,
the kernel does not compute this filter and the per-cpuset files memory_pressure
contain the value zero (0).

If the memory_pressure_enabled flag in the top cpuset is set (1), the kernel
computes this filter for each cpuset in the system, and the memory_pressure file for

18 007–5945–001

SGI Cpuset Software Guide

each cpuset reflects the recent rate of such low memory page allocation attempts by
tasks in said cpuset.

Reading the memory_pressure file of a cpuset is very efficient. This mechanism
allows batch schedulers to poll these files and detect jobs that are causing memory
stress. They can then take action to avoid impacting the rest of the system with a job
that is trying to aggressively exceed its allowed memory.

Note: Unless enabled by setting memory_pressure_enabled in the top cpuset,
memory_pressure is not computed for any cpuset and always reads a value of zero.

A running average per cpuset has the following advantages:

• The system load imposed by a batch scheduler monitoring this metric is sharply
reduced on large systems because this meter is per-cpuset, rather than per-task or
memory region and this avoids a scan of the system-wide task list on each set of
queries.

• A batch scheduler can detect memory pressure with a single read, instead of
having to read and accumulate results for a period of time because this meter is a
running average, rather than an accumulating counter.

• A batch scheduler can obtain the key information, memory pressure in a cpuset,
with a single read, rather than having to query and accumulate results over all the
(dynamically changing) set of tasks in the cpuset because this meter is per-cpuset
rather than per-task or memory region.

A simple, per-cpuset digital filter is kept within the kernel and updated by any task
attached to that cpuset if it enters the synchronous (direct) page reclaim code.

The per-cpuset memory_pressure file provides an integer number representing the
recent (half-life of 10 seconds) rate of direct page reclaims caused by the tasks in the
cpuset in units of reclaims attempted per second, times 1000.

The kernel computes this value using a single-pole, low-pass recursive digital filter
coded with 32–bit integer arithmetic. The value decays at an exponential rate.

Given the simple 32–bit integer arithmetic used in the kernel to compute this value,
this meter works best for reporting page reclaim rates between one per millisecond
(msec) and one per 32 (approximate) seconds. At constant rates faster than one per
msec, it reaches maximum at values just under 1,000,000. At constant rates between
one per msec and one per second, it stabilizes to a value N*1000, where N is the rate
of events per second. At constant rates between one per second and one per 32

007–5945–001 19

2: Cpusets on Linux

seconds, it is choppy, moving up on the seconds that have an event, and then
decaying until the next event. At rates slower than about one in 32 seconds, it decays
all the way back to zero between each event.

Memory Spread
There are two Boolean flag files per cpuset that control where the kernel allocates
pages for the file system buffers and related in kernel data structures. They are called
memory_spread_page and memory_spread_slab.

If the per-cpuset, memory_spread_page flag is set, the kernel spreads the file
system buffers (page cache) evenly over all the nodes that the faulting task is allowed
to use, instead of preferring to put those pages on the node where the task is running.

If the per-cpuset, memory_spread_slab flag is set, the kernel spreads some file
system related slab caches, such as for inodes and directory entries, evenly over all
the nodes that the faulting task is allowed to use, instead of preferring to put those
pages on the node where the task is running.

The setting of these flags does not affect the anonymous data segment or stack
segment pages of a task.

By default, both kinds of memory spreading are off, and memory pages are allocated
on the node local to where the task is running, except perhaps as modified by the
tasks NUMA memory policy or cpuset configuration. This is true as long as sufficient
free memory pages are available.

When new cpusets are created, they inherit the memory spread settings of their parent.

Setting memory spreading causes allocations for the affected page or slab caches to
ignore the task’s NUMA memory policy and be spread instead. Tasks using mbind()
or set_mempolicy() calls to set NUMA memory policies will not notice any change
in these calls, as a result of their containing tasks memory spread settings. If memory
spreading is turned off, the currently specified NUMA memory policy once again
applies to memory page allocations.

Both memory_spread_page and memory_spread_slab are Boolean flag files. By
default, they contain 0. This means the feature is off for the cpuset. If a 1 is written to
this file, the named feature is turned on for the cpuset.

This memory placement policy is also known (in other contexts) as round-robin or
interleave.

20 007–5945–001

SGI Cpuset Software Guide

This policy can provide substantial improvements for jobs that need to place thread
local data on the corresponding node, but that need to access large file system data
sets that need to be spread across the several nodes in the job’s cpuset in order to fit.
Without this policy, especially for jobs that might have one thread reading in the data
set, the memory allocation across the nodes in the jobs cpuset can become very
uneven.

Memory Migration
Normally, under the default setting of memory_migrate, once a page is allocated
(given a physical page of main memory), that page stays on whatever node it was
allocated, as long as it remains allocated, even if the cpuset’s memory placement
mems policy subsequently changes. The default setting has the memory_migrate
flag disabled.

When memory migration is enabled in a cpuset, if the mems setting of the cpuset is
changed, any memory page in use by any task in the cpuset that is on a memory
node no longer allowed is migrated to a memory node that is allowed.

Also, if a task is moved into a cpuset with memory_migrate enabled, any memory
pages it uses that were on memory nodes allowed in its previous cpuset, but which
are not allowed in its new cpuset, are migrated to a memory node allowed in the new
cpuset.

The relative placement of a migrated page within the cpuset is preserved during these
migration operations if possible. For example, if the page was on the second valid
node of the prior cpuset then the page will be placed on the second valid node of the
new cpuset, if possible.

In order to maintain the cpuset relative position of pages, even pages on memory
nodes allowed in both the old and new cpusets may be migrated. For example, if
memory_migrate is enabled in a cpuset, and that cpuset’s mems file is written,
changing it from say memory nodes "4-7", to memory nodes "5-8", the following page
migrations are done, in order, for all pages in the address space of tasks in that cpuset:

1. Migrate pages on node 7 to node 8.

2. Migrate pages on node 6 to node 7.

3. Migrate pages on node 5 to node 6.

4. Migrate pages on node 4 to node 5.

007–5945–001 21

2: Cpusets on Linux

In this example, pages on any memory node other than "4 through 7" will not be
migrated. The order in which nodes are handled in a migration is intentionally
chosen so as to avoid migrating memory to a node until any migrations from that
node have first been accomplished.

Mask Format
The mask format is used to represent CPU and memory node bitmasks in the
/proc/pid/status file. It is hexadecimal, using ASCII characters "0" - "9" and "a" -
"f". This format displays each 32-bit word in hex (zero filled), and for masks longer
than one word, uses a comma separator between words. Words are displayed in big
endian order (most significant first). And hexadecimal digits within a word are also
in big-endian order. The number of 32-bit words displayed is the minimum number
needed to display all bits of the bitmask, based on the size of the bitmask. An
example of the mask format is, as follows:

00000001 # just bit 0 set

80000000,00000000,00000000 # just bit 95 set

00000001,00000000,00000000 # just bit 64 set
000000ff,00000000 # bits 32-39 set

00000000,000E3862 # bits 1,5,6,11-13,17-19 set

A mask with bits 0, 1, 2, 4, 8, 16, 32 and 64 set displays as
00000001,00000001,00010117. The first "1" is for bit 64, the second for bit 32, the
third for bit 16, the fourth for bit 8, the fifth for bit 4, and the "7" is for bits 2, 1 and 0.

