

Callable Interface
Programmer’s Guide

Release 1.8 of the
StorHouse Host Software

Publication Number
007-6318-001

November 19, 2013

© 2013 Silicon Graphics International Corp. All Rights Reserved; provided portions

may be copyright in third parties, as indicated elsewhere herein. No permission is

granted to copy, distribute, or create derivative works from the contents of this elec‐

tronic documentation in any manner, in whole or in part, without the prior written

permission of SGI.

Pubication Number 007‐6318‐001

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" pro‐

vided with restricted rights (except as to included open/free source) as specified in

the FAR 52.227‐19 and/or the DFAR 227.7202, or successive sections. Use beyond

license provisions is a violation of worldwide intellectual property laws, treaties and

conventions. This document is provided with limited rights as defined in 52.227‐14.

TRADEMARKS AND ATTRIBUTIONS

SGI, SGI InfiniteStorage, the SGI logo, Supportfolio, SGI Trusted Edge, and SGI Stor‐

House are trademarks or registered trademarks of Silicon Graphics International Corp.

or its subsidiaries in the United States and other countries. All other trademarks men‐

tioned herein are the property of their respective owners.

Contents
Contents

Figures .. xi

Tables .. xi

Welcome ... xiii

Purpose of This Document ... xiii

Intended Audience .. xiii

Contents ..xiv

Related Documentation ...xiv

Notational Conventions ...xv

Chapter 1: Introduction .. 1-1

Operating Environment ..1-1

Callable Interface Function Hierarchy ..1-2
Session Control Functions ...1-2
File Operation Functions ...1-3
Data Transfer Control Functions ...1-3
StorHouse Command Functions ..1-4

Notes on Multitasking ..1-4

Chapter 2: StorHouse Parameters and Data Descriptions 2-1

Session and Data Transfer Link Identifiers ...2-1
SGI, Corp. Callable Interface Programmer’s Guide iii

Contents
StorHouse Accounts ...2-1
Account Identification Code ..2-2
Account Password ..2-2
Default Access Groups and Rights ...2-2
StorHouse Privileges ..2-2

StorHouse Files and File Access Groups ...2-3
StorHouse File Names ...2-3
File Access Groups ...2-4
Group and File Access Passwords ...2-4

Group Passwords ...2-4
File Passwords ..2-5

File Versions ..2-5
File Revisions ...2-6
File Data Representation ..2-6
Directory Information ..2-7

Chapter 3: File Positioning .. 3-1

Record Sequencing ...3-1
Entry Sequence ..3-1
Key Sequence ...3-1

Current Record Position ...3-2

Read Functions and Current Record Position ...3-2

Record Sequencing Example ...3-2

Chapter 4: Control Structures ... 4-1

Parameter Values ..4-1
Character Strings ..4-1
Externally Specified Parameters ..4-1

Return Codes ...4-2

Indicative Text Messages ..4-2

Chapter 5: Callable Interface Functions ... 5-1

Callable Interface Entry Point Names ...5-1

Special Considerations for CICS Programmers ...5-1
Defining the CICS Interface Programs ...5-2
Error Handling ..5-3
Restrictions ..5-3
iv Callable Interface Programmer’s Guide SGI, Corp.

Contents
Synchronous and Asynchronous Functions ...5-4
Synchronous Form ...5-4
Asynchronous Form ...5-4

Function Statement Format ..5-5

Session Control Functions ..5-5

CONNECT ...5-6
Statement Format for COBOL ...5-6
Working Storage Section for COBOL Program ...5-6
Parameter Overview ...5-6
Return Codes ...5-7
Detailed Function Description ...5-7
Notes ...5-8
Cross-Reference to Sample Program ...5-8

DISCONNECT ...5-9
Statement Format for COBOL ...5-9
Working Storage Section for COBOL Program ...5-9
Parameter Overview ...5-9
Return Codes ...5-9
Detailed Function Description ...5-10
Notes ...5-10
Cross-Reference to Sample Program ...5-10

File Operation Functions ..5-11

OPEN ... 5-12

OPEN-SEQ ...5-13
Statement Format for COBOL ...5-13
Working Storage Section for COBOL Program ...5-13
Parameter Overview ...5-14
Return Codes ...5-18
Detailed Function Description ...5-18
Notes ...5-18
Cross-Reference to Sample Program ...5-19

CREATE-OPEN ..5-20
Statement Format for COBOL ...5-20
Working Storage Section for COBOL Program ...5-20
Parameter Overview ...5-21
Return Codes ... 5-24
Detailed Function Description ...5-25
Notes ...5-25
Cross-Reference to Sample Program ...5-26

OPEN-VRAM ...5-27
Statement Format for COBOL ...5-27
SGI, Corp. Callable Interface Programmer’s Guide v

Contents
Working Storage Section for COBOL Program ...5-27
Parameter Overview ...5-28
Return Codes ... 5-30
Detailed Function Description ...5-31
Notes ...5-31
Cross-Reference to Sample Program ...5-32

CHECKPOINT ...5-33
Statement Format for COBOL ...5-33
Working Storage Section for COBOL Program ...5-33
Parameter Overview ...5-33
Return Codes ... 5-34
Detailed Function Description ...5-34
Notes ...5-34
Cross-Reference to Sample Program ...5-34

CLOSE ...5-35
Statement Format for COBOL ...5-35
Working Storage Section for COBOL Program ...5-35
Parameter Overview ...5-35
Return Codes ... 5-36
Detailed Function Description ...5-36
Notes ...5-37
Cross-Reference to Sample Program ...5-37

Data Transfer Control Functions ..5-38

READ ..5-39
Statement Format for COBOL ...5-39
Working Storage Section for COBOL Program ...5-39
Parameter Overview ...5-39
Return Codes ... 5-40
Detailed Function Description ...5-40
Notes ...5-40
Cross-Reference to Sample Program ...5-40

READ-SEQ ..5-41
Statement Format for COBOL ...5-41
Working Storage Section for COBOL Program ...5-41
Parameter Overview ...5-41
Return Codes ... 5-42
Detailed Function Description ...5-42
Notes ...5-42
Cross-Reference to Sample Program ...5-42

READ-RECORD ...5-43
Statement Format for COBOL ...5-43
Working Storage Section for COBOL Program ...5-43
Parameter Overview ...5-43
vi Callable Interface Programmer’s Guide SGI, Corp.

Contents
Return Codes ... 5-44
Detailed Function Description ...5-44
Notes ...5-44
Cross-Reference to Sample Program ...5-44

READ-KEYED ..5-45
Statement Format for COBOL ...5-45
Working Storage Section for COBOL Program ...5-45
Parameter Overview ...5-45
Return Codes ... 5-46
Detailed Function Description ...5-46
Notes ...5-47
Cross-Reference to Sample Program ...5-47

READ-NEXT-KEY ..5-48
Statement Format for COBOL ...5-48
Working Storage Section for COBOL Program ...5-48
Parameter Overview ...5-48
Return Codes ... 5-49
Detailed Function Description ...5-49
Notes ...5-49
Cross-Reference to Sample Program ...5-49

WRITE ..5-50
Statement Format for COBOL ...5-50
Working Storage Section for COBOL Program ...5-50
Parameter Overview ...5-50
Return Codes ... 5-51
Detailed Function Description ...5-51
Notes ...5-51
Cross-Reference to Sample Program ...5-51

WRITE-KEY ..5-52
Statement Format for COBOL ...5-52
Working Storage Section for COBOL Program ...5-52
Parameter Overview ...5-52
Return Codes ... 5-53
Detailed Function Description ...5-53
Notes ...5-53
Cross-Reference to Sample Program ...5-54

DELETE ..5-55
Statement Format for COBOL ...5-55
Working Storage Section for COBOL Program ...5-55
Parameter Overview ...5-55
Return Codes ... 5-55
Detailed Function Description ...5-56
Note ...5-56
SGI, Corp. Callable Interface Programmer’s Guide vii

Contents
Cross-Reference to Sample Program ...5-56

CHANGE ..5-57
Statement Format for COBOL ...5-57
Working Storage Section for COBOL Program ...5-57
Parameter Overview ...5-57
Return Codes ... 5-58
Detailed Function Description ...5-58
Note ...5-58
Cross-Reference to Sample Program ...5-58

StorHouse Command Submission ..5-59

SM-CMD-INTF ..5-60
Statement Format for COBOL ...5-60
Working Storage Section for COBOL Program ...5-60
Parameter Overview ...5-61
Return Codes ... 5-62
Detailed Function Description ...5-62
Note ...5-63
Cross-Reference to Sample Program ...5-63

General Usage Functions ..5-64

CHECK ...5-65
Statement Format for COBOL ...5-65
Working Storage Section for COBOL Program ...5-65
Parameter Overview ...5-65
Return Codes ... 5-65
Detailed Function Description ...5-66
Notes ...5-66
Cross-Reference to Sample Program ...5-66

ECBADDR ..5-67
Statement Format for COBOL ...5-67
Working Storage Section for COBOL Program ...5-67
Parameter Overview ...5-67
Return Codes ... 5-68
Detailed Function Description ...5-68
Note ...5-68
Cross-Reference to Sample Program ...5-68

EMSG ..5-69
Statement Format for COBOL ...5-69
Working Storage Section for COBOL Program ...5-69
Parameter Overview ...5-69
Return Codes ... 5-70
Detailed Function Description ...5-70
Notes ...5-70
viii Callable Interface Programmer’s Guide SGI, Corp.

Contents
Cross-Reference to Sample Program ...5-70

ABORT ..5-71
Statement Format for COBOL ...5-71
Working Storage Section for COBOL Program ...5-71
Parameter Overview ...5-71
Return Codes ... 5-71
Detailed Function Description ...5-72
Notes ...5-72
Cross-Reference to Sample Program ...5-72

Chapter 6: Sample Program ... 6-1

COBOL Sample Program ...6-2

Appendix A: Pass-Through Functions ..A-1

PTOPEN .. A-2
Statement Format for C .. A-2
Parameter Overview .. A-3
Return Codes ...A-4
Detailed Function Description .. A-4
Notes .. A-4

PTWRTOSM ... A-5
Statement Format for C .. A-5
Parameter Overview .. A-5
Return Codes ...A-6
Detailed Function Description .. A-6
Notes .. A-6

PTRDFRSM ... A-7
Statement Format for C .. A-7
Parameter Overview .. A-7
Return Codes ...A-8
Detailed Function Description .. A-8
Notes .. A-8

CONFIG .. A-9
Statement Format for C .. A-9
Parameter Overview .. A-9
Return Codes ...A-10
Detailed Function Description .. A-10
Note .. A-10
SGI, Corp. Callable Interface Programmer’s Guide ix

Contents
Appendix B: ALC Macro Definition ...B-1

LSMCALL – Call the Callable Interface Program .. B-1
Required Parameters ... B-3
Optional Parameters ... B-3
Remaining Keywords .. B-4

Assembly Language Standard Call ... B-6
Example: CALL Macro ... B-7
Example: LSMCALL Macro ... B-8

Chapter 3: Checkpoint/Restart and Programming Guidelines 1

Checkpoint/Restart .. C-1
Examples ... C-1

Example 1 .. C-2
Example 2 .. C-2
Example 3 .. C-3
Example 4 .. C-3

Programming Guidelines ... C-4
Defining Resources ... C-4
Examples ... C-5
User Guidelines ... C-6

Permanent Fixes ... C-6

Index ...Index-1
x Callable Interface Programmer’s Guide SGI, Corp.

Figures
and

Tables
Figures

Figure 1-1: Callable Interface Function Hierarchy ... 1-2

Tables

Table 2-1: Printable ASCII Characters ..2-3
Table 2-2: File System Types ...2-7

Table B-1: LSMCALL Macro Instruction ... B-2
Table B-2: CALL Macro ... B-7
Table B-3: LSMCALL Macro ... B-8

Table C-1: DATAFILE Revisions ... C-2
Table C-2: Example of Open Statements Requiring the Same Resource C-5
SGI, Corp. Callable Interface Programmer’s Guide xi

Tables
xii Callable Interface Programmer’s Guide SGI, Corp.

Welcome
Welcome

The Callable Interface Programmer’s Guide describes the StorHouse® Callable
Interface for IBM™ MVS™ hosts. This interface provides access to StorHouse from
end-user applications. For information on the StorHouse Callable Interface for all
other hosts except IBM MVS, please refer to the Generic Callable Interface
Programmer’s Guide, publication number 900046.

Purpose of This Document
This document is a reference manual that describes the StorHouse Callable Interface
functions. The standard COBOL format, parameter overview, return codes, detailed
function description, and cross-reference to the sample program in Chapter 6,
“Sample Program,” are presented for each function.

Intended Audience
The Callable Interface Programmer’s Guide was written for programmers who write
applications that invoke the StorHouse Callable Interface to access information that
resides on StorHouse.
SGI, Corp. Callable Interface Programmer’s Guide xiii

Welcome
Contents
Contents
The Callable Interface Programmer’s Guide contains six chapters and three appendices.