List Format
The list format is used to represent CPU and memory node bitmasks (sets of CPU
and memory node numbers) in the /dev/cpuset file system. It is a comma
separated list of CPU or memory node numbers and ranges of numbers, in ASCII
decimal. An example of list format is, as follows:

0-4,9 # bits 0, 1, 2, 3, 4, and 9 set

0-3,7,12-15 # bits 0, 1, 2, 3, 7, 12, 13, 14, and 15 set

22 007–5945–001

SGI Cpuset Software Guide

Cpuset Permissions
The permissions of a cpuset are determined by the permissions of the special files and
directories in the cpuset file system, normally mounted at /dev/cpuset.

For example, a task can put itself in some other cpuset (than its current one) if it can
write the tasks file (see "Cpuset File System Directories" on page 12) for that cpuset
(requires execute permission on the encompassing directories and write permission
on that tasks file).

An additional constraint is applied to requests to place some other task in a cpuset.
One task may not attach another task to a cpuset unless it has permission to send that
task a signal.

A task may create a child cpuset if it can access and write the parent cpuset directory.
It can modify the CPUs or memory nodes in a cpuset if it can access that cpuset’s
directory (execute permissions on the encompassing directories) and write the
corresponding cpus or mems file (see "Cpuset File System Directories" on page 12).

It should be noted, however, that changes to the CPUs of a cpuset do not apply to
any task in that cpuset until the task is reattached to that cpuset. If a task can write
the cpus file, it should also be able to write the tasks file and might be expected to
have permission to reattach the tasks therein (equivalent to permission to send them a
signal).

There is one minor difference between the manner in which cpuset path permissions
are evaluated by libcpuset and the manner in which file system operation
permissions are evaluated by direct system calls. System calls that operate on file
pathnames, such as the open(2) system call, rely on direct kernel support for a task’s
current directory. Therefore, such calls can successfully operate on files in or below a
task’s current directory, even if the task lacks search permission on some ancestor
directory. Calls in libcpuset that operate on cpuset pathnames, such as the
cpuset_query() call, rely on libcpuset internal conversion of all cpuset
pathnames to full, root-based paths. They cannot successfully operate on a cpuset
unless the task has search permission on all ancestor directories, starting with the
usual cpuset mount point (/dev/cpuset).

CPU Scheduling and Memory Allocation for Cpusets
This section describes CPU scheduling and memory allocation for cpusets and covers
these topics:

007–5945–001 23

2: Cpusets on Linux

• "Linux Kernel CPU and Memory Placement Settings" on page 24

• "Manipulating Cpusets" on page 25

Linux Kernel CPU and Memory Placement Settings

The Linux kernel exposes to user space three important attributes of each task that
the kernel uses to control that tasks processor and memory placement, as follows:

• The cpuset path of each task, relative to the root of the cpuset file system, is
available in the file /proc/pid/cpuset. For each task (PID), the file lists its
cpuset path relative to the root of the cpuset file system.

• The actual CPU bitmask used by the kernel scheduler to determine on which
CPUs a task may be scheduled is displayed in the Cpus_allowed field of the file
/proc/pid/status for that task pid.

• The actual memory node bitmask used by the kernel memory allocator to
determine on which memory nodes a task may obtain memory is displayed in the
Mems_allowed field of the file of the file /proc/pid/status for that task pid.

Each of the above files is read-only. You can ask the kernel to make changes to these
settings by using the various cpuset interfaces and the sched_setaffinity(2),
mbind(2), and set_mempolicy(2) system calls.

The cpus_allowed and mems_allowed status file values for a task may differ from
the cpus and mems values defined in the cpuset directory for the task for the
following reasons:

• A task might call the sched_setaffinity, mbind, or set_mempolicy system
calls to restrain its placement to less than its cpuset.

• Various temporary changes to cpus_allowed status file values are done by
kernel internal code

• Attaching a task to a cpuset does not change its mems_allowed status file value
until the next time that task needs kernel memory.

• Changing the CPUs in a cpuset does not change the cpus_allowed status file
value of the tasks attached to the cpuset until those tasks are reattached to it (to
avoid a hook in the hotpath scheduler code in the kernel).

Use the cpuset_reattach routine to perform this update after a changing the
CPUs allowed to a cpuset.

24 007–5945–001

SGI Cpuset Software Guide

• If hotplug is used to remove all the CPUs or all the memory nodes in a cpuset, the
tasks attached to that cpuset will have their cpus_allowed status file values or
mems_allowed status file values altered to the CPUs or memory nodes when the
closest ancestor to that cpuset is not empty.

Manipulating Cpusets

New cpusets are created using the mkdir(1) command (at the shell (see Procedure 2-2
on page 25) or in C programs (see Appendix A, "Cpuset Library Functions" on page
45)). Old cpusets are removed using the rmdir(1) commands. The Cpus_allowed
and Mems_allowed status file files are accessed using read(2) and write(2) system
calls or shell commands such as cat and echo.

The CPUs and memory nodes in a given cpuset are always a subset of its parent. The
root cpuset has all possible CPUs and memory nodes in the system. A cpuset may be
exclusive (CPU or memory) only if its parent is similarly exclusive.

Using Cpusets at the Shell Prompt
This section describes the use of cpusets using shell commands. For information on
the cpuset(1) command line utility, see "Cpuset Command Line Utility" on page 27.
For information on using the cpuset library functions, see Appendix A, "Cpuset
Library Functions" on page 45.

When modifying the CPUs in a cpuset from the from the shell prompt, you must
write the process ID (PID) of each task attached to that cpuset back into the cpuset’s
tasks file. When using the libcpuset API, use the cpuset_reattach() routine to
perform this step. The reasons for performing this step are described in "Modifying
the CPUs in a Cpuset and Kernel Processing" on page 38.

Procedure 2-2 Starting a New Job within a Cpuset

In this procedure, you will create a new cpuset called green, assign CPUs 2 and 3
and memory node 1 to the new cpuset, and start a subshell running in the cpuset.

To start a new job and contain it within a cpuset, perform the following steps:

007–5945–001 25

2: Cpusets on Linux

1. The cpuset system is created and initialized by the kernel at system boot. You
allow user space access to the cpuset system by mounting the cpuset virtual file
system (VFS) at /dev/cpuset, as follows:

% mkdir /dev/cpuset

% mount -t cpuset cpuset /dev/cpuset

Note: If the mkdir(1) and/or the mount(8) command fail, it is because they have
already been performed.

2. Create the new cpuset called green within the /dev/cpuset virtual file system
using the mkdir command, as follows:

% cd /dev/cpuset

% mkdir green

% cd green

3. Use the echo command to assign CPUs 2 and 3 and memory node 1 to the green
cpuset, as follows:

% /bin/echo 2-3 > cpus

% /bin/echo 1 > mems

4. Start a task that will be the “parent process” of the new job and attach the task to
the new cpuset by writing its PID to the /dev/cpuset/tasks file for that cpuset.

/bin/echo $$ > tasks

sh

5. The subshell sh is now running in the green cpuset.

The file /proc/self/cpuset shows your current cpuset, as follows:

% cat /proc/self/cpuset

/green

26 007–5945–001

SGI Cpuset Software Guide

6. From this shell, you can fork, exec or clone(2) the job tasks. By default, any
child task of this shell will also be in cpuset green. You can list the PIDs of the
tasks currently in cpuset green by performing the following:

% cat /dev/cpuset/green/tasks

4965

5043

In this example, PID 4965 is your shell, and PID 5043 is the cat command itself.

Procedure 2-3 Removing a Cpuset from the /dev/cpuset Directory

To remove the cpuset green from the/dev/cpuset directory, perform the following:

1. Use the rmdir command to remove a directory from the /dev/cpuset directory,
as follows:

%cd /dev/cpuset

%rmdir green

2. To determine if you can remove the cpuset, you can perform the cat command
on the cpuset directory tasks files to ensure no PIDs are listed or within an
application using libcpuset ’C’ API. You can also perform an ls command on
the cpuset directory to ensure it has no subdirectories.

The green cpuset must be empty in order for you to remove it, if not a message
similar to the following appears:

%rmdir green

rmdir: ‘green’: Device or resource busy

Cpuset Command Line Utility
The cpuset(1) command is used to create and destroy cpusets, to retrieve
information about existing cpusets, and to attach processes to cpusets. The cpuset(1)
command line utility is not essential to the use of cpusets. This utility provides an
alternative that may be convenient for some uses. Users of earlier versions of cpusets
may find this utility familiar, though the details of the options have changed in order
reflect the current implementation of cpusets.

A cpuset is defined by a cpuset configuration file and a name. For a definition of the
cpuset configuration file format, see "Cpuset Text Format" on page 37. The cpuset
configuration file is used to list the CPUs and memory nodes that are members of the
cpuset. It also contains any additional parameters required to define the cpuset. For

007–5945–001 27

2: Cpusets on Linux

more information on the cpuset configuration file, see "bootcpuset.conf File" on
page 33.

This command automatically handles reattaching tasks to their cpuset whenever
necessary, as described in the cpuset_reattach routine in Appendix A, "Cpuset
Library Functions" on page 45.

The cpuset command accepts the following options:

Action Options (choose exactly one):

-c csname, --create=csname Creates cpuset named csname using
the cpuset text format (see "Cpuset
Text Format" on page 37)
representation read from the
commands input stream.

-m csname, --modify=csname Modifies the existing cpuset csname
to have the properties in the cpuset
text format (see "Cpuset Text
Format" on page 37) representation
read from the commands input
stream.

-x csname, --remove=csname Removes the cpuset named csname.
A cpuset may only be removed if
there are no processes currently
attached to it and the cpuset has no
descendant cpusets.

-d csname, --dump=csname Writes a cpuset text format
representation (see "Cpuset Text
Format" on page 37) of the cpuset
named csname to the commands
output stream.

-p csname, --procs=csname Lists to the commands output
stream the processes (by pid)
attached to the cpuset named
csname. If the -r option is also
specified, lists the pid of each
process attached to any descendant
of cpuset csname.

28 007–5945–001

SGI Cpuset Software Guide

-a csname, --attach=csname Attaches to the cpuset named
csname the processes whose pids
are read from the commands input
stream, one pid per line.

-i csname, --invoke=csname Invokes a command in the cpuset
named csname. If -I option is set,
use that command and arguments,
otherwise if the environment
variable $SHELL is set, use that
command, otherwise, use /bin/sh.

-w pid, --which=pid Lists the name of the cpuset to
which process pid is attached, to
the commands output stream. If
pid is zero (0), then the full cpuset
path of the current task is
displayed.

-s csname, --show=csname Prints to the commands output
stream the names of the cpusets
below cpuset csname. If the -r
option is also specified, this
recursively includes csname and all
its descendants, otherwise it just
includes the immediate child
cpusets of csname. The cpuset
names are printed one per line.

-R csname, --reattach=r Reattaches each task in cpuset
csname. This is required after
changing the cpus value of a
cpuset, in order to get the tasks
already attached to that cpuset to
rebind to the changed CPU
placement.

-z csname, --size=csname Prints the size of (number of CPUs
in) a cpuset to the commands
output stream, as an ASCII decimal
newline terminated string.

007–5945–001 29

2: Cpusets on Linux

-F flist, --family=flist Creates a family of non-overlapping
child cpusets, given an flist of
cpuset names and sizes (number of
CPUs). Fails if the total sizes
exceeds the size of the current
cpuset. Enter cpuset names relative
to the current cpuset, and their
requested size, as alternating
command line arguments. For
example:

cpuset -F foo 2 bar 6 baz 4

This creates three child cpusets
named foo, bar, and baz, having
2, 6, and 4 CPUs, respectively.

This example will fail with an error
message and a nonzero exit status
if the current cpuset lacks at least
12 CPUs.

These cpuset names are relative to
the current cpuset and will not
collide with the cpuset names
descendent from other cpusets.
Hence two commands, running in
different cpusets, can both create a
child cpuset named foo without a
problem.

Modifier Options (may be used in any combination):

-r, --recursive When used with -p or -s option, applies to all
descendants recursively of the named cpuset csname.

-I cmd,
--invokecmd=cmd

When used with the -i option, the command cmd is
invoked, with any optional unused arguments. The
following example invokes an interactive subshell in
cpuset foo:

cpuset -i foo -I sh -- -i

30 007–5945–001

SGI Cpuset Software Guide

The next example invokes a second cpuset command in
cpuset foo, which then displays the full cpuset path of
foo:

cpuset -i foo -I cpuset -- -w 0

Note: The double minus -- is needed to end option
parsing by the initial cpuset command.

-f fname,
--file=fname

Uses file named fname for command input or output
stream, instead of stdin or stdout.

--
move_tasks_from=csname1
--
move_tasks_to=csname2

Move all tasks from cpuset csname1 to cpuset csname2.
Retries up to ten times to move all tasks, in case it is
racing against parallel attempts to fork or add tasks
into cpuset csname1. Fails with nonzero exit status and
an error message to stderr if unable to move all tasks
out of csname1.

Help Option (overrides all other options):

-h, --help Displays command usage

Notes

The csname of "/" (slash) refers to the top cpuset, which encompasses all CPUs and
memory nodes in the system. The csname of "." (dot) refers to the cpuset of the
current task. If a csname begins with the "/" (slash) character, it is resolved relative to
the top cpuset, otherwise it is resolved relative to the cpuset of the current task.

The ’command input stream’ and ’command output stream’ refer to the stdin (file
descriptor 0) and stdout (file descriptor 1) of the command, unless the -f option is
specified, in which case they refer to the file specified to -f option. Specifying the file
name - to the -f option, as in -f -, is equivalent to not specifying the -f option at
all.

Exactly one of the action options must be specified. They are, as follows:

-c, -m, -x, -d, -p, -a, -i, -w, -s, -R

007–5945–001 31

2: Cpusets on Linux

The additional modifier options may be specified in any order. All modifier options
are evaluated first, before the action option. If the help option is present, no action
option is evaluated. The modifier options are, as follows:

-r, -I, -f

Boot Cpuset
You can use the bootcpuset(8) command to create a “boot”cpuset during the
system boot that you can use to restrict the default placement of almost all UNIX
processes on your system. You can use the bootcpuset to reduce the interference of
system processes with applications running on dedicated cpusets.