• Chapter 1, “Introduction,” describes the Callable Interface operating
environment.

• Chapter 2, “StorHouse Parameters and Data Descriptions,” contains general
information about StorHouse session and data transfer link identifiers, accounts,
file access groups, and files.

• Chapter 3, “File Positioning,” discusses record resequencing and explains how
the various read functions affect record positioning for files.

• Chapter 4, “Control Structures,” discusses parameter values, return codes, and
text messages.

• Chapter 5, “Callable Interface Functions,” defines each Callable Interface
function in detail. This chapter groups the functions by purpose.

• Chapter 6, “Sample Program,” presents a sample COBOL program for the
Callable Interface.

• Appendix A, “Pass-Through Functions,” describes pass-through functions that
allow application programs direct access to StorHouse.

• Appendix B, “ALC Macro Definition,” explains how to access the Callable
Interface from programs coded in IBM Assembler language.

• Appendix C, “Checkpoint/Restart and Programming Guidelines,” discusses
checkpoint/restart operations and offers programming guidelines.

Related Documentation
Users of the Callable Interface should be familiar with these StorHouse documents:

• The Messages and Codes Manual, publication number 900032, describes the
messages and return codes generated by the StorHouse system and host software.

• The Command Language Reference Manual, publication number 900005,
explains StorHouse Command Language in detail.

• The StorHouse Concepts and Facilities Manual, publication number 900026,
explains StorHouse concepts, structures and functions.
xiv Callable Interface Programmer’s Guide SGI, Corp.

Welcome
Notational Conventions
• The StorHouse Glossary, publication number 900027, defines terminology used
in SGI publications. You can use the glossary as a stand-alone reference manual or
as a companion to the StorHouse User Document Set.

• The Host Software Installation and Operations Guide, publication number
900011, explains how to install the host software for StorHouse.

Notational Conventions
This book uses the following conventions for illustrating command formats,
presenting examples, and identifying special terms:

Convention Meaning

Angle brackets (< >) Enclose optional entries

Braces ({ }) Enclose descriptive terms or a choice of entries

Courier font Code

Ellipses (...) A repetition of the preceding material

Italics New terms and emphasized text

lower case Helvetica font User entries

UPPER CASE System responses and StorHouse terms
SGI, Corp. Callable Interface Programmer’s Guide xv

Welcome
Notational Conventions
xvi Callable Interface Programmer’s Guide SGI, Corp.

Chapter
1

Introduction

The StorHouse Callable Interface provides access to StorHouse from user
applications. This interface is implemented as a subroutine invoked from assembly
language (ALC), PL/1, COBOL, FORTRAN, or C programs. By supplying parameters
to this subroutine, a programmer can establish connections, access files, and transfer
records between a host computer system and StorHouse.

The Callable Interface can be used by an application run from a TSO session, a batch
job, an IMS transaction, or a CICS transaction. The user application does not require
authorization, and all of the Callable Interface code that executes in the user’s address
space is re-entrant.

Operating Environment
The Callable Interface operates in either an MVS/SP™ (Release 1.3 or later) or
MVS/XA™ environment. This interface tolerates the MVS/ESA™ environment but
does not exploit ESA capabilities. User applications can be compiled with any of the
following:

• Any MVS Assembler
• PL/1 Optimizing Compiler Release 5.1
• COBOL VS II Compiler 1.1
• FORTRAN VS Compiler 4.1
• Any other compiler that generates standard call-by-reference parameter lists.

Callable Interface modules for a TSO/batch environment use standard MVS system
functions, such as GETMAIN, FREEMAIN, LOAD, and WAIT. The system
programmer responsible for the installation can change the use of these functions
through installation exits. Unless the exits are changed, the Callable Interface should
only be used in environments where use of these system functions is acceptable.
SGI, Corp. Callable Interface Programmer’s Guide 1-1

Introduction
Callable Interface Function Hierarchy1
For the CICS Interface, Callable Interface modules use standard command level
functions. For more information about the CICS Interface, see Chapter 5, “Callable
Interface Functions.”

Callable Interface Function Hierarchy
Figure 1-1 illustrates how Callable Interface functions are organized in a hierarchical
structure.

To perform any StorHouse operation, an application must:

1. Establish a session with StorHouse, using the session function CONNECT.

2. Within a session, initiate file operations, using one of the open functions.

3. Once a file is opened, issue data transfer operations, using one of the read/write
functions, or issue record update operations using the CHANGE or DELETE
function.

In addition, within an established session, a program can issue StorHouse commands
such as SHOW FILE or SHOW ACCOUNT.

Session control, file operation, data transfer, and StorHouse command functions are
described in the following sections. Chapter 5, “Callable Interface Functions,”
explains all parameters for each Callable Interface function.

Session Control Functions
There are two Callable Interface session control functions: CONNECT and
DISCONNECT.

Figure 1-1: Callable Interface Function Hierarchy

Session

File Operation

Data Transfer

StorHouse Command
1-2 Callable Interface Programmer’s Guide SGI, Corp.

Introduction
Callable Interface Function Hierarchy 1

v

• CONNECT establishes a session between a user application and StorHouse. The
application must supply an account identifier and password for CONNECT so
that the StorHouse security system can validate the session and set session
privileges and defaults.

• DISCONNECT ends the established session and releases all session-related host
and StorHouse resources.

One application can establish several sessions. StorHouse assigns each session a
unique session identifier to allow explicit application control of the operations that
are performed in that session. CONNECT returns the session identifier, or C-
TOKEN, to the application as a 32-bit integer value.

File Operation Functions
There are five file operation functions: OPEN-SEQ, CREATE-OPEN, OPEN-VRAM,
CHECKPOINT, and CLOSE.

• OPEN-SEQ allows file-oriented operations that read or create a complete
StorHouse file.

• CREATE-OPEN creates a new VRAM™ file on StorHouse, and then establishes a
data transfer link for writing data to that file.

• OPEN-VRAM allows read, write, delete, and update access to individual records
in StorHouse VRAM files.

• CHECKPOINT synchronizes file transfer by ensuring that all previously written
records have been received and processed by StorHouse.

• CLOSE terminates the file operation (indicating end-of-file for write operations)
and releases all resources used by the transfer operation.

OPEN-SEQ, CREATE-OPEN, and OPEN-VRAM establish a data transfer link between
the user application and StorHouse. These functions return the O-TOKEN, a 32-bit
integer value that identifies the data transfer path within a given session. The
O-TOKEN also identifies the file being processed in all subsequent transfer-oriented
functions (for example, read and write).

Data Transfer Control Functions
Data transfer operations can be performed once a session has been established and
files have been opened. Data transfer control functions (read and write) allow an
application to send records to and receive records from StorHouse. Individual records
in a VRAM file can be retrieved by record number or by key, and changed or deleted
accordingly.
SGI, Corp. Callable Interface Programmer’s Guide 1-3

Introduction
Notes on Multitasking1
A record is an arbitrary unit of data. The user completely controls record size. The
user also controls record content, unless the user specifies a translation to ASCII.
Then data should contain only EBCDIC characters that have ASCII equivalents.

StorHouse Command Functions
Within a session, StorHouse command functions allow an application to send
selected Command Language commands to StorHouse and to retrieve response text
from those commands. These functions also allow administrative operations to be
directed from an application rather than from a user at a terminal through the
Interactive Interface.

Notes on Multitasking
A session established by one task can be used from a subtask (in other words, under a
different Task Control Block [TCB]). However, only one function can be performed
at a time. Serialization of calls is the application programmer’s responsibility.
DISCONNECT must be called from the same task that issued CONNECT, and
CLOSE must be called from the same task that issued OPEN-SEQ, CREATE-OPEN, or
OPEN-VRAM.

If a file is opened and closed under one TCB and read or written from another TCB,
the two tasks must share Subpool 0 storage. If one of these tasks is a subtask of the
other, this is accomplished by the SZERO=YES operand on the ATTACH MACRO
(this is the default value).
1-4 Callable Interface Programmer’s Guide SGI, Corp.

Chapter
2

StorHouse Parameters and Data Descriptions

This chapter contains general information about StorHouse session and data transfer
link identifiers, accounts, file access groups, and files. For more information about
these topics, refer to the StorHouse Concepts and Facilities Manual and the Command
Language Reference Manual.

Session and Data Transfer Link Identifiers
There are two types of link identifiers: session and data transfer.

• Session link identifier – CONNECT returns the C-TOKEN, or session link
identifier.

• Data transfer link identifier – OPEN-SEQ, CREATE-OPEN, and OPEN-VRAM
return the O-TOKEN, or data transfer link identifier.

The C-TOKEN and O-TOKEN are 32-bit integer values that must be passed to all
other Callable Interface functions that perform operations with the session or data
link. Token values can be moved from one variable to another, but they must not be
subjected to any arithmetic operations, including type conversions.

StorHouse Accounts
An account is a collection of administrative data that StorHouse uses to control a
session. Each account includes an identification code (AID) and a password.
Generally, each account has a default access group, access rights to that group, and a
set of privileges. The following sections describe StorHouse accounts.
SGI, Corp. Callable Interface Programmer’s Guide 2-1

StorHouse Parameters and Data Descriptions
StorHouse Accounts2
Account Identification Code
An account identification code, or AID, is similar to a TSO user ID in MVS; it provides
StorHouse with the user's identity. An AID must contain 1 to 12 characters and
include only the following characters: A-Z, 0-9, $, and _ (underscore). An example of
a valid AID is USER.

A program must include an account identifier to establish a session in the Callable
Interface. Multiple programs can use the same or different accounts and can access
StorHouse at the same time.

Account Password
The account password helps maintain system security. Passwords must contain 0 (null)
to 32 characters and include only the following characters: A-Z, 0-9, $, or _
(underscore). Generally, long passwords provide better system protection than short
passwords. Passwords of three or fewer characters offer only marginal protection.

Default Access Groups and Rights
Usually, each account has a default access group and default access rights to that group.
When a command accesses a StorHouse file, StorHouse assumes that the file is in the
default group unless a different group name is specified in the command.

An account may be set up to give read, write, delete, or no default access to the
default group. These are the access rights to the default group. Thus, to perform
operations on files in the default group, it is not necessary for a program to supply a
group access password unless the operation requires an access that differs from the
account’s default access.

In any case, if the default group has a null password, a program automatically receives
the corresponding type of access without having default access or specifying a
password. A program can switch to a different default access group during a session.

For more information about how to specify account information, see Chapter 6,
“Sample Program.”

StorHouse Privileges
Each account has a set of privileges that falls into two categories: access and
command.

• Access privileges allow the program using the account to bypass various system
security checks.
2-2 Callable Interface Programmer’s Guide SGI, Corp.

StorHouse Parameters and Data Descriptions
StorHouse Files and File Access Groups 2
• Command privileges permit the program using the account to perform specific
commands or groups of commands.

The privileges assigned to an account determine the functions that can be performed
by an application. For a complete list of access and command privileges, refer to the
Command Language Reference Manual in the StorHouse User Document Set.

StorHouse Files and File Access Groups
A file is a named collection of logically related data located on a medium and treated
as a unit by StorHouse. Any collection of data generated by a host program can be
stored in StorHouse. Each StorHouse file has a set of attributes that govern where and
how it is stored. Each file can be protected by passwords. A file version can also be
locked to prevent programs using other accounts from reading or writing it and
unlocked to make it available to other programs using other accounts.

StorHouse File Names
A file name is a character string that contains 1 to 56 bytes. StorHouse uses file names
to identify files. The name must be left-justified within the field and padded with
blanks. Uppercase characters are distinct from lowercase characters. At least one
character must be non-blank.

StorHouse file names must consist of printable ASCII characters and/or the ASCII
space character as shown in Table 2-1.

Table 2-1: Printable ASCII Characters

Printable ASCII Characters

A-Z uppercase letters + plus sign () parentheses

a-z lowercase letters ~ tilde < > angle brackets

0-9 digits , comma [] square brackets

! exclamation point - hyphen { } braces

“ quote . period \ backslash

number sign / slash ^ circumflex

$ dollar sign : colon _ underscore

% percent sign ; semicolon | vertical bar

& ampersand = equal sign ‘ reverse apostrophe
SGI, Corp. Callable Interface Programmer’s Guide 2-3

StorHouse Parameters and Data Descriptions
StorHouse Files and File Access Groups2
File Access Groups
A file access group is a set of named files. Program access may be restricted to a file
access group. To manipulate files in the set, a program must specify a group name.
Group names must contain 1 to 8 characters and include only the following
characters: A-Z, 0-9, $, or _ (underscore). If the group is protected by passwords, a
program must also specify the group’s read, write, and/or delete password.

Each file in StorHouse is a member of one group. Within that group, each file name
is unique. However, two files may have the same name if they are located in different
file access groups.

Group and File Access Passwords
StorHouse allows the specification of group and file passwords to protect user files
from unauthorized access. The following sections explain how to use group and file
passwords.

Group Passwords
Group passwords may be null or contain 1 to 8 characters, and may include only the
following characters: A-Z, 0-9, $, and _ (underscore).

Group passwords are used as follows:

• If a group has a read password, a program must specify the correct read password
to read a file from StorHouse or display group or file directory information.

• If a group has a write password, a program must specify the correct write
password to write a file into the group or to UNDELETE a file.

• If a group has a delete password, a program must specify the correct delete
password to delete the group, delete a file from the group, change the group’s
passwords, or change passwords or attributes of files in the group.

• If a group has a null password, a program may gain the corresponding type of
access by specifying a null password or by not specifying a password.

’ apostrophe ? question mark space

* asterisk @ at sign

Table 2-1: Printable ASCII Characters (continued)

Printable ASCII Characters
2-4 Callable Interface Programmer’s Guide SGI, Corp.

StorHouse Parameters and Data Descriptions
StorHouse Files and File Access Groups 2
• If a program specifies a null password where the group has a non-null password,
StorHouse does not grant that type of access (in other words, read, write, or
delete access). However, StorHouse does not return an error unless that type of
access is required.

File Passwords
A program can also give individual files read, write, and delete passwords. These file
passwords control access to files in the same way that group passwords control access
to file access groups.

File passwords can be null or contain 1 to 8 characters. Like group passwords, file
passwords may contain only the following characters: A-Z, 0-9, $, or _ (underscore).

File passwords are used as follows:

• If a file has a read password, the program must specify the correct read password
to read the file from StorHouse or display directory information about the file.

• If a file has a write password, the program must supply the write password to
write a new version of the file to StorHouse or to UNDELETE a file.

• If a file has a delete password, the program must specify the correct delete
password to delete the file from StorHouse, or change the file’s attributes or
passwords.

• If a file has a null password, the program may gain the corresponding type of
access by specifying a null password or by not specifying a password.

• If a program specifies a null password where the file has a non-null password,
StorHouse does not grant that type of access (in other words, read, write, or
delete access). However, StorHouse does not return an error code unless that type
of access is required.

The account used by the program must have read, write, or delete access to a file’s
group before the system allows the program to gain the corresponding access to the
file.

For more information about how to specify file access group names and group and
file access passwords, consult the “Data Transfer Control Functions” section of
Chapter 5 and Chapter 6, “Sample Program."

File Versions
A new file version is created whenever a program transfers a non-VRAM file from the
host to StorHouse. A new version of a VRAM file is created whenever a CREATE FILE
command is performed or a CREATE-OPEN call is issued with a checkpoint of 0. The
SGI, Corp. Callable Interface Programmer’s Guide 2-5

StorHouse Parameters and Data Descriptions
StorHouse Files and File Access Groups2
new file receives version number 0. If a file of the same name and the same access
group already exists in StorHouse, the number of each previous version decreases by
one. Previous versions may range in number from -1 through -32767 or from -1
through the minimum version number allowed by the LIMIT attribute. If there was a
previous version -32767, it is deleted when a new version is added to StorHouse.

For example, when the file DATAFILE is first added to StorHouse, it becomes version
0. When a new version of DATAFILE is added, that becomes version 0, and the
previous version 0 of DATAFILE becomes version -1.

Refer to the OPEN-SEQ and OPEN-VRAM function descriptions in Chapter 5,
“Callable Interface Functions” for information about specifying version numbers.

File Revisions
For RECORD, KEYED, or KEYSEQUENTIAL VRAM files, StorHouse assigns revision
number 1 to a file version when the file is created on StorHouse. Each time a user
changes the contents of the file version, StorHouse increments the revision number
by 1. A user can change the contents of a file version by opening the file; changing,
deleting, or adding records; and closing the file. Thus, a file version can have multiple
revisions, each identified by a unique revision number.

Revision numbers can be expressed as relative or absolute numbers. Relative revision
numbers range from 0, the current revision, through -65534, the oldest revision.
Absolute revision numbers range from 1 through 65535. For example, assume that
relative version 0 of the file DATAFILE has four revisions. A user can refer to the most
current revision of this file as relative revision number 0 or as absolute revision
number 4.

Refer to the OPEN-VRAM function description in Chapter 5, “Callable Interface
Functions” for information about specifying values for revision numbers.

File Data Representation
StorHouse stores the record stream written by the user application program either as
binary (bitstream) data or as an ASCII character stream. The file format is determined
when the file is created, either by OPEN-SEQ for sequential files, or by the CREATE
FILE command or the CREATE-OPEN function for VRAM files. The record data is
treated as a bitstream unless the DATA-XLATE-FLAG in the file attributes array for
OPEN-SEQ is positive, or the ASCII modifier is specified on the CREATE FILE
command. For information about CREATE FILE, refer to the Command Language
Reference Manual.
2-6 Callable Interface Programmer’s Guide SGI, Corp.

StorHouse Parameters and Data Descriptions
StorHouse Files and File Access Groups 2
Files created through the Callable Interface are considered transportable by
StorHouse. They can be accessed by host computers from different manufacturers
running different operating systems. For binary records, the user application program
is responsible for any required data conversion. For ASCII files, the host translates
from ASCII to the host character mode (EBCDIC for IBM).

Directory Information
The StorHouse directory entry for a file indicates whether the file’s record format is
binary bitstream or ASCII character stream by the value of the file system type. File
system type is set to 65 for ASCII files and to 66 for binary files. Files created by SGI
host dataset utility programs are given other file system type identifiers, based on the
specific utility used to copy the dataset. These other file system types are shown in
Table 2-2.

Table 2-2: File System Types

File
Type

File System
Type

Host
Type

Description

01 Standard, StorHouse Framed File

03 17 MVS files copied using DF/DSS

65 n/a Transportable ASCII Character Stream

66 n/a Transportable BINARY Stream
SGI, Corp. Callable Interface Programmer’s Guide 2-7

StorHouse Parameters and Data Descriptions
StorHouse Files and File Access Groups2
2-8 Callable Interface Programmer’s Guide SGI, Corp.

Chapter
3

File Positioning

This chapter discusses record resequencing and explains how the various read
functions affect record positioning for files.

Record Sequencing
Records in a keyed VRAM file are sequenced by both entry and key. Entry sequenced
records are sequenced by the order they were written to the file. Key sequenced
records are sequenced by the values of key fields in each record.

Entry Sequence
The write operation that builds a file determines the entry sequence for records in
that file. Each new record is appended to the end of the file, independent of record
content. Entry sequence determines the order in which sequential read operations
retrieve records. Entry sequence has no effect on the order in which key value read
operations and next-key sequence read operations retrieve records.

Key Sequence
Each key that is defined for a file determines a key sequence for records in that file. In
key sequence, records are ordered by the increasing value of their key field, which is
considered only as a binary bitstring. Key sequence determines the order in which
next-key read operations retrieve records. The order in which records with duplicate
keys are returned is not necessarily the same as their entry sequence.
SGI, Corp. Callable Interface Programmer’s Guide 3-1

File Positioning
Current Record Position3
Current Record Position
Any opened StorHouse file has a current record position. A keyed VRAM file has two
current record positions:

• Sequential position, which follows record entry sequence.
• Key position, which follows key sequence.

A file can have several keys but only one key position. Key position is always relative
to the last key that was used to read a record.

For a keyed VRAM file, open sets the sequential record position to the beginning of
the file, which is the first record in entry sequence. Open does not initialize key
position.

Read Functions and Current Record Position
Four functions can be used to read a VRAM file:

• READ-SEQ – retrieves the next record in entry sequence order.

• READ-KEYED – retrieves a record by exact match of a specified value for a given
key.

• READ-NEXT-KEY – retrieves the next record in key sequence order.

• READ-RECORD – retrieves a specific record by record number.

Read functions maintain current record position for a file as follows:

• Every read operation updates sequential record position.

• Only READ-KEYED and READ-NEXT-KEY update key position. READ-KEYED
sets the current key position and must be called at least once prior to calling
READ-NEXT-KEY.

Record Sequencing Example
The following example shows a VRAM file with two keys, NAME and ENUM. The
file was created by writing the following records, where record number matches the
entry sequence.
3-2 Callable Interface Programmer’s Guide SGI, Corp.

File Positioning
Record Sequencing Example 3
If the file is opened and read sequentially, then the records are read in the following
order: 1, 2, 3, 4, 5, 6.

The following table indicates how each read function affects the file’s current record
position.

Note that in the preceding table, operations 10 and 11 may return record number 5,
then record number 2. The order of duplicate key records may be changed by the
file’s update and delete history.

Record
Number

Value of Key NAME
Value of

Key ENUM

1 Jones 327

2 Smith 409

3 Doe 427

4 Johnson 283

5 Smith 265

6 Brooks 301

Read Operation Function
Record
Number

NAME key ENUM key

1. OPEN-VRAM None

2. READ-SEQUENTIAL 1 Jones 327

3. READ-RECORD 4 4 Johnson 283

4. READ-SEQUENTIAL 5 Smith 265

5. READ-KEYED
(KEY=NAME
(VALUE=Doe)

3 Doe 427

6. READ-NEXT-KEY 4 Johnson 283

7. READ-SEQUENTIAL 5 Smith 265

8. READ-KEYED
(KEY=ENUM)
(VALUE=283)

4 Johnson 283

9. READ-NEXT-KEY 6 Brooks 301

10. READ-KEYED
(KEY=NAME)
(VALUE=Smith)

2 Smith 409

11. READ-NEXT-KEY 5 Smith 265

12. READ-SEQUENTIAL 6 Brooks 301
SGI, Corp. Callable Interface Programmer’s Guide 3-3

File Positioning
Record Sequencing Example3
3-4 Callable Interface Programmer’s Guide SGI, Corp.

Chapter
4

Control Structures

This chapter discusses parameter values and return codes.

Parameter Values
Parameter values can be specified as character strings or externally through JCL
statements.

Character Strings
All character strings must be left-justified and blank-filled. The character set is A-Z,
a-z, 0-9, and the following special characters:

, : “ ' ! - (). * /

Some character string fields have additional restrictions on the character set and are
documented as required in Chapter 5, “Callable Interface Functions.”

Externally Specified Parameters
The values for some parameters can be externally specified through JCL statements.
These parameters are documented specifically for each function. All such parameters
are strings and link to a JCL statement when the string value specified in the program
has the format (illustrated for COBOL):

05 name PIC X(12) VALUE 'DD=ddname '.

The value must begin exactly with the characters “DD=” in uppercase. The JCL
statement referenced is named by “ddname”. The actual value assigned to the
parameter is taken from a field on the associated JCL statement. The specific field
SGI, Corp. Callable Interface Programmer’s Guide 4-1

Control Structures
Return Codes4
differs for various parameters and is documented in the specific function parameter
description.

Return Codes
Return codes are binary values returned in a word (32 bits). The parameter is named
R-CODE in all function call descriptions. All returned values are positive.

The return code 0 always indicates normal completion. All return code values are
documented in the Messages and Codes Manual in the StorHouse User Document Set.
Common return codes for each function are documented in the function description
section of this manual.

Indicative Text Messages
A Callable Interface function may generate text messages that provide commentary,
warnings, and error diagnostics associated with the processing of the function. These
messages are text strings that can be printed or displayed at a terminal.

These messages are not returned directly by the function. They are placed in a
message stack and can be retrieved only by calling the EMSG function. These
messages may be ignored. The stack is cleared when the next function request is
made.

The indicative text message stack is normally cleared when the session or the data
transfer operation is ended. However, clearing the text message stack in this manner
also deletes any messages that were generated during the session disconnect or during
the transfer close operation. It is the user’s responsibility to indicate whether these
messages will be retrieved, either when the session is established or when the data
transfer is opened. The definition sections for CONNECT, OPEN-SEQ, CREATE-
OPEN, and OPEN-VRAM document the use of a flag to control this message
retention capability.

A non-zero return code does not guarantee that an indicative message is available.
Conversely, a zero return code does not guarantee that there are no messages in the
stack.
4-2 Callable Interface Programmer’s Guide SGI, Corp.

Chapter
5

Callable Interface Functions

Chapter 5 contains a detailed definition of all Callable Interface functions. The
functions are grouped into the following categories:

• Session control
• File operation
• Data transfer
• StorHouse command interface
• General usage.

Chapter 5 also explains Callable Interface entry point names, special considerations
for CICS programmers, and how to issue functions in synchronous and asynchronous
form.

Callable Interface Entry Point Names
Callable Interface functions are invoked through two entry points: LSMCALL and
LSMCICS.

• All TSO/batch programs use the entry point LSMCALL. For FORTRAN
programs, LSMCAL is an alias for LSMCALL.

• All CICS programs must use the entry point LSMCICS.

Special Considerations for CICS Programmers
All material presented in this document applies to both the Callable Interface and the
CICS Interface with the exception of the program names as described in the previous
paragraph.
SGI, Corp. Callable Interface Programmer’s Guide 5-1

Callable Interface Functions
Special Considerations for CICS Programmers5
All function parameter lists are identical for LSMCALL and LSMCICS with the
following exception:

Note For every CICS Interface function, the first two parameters in the CICS Interface
parameter list must be DFHEIBLK and DFHCOMMAREA. DFHEIBLK and
DFHCOMMAREA are then followed by the standard parameter list that is
documented for each function listed in this manual.