The default cpuset for the init process, classic UNIX daemons, and user login shells
is the root cpuset that contains the entire system. For systems dedicated to running
particular applications, it is better to restrict init, the kernel daemons, and login
shells to a particular set of CPUs and memory nodes called the bootcpuset.

This section covers the following topics:

• "Creating a Bootcpuset" on page 32

• "bootcpuset.conf File" on page 33

Creating a Bootcpuset

This section describes how to create a bootcpuset.

Procedure 2-4 Creating a Bootcpuset

To create a bootcpuset, perform the following steps:

1. Create /etc/bootcpuset.conf file with values to restrict system processes to
the CPUs and memory nodes appropriate for your system, similar to the
following:

cpus 0-7

mems 0

32 007–5945–001

SGI Cpuset Software Guide

2. In the /boot/efi/efi/SuSE/elilo.conf file (or a similar path to the
elilo.conf file), add the following string using the instructions that follow to
the append argument for the kernel your are booting:

append="init=/sbin/bootcpuset"

For RHEL, you need to add the following string to the kernel line of the
grub.conf file:

init=/sbin/bootcpuset

You should not directly edit the elilo.conf file because YaST and the install
kernel tools may overwrite your changes when kernels are updated. Instead, edit
the /etc/elilo.conf file and run the elilo command. This will place an
updated elilo.conf in /boot/efi/efi/SuSE and the system will know
about the change for new kernels or YaST runs.

3. Reboot your system.

Subsequent system reboots will restrict most processes to the bootcpuset defined
in /etc/bootcpuset.conf.

bootcpuset.conf File

The /etc/bootcpuset.conf file describes what CPUs and memory nodes are to be
in the bootcpuset. The kernel boot command line option init is used to invoke the
/sbin/bootcpuset binary ahead of the /sbin/init binary, using the elilo
syntax: append="init=/sbin/bootcpuset".

When invoked with pid==1, the /sbin/bootcpuset binary does the following:

• Sets up a bootcpuset (configuration defined in the /etc/bootcpuset.conf file).

• Attaches itself to this bootcpuset.

• Attaches any unpinned kernel threads to it.

• Invokes an exec call to execute /sbin/init, /etc/init, /bin/init or
/bin/sh.

A kernel thread is deemed to be unpinned (third bullet in the list above) if its
Cpus_allowed value (as listed in that threads /proc/pid/status file for the
Cpus_allowed field) allows running on all online CPUs. Kernel threads that are
restricted to some proper subset of CPUs are left untouched, under the assumption

007–5945–001 33

2: Cpusets on Linux

that they have a good reason to be running on those restricted CPUs. Such kernel
threads as migration (to handle moving threads between CPUs) and ksoftirqd (to
handle per-CPU work off interrupts) must be pinned to each CPU or each memory
node.

Comments in the /etc/bootcpuset.conf configuration file begin with the pound
(#) character and extend to the end of the line. After stripping comments, the
bootcpuset command examines the first white space separated token on each line.

If the first token on the line matches mems or mem (case insensitive match) then the
second token on the line is written to the /dev/cpuset/boot/mems file.

If the first token on the line matches cpus or cpu (case insensitive match), then the
second token is written to the /dev/cpuset/boot/cpus file.

If the first token in its entirety matches (case insensitive match) "verbose", the
bootcpuset command prints a trace of its actions to the console. A typical such
trace has 20 or 30 lines, detailing the steps taken by /sbin/bootcpuset and is
useful in understanding its behavior and analyzing problems. The bootcpuset
command ignores all other lines in the /etc/bootcpuset.conf configuration file.

Configuring a User Cpuset for Interactive Sessions
You can have a boot cpuset running the traditional daemon and server tasks and a
second cpuset to hold interactive telnet, rlogin and/or secure shell (SSH) user
sessions called the user cpuset.

Creating a user cpuset provides additional isolation between interactive user login
sessions and essential system tasks. For example, a user process in the user cpuset
consuming excessive CPU, system file buffer cache, or memory resources will not
seriously impact essential system services in the boot cpuset.

The following init script provides an example of how you can set up user cpuset. It
runs as one of the last init scripts when the system is being booted.

If the system has a boot cpuset configured, the following script creates a second
cpuset called user and place the sshd and xinetd daemons that create interactive
login sessions in this new user cpuset. The user cpuset configuration is defined in
the/etc/usercpuset.conf file.

34 007–5945–001

SGI Cpuset Software Guide

To isolate the boot cpuset from the user cpuset, the set of cpus and mems values in
the /etc/bootcpuset.conf file should not overlap the cpus and mems values in
the /etc/usercpuset.conf file.

Procedure 2-5 Configuring a User Cpuset for Interactive Sessions

To implement a usercpuset for interactive sessions, perform the following:

1. Add the /etc/usercpuset.conf file.

2. Add the /etc/init.d/usercpuset script (see below).

3. Perform the following command:

% chkconfig --add usercpuset

Instructions for using this script are included in comments within the script, as
follows:

#! /bin/sh

/etc/init.d/usercpuset

#

-------------------------------- RedHat --

chkconfig: 2345 016 99
description: usercpuset: Put login sessions in user cpuset

--------------------------------- SuSe ---

BEGIN INIT INFO

Provides: usercpuset

Required-Start: sshd xinetd

Required-Stop:
Default-Start: 3 5

Default-Stop: 0 1 2 6

Description: Put login sessions in user cpuset

END INIT INFO

--
#

This init script creates a ’user’ cpuset and places the login servers

(sshd and xinetd) in that cpuset,

#

This script presumes you also have a ’boot’ cpuset configured,
and does nothing if you don’t.

#

By using this init script, one can isolate essential daemon and

server tasks from interactive user login sessions in separate

007–5945–001 35

2: Cpusets on Linux

cpusets.
#

To use this usercpuset init script:

#

1) Using your editor, create a file /etc/init.d/usercpuset

containing this script.
2) Run the command the following command to insert this script

into the sequence of init scripts executed during system boot.

SLES --> "insserv usercpuset"

RHEL --> "chkconfig --add usercpuset"

3) Create a /etc/usercpuset.conf, in the "Cpuset Text Format"

described in the libcpuset(3) man page, describing what CPUs
("cpus") and memory nodes ("mems") are to be used by the

user cpuset.

4) Also configure and enable a boot cpuset, as documented in

the bootcpuset(8) man page.

5) Beginning with the next system reboot, login sessions under
either the SSH daemon (sshd) or xinetd (telnet, rlogin) will

be started in the ’user’ cpuset, whileother daemons and

system services, including the consolelogin, will be in the

’boot’ cpuset.