Defining the CICS Interface Programs
The CICS Interface uses CICS Distributed Transaction Processing facilities. It consists
of one transaction, LSMC, and five programs: LSMCFLH, LSMCICS, LSMLSMC,
LSMLOAD, and LSMUXSSN. LSMLOAD and LSMUXSSN are components of the
standard (non-CICS) StorHouse Host Interface. LSMCICS is the interface stub link-
edited with a user transaction program. It provides functions in a CICS environment
equivalent to those of LSMCALL, the interface stub used in a Batch or TSO
environment.

When a user program CALLs the LSMCICS stub, LSMCICS executes a CICS LINK to
program LSMCFLH. When first establishing a StorHouse session (CONNECT
function), LSMCFLH starts server transaction LSMC, which then invokes program
LSMLSMC. The LSMC transaction remains active for the life of a user’s StorHouse
session (CONNECT to DISCONNECT) and processes user requests from LSMCFLH
to the Host Subsystem and StorHouse. During a StorHouse session, a user
application may consist of one CICS conversational transaction, or it may span
multiple CICS pseudo-conversational tasks across multiple CICS regions and systems.
Application designers and programmers must work with CICS system programmers
to develop and define the required CICS resource definitions. (Refer to Chapter 7 of
the Host Software Installation and Operations Guide in the StorHouse User Document
Set.)

Please note the following important requirement for O-TOKENs and C-TOKENs, the
session identifiers that are returned to a user program after OPEN and CONNECT
function requests, respectively:

Note CICS pseudo-conversational transaction programs that use the CICS interface must
be written so that O-TOKENs and C-TOKENs are saved and passed to subsequent
transactions and programs that use the same StorHouse session.

This can be accomplished by defining the tokens in a COMMAREA specified on
various CICS control transfer commands.

For example, it is desired that PROGRAM 1 issue a CONNECT request and then
return to CICS specifying that transaction NEXT gets control. Transaction NEXT will
then do more StorHouse processing. To achieve this, PROGRAM 1 defines the
following in its WORKING-STORAGE:
5-2 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
Special Considerations for CICS Programmers 5
01 C-TOKEN PIC S9(8) COMP VALUE +0.

01 COMMAREA-FOR-TRANSACTION-NEXT.
05PASS-C-TOKEN PIC S9(8) COMP.

PROGRAM 1 states the following in its PROCEDURE DIVISION:

CALL ‘LSMCICS’ USING DFHEIBLK,DFHCOMMAREA,
CONNECT,C-TOKEN,R-CODE,
...other parameters...

When it is time to pass control to transaction NEXT, PROGRAM 1 states:

MOVE C-TOKEN TO PASS-C-TOKEN.
EXEC CICS RETURN TRANSID (‘NEXT’)

COMMAREA (COMMAREA-FOR-NEXT-TRANSACTION)
LENGTH (LENGTH OF COMMAREA-FOR-NEXT-TRANSACTION)

Error Handling
When interface programs LSMCFLH and LSMLSMC encounter errors associated with
their processing, rather than StorHouse-related errors, both write error messages to
CSMT, the CICS transient data queue in the CICS region where they are executing.
They also write error messages to CEBRtermid, a temporary storage queue in the
CICS region that owns the terminal associated with the transaction. To view these
messages, the terminal operator can invoke the CEBR transaction. By default, CEBR
browses CEBRtermid. This is the same convention used by COBOL II. Messages
written to the CSMT DESTID appear in the CICS region SYSOUT output. To assist
in finding Interface messages within this large output dataset, all messages begin with
an exclamation mark (!). When using a product like SDSF, a FIND ! command locates
these messages.

Restrictions
The CICS environment imposes the following restrictions on an applications
programmer:

• All application programs must be written in Command Level CICS using
Assembler, COBOL, COBOL II, PL/1, or C.

• Asynchronous forms of Callable Interface functions are not allowed.

.

. (other storage definitions)

.

SGI, Corp. Callable Interface Programmer’s Guide 5-3

Callable Interface Functions
Synchronous and Asynchronous Functions5
• As with any database-type system (such as DB2), CICS resources should not be
held across calls to LSMCICS.

• Non-terminal related tasks can CALL LSMCICS to access StorHouse. However,
any such transaction must complete the StorHouse session. That is, the
transaction must perform CONNECT, OPEN, READ/WRITE, CLOSE, and
DISCONNECT within the scope of its execution.

• User applications employing CICS Asynchronous Processing techniques such as
the following example cannot change terminals, unless the specified transaction
does not access StorHouse:

EXEC CICS START (transid) FROM (startdata) TERMID (xxx)

• All transaction programs that CALL LSMCICS must have the original EIBTRMID
that performed the CONNECT.

Synchronous and Asynchronous Functions
Functions can be issued in synchronous or asynchronous form as explained below.
The functions described in this chapter are presented in synchronous form. To
change a function from synchronous to asynchronous, prefix AS to the function
name. For example, the asynchronous form of READ-SEQ is ASREAD-SEQ.

Synchronous Form
In synchronous form, control is returned to the user program only when a function has
completed. In other words, a request was passed to the StorHouse Subsystem, and the
Subsystem returned a response.

For some functions, the StorHouse Subsystem signals completion only after it passes
a request to the library device and the library device signals completion back to the
StorHouse Subsystem. For other functions, completion means only that the user
program can continue as though all processing associated with the function has been
completed, even though the Subsystem may have only partially acted on the request.
For example, WRITE signals completion when data has been moved from the user
buffer to an assembly buffer in the Subsystem.

Asynchronous Form
In asynchronous form, control from a function call is returned to the user program as
soon as the request has been forwarded to the StorHouse Subsystem. The user must
call CHECK prior to using the results of the request. The user can obtain the address
5-4 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
Function Statement Format 5
of an Event Control Block (ECB) that is POSTed when the function completes by
calling ECBADDR.

Function Statement Format
This chapter shows all function statement formats for COBOL. For FORTRAN, PL/1,
assembler (ALC), or C programs, infer the parameter list from the COBOL examples.

PL/1 programs must declare the StorHouse LSMCALL as follows:

DECLARE LSMCALL EXTERNAL OPTIONS (ASSEMBLER,INTER);

Session Control Functions
Two session control functions allow an application to begin or end a StorHouse
session. These functions are:

• CONNECT
• DISCONNECT.

CONNECT and DISCONNECT are described in the following sections.
SGI, Corp. Callable Interface Programmer’s Guide 5-5

Callable Interface Functions
CONNECT5
CONNECT
CONNECT establishes a session with StorHouse. A session must exist before any
other functions can be performed. CONNECT requires StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 CONNECT PIC X(16) VALUE 'CONNECT'.
01 C-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 MESSAGE-FLAG PIC S9(8) COMP SYNC.
01 ACCOUNT PIC X(12).
01 PASSWORD PIC X(32).
01 SM-IDENTIFIER PIC X(6).
01 SUBSYSTEM-IDENTIFIER PIC X(4).

Parameter Overview
C-TOKEN Session identifier set by CONNECT. The application program should not manipulate

(in particular, not cause arithmetic conversion to) the result. It should only be used as
the C-TOKEN parameter to other function calls related to this session.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING CONNECT,C-TOKEN,R-CODE,MESSAGE-FLAG,
ACCOUNT,PASSWORD,SM-IDENTIFIER,
SUBSYSTEM-IDENTIFIER.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
CONNECT,C-TOKEN,R-CODE,MESSAGE-FLAG,
ACCOUNT,PASSWORD,SM-IDENTIFIER,
SUBSYSTEM-IDENTIFIER.
5-6 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CONNECT 5
MESSAGE-FLAG An integer set to zero or non-zero. If non-zero, MESSAGE-FLAG indicates that the
caller requires text messages from all session errors including
CONNECT/DISCONNECT function errors. If zero, messages may not be retrievable
if the session has terminated.

ACCOUNT A 12-byte character string containing the StorHouse account identification code
(AID) that is used for the session. This field allows only a restricted character set.
Lowercase characters may be specified but will be treated as uppercase. The only
special characters allowed are _ (underscore) and $.

PASSWORD A 32-byte character string containing the StorHouse password associated with the
account. (See the description of the ACCOUNT parameter.) Only a restricted
character set is allowed. A blank character string indicates that no password was
specified.

SM-IDENTIFIER A 6-byte character string identifying the specific StorHouse system to be accessed. If
blank, the default or only StorHouse system for the specified subsystem (see below) is
accessed.

SUBSYSTEM-
IDENTIFIER

A 4-byte character string containing the name for the StorHouse Subsystem. If blank,
the default subsystem name LSMS is used. The default may be overridden by a
//LSMSssnm DD DUMMY statement inserted into execution JCL, where “ssnm” is
the subsystem name to be used.

Return Codes
Any non-zero value indicates that the session was not established. In this case, do not
call DISCONNECT. However, if MESSAGE-FLAG was set (non-zero), then call EMSG
to retrieve all messages.

Detailed Function Description
The first step in any interaction with StorHouse is to establish a session by calling
CONNECT. The session is identified with an account identification code, and
security is provided by requiring an associated password. After a successful (return
code zero) CONNECT, other StorHouse functions can be performed.

If MESSAGE-FLAG is set (non-zero), the application must call EMSG after the session
ends. The dynamic memory allocated for the session is not released until all messages
have been returned; that is, EMSG receives return code 3065, which indicates that
there are no more messages.
SGI, Corp. Callable Interface Programmer’s Guide 5-7

Callable Interface Functions
CONNECT5
Notes
• CONNECT has no asynchronous form; there is no ASCONNECT.

• A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the responsibility of
the user.

OPEN-SEQ, CREATE-OPEN, and OPEN-VRAM are considered session-related
functions.

• Sessions can be shared to the same extent that DCBs can be shared. In general,
sessions should not be used across multiple tasks.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 100-CONNECT-TO-SM
5-8 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
DISCONNECT 5
DISCONNECT
DISCONNECT concludes a session by terminating the connection with StorHouse
that was established by CONNECT. Standard StorHouse features are required.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 DISCONNECT PIC X(16) VALUE 'DISCONNECT'.
01 C-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.

Parameter Overview
C-TOKEN The session identifier returned by CONNECT.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

Return Codes
Any non-zero value indicates that the session was not concluded successfully. If
DISCONNECT fails, resources allocated by StorHouse support routines, both in the
user address space and in the StorHouse Subsystem address space, may not be
released.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING DISCONNECT,C-TOKEN,R-CODE.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
DISCONNECT,C-TOKEN,R-CODE.
SGI, Corp. Callable Interface Programmer’s Guide 5-9

Callable Interface Functions
DISCONNECT5
Detailed Function Description
The final step in any interaction with StorHouse is to conclude a session by calling
DISCONNECT. The session is identified by the C-TOKEN variable returned from
CONNECT. A successful (return code zero) DISCONNECT concludes the session
and releases all resources allocated by StorHouse support functions.

Notes
• A session can be established in one task (under one TCB) and then used in

another task; however, DISCONNECT must be issued from the same task (TCB)
that issued the CONNECT.

• File operations should be explicitly closed before signing off; otherwise, the data
transfer ends with an abort status, and DISCONNECT returns an error (2957).

• If MESSAGE-FLAG was set when the session was established (see CONNECT),
then EMSG should always be called following DISCONNECT.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program:”

PARAGRAPH 700-DISCONNECT
5-10 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
File Operation Functions 5
File Operation Functions
The five file operation functions are:

• OPEN-SEQ – opens a non-VRAM file on StorHouse. Non-VRAM files are
processed sequentially.

• CREATE-OPEN – creates a new VRAM file on StorHouse and then establishes a
data transfer link for writing data to that file.

• OPEN-VRAM – opens a StorHouse VRAM file. VRAM files can be processed
sequentially, or individual records can be accessed by record number or by key
value, depending on the file access method.

• CHECKPOINT – synchronizes file transfer by ensuring that all previously written
records have been received and processed by StorHouse.

• CLOSE – terminates the file operation.

These functions are described in the following sections.
SGI, Corp. Callable Interface Programmer’s Guide 5-11

Callable Interface Functions
OPEN5
OPEN
OPEN is an obsolete function that is retained only for compatibility with prior
releases. New applications that process sequential files should use OPEN-SEQ. For
information about OPEN, refer to a prior version of this document.
5-12 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
OPEN-SEQ 5
OPEN-SEQ
OPEN-SEQ establishes a data transfer link between the user program and StorHouse,
sets the direction of the data flow, and identifies the file that will be referenced. This
function allows sequential transfer of complete files, using the read or write functions.
OPEN-SEQ requires StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 OPEN-SEQ PIC X(16) VALUE 'OPEN-SEQ'.
01 C-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 MESSAGE-FLAG PIC S9(8) COMP SYNC.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 MODE PIC X(6).
01 FILE-NAME PIC X(56).
01 VERSION PIC S9(8) COMP SYNC.
01 FILE-PASSWORDS.