6) If you did not do both steps (3) and (4) above, then this

usercpuset script will do nothing, quietly, with no harm.

echo "### Creating user cpuset ###"

CPUSET_CMD=/usr/bin/cpuset

Define the ’mems’ and ’cpus’ for user cpuset in this configuration file:

CONF=/etc/usercpuset.conf

USERCPUSET=/user

test -x $CPUSET_CMD || exit 5

test -r $CONF || exit 6

Skip this if we didn’t have a boot cpuset

test -d /dev/cpuset/boot || exit 7
if [-f $CONF]; then

$CPUSET_CMD -c $USERCPUSET -f $CONF

36 007–5945–001

SGI Cpuset Software Guide

fi

if [-r /etc/rc.status]; then

SuSE

SSHD_PIDFILE=/var/run/sshd.init.pid

status=$?
else

not SuSE

SSHD_PIDFILE=/var/run/sshd.pid

status=$?

fi

sshd

$CPUSET_CMD -a $USERCPUSET < $SSHD_PIDFILE

xinetd

echo $(pidof xinetd) | $CPUSET_CMD -a $USERCPUSET

Cpuset Text Format
Cpuset settings may be exported to and imported from text files using a text format
representation of cpusets.

Permissions of files holding these text representations have no special significance to
the implementation of cpusets. Rather, the permissions of the special cpuset files in
the cpuset file system, normally mounted at /dev/cpuset, control reading and
writing of and attaching to cpusets.

The text representation of cpusets is not essential to the use of cpusets. One can
directly manipulate the special files in the cpuset file system. This text representation
provides an alternative that may be convenient for some uses and a form for
representing cpusets that users of earlier versions of cpusets will find familiar.

The exported cpuset text format has fewer directives than earlier Linux versions.
Additional directives may be added in the future.

The cpuset text format supports one directive per line. Comments begin with the
pound character (#) and extend to the end of line.

007–5945–001 37

2: Cpusets on Linux

After stripping comments, the first white space separated token on each remaining
line selects from the following possible directives:

cpus Specifies which CPUs are in this cpuset. The second
token on the line must be a comma-separated list of
CPU numbers and ranges of numbers.

mems Specify which memory nodes are in this cpuset. The
second token on the line must be a comma-separated
list of memory node numbers and ranges of numbers.

cpu_exclusive The cpu_exclusive flag is set.

mem_exclusive The mem_exclusive flag is set.

notify_on_release The notify_on_release flag is set

Additional unnecessary tokens on a line are quietly ignored. Lines containing only
comments and white space are ignored.

The token cpu is allowed for cpus and mem for mems. Matching is case insensitive.

See the libcpuset routines cpuset_import and cpuset_export to handle
converting the internal struct cpuset representation of cpusets to (export) and
from (import) this text representation.

For information on manipulating cpuset text files at the shell prompt or in shell scripts
using the cpuset(1) command, see "Cpuset Command Line Utility" on page 27.

Modifying the CPUs in a Cpuset and Kernel Processing
In order to minimize the impact of cpusets on critical kernel code, such as the
scheduler, and due to the fact that the Linux kernel does not support one task
updating the memory placement of another task directly, the impact on a task of
changing its cpuset CPU or memory node placement or of changing to which cpuset
a task is attached, is subtle and is described in the following paragraphs.

When a cpuset has its memory nodes modified, for each task attached to that cpuset,
the next time that the kernel attempts to allocate a page of memory for a particular
task, the kernel notices the change in the task’s cpuset, and updates its per-task
memory placement to remain within the new cpusets memory placement. If the task
was using memory policy MPOL_BIND and the nodes to which it was bound overlaps
with its new cpuset, the task continues to use whatever subset of MPOL_BIND nodes
that are still allowed in the new cpuset. If the task was using MPOL_BIND and now

38 007–5945–001

SGI Cpuset Software Guide

none of its MPOL_BIND nodes are allowed in the new cpuset, the task is essentially
treated as if it was MPOL_BIND bound to the new cpuset (even though its NUMA
placement, as queried by the get_mempolicy() routine, does not change). If a task is
moved from one cpuset to another, the kernel adjusts the task’s memory placement,
as above, the next time that the kernel attempts to allocate a page of memory for that
task.

When a cpuset has its CPUs modified, each task using that cpuset does not change its
behavior automatically. In order to minimize the impact on the critical kernel
scheduling code, tasks continue to use their prior CPU placement until they are
rebound to their cpuset by rewriting their PID to the tasks file of their cpuset. If a
task is moved from one cpuset to another, its CPU placement is updated in the same
way as if the task’s PID is rewritten to the tasks file of its current cpuset.

In summary, the memory placement of a task whose cpuset is changed is
automatically updated by the kernel, on the next allocation of a page for that task but
the processor placement is not updated until that task’s PID is rewritten to the tasks
file of its cpuset. The delay in rebinding a task’s memory placement is necessary
because the kernel does not support one task changing memory placement of another
task. The added user level step in rebinding a task’s CPU placement is necessary to
avoid impacting the scheduler code in the kernel with a check for changes in a task’s
processor placement.

Using Cpusets with Hyper-Threads
Threading in a software application splits instructions into multiple streams so that
multiple processors can act on them.

Hyper-Threading (HT) Technology, developed by Intel Corporation, provides
thread-level parallelism on each processor, resulting in more efficient use of processor
resources, higher processing throughput, and improved performance. One physical
CPU can appear as two logical CPUs by having additional registers to overlap two
instruction streams or a single processor can have dual cores executing instructions in
parallel.

In addition to their traditional use to control the placement of jobs on the CPUs and
memory nodes of a system, cpusets also provide a convenient mechanism to control
the use of Hyper-Threading Technology.

007–5945–001 39

2: Cpusets on Linux

Some jobs achieve better performance by using both of the Hyper–Threaded sides, A
and B, of a processor core, and some run better by using just one of the sides,
allowing the other side to idle.

Since each logical (Hyper-Threaded) processor in a core has a distinct CPU number,
you can specify a cpuset that contains both sides of a processor core or a cpuset that
contains just one side from a processor core.

Cpusets can be configured to include any combination of the logical CPUs in a system.

For example, the following cpuset configuration file called cpuset.cfg includes the
A sides of an HT enabled system, along with all the memory, on the first 32 nodes
(assuming 2 cores per node). The colon (:) prefixes the stride. The stride of 2 in this
example means use every other logical CPU.

cpus 0-127:2 # the even numbered CPUs 0, 2, 4, ... 126

mems 0-63 # all memory nodes 0, 1, 2, ... 63

To create a cpuset called foo and run a job called bar in that cpuset, defined by the
cpuset configuration file cpuset.cfg shown above, use the following commands:

cpuset -c /foo < cpuset.cfg

cpuset -i /foo -I bar

To specify both sides of the first 64 cores, use the following entry in your cpuset
configuration file:

cpus 0-127

To specify just the B sides of the processor cores of an HT enabled system, use the
following entry in your cpuset configuration file:

cpus 1-127:2

The examples above assume that the CPUs are uniformly numbered with the even
numbers for the A side and odd numbers for the B side of the processors cores. This
is usually the case, but not guaranteed. You can still place a job on a system that is
not uniformly numbered. Currently, it involves a longer argument list to the cpus
option, that is, you must explicitly list the desired CPUs.

If you are using a bootcpuset to keep other tasks confined, you do not need to create
a separate cpuset with just the B side CPUs to avoid having some tasks running on
the B sides of the processor cores. If there is no cpuset for the B sides of the processor
cores, except the all encompassing root cpuset, and if only root can put tasks in the
root cpuset, then no one other tasks can run on the B sides.

40 007–5945–001

SGI Cpuset Software Guide

You can use the dplace(1) command to manage more detailed placement of job tasks
within a cpuset. Since the dplace command numbering of CPUs is relative to the
cpuset, it does not affect the dplace configuration. This is true in the case where the
cpuset includes both sides of Hyper-Threaded cores, just one side of the
Hyper-Threaded cores, or even is on a system that does not support Hyper-threading.

Typically, the logical numbering of CPUs puts the even numbered CPUs on the A
sides of processor cores and the odd numbered CPUs on the B sides. You can easily
specify that only every other side is used using the stride suffix ":2", described above.
If the CPU number range starts with an even number, the A sides of the processor
cores are used. If the CPU range starts with an odd number, the be B sides of the
processor cores are used.

Procedure 2-6 Configuring a System with Hyper–Threaded Cores

To setup a job to run only on the A sides of the system’s Hyper-Threaded cores and
to ensure that no other tasks run on the B sides (they remain idle), perform the
following steps:

1. Define a bootcpuset to restrain the kernel, system daemon, and user login session
threads to a designated set of CPUs.

2. Create a cpuset that includes on the A sides of the processors to be used for this
job. (Either a system administrator or batch scheduler with root permission).

3. Make sure no cpuset is created using the B side CPUs in these processors to
prevent disruptive tasks from running on the corresponding B side CPUs. (Either
a system administrator or batch scheduler with root permission).

If you use a bootcpuset to confine the traditional UNIX load processes, nothing will
run on the other CPUs in the system, except when those CPUs are included in a
cpuset to which a job has been assigned. These CPUs are of course in the root cpuset,
however, this cpuset is normally only usable by a system administrator or batch
scheduler with root permissions. This prevents any user without root permission
from running a task on those CPUs, unless an administrator or service with root
permission allows it. For more information, see "Boot Cpuset" on page 32.

A ps(1) or top(1) invocation will show a handful of threads on unused CPUs. These
are kernel threads assigned to every CPU in support of user applications running on
those CPUs to handle tasks such as asynchronous file system writes and task
migration between CPUs. If no application is actually using a CPU, the kernel threads
on that CPU will be almost always idle.

007–5945–001 41

2: Cpusets on Linux

Cpuset Programming Model
The programming model for this version of cpusets is an extension of the cpuset
model provided on IRIX and earlier versions of SGI Linux.

The flat name space of earlier cpuset versions on SGI systems is extended to a
hierarchical name space. This will become more important as systems become larger.
The name space remains visible to all tasks on a system. Once created, a cpuset
remains in existence until it is deleted or until the system is rebooted, even if no tasks
are currently running in that cpuset.

The key properties of a cpuset are its pathname, the list of which CPUs and memory
nodes it contains, and whether the cpuset has exclusive rights to these resources.

Every task (process) in the system is attached to (running inside) a cpuset. Tasks
inherit their parents cpuset attachment when forked. This binding of task to a cpuset
can subsequently be changed, either by the task itself, or externally from another task,
given sufficient authority.

Tasks have their CPU and memory placement constrained to whatever their
containing cpuset allows. A cpuset may have exclusive rights to its CPUs and
memory, which provides certain guarantees that other cpusets will not overlap.

At system boot, a top level root cpuset is created, which includes all CPUs and
memory nodes on the system. The usual mount point of the cpuset file system and
therefore the usual file system path to this root cpuset, is /dev/cpuset.

Optionally, a "boot" cpuset may be created, at /dev/cpuset/boot, to include
typically just a one or a few CPUs and memory nodes. A typical use for a "boot"
cpuset is to contain the general purpose UNIX daemons and login sessions, while
reserving the rest of the system for running specific major applications on dedicated
cpusets. For more information, see "Boot Cpuset" on page 32.

Moved tasks do not have the memory they might have allocated on their old nodes
moved to the new nodes. On kernels that support such memory migration, use the
[optional] cpuset_migrate to move allocated memory as well.

Cpusets have a permission structure which determines which users have rights to
query, modify, and attach to any given cpuset. Rights are based on the hierarchical
model provided by the underlying Linux 2.6 kernel cpuset file system.

To create a cpuset from within a C language application, your program obtains a
handle to a new struct cpuset, sets the desired attributes via that handle, and
issues a cpuset_create() call to create the desired cpuset and bind it to the

42 007–5945–001

SGI Cpuset Software Guide

specified name. Your program can also issue calls to list by name what cpusets exist,
query their properties, move tasks between cpusets, list what tasks are currently
attached to a cpuset, and delete cpusets.

The names of cpusets in this C library are always relative to the root cpuset mount
point, typically /dev/cpuset. For more information on the libcpuset C language
application programming interface (API) functions, see Appendix A, "Cpuset Library
Functions" on page 45.

System Error Messages
The Linux kernel implementation of cpusets sets errno to specify the reason for a
failed system call that affects cpusets. These errno values are available when a cpuset
library call fails. They can be displayed by shell commands used to directly
manipulate files below the /dev/cpuset directory and can be displayed by the
cpuset(1) command.

The possible errno settings and their meaning when set on a failed cpuset call are,
as follows:

ENOSYS Invoked on an operating system kernel that does not
support cpusets.

ENODEV Invoked on a system that supports cpusets, but when
the cpuset file system is not currently mounted at
/dev/cpuset.

ENOMEM Insufficient memory is available.

EBUSY Attempted cpuset_delete() on a cpuset with
attached tasks.

EBUSY Attempted cpuset_delete() on a cpuset with child
cpusets.

ENOENT Attempted cpuset_create() in a parent cpuset that
does not exist.

EEXIST Attempted cpuset_create() for a cpuset that already
exists.

E2BIG Attempted a write(2) system call on a special cpuset
file with a length larger than some kernel determined
upper limit on the length of such writes.

007–5945–001 43

2: Cpusets on Linux

ESRCH Attempted to cpuset_move() a nonexistent task.

EACCES Attempted to cpuset_move() a task that the process
lacks permission to move.

ENOSPC Attempted to cpuset_move() a task to an empty
cpuset.

EINVAL The relcpu argument to cpuset_pin() function is out
of range (not between "zero" and "cpuset_size() - 1").

EINVAL Attempted to change a cpuset in a way that would
violate a cpu_exclusive or mem_exclusive
attribute of that cpuset or any of its siblings.

EINVAL Attempted to write an empty cpus or mems bitmask to
the kernel. The kernel creates new cpusets (using the
mkdir function) with empty cpus and mems files and
the user level cpuset and bitmask code works with
empty masks. But the kernel will not allow an empty
bitmask (no bits set) to be written to the special cpus
or mems files of a cpuset.

EIO Attempted to write(2) a string to a cpuset tasks file
that does not begin with an ASCII decimal integer.

ENOSPC Attempted to write(2) a list to a cpus file that did not
include any online CPUs.

ENOSPC Attempted to write(2) a list to a mems file that did not
include any online memory nodes.

EACCES Attempted to add a CPUS or memory resource to a
cpuset that is not already in its parent.

EACCES Attempted to set the cpu_exclusive or
mem_exclusive flag on a cpuset whose parent lacks
the same setting.

EBUSY Attempted to remove a CPU or memory resource from
a cpuset that is also in a child of that cpuset.

EFAULT Attempted to read or write a cpuset file using a buffer
that was outside your accessible address space.