05 FILE-READ-PASSWORD PIC X(8) VALUE SPACES.
05 FILE-WRITE-PASSWORD PIC X(8) VALUE SPACES.
05 FILE-DELETE-PASSWORD PIC X(8) VALUE SPACES.

01 GROUP-NAME PIC X(8).

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING OPEN-SEQ,C-TOKEN,R-CODE,MESSAGE-FLAG,
O-TOKEN,MODE,FILE-NAME,VERSION,
FILE-PASSWORDS,GROUP-NAME,
GROUP-PASSWORDS,FILE-LOCATION,
FILE-ATTRIB,FILE-OPTIONS.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
OPEN-SEQ,C-TOKEN,R-CODE,MESSAGE-FLAG,
O-TOKEN,MODE,FILE-NAME,VERSION,
FILE-PASSWORDS,GROUP-NAME,
GROUP-PASSWORDS,FILE-LOCATION,
FILE-ATTRIB,FILE-OPTIONS.
SGI, Corp. Callable Interface Programmer’s Guide 5-13

Callable Interface Functions
OPEN-SEQ5
01 GROUP-PASSWORDS.
05 GROUP-READ-PASSWORD PIC X(8) VALUE SPACES.
05 GROUP-WRITE-PASSWORD PIC X(8) VALUE SPACES.
05 GROUP-DELETE-PASSWORD PIC X(8) VALUE SPACES.

01 FILE-LOCATION.
05 VOLUMESET-NAME PIC X(8).
05 FILESET-NAME PIC X(8).

01 FILE-ATTRIB.
05 FATTR-LIST-SIZE PIC S9(8) COMP SYNC VALUE 9.
05 FATTR-FILE-SIZE PIC S9(8) COMP SYNC.
05 FATTR-MAX-RECORD-LEN PIC S9(8) COMP SYNC.
05 FATTR-TRANSPORT-FLAG PIC S9(8) COMP SYNC.
05 FATTR-DATA-XLATE-FLAG PIC S9(8) COMP SYNC.
05 FATTR-FIXED-RECORD-FL PIC S9(8) COMP SYNC.
05 FATTR-CC-ANSI-FLAG PIC S9(8) COMP SYNC.
05 FATTR-CC-MACH-FLAG PIC S9(8) COMP SYNC.
05 FATTR-BLOCK-SIZE PIC S9(8) COMP SYNC.
05 FATTR-RETENTION-INTERVAL PIC S9(8) COMP SYNC.

01 FILE-OPTIONS.
05 FOPTS-LIST-SIZE PIC S9(8) COMP SYNC VALUE 8.
05 FOPTS-LOCK PIC S9(8) COMP SYNC.
05 FOPTS-WAIT PIC S9(8) COMP SYNC.
05 FOPTS-ATF PIC S9(8) COMP SYNC.
05 FOPTS-EDC PIC S9(8) COMP SYNC.
05 FOPTS-LIMIT PIC S9(8) COMP SYNC.
05 FOPTS-NEW PIC S9(8) COMP SYNC.
05 FOPTS-UNLOCK PIC S9(8) COMP SYNC.
05 FOPTS-VTF PIC S9(8) COMP SYNC.

Parameter Overview
C-TOKEN Session identifier (connect token).

R-CODE Final status from the requested operation; see the following section “Return Codes.”

MESSAGE-FLAG An integer set to zero or non-zero. If non-zero, MESSAGE-FLAG indicates that the
caller requires indicative text messages from all data transfer operation errors
including CLOSE errors. If zero, messages may not be retrievable if the data transfer
has terminated.

O-TOKEN A variable that is set to the data transfer operation identifier (open token). The
application program should not manipulate (in particular, not cause arithmetic
conversion to) the result; it should only be used as the O-TOKEN parameter to other
function calls for this file.

MODE A 6-byte character string that identifies the file reference mode. Valid MODE values
are READ and WRITE.

FILE-NAME A 56-byte character string that contains either the StorHouse file name or the
DDname to be referenced. If the DDname is specified, the string must begin with the
5-14 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
OPEN-SEQ 5
characters “DD=”. In this case, the file name used will be the DSNAME specified on
the named DD statement. File names shorter than 56 characters must be padded on
the right with blanks.

VERSION File version number, which applies only to READ operations. Zero is the default
(most current) version. A negative value indicates a relative version number. Positive
values are not supported.

FILE-PASSWORDS An array of three 8-character variables containing the read, write, and delete
passwords associated with the file name. The array entry for a password that is not
supplied must be all blanks.

GROUP-NAME An 8-byte character string that identifies the file access group. If the file is stored
under the user’s default group, this parameter need not be supplied; that is, its value
must be all blanks.

GROUP-
PASSWORDS

An array of three 8-character variables containing the read, write, and delete
passwords for the group. The GROUP-PASSWORDS array has the same format as the
FILE-PASSWORDS array.

FILE-LOCATION An array of two 8-character variables containing the file’s destination volume set
name and file set name, respectively. If a default is used, FILE-LOCATION should
contain all blanks. This parameter applies to WRITE operations only.

FILE-ATTRIB An array of 32-bit integers that provides file attributes. The caller specifies values for
the first entry in the array, FATTR-LIST-SIZE, and for FATTR-BLOCK-SIZE. FATTR-
LIST-SIZE contains the number of the other elements in the file attributes array. To
supply or retrieve all available file attributes, set FATTR-LIST-SIZE to 9.

For MODE=WRITE, the caller specifies file attributes. FATTR-FILE-SIZE is required.
All other attributes are optional. The caller must supply a value for all attributes
included in the array. Attributes not included in the array assume a value of 0, which
indicates use of the default. (The actual default value may not equal zero.)

For MODE=READ, all file attributes, except for FATTR-BLOCK-SIZE, are returned to
the caller.

For flag values, a negative value implies the opposite of the positive value; zero
indicates that the default is used.

The elements in the FILE-ATTRIB array must be listed in the following order:

• FATTR-LIST-SIZE – number of other elements in the array.

• FATTR-FILE-SIZE – total file size in bytes. This estimate must be larger than the
actual number of bytes that will be transferred.

• FATTR-MAX-RECORD-LEN – maximum length for any record in the file.
SGI, Corp. Callable Interface Programmer’s Guide 5-15

Callable Interface Functions
OPEN-SEQ5
• FATTR-TRANSPORT-FLAG – flag value; if positive, the file is in a transportable
format that can be retrieved by dissimilar host systems.

• FATTR-DATA-XLATE-FLAG – flag value; if positive, data will be stored as ASCII
characters. The data is translated from EBCDIC to ASCII when the file is stored
on StorHouse and translated from ASCII to EBCDIC when retrieved by the host.

• FATTR-FIXED-RECORD-FL – flag value; if positive, the records are fixed length.

• FATTR-CC-ANSI-FLAG – flag value; if positive, the first character of each record
is a print carriage control character of the FORTRAN (or ANSI) type.

• FATTR-CC-MACH-FLAG – flag value; if positive, the first character of each
record is a print carriage control character of “machine” type.

• FATTR-BLOCK-SIZE – size in bytes of a buffer area used by the StorHouse
software to block user records prior to moving data to or from the StorHouse
Subsystem. The caller does not have to reserve this area because it is GETMAINed
and FREEMAINed by the StorHouse software.

• FATTR-RETENTION-INTERVAL – the retention period for the file. Valid values
are:

• Non-zero positive integer (for example, 60), which indicates the number of
days to retain the file.

• -2, which indicates to retain the file forever.

• -1, which indicates zero days, or no retention.

• 0, which indicates the retention period is not specified at the file level and
assumes the default value. StorHouse determines the default value as follows:

If the file’s resident file set has a retention attribute equal to -2, -1, or a
specified number of days, the file set retention attribute determines the file
retention attribute.

If the file’s resident file set has a retention attribute of 0, the
RETENTION_MODE system parameter determines the file retention
attribute. If RETENTION_MODE is set to BASIC, the file retention is
ZERO. If RETENTION_MODE is set to STRICT, the file retention is
FOREVER.

The caller specifies the value for block size. A value of zero defaults to the site-selected
value for block size. A value of 1 to 256 causes buffering to be bypassed.

The recommended block size is between 32,000 and 100,000 bytes and should
contain 2 or more records plus 4 bytes.
5-16 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
OPEN-SEQ 5
FILE-OPTIONS An array of 32-bit integers that provide file options. These options correspond to the
StorHouse GET and PUT command modifiers. For information about GET and PUT,
refer to the Command Language Reference Manual.

The caller sets the first entry in the FILE-OPTIONS array, FOPTS-LIST-SIZE, to the
number of the other elements in the array. To access all options, set FOPTS-LIST-SIZE
to 8.

Other entries are either integer or flag values.

• Integers are either positive or 0. Zero indicates that the default value is used.

Note: The actual default value may not equal zero.

• Flags are any positive value (indicates “true” and the option is selected), any
negative value (indicates the opposite of “true”), or zero (indicates use of the
default).

The caller must supply a value for all attributes included in the array. Attributes not
included in the array assume a value of 0, which indicates use of the default.

The elements in the FILE-OPTIONS array are:

• FOPTS-LIST-SIZE – number of other elements in the array.

• FOPTS-LOCK – lock flag. A positive value indicates that the file is to be explicitly
locked; it will remain locked after the file operation completes.

• FOPTS-WAIT – wait for file lock flag.

• For READ operations, a positive value indicates that the data transfer
operation should wait for a locked file to be unlocked.

• For WRITE operations, this field is no longer used. It is not necessary to
change existing code. For new programs, set this field to 0.

• FOPTS-ATF – Access Time Factor (ATF). ATF can be 1, 2, or 3. This field is used
for WRITE operations only.

• FOPTS-EDC – error detection code identifier. FOPTS-EDC can be a positive
integer equal to 1 or 2; zero to indicate use of the default (which is
recommended); or negative to indicate that no EDC will be generated for data in
the file. This field is used for WRITE operations only.

• FOPTS-LIMIT – file version LIMIT value. FOPTS-LIMIT can be a positive integer
between 1 and 32768. This field is used for WRITE operations only.
SGI, Corp. Callable Interface Programmer’s Guide 5-17

Callable Interface Functions
OPEN-SEQ5
• FOPTS-NEW – new file flag. A positive value indicates that a previous version of
the file (same group and file name) must not exist in StorHouse. This field is
used for WRITE operations only.

• FOPTS-UNLOCK – unlock flag. This field is obsolete. It is not necessary to
change existing code. For new programs, set FOPTS-UNLOCK to 0.

• FOPTS-VTF – Vulnerability Time Factor (VTF). VTF is an integer equal to 1, 2,
3, or 4. A value of 1 indicates /VTF=NEVER; 2 indicates /VTF=NEXT; 3 indicates
/VTF=NOW; and 4 indicates /VTF=DIRECT. This field is used for WRITE
operations only.

Refer to the Command Language Reference Manual for information about the
VTF attribute.

Return Codes
Any non-zero value indicates that the file was not opened. In this case, any other
StorHouse functions relating to this file should not be issued. In particular, CLOSE
will fail due to an invalid O-TOKEN.

Detailed Function Description
OPEN-SEQ is used to open a non-VRAM file on StorHouse. The StorHouse file
name is identified by the value of FILE-NAME, and the type of processing is provided
by the value of MODE. C-TOKEN contains the session identifier returned by
CONNECT. OPEN-SEQ returns a file identifier in the O-TOKEN variable. After a
successful OPEN-SEQ (that is, a return code of zero), other StorHouse functions
relating to this file can be performed.

A StorHouse file opened with OPEN-SEQ can only be processed sequentially.
Facilities implemented by the optional VRAM component, such as reading a record
by record number, cannot be used.

If MESSAGE-FLAG is set (non-zero), the application must call EMSG after the file is
closed. The dynamic memory allocated for the transfer operation is not released until
all messages have been returned; that is, a 3065 return code, indicating no more
messages, has been received from EMSG.

Notes
• Each OPEN-SEQ establishes a transfer link and returns a file identifier

(O-TOKEN). It is the user’s responsibility to maintain the integrity of the open
tokens.
5-18 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
OPEN-SEQ 5
• A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility.

OPEN-SEQ must be considered a session-related function.

• If a file is opened and closed under one TCB and read or written from another
TCB, the two tasks must share Subpool 0 storage. If one of these tasks is a subtask
of the other, this is accomplished by the SZERO=YES operand on the ATTACH
MACRO (this is the default value).

• If the return code is not zero and the associated messages (if any) are to be
retrieved, EMSG should be called specifying the C-TOKEN rather than the
O-TOKEN.

• Refer to Appendix C for a discussion of programming guidelines for using
multiple open statements.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1000-OPEN-NONVRAM
SGI, Corp. Callable Interface Programmer’s Guide 5-19

Callable Interface Functions
CREATE-OPEN5
CREATE-OPEN
CREATE-OPEN creates a new VRAM file on StorHouse, and then establishes a data
transfer link for writing data to that file. CREATE-OPEN is equivalent to issuing a
StorHouse Command Language CREATE FILE command followed by OPEN-VRAM
in mode APPEND. CREATE-OPEN requires the StorHouse VRAM component.

CREATE-OPEN requires RECORD privilege. For more information about StorHouse
privileges, refer to the Command Language Reference Manual.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 CREATE-OPEN PIC X(16) VALUE ‘CREATE-OPEN’.
01 C-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 MESSAGE-FLAG PIC S9(8) COMP SYNC.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 FILE-NAME PIC X(56).
01 FILE-PASSWORD PIC X(8).
01 GROUP-NAME PIC X(8).
01 GROUP-PASSWORD PIC X(8).
01 MODEL-FILE-NAME PIC X(56).

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING CREATE-OPEN,C-TOKEN,R-CODE,
MESSAGE-FLAG,O-TOKEN,FILE-NAME
FILE-PASSWORD,GROUP-NAME,
GROUP-PASSWORD,MODEL-FILE-NAME,
FILE-LOCATION,FILE-ATTRIB.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
CREATE-OPEN,C-TOKEN,R-CODE,
MESSAGE-FLAG,O-TOKEN,FILE-NAME,
FILE-PASSWORD,GROUP-NAME,
GROUP-PASSWORD,MODEL-FILE-NAME,
FILE-LOCATION,FILE-ATTRIB.
5-20 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CREATE-OPEN 5
01 FILE-LOCATION.
05 VOLUMESET-NAME PIC X(8).
05 FILESET-NAME PIC X(8).

01 FILE-ATTRIB.
05 FATTR-LIST-SIZE PIC S9(8) COMP SYNC VALUE 10.
05 FATTR-BLOCK-SIZE PIC S9(8) COMP SYNC.
05 FATTR-CHECKPOINT PIC S9(8) COMP SYNC.
05 FATTR-FILE-SIZE PIC S9(8) COMP SYNC.
05 FATTR-DATA-XLATE PIC S9(8) COMP SYNC.
05 FATTR-ATF PIC S9(8) COMP SYNC.
05 FATTR-CACHE PIC S9(8) COMP SYNC.
05 FATTR-EDC PIC S9(8) COMP SYNC.
05 FATTR-LIMIT PIC S9(8) COMP SYNC.
05 FATTR-VTF PIC S9(8) COMP SYNC.
05 FATTR-RETENTION-INTERVAL PIC S9(8) COMP SYNC.

Parameter Overview
C-TOKEN The session identifier returned by CONNECT.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

MESSAGE-FLAG An integer set to zero or non-zero. If non-zero, this flag indicates that the caller
requires text messages from all data transfer errors including CLOSE function errors.
If zero, messages may not be retrievable after CLOSE has been issued.

O-TOKEN Variable set by CREATE-OPEN to the file identifier. The application program should
not manipulate (in particular, not cause arithmetic conversion to) the result; it should
only be used as the O-TOKEN parameter to other function calls for this file.

FILE-NAME A 56-byte character string that contains either the StorHouse file name or the
DDname to be referenced. If the DDname is specified, the string must begin with the
characters DD=. In this case, the file name used will be the DSNAME specified on the
named DD statement. File names shorter than 56 characters must be padded on the
right with blanks.

FILE-PASSWORD An 8-character variable containing the write password for the file. This password
must match the write password for the model file (see MODEL-FILE-NAME) unless
the user has the privilege to bypass file passwords. If the user has the privilege to
bypass file passwords, this value is not used unless there is no model file. All other
passwords for the new file will be copied from the passwords defined for the model
file. If no write password is defined for the model file, this variable should be set to all
blanks.

If no model file name is provided, the FILE-PASSWORD value becomes the new read,
write, and delete passwords for the newly created file. The file password value also
supplies the write and delete passwords for any existing version of that file.
SGI, Corp. Callable Interface Programmer’s Guide 5-21

Callable Interface Functions
CREATE-OPEN5
GROUP-NAME An 8-byte character string that identifies the file access group for the new file and for
the model file (see MODEL-FILE-NAME). If the file is stored under the account’s
default group, this parameter may be specified as all blanks. SETGROUP privilege is
required to specify any group other than the user’s default.

GROUP-
PASSWORD

An 8-character variable containing the write password for the file access group. If no
write password is defined for the group, this variable should be set to all blanks.

MODEL-FILE-
NAME

A 56-byte character string that contains either the StorHouse file name or the
DDname to be referenced. If the DDname is specified, the string must begin with the
characters DD=. In this case, the file name used will be the DSNAME specified on the
named DD statement. File names shorter than 56 characters must be padded on the
right with blanks.

The model file must already exist on StorHouse. File characteristics for the new file
(whose name is given by FILE-NAME) are determined by copying the characteristics
of the model file. These characteristics are overridden by non-default values in the
FILE-ATTRIB array.

Only RECORD type files can be created without a model file specification. If blanks
are specified for the model file name, then file attributes are determined only from
the FILE-ATTRIB array.

MODEL-FILE-NAME must not be the same as FILE-NAME. That is, a prior version
of a file cannot be used as a model for a new version of the same file.

FILE-LOCATION An array of two, 8-character variables containing the file’s destination volume set
name and file set name. If a variable contains all blanks, the default value associated
with the StorHouse account is used. If the account’s default value is also blank, the
value is copied from the model file.

FILE-ATTRIB An array of 32-bit integers that provide file attributes. The first entry in the array
must be set to the number of other elements in the array. To provide all attributes, set
FATTR-LIST-SIZE to 10.

Other entries in the array are either integers or flag values.

• Integers are either positive or 0. Zero indicates that the default is used.

Note: The actual default value may not equal zero.

• Flags have one of three values:

• Positive indicates true (the option is selected).
• Negative indicates false (the option is not selected).
• Zero indicates use of the default value.
5-22 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CREATE-OPEN 5
The caller must supply a value for all attributes included in the array. Attributes not
included in the array assume a value of 0. Either a file size or checkpoint must be
supplied.

Non-default values override attributes determined from the model file. If no model
file name is specified, non-default values override normal StorHouse file attribute
defaults.

The elements of the FILE-ATTRIB array are:

• FATTR-LIST-SIZE – the number of other elements in the array.

• FATTR-BLOCK-SIZE – the size in bytes of a buffer area used by the Callable
Interface to block user records prior to moving data to the StorHouse Subsystem.
The caller does not have to reserve this area because it is GETMAINed and
FREEMAINed by the StorHouse software.

The caller supplies the value for block size. A value of 0 causes a site-selected
value to be used for block size. A value of 1 to 256 causes buffering to be
bypassed. The recommended block size is between 32,000 and 100,000 bytes
and should be large enough to contain two or more records plus four bytes.

• FATTR-CHECKPOINT – a checkpoint number at which file processing should
be restarted. For normal (non-restart) operations, 0 must be specified. If a non-
zero checkpoint value is specified, then the remaining entries in this attribute
array are ignored.

• FATTR-FILE-SIZE – the number of bytes of storage space (in units of 1000 bytes)
allocated whenever a file is opened for an append operation and whenever a
checkpoint is issued. The value must contain enough space for the largest extent
set that is written. This extent set includes a data extent, a DF extent, and for
KEYED files, a K extent. A file size must always be specified (non-zero) for file
creation (in other words, FATTR-CHECKPOINT value is zero). Refer to the
Command Language Reference Manual for more information about specifying file
size.

• FATTR-DATA-XLATE – a flag value; if positive, data is stored as ASCII characters.
The data is translated from EBCDIC to ASCII as it is transferred to StorHouse
and is translated from ASCII to the local code for the host as it is transferred to
the host (for IBM mainframes the local code is EBCDIC).

• FATTR-ATF – Access Time Factor, a positive integer equal to 1, 2, or 3. Refer to
the Command Language Reference Manual for additional information.

• FATTR-CACHE – the number of records cached by StorHouse during read
operations for files opened with a mode of READ or UPDATE and a method
including RECORD or KEYED. The cache value may be specified as a negative
value. A negative value turns off caching and ignores the cache specification for
the model file.
SGI, Corp. Callable Interface Programmer’s Guide 5-23

Callable Interface Functions
CREATE-OPEN5
• FATTR-EDC – a flag value; if positive error detection coding is enabled. If
negative, EDC is disabled.

• FATTR-LIMIT – the file version limit value, a positive integer between 1 and
32768, or 0 for default.

• FATTR-VTF – Vulnerability Time Factor, an integer equal to 2, 3, or 4.

• 2 indicates a VTF of NEXT
• 3 indicates a VTF of NOW
• 4 indicates a VTF of DIRECT.

Refer to the Command Language Reference Manual for additional information
about the VTF attribute.

• FATTR-RETENTION-INTERVAL – the retention period for the file. Valid values
are:

• Non-zero positive integer (for example, 60), which indicates the number of
days to retain the file.

• -2, which indicates to retain the file forever.

• -1, which indicates zero days, or no retention.

• 0, which indicates the retention period is not specified at the file level and
assumes the default value. StorHouse determines the default value as follows:

If the file’s resident file set has a retention attribute equal to -2, -1, or a
specified number of days, the file set retention attribute determines the file
retention attribute.

If the file’s resident file set has a retention attribute of 0, the
RETENTION_MODE system parameter determines the file retention
attribute. If RETENTION_MODE is set to BASIC, the file retention is
ZERO. If RETENTION_MODE is set to STRICT, the file retention is
FOREVER.

Return Codes

2629 Indicates that the caller supplied an invalid checkpoint number.

2635 May be caused by the following errors:

• CREATE-OPEN was used to create a new version of the model file.
• The specified model file is open for write or update by another user.
• A user tried to CREATE-OPEN a file whose highest version was already in use.
5-24 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CREATE-OPEN 5
Refer to the error message text retrieved by EMSG to identify the specific cause of
error.

Any Other Non-Zero
Code

Indicates that the file was not created and is not open. Any other StorHouse
functions relating to this file should not be issued. In particular, CLOSE will fail
because of an invalid O-TOKEN.

Detailed Function Description
CREATE-OPEN creates a VRAM file on StorHouse and builds an open data transfer
path to allow WRITE operations to that file. The VRAM file is identified by the value
of FILE-NAME. C-TOKEN is the session identifier returned by CONNECT. CREATE-
OPEN returns a file identifier in the O-TOKEN variable. After a successful CREATE-
OPEN (a return code of zero), operations for this file can be performed.

Notes
• Each CREATE-OPEN establishes another transfer link and returns another file

identifier (O-TOKEN). It is the responsibility of the user to maintain the
integrity of the open tokens.

• If the amount of space indicated by the FATTR-FILE-SIZE variable cannot be
allocated, StorHouse returns an error code. Refer to the Command Language
Reference Manual (CREATE FILE command) for information about how to
estimate VRAM file sizes.

• If the return code is non-zero, there may be associated error messages. These
messages can be retrieved using the EMSG function. The C-TOKEN (not the
O-TOKEN) must be specified in the EMSG call.

• A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility. CREATE-OPEN must be considered a session-related function.

• If a file is opened and closed under one TCB and written from another TCB, the
two tasks must share Subpool 0 storage. If one of these tasks is a subtask of the
other, this is accomplished by the SZERO=YES operand on the ATTACH MACRO
(this is the default value).

• Generally, model files should be created only for use as models, not for use as
data files. When a file is used as a model, it is referenced (mounted) as part of
CREATE-OPEN processing. If the model is on optical storage, a physical platter
mount may be required. Allocating models as empty files on level F storage
prevents this extra platter mount.
SGI, Corp. Callable Interface Programmer’s Guide 5-25

Callable Interface Functions
CREATE-OPEN5
• The additional technical information about programming guidelines for using
multiple open statements and checkpoints supplied in Appendix C,
“Checkpoint/Restart and Programming Guidelines,” also applies to CREATE-
OPEN.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-26 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
OPEN-VRAM 5
OPEN-VRAM
OPEN-VRAM establishes a data transfer link between the user program and
StorHouse, sets the direction of the data flow, indicates the type of processing that
will be performed, and identifies the file that will be referenced. OPEN-VRAM
requires the StorHouse VRAM Component.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 OPEN-VRAM PIC X(16) VALUE 'OPEN-VRAM'.
01 C-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 MESSAGE-FLAG PIC S9(8) COMP SYNC.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 MODE PIC X(6).
01 ACCESS-METHOD PIC X(24).
01 FILE-NAME PIC X(56).
01 REVISION PIC S9(8) COMP SYNC.
01 FILE-PASSWORDS.

05 FILE-READ-PASSWORD PIC X(8).

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING OPEN-VRAM,C-TOKEN,R-CODE,
MESSAGE-FLAG,O-TOKEN,MODE,
ACCESS-METHOD,FILE-NAME,
REVISION,FILE-PASSWORDS,
GROUP-NAME,GROUP-PASSWORDS,
REL-REC-NUM,FILE-ATTRIB.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
OPEN-VRAM,C-TOKEN,R-CODE,
MESSAGE-FLAG,O-TOKEN,MODE,
ACCESS-METHOD,FILE-NAME,
REVISION,FILE-PASSWORDS,
GROUP-NAME,GROUP-PASSWORDS,
REL-REC-NUM,FILE-ATTRIB.
SGI, Corp. Callable Interface Programmer’s Guide 5-27

Callable Interface Functions
OPEN-VRAM5
05 FILE-WRITE-PASSWORD PIC X(8).
01 GROUP-NAME PIC X(8).
01 GROUP-PASSWORDS.