ENAMETOOLONG Attempted to read a /proc/pid/cpuset file for a
cpuset path that was longer than the kernel page size.

44 007–5945–001

Appendix A

Cpuset Library Functions

This appendix describes the libcpuset C application programming interface (API)
functions and covers the following topics:

• "Basic Cpuset Library Functions" on page 45

• "Extensible Application Programming Interface" on page 46

• "Advanced Cpuset Library Functions" on page 47

Basic Cpuset Library Functions
The basic cpuset C API supports the following functions:

• cpuset_pin, which pins the current thread to a CPU, preferring local memory.

• cpuset_size, which returns the number of CPUs that are in the current tasks
cpuset.

• cpuset_unpin, which removes the effect of cpuset_pin and lets the task have
run of its entire cpuset.

• cpuset_where, which returns on which CPU in current tasks cpuset did the task
most recently execute.

• cpuset_function, which returns either a pointer to the named libcpuset.so
function or NULL. For [optional] cpuset functions, cpuset_function enables
dynamic adaptation to runtime environments that might or might not support a
particular function.

• cpuset_version, which returns the libcpuset version number. This is an
[optional] cpuset function.

For more information about the basic cpuset functions, see the libcpuset(3) man
page.

007–5945–001 45

A: Cpuset Library Functions

Extensible Application Programming Interface
In order to provide for the convenient and robust extensibility of this cpuset API over
time, the following function enables dynamically obtaining pointers for optional
functions by name, at runtime:

void *cpuset_function(const char * function_name)

It returns a function pointer or NULL if function_name is not recognized.

For maximum portability, you should not reference any optional cpuset function by
explicit name.

However, if you presume that an optional function will always be available on the
target systems of interest, you might decide to explicitly reference it by name, in order
to improve the clarity and simplicity of the software in question.

Also to support robust extensibility, flags and integer option values have names
dynamically resolved at runtime, not via preprocessor macros.

Some functions in Advanced Cpuset Library Functions are marked [optional]. (see
"Advanced Cpuset Library Functions" on page 47). They are not available in all
implementations of libcpuset. Additional [optional] cpuset_* functions may
also be added in the future. Functions that are not marked [optional] are available
on all implementations of libcpuset.so and can be called directly without using
cpuset_function(). However, any of them can also be called indirectly via
cpuset_function().

To safely invoke an optional function, such as for example cpuset_migrate(), use
the following call sequence:

/* fp has function signature of pointer to cpuset_migrate() */

int (*fp)(struct cpuset *fromcp, struct cpuset *tocp, pid_t pid);
fp = cpuset_function("cpuset_migrate");

if (fp) {

fp(...);

} else {

puts ("cpuset migration not supported");
}

If you invoke an [optional] function directly, your resulting program will not be
able to link with any version of libcpuset.so that does not define that particular
function.

46 007–5945–001

SGI Cpuset Software Guide

Advanced Cpuset Library Functions
The advanced cpuset API provides functions usable from a C language application
for managing cpusets on a system-wide basis.

These functions primarily deal with the following three entities:

• struct cpuset * structure

• system cpusets

• tasks

The struct cpuset * structure provides a transient in-memory structure used to
build up a description of an existing or desired cpuset. These structures can be
allocated, freed, queried, and modified.

Actual kernel cpusets are created under the /dev/cpuset directory, which is the
usual mount point of the kernel’s virtual cpuset filesystem. These cpusets are visible
to all tasks in the system, and persist until the system is rebooted or until the cpuset
is explicitly deleted. These cpusets can be created, deleted, queried, modified, listed,
and examined.

Every task (also known as a process) is bound to exactly one cpuset at a time. You
can list which tasks are bound to a given cpuset, and to which cpuset a given task is
bound. You can change to which cpuset a task is bound.

The primary attributes of a cpuset are its lists of CPUs and memory nodes. The
scheduling affinity for each task, whether set by default or explicitly by the
sched_setaffinity() system call, is constrained to those CPUs that are available in
that tasks cpuset. The NUMA memory placement for each task, whether set by
default or explicitly by the mbind() system call, is constrained to those memory nodes
that are available in that tasks cpuset. This provides the essential purpose of cpusets -
to constrain the CPU and Memory usage of tasks to specified subsets of the system.

The other essential attribute of a cpuset is its pathname beneath /dev/cpuset. All
tasks bound to the same cpuset pathname can be managed as a unit, and this
hierarchical name space describes the nested resource management and hierarchical
permission space supported by cpusets. Also, this hierarchy is used to enforce strict
exclusion, using the following rules:

• A cpuset may only be marked strictly exclusive for CPU or memory if its parent is
also.

007–5945–001 47

A: Cpuset Library Functions

• A cpuset may not make any CPUs or memory nodes available that are not also
available in its parent.

• If a cpuset is exclusive for CPU or memory, it may not overlap CPUs or memory
with any of its siblings.

The combination of these rules enables checking for strict exclusion just by making
various checks on the parent, siblings, and existing child cpusets of the cpuset being
changed, without having to check all cpusets in the system.

On error, some of these routines return -1 or NULL and set errno. If one of the
routines below that requires cpuset kernel support or the cpuset file system mounted
is invoked on an operating system kernel that does not support cpusets, then that
routine returns failure and errno is set to ENOSYS. If invoked on a system that
supports cpusets, but when the cpuset file system is not currently mounted at
/dev/cpuset, it returns failure and errno is set to ENODEV.

The following inclusion and linkage provides access to the cpuset API from C code:

#include <bitmask.h>

#include <cpuset.h>

/* link with -lcpuset */

Note: Some functions are marked [optional]. For an explanation, see "Extensible
Application Programming Interface" on page 46.

The following functions are supported in the advanced cpuset C API:

Allocate and free struct cpuset * structure

• cpuset_alloc - Returns handle to newly allocated struct cpuset * structure

• cpuset_free - Discards no longer needed struct cpuset * structure

Lengths of CPUs and memory nodes bitmasks - needed to allocate bitmasks

• cpuset_cpus_nbits - Number of bits needed for a CPU bitmask on current
system

• cpuset_mems_nbits - Number of bits needed for a memory bitmask on current
system

Set various attributes of a struct cpuset * Structure

• cpuset_setcpus - Specifies CPUs in cpuset

48 007–5945–001

SGI Cpuset Software Guide

• cpuset_setmems - Specifies memory nodes in cpuset

• cpuset_set_iopt - Specifies an integer value option of cpuset

• cpuset_set_sopt - [optional] Specifies a string value option of cpuset

Query various attributes of a struct cpuset * Structure

• cpuset_getcpus - Queries CPUs in cpuset

• cpuset_getmems - Queries memory nodes in cpuset

• cpuset_cpus_weight - Number of CPUs in a cpuset

• cpuset_mems_weight - Number of memory nodes in a cpuset

• cpuset_get_iopt - Query an integer value option of cpuset

• cpuset_get_sopt - [optional] Species a string value option of cpuset

Local CPUs and memory nodes

• cpuset_localcpus - Queries the CPUs local to specified memory nodes

• cpuset_localmems - Queries the memory nodes local to specified CPUs

• cpuset_cpumemdist - [optional] Hardware distance from CPU to memory node

• cpuset_cpu2node - Returns number of memory node closed to specified CPU

• cpuset_addr2node - Return number of memory node holding page at specified
address.