05 GROUP-READ-PASSWORD PIC X(8).
05 GROUP-WRITE-PASSWORD PIC X(8).

01 REL-REC-NUM PIC S9(8) COMP SYNC.
01 FILE-ATTRIB.

05 FATTR-LIST-SIZE PIC S9(8) COMP SYNC VALUE 8.
05 FATTR-MAX-RECORD-LEN PIC S9(8) COMP SYNC.
05 FATTR-LAST-PHY-REC-NUM PIC S9(8) COMP SYNC.
05 FATTR-LAST-LOG-REC-NUM PIC S9(8) COMP SYNC.
05 FATTR-FILE-REVISION-NUM PIC S9(8) COMP SYNC.
05 FATTR-FILE-TYPE PIC S9(8) COMP SYNC.
05 FATTR-BLOCK-SIZE PIC S9(8) COMP SYNC.
05 FATTR-VERSION PIC S9(8) COMP SYNC.
05 FATTR-CHECKPT PIC S9(8) COMP SYNC.

Parameter Overview
C-TOKEN The session identifier returned by CONNECT.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

MESSAGE-FLAG An integer set to zero or non-zero. If non-zero, this flag indicates that the caller
requires text messages from all data transfer errors, including CLOSE function errors.
If zero, messages may not be retrievable after CLOSE has been issued.

O-TOKEN Variable set by OPEN-VRAM to the file identifier. The application program should
not manipulate (in particular, not cause arithmetic conversion to) the result; it should
only be used as the O-TOKEN parameter to other function calls for this file.

MODE A 6-byte character string that identifies the file reference mode. Valid MODE values
are READ, UPDATE, and APPEND.

ACCESS-METHOD A 24-byte character string that contains the type of processing to be performed on the
file. The valid types are SEQUENTIAL, RECORD, KEYED, ALL, or a combination of
any two or three of SEQUENTIAL, RECORD, and KEYED, separated by commas.
The type ALL specifies that all methods are included. Specify ALL for KRA-type
VRAM files only. If you specify ALL for RRA-type VRAM files, OPEN-VRAM will fail.

FILE-NAME A 56-byte character string that contains either the StorHouse file name or the
DDname to be referenced. If the DDname is specified, the string must begin with the
characters “DD=”. In this case, the file name used will be the DSNAME specified on
the named DD statement. File names shorter than 56 characters must be padded on
the right with blanks.

REVISION An integer set by the user to indicate the file version’s revision number.
5-28 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
OPEN-VRAM 5
• Zero is the default (most current) revision.
• A positive integer indicates an absolute revision number.
• A negative integer indicates a relative revision number.

It is the user’s responsibility to track absolute revision numbers.

FILE-PASSWORDS An array of two, 8-character variables containing the read and write passwords
associated with the file name. The array entry for a password that is not supplied
must be all blanks.

GROUP-NAME An 8-byte character string that identifies the file access group. If the file is stored
under the user’s default group, this parameter need not be supplied; that is, its value
must be all blanks.

GROUP-
PASSWORDS

An array of two, 8-character variables containing the read and write passwords for the
group. The GROUP-PASSWORDS array has the same format as the FILE-
PASSWORDS array.

REL-REC-NUM The relative record number of the first record to be read from StorHouse. This value
is only meaningful when MODE=READ and ACCESS-METHOD=
SEQUENTIAL.

FILE-ATTRIB An array of 32-bit integers that provides file attributes. The caller must set the first
entry in the array, FATTR-LIST-SIZE, to the number of the other elements in the
array. The minimum value allowed is 1. The caller also specifies a value for FATTR-
BLOCK-SIZE and may specify a value for FATTR-VERSION, and when applicable,
FATTR-CHECKPT. (Refer to the descriptions of FATTR-VERSION and FATTR-
CHECKPT.)

All other file attribute values, except for FATTR-CHECKPT, are returned to the caller
when the file is opened. The FATTR-CHECKPT value is returned to the caller only if
the caller does both of the following:

• Supplies a zero value
• Attempts to open a checkpointed, software-disabled file with OPEN-VRAM,

MODE=APPEND.

In this case, the returned value in FATTR-CHECKPT is the file’s last checkpoint
number.

The elements in the file attributes array must be listed in the following order:

• FATTR-LIST-SIZE – the number of the other elements in the array

• FATTR-MAX-RECORD-LEN – the maximum length for any record in the file

• FATTR-LAST-PHY-REC-NUM – the last physical record number in the file

• FATTR-LAST-LOG-REC-NUM – the last logical record number in the file
SGI, Corp. Callable Interface Programmer’s Guide 5-29

Callable Interface Functions
OPEN-VRAM5
• FATTR-FILE-REVISION-NUM – the absolute revision number of the file version

• FATTR-FILE-TYPE – the VRAM file type. A value of 0 indicates an RRA file, and
a value of 1 indicates a KRA file. VRAM file type is specified when the file is
created on StorHouse with the StorHouse Command Language CREATE FILE
command. For information about CREATE FILE, refer to the Command
Language Reference Manual.

• FATTR-BLOCK-SIZE – the size in bytes of a buffer area used by the Callable
Interface to block user records prior to moving data to or from the StorHouse
Subsystem. It is not necessary for the caller to reserve this area because it is
GETMAINed and FREEMAINed by the Callable Interface.

The caller supplies the value for block size. A value of 0 defaults to the site-
selected value for block size. A value of 1 to 256 causes buffering to be bypassed.

The recommended block size is between 32,000 and 100,000 bytes and should
contain two or more records plus four bytes.

FATTR-BLOCK-SIZE is used only when MODE=APPEND, or when
MODE=READ and ACCESS-METHOD=SEQUENTIAL.

• FATTR-VERSION – a user-supplied value that indicates the version of the file to
be opened

• To open the latest version, omit the attribute or supply a zero, which is the
default.

• To open a specific version, supply its relative version number as a negative
number (-1 through -32767).

• Positive values are not supported.

• FATTR-CHECKPT – a value supplied by the caller at open (MODE=APPEND) to
indicate the checkpoint number where file processing should be restarted. If zero
or omitted, a normal (nonrestart) OPEN-VRAM occurs.

After OPEN-VRAM is issued, the value of FATTR-CHECKPT is returned to the
caller only if MODE=APPEND, the file being opened is checkpointed and
software disabled, and the caller set FATTR-CHECKPT to 0.

Return Codes

2629 Indicates that the caller supplied an invalid checkpoint number.

2630 Indicates that the file was not opened because it is software disabled and that a valid
checkpoint exists. The last checkpoint number is returned in FATTR-CHECKPT.
5-30 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
OPEN-VRAM 5
2636 Indicates that the caller supplied a checkpoint number but MODE was not APPEND.

2637 Indicates that the caller attempted to open a noncurrent revision of a file at a
checkpoint. Only the current revision of a file can be opened at a checkpoint.

Any Other Non-Zero
Code

Indicates that the file was not opened. Any other StorHouse functions relating to this
file should not be issued. In particular, CLOSE will fail due to an invalid O-TOKEN.

Detailed Function Description
The OPEN-VRAM function opens a VRAM file in StorHouse. The VRAM file is
identified by the value of FILE-NAME, and the type of processing to be performed is
provided by FATTR-FILE-TYPE and MODE. C-TOKEN is the session identifier
returned by CONNECT. OPEN-VRAM returns a file identifier in the
O-TOKEN variable. After a successful OPEN-VRAM (that is, a return code of zero),
other StorHouse functions relating to this file can be performed.

If MESSAGE-FLAG is set (non-zero), the application must call EMSG after the data
transfer operation is closed. The dynamic memory allocated for the data transfer
operation is not released until all messages have been returned; that is, EMSG receives
a 3065 return code, indicating no more messages.

Notes
• Each OPEN-VRAM establishes another transfer link and returns another file

identifier (O-TOKEN). It is the responsibility of the user to maintain the
integrity of the open tokens.

• A VRAM file can be opened with MODE=APPEND either to write records into a
newly created (empty) file or to add records to a file that already contains data.
The two cases can be distinguished by checking the LAST_PHY_REC_NUM
attribute after open; for a new file, this attribute is set to zero.

• By issuing OPEN-VRAM with MODE=APPEND, StorHouse attempts to allocate
the amount of space that was specified as the value of the /SIZE modifier on the
CREATE FILE command for the file currently being opened. If this amount of
space cannot be allocated (for example, the file’s destination file set is filled and
cannot extend), StorHouse returns an error code. Refer to the Command
Language Reference Manual (CREATE FILE command) for more information
about how to estimate VRAM file size.

• If the caller attempts to open a checkpointed, software-disabled file and does not
supply a checkpoint number, OPEN-VRAM returns 2630 as the value of
R-CODE and the last checkpoint number in FATTR-CHECKPT. To open the
software disabled file at the returned checkpoint, the caller can issue another
SGI, Corp. Callable Interface Programmer’s Guide 5-31

Callable Interface Functions
OPEN-VRAM5
OPEN-VRAM (MODE=APPEND) and supply the previously returned checkpoint
number as the current value of FATTR-CHECKPT.

Only the current (most recent) revision of a file version may be opened at a
checkpoint.

• The following example illustrates how logical and physical record numbers are
assigned in a file change. If the last physical record number in a file is record
number 8, and record number 8 is deleted, the last physical record number
remains 8. The last logical record number is 7. New records appended to the file
begin at record number 9.

• If the return code is non-zero and the associated messages (if any) are to be
retrieved, EMSG should be called specifying the C-TOKEN rather than the
O-TOKEN.

• A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility.

OPEN-VRAM must be considered a session-related function.

• If a file is opened and closed under one TCB and read or written from another
TCB, the two tasks must share Subpool 0 storage. If one of these tasks is a subtask
of the other, this is accomplished by the SZERO=YES operand on the ATTACH
MACRO (this is the default value).

• Refer to Appendix C for additional technical information about programming
guidelines for using multiple open statements and for using OPEN-VRAM and
CHECKPOINT.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1100-OPEN-VRAM
5-32 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CHECKPOINT 5
CHECKPOINT
CHECKPOINT synchronizes file transfer by ensuring that all previously written
records have been received and processed by StorHouse. CHECKPOINT requires the
VRAM StorHouse software component.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 CHECKPOINT PIC X(16) VALUE 'CHECKPOINT'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 RETURN-CKPT-NUM PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier returned by OPEN-VRAM or CREATE-OPEN.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

RETURN-CKPT-
NUM

An integer set by StorHouse to the binary number associated with this checkpoint.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING CHECKPOINT,O-TOKEN,R-CODE,
RETURN-CKPT-NUM.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
CHECKPOINT,O-TOKEN,R-CODE,
RETURN-CKPT-NUM.
SGI, Corp. Callable Interface Programmer’s Guide 5-33

Callable Interface Functions
CHECKPOINT5
Return Codes

Any non-zero value indicates that the file was not successfully checkpointed. No
other operation may be performed against a file that returns an error during
CHECKPOINT, except for CLOSE.

Detailed Function Description
CHECKPOINT synchronizes file transfer to ensure that all record(s) have been
written to StorHouse.

CHECKPOINT returns the checkpoint number (value of RETURN-CKPT-NUM) that
must be used to restart the file transfer operation at this position. A data transfer
operation (MODE=APPEND only) can be restarted by specifying this checkpoint
number in the OPEN-VRAM function (FATTR-CHECKPT parameter) or the
CREATE-OPEN function (FATTR-CHECKPOINT).

Notes
• To perform CHECKPOINT with OPEN-VRAM, the value for MODE in the

OPEN-VRAM call must have been set to APPEND. ACCESS-METHOD is
ignored when MODE=APPEND.

• Refer to Appendix C, “Checkpoint/Restart and Programming Guidelines,” for
information about using CHECKPOINT and OPEN-VRAM.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-34 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CLOSE 5
CLOSE
CLOSE closes the file and terminates the data transfer operation that was started by
OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM. CLOSE requires StorHouse standard
features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 CLOSE PIC X(16) VALUE 'CLOSE'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 XFER-ABORT-FLAG PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

XFER-ABORT-
FLAG

A flag set by the user indicating either that the file transfer has completed normally or
that the StorHouse transfer should be aborted.

• A zero value means that this CLOSE indicates end-of-data.
• A non-zero value indicates that StorHouse should abort the data transfer. This

prevents a file from being cataloged on StorHouse and also cleans up any buffers
that may be in transit.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING CLOSE,O-TOKEN,R-CODE,XFER-ABORT-FLAG.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
CLOSE,O-TOKEN,R-CODE,XFER-ABORT-FLAG.
SGI, Corp. Callable Interface Programmer’s Guide 5-35

Callable Interface Functions
CLOSE5
XFER-ABORT-FLAG is set (non-zero) when the data stream to StorHouse must be
terminated because of an error.