• cpuset_cpu2node_c_rel – Returns cpuset relative number of memory node
closest to the specified CPU

Create, delete, query, modify, list, and examine cpusets

• cpuset_create - Creates a named cpuset as specified by struct cpuset *
structure

• cpuset_delete - Deletes the specified cpuset (if empty)

• cpuset_query - Sets the struct cpuset structure to settings of specified cpuset

• cpuset_modify - Modifies the settings of a cpuset to those specified in a struct
cpuset structure

007–5945–001 49

A: Cpuset Library Functions

• cpuset_getcpusetpath - Gets path of a tasks (0 for current) cpuset

• cpuset_cpusetofpid - Sets the struct cpuset structure to settings of cpuset
of specified task

• cpuset_mountpoint - Returns path at which cpuset filesystem is mounted

• cpuset_collides_exclusive - [optional] True, if it would collide an exclusive

• cpuset_nuke – Removes cpuset any way possible

List tasks (pids) currently attached to a cpuset

• cpuset_init_pidlist - Initializes a list of tasks (pids) attached to a cpuset

• cpuset_pidlist_length - Returns number of elements in a list of pid

• cpuset_get_pidlist - Returns i’th element of a list of pids

• cpuset_freepidlist - Deallocates a list of pids

Attach tasks to cpusets

• cpuset_move - Moves task (0 for current) to a cpuset

• cpuset_move_all - Moves all tasks in a list of pids to a cpuset

• cpuset_migrate - [optional] Moves a task and its memory to a cpuset

• cpuset_migrate_all - [optional] Moves all tasks with memory in a list of pids
to a cpuset

• cpuset_reattach - Rebinds cpus_allowed of each task in a cpuset after
changing its cpus

• cpuset_move_cpuset_tasks – [optional] Moves all tasks in a cpuset to another
cpuset

Determine memory pressure

• cpuset_open_memory_pressure - [optional] Opens handle to read
memory_pressure

• cpuset_read_memory_pressure - [optional] Reads cpuset current
memory_pressure

• cpuset_close_memory_pressure - [optional] Closes handle to read
memory_pressure

50 007–5945–001

SGI Cpuset Software Guide

Map between cpuset relative and system-wide CPU and memory node numbers

• cpuset_c_rel_to_sys_cpu - Maps cpuset relative CPU number to system
wide number

• cpuset_c_sys_to_rel_cpu - Maps system-wide CPU number to cpuset
relative number

• cpuset_c_rel_to_sys_mem - Maps cpuset relative memory node number to
system wide number

• cpuset_c_sys_to_rel_mem - Maps system-wide memory node number to
cpuset relative number

• cpuset_p_rel_to_sys_cpu - Maps task cpuset relative CPU number to system
wide number

• cpuset_p_sys_to_rel_cpu - Maps system-wide CPU number to task cpuset
relative number

• cpuset_p_rel_to_sys_mem - Maps task cpuset relative memory node number
to system-wide number

• cpuset_p_sys_to_rel_mem - Maps system-wide memory node number to task
cpuset relative number

Placement operations for detecting cpuset migration

• cpuset_get_placement - [optional] Returns the current placement of task pid

• cpuset_equal_placement - [optional] True, if two placements are equal

• cpuset_free_placement - [optional] Free placement

Bind to a CPU or memory node within the current cpuset

• cpuset_cpubind - Binds to a single CPU within a cpuset (uses
sched_setaffinity(2))

• cpuset_latestcpu - Most recent CPU on which a task has executed

• cpuset_membind - Binds to a single memory node within a cpuset (uses
set_mempolicy(2))

Export cpuset settings to a regular file and import them from a regular file

• cpuset_export - Exports cpuset settings to a text file

007–5945–001 51

A: Cpuset Library Functions

• cpuset_import - Imports cpuset settings from a text file

Traverse a cpuset hierarchy

• cpuset_fts_open – Opens a cpuset hierarchy

• cpuset_fts_read – Obtains the next entry in the hierarchy

• cpuset_fts_reverse – Reverses the order of the cpusets in the hierarchy

• cpuset_fts_rewind – Rewinds to the first cpuset in the list

• cpuset_fts_get_path – Returns the cpuset path of an entry

• cpuset_fts_get_stat – Returns the stat(2) pointer information about an entry

• cpuset_fts_get_cpuset – Returns the cpuset pointer of an entry

• cpuset_fts_get_errno – Returns the err field of an entry

• cpuset_fts_get_info – Returns the info field of an entry

• cpuset_fts_close – Closes a cpuset hierarchy

Cpuset Library Functions Calling Sequence

A typical calling sequence would use the above functions in the following order to
create a new cpuset named xyz and attach itself to it, as follows:

struct cpuset *cp = cpuset_alloc();
various cpuset_set*(cp, ...) calls

cpuset_create(cp, "xyz");

cpuset_free(cp);

cpuset_move(0, "xyz");

52 007–5945–001

Index

C

Cpuset Facility
advantages, 1
boot cpuset, 32

creating, 32
/etc/bootcpuset.conf file, 33

command line utility, 27
cpuset

definition, 1
determine if cpusets are installed, 6
errno settings, 43
modifying CPUs and kernel processing, 38
system error messages, 43

cpuset permissions, 23
cpuset text format, 37
directories, 12

overview, 1
programming model, 42
scheduling and memory allocation, 23
systems calls

mbind, 1
sched_setaffinity, 1
set_mempolicy, 1

using cpusets at shell prompt, 25
create a cpuset, 25
remove a cpuset, 27

Creating a cpuset, 25

R

Removing a cpuset, 27

007–5945–001 53

	New Features
	Table of Contents
	About This Guide
	Related Publications
	Ordering Publications
	Conventions
	Reader Comments

	1. Introduction
	About cpusets
	Cpuset Advantages

	2. Cpusets on Linux
	Cpuset Working Environment
	Linux 2.6 Kernel Support for Cpusets
	Cpuset Facility Capabilities
	Initializing Cpusets
	How to Determine if Cpusets are Installed
	Fine-grained Control within Cpusets
	Cpuset Interaction with Other Placement Mechanism
	Cpusets and Thread Placement
	Safe Job Migration and Cpusets
	Application Performance on Large SGI UV Systems

	Cpuset File System Directories
	Exclusive Cpusets
	Notify on Release Flag
	Memory Pressure of a Cpuset
	Memory Spread
	Memory Migration
	Mask Format
	List Format
	Cpuset Permissions
	CPU Scheduling and Memory Allocation for Cpusets
	Linux Kernel CPU and Memory Placement Settings
	Manipulating Cpusets

	Using Cpusets at the Shell Prompt
	Cpuset Command Line Utility
	Boot Cpuset
	Creating a Bootcpuset
	bootcpuset.conf File

	Configuring a User Cpuset for Interactive Sessions
	Cpuset Text Format
	Modifying the CPUs in a Cpuset and Kernel Processing
	Using Cpusets with Hyper-Threads
	Cpuset Programming Model
	System Error Messages

	A. Cpuset Library Functions
	Basic Cpuset Library Functions
	Extensible Application Programming Interface
	Advanced Cpuset Library Functions

	Index