Setting XFER-ABORT-FLAG forces a return code of 3000. If CLOSE is being called
because of a non-zero return code from READ/WRITE, do not set XFER-ABORT-
FLAG. This may cause the return code identifying the actual cause of the failure to be
lost.

XFER-ABORT-FLAG is only used for write operations.

Return Codes

Any non-zero value indicates that the file was not closed properly.

After a file write operation, a non-zero return code means that the file cannot be
guaranteed to be stored in StorHouse.

Detailed Function Description
The final step in any StorHouse file processing is to close the file, using CLOSE. The
file is identified by the O-TOKEN returned from OPEN-SEQ, CREATE-OPEN, or
OPEN-VRAM.

For a sequential write operation, CLOSE indicates end-of-file. All in-transit data
buffers are written to StorHouse, and transfer end is signaled. StorHouse completes
file storage and directory update operations, and honors the requested VTF level prior
to returning operation status. A return code of 0 from CLOSE indicates that the file
has been stored in StorHouse.

For a sequential read operation, CLOSE terminates the transfer and flushes any in-
transit data buffers. A non-zero return code indicates that all data from the file has
not been delivered to the application program.

For record-oriented transfers, CLOSE causes completion of all file and index updates.
A return code of 0 indicates that the file state in StorHouse is synchronized with the
state expected by the application program.

CLOSE always releases all StorHouse resources used for the transfer operation. If the
MESSAGE-FLAG was clear (0) in the OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM
function call, then CLOSE also releases all host resources used by the transfer.
Otherwise, EMSG must be called to retrieve all indicative text messages before host
resources are completely released.

A successful CLOSE (that is, a return code of 0), terminates the data transfer link and
closes the file associated with the O-TOKEN.
5-36 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CLOSE 5
Notes
• A file can be opened in one task (under one TCB) and then used in another task;

however, CLOSE may be issued only from the same task (TCB) that issued
OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

• When closing a VRAM file, some record pointers or data must still be posted to
the file. If the allocated file size is too small, the file becomes software disabled,
and data that was written to the file is lost. Refer to the Command Language
Reference Manual (CREATE FILE command) for information about how to
estimate VRAM file size.

• If MESSAGE-FLAG was set in the open function that began the transfer, then the
application should call EMSG following CLOSE until a return code of 3065,
indicating no more messages, is received.

• If a non-zero return code is received from the I/O operation, the programmer
should:

• Call the ESMG function

• Call CLOSE with the XFER-ABORT-FLAG not set

• Ensure that the return code and messages returned from the ESMG function
and CLOSE are logged.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1300-CLOSE-SM-FILE
SGI, Corp. Callable Interface Programmer’s Guide 5-37

Callable Interface Functions
Data Transfer Control Functions5
Data Transfer Control Functions
Data transfer control functions can be performed once a session has been established
and files have been opened. These functions are:

• READ – requests the next sequential record of a non-VRAM file from StorHouse.

• READ-SEQ – requests the next sequential record from a VRAM file.

• READ-RECORD – requests a record from a VRAM file. The record is identified
by its relative record number.

• READ-KEYED – retrieves a record from a VRAM file. The record is identified by
user-supplied key information.

• READ-NEXT-KEY – requests the next key entry-sequenced record from a VRAM
file.

• WRITE – sends a record to StorHouse.

• WRITE-KEY – transfers an external key record and a data record to StorHouse.

• DELETE– deletes the last record read from a VRAM file.

• CHANGE – changes the last record read in a VRAM file.

The following sections describe these functions.
5-38 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
READ 5
READ
READ requests the next sequential record of a non-VRAM file from StorHouse.
READ requires StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 READ PIC X(16) VALUE 'READ'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC X(buffer-size).
01 BUFFER-SIZE PIC S9(8) COMP SYNC.
01 RETURN-REC-LEN PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-SEQ.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER An area where the data record is placed.

BUFFER-SIZE A user-specified integer value indicating the size, in bytes, of the read BUFFER.

RETURN-REC-LEN An integer value returned by READ, containing the length of the record read from
StorHouse.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING READ,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
READ,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN.
SGI, Corp. Callable Interface Programmer’s Guide 5-39

Callable Interface Functions
READ5
Return Codes

5650 An end of file was encountered.

2188 The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

Other Non-Zero
Values

 A record was not read successfully.

Detailed Function Description
READ allows a user to read the next sequential record from the StorHouse file that
was previously opened with OPEN-SEQ.

The StorHouse file is identified by the O-TOKEN returned by OPEN-SEQ. The
MODE in the open call must be set to READ. The record is placed into a user-
supplied buffer. READ returns the length of the record read.

Notes
• READ updates a file’s sequential record position. For more information about file

positioning, refer to Chapter 3, “File Positioning.”

• Do not use READ for VRAM files; use READ-SEQ instead.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 310-READ-SM
5-40 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
READ-SEQ 5
READ-SEQ
READ-SEQ requests the next sequential record from a VRAM file. READ-SEQ
requires StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 READ-SEQ PIC X(16) VALUE 'READ-SEQ'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC X(buffer-size).
01 BUFFER-SIZE PIC S9(8) COMP SYNC.
01 RETURN-REC-LEN PIC S9(8) COMP SYNC.
01 RETURN-REC-NUM PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER An area where the data record is placed.

BUFFER-SIZE A user-specified integer value indicating the size, in bytes, of the read BUFFER.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING READ-SEQ,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,
RETURN-REC-NUM.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
READ-SEQ,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,
RETURN-REC-NUM.
SGI, Corp. Callable Interface Programmer’s Guide 5-41

Callable Interface Functions
READ-SEQ5
RETURN-REC-LEN An integer value returned by READ-SEQ, containing the length of the record read
from StorHouse.

RETURN-REC-
NUM

An integer value returned by READ-SEQ, containing the record number of the record
read from StorHouse.

Return Codes

5650 An end of file was encountered.

2188 The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

Other Non-Zero
Values

A record was not read successfully.

Detailed Function Description
READ-SEQ allows a user to read the next sequential record from the VRAM file that
was previously opened with OPEN-VRAM. The VRAM file is identified by the
O-TOKEN returned by OPEN-VRAM. The record is placed into a user-supplied
buffer. READ-SEQ returns the length of the record read and the record number.

Notes
• READ-SEQ updates a file’s sequential record position. For more information

about file positioning, refer to Chapter 3, “File Positioning.”

• To perform this function, the MODE in the OPEN-VRAM call must be set to
UPDATE or READ. The ACCESS-METHOD must include SEQUENTIAL.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-42 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
READ-RECORD 5
READ-RECORD
READ-RECORD requests a record from a VRAM file. The record is identified by its
relative record number. READ-RECORD requires the StorHouse VRAM Component.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 READ-RECORD PIC X(16) VALUE 'READ-RECORD'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC X(buffer-size).
01 BUFFER-SIZE PIC S9(8) COMP SYNC.
01 RETURN-REC-LEN PIC S9(8) COMP SYNC.
01 REL-REC-NUM PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER An area where the data record is placed.

BUFFER-SIZE A user-specified integer value indicating the size, in bytes, of the read BUFFER.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING READ-RECORD,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,
REL-REC-NUM.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
READ-RECORD,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,
REL-REC-NUM.
SGI, Corp. Callable Interface Programmer’s Guide 5-43

Callable Interface Functions
READ-RECORD5
RETURN-REC-LEN An integer value returned by READ-RECORD, containing the length of the record
read from StorHouse.

REL-REC-NUM A variable containing the relative record number of the record to be read from
StorHouse.

Return Codes

2587 The record number was out of range; the record could not be found.

2588 The record number was deleted.

2188 The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

Any Other Non-Zero
Value

A record was not read successfully.

Detailed Function Description
READ-RECORD allows a user to read a relative record from the VRAM file that was
previously opened with OPEN-VRAM. The VRAM file is identified by the O-TOKEN
returned by OPEN-VRAM. The record is identified by the relative record number.
The record read from StorHouse is placed into a user-supplied buffer. READ-
RECORD also returns the length of the record read.

Notes
• READ-RECORD updates a file’s sequential record position. For more

information about file positioning, refer to Chapter 3, “File Positioning.”

• To perform this function, the MODE in the OPEN-VRAM call must be set to
UPDATE or READ. The ACCESS-METHOD must include RECORD.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 510-READ-AND-PRINT
5-44 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
READ-KEYED 5
READ-KEYED
READ-KEYED retrieves a record from a VRAM file. The record is identified by user-
supplied key information. READ-KEYED requires the StorHouse VRAM component
with the KRA feature.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 READ-KEYED PIC X(16) VALUE 'READ-KEYED'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC X(buffer-size).
01 BUFFER-SIZE PIC S9(8) COMP SYNC.
01 RETURN-REC-LEN PIC S9(8) COMP SYNC.
01 KEY-NAME PIC X(56).
01 KEY-VALUE PIC X(key-length).
01 KEY-LENGTH PIC S9(8) COMP SYNC.
01 RETURN-REC-NUM PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING READ-KEYED,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,KEY-NAME,
KEY-VALUE,KEY-LENGTH,RETURN-REC-NUM.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
READ-KEYED,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,KEY-NAME,
KEY-VALUE,KEY-LENGTH,RETURN-REC-NUM.
SGI, Corp. Callable Interface Programmer’s Guide 5-45

Callable Interface Functions
READ-KEYED5
BUFFER An area where the data record is placed.

BUFFER-SIZE A user-specified integer value indicating the size, in bytes, of the read BUFFER.

RETURN-REC-LEN An integer value returned by READ-KEYED, containing the length of the record read
from StorHouse.

KEY-NAME The user-supplied name of the key field that is used to find the record. The
maximum size for KEY-NAME is 56 bytes. An example of a KEY-NAME is
“LASTNAME”.

KEY-VALUE The user-supplied value of the key used to search for the record. An example of a
KEY-VALUE is “Kelly”.

KEY-LENGTH A user-supplied integer value indicating the size of KEY-VALUE. The maximum
length is 254 characters.

RETURN-REC-
NUM

An integer that is set by StorHouse to the record number of the last record read from
StorHouse.

Return Codes

2587 No record was found with the supplied key.

2588 The record was deleted.

2188 The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

Any Other Non-Zero
Value

A record was not read successfully.

Detailed Function Description
READ-KEYED reads a record from the VRAM file that was previously opened with
OPEN-VRAM. The file is identified by the O-TOKEN returned by OPEN-VRAM.

The record is identified by the key parameters KEY-NAME and KEY-VALUE and is
placed into the user-supplied buffer. READ-KEYED also returns the length of the
record.
5-46 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
READ-KEYED 5
Notes
• READ-KEYED updates a file’s sequential and key record positions. For more

information about file positioning, refer to Chapter 3, “File Positioning.”

• To perform READ-KEYED, the MODE in the OPEN-VRAM call must be set to
UPDATE or READ. The ACCESS-METHOD must include KEYED.

• The following is true for KEYSEQUENTIAL files only. If READ-KEYED cannot
locate the requested key and returns message XKBADRNO (return code 2587),
READ-KEYED maintains the current key record position. A subsequent READ-
NEXT-KEYED or READ-SEQUENTIAL will find the record with the next greater
key value. This subsequent record may be read but not changed or deleted.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 610-READ-KEYED
SGI, Corp. Callable Interface Programmer’s Guide 5-47

Callable Interface Functions
READ-NEXT-KEY5
READ-NEXT-KEY
READ-NEXT-KEY requests the next key entry sequenced record from a VRAM file.
READ-NEXT-KEY requires the StorHouse VRAM component with the KRA feature.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 READ-NEXT-KEY PIC X(16) VALUE 'READ-NEXT-KEY'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC X(buffer-size).
01 BUFFER-SIZE PIC S9(8) COMP SYNC.
01 RETURN-REC-LEN PIC S9(8) COMP SYNC.
01 RETURN-REC-NUM PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER An area where the data record is placed.

BUFFER-SIZE A user-specified integer value indicating the size, in bytes, of the read BUFFER.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING READ-NEXT-KEY,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,
RETURN-REC-NUM.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
READ-NEXT-KEY,O-TOKEN,R-CODE,BUFFER,
BUFFER-SIZE,RETURN-REC-LEN,
RETURN-REC-NUM.
5-48 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
READ-NEXT-KEY 5
RETURN-REC-LEN An integer value returned by READ-NEXT-KEY, containing the length of the record
read from StorHouse.

RETURN-REC-
NUM

An integer value returned by READ-NEXT-KEY, containing the record number of the
record read from StorHouse.

Return Codes

5650 An end of file was encountered.

2188 The buffer is too small and a truncated record was returned. This is only a warning. It
is possible to continue the data transfer operation.

Any Other Non-Zero
Value

A record was not successfully read.

Detailed Function Description
READ-NEXT-KEY allows a user to read the next key entry-sequenced record from the
VRAM file that was previously opened with OPEN-VRAM. The VRAM file is
identified by the O-TOKEN returned by OPEN-VRAM. The record is placed into a
user-supplied buffer. READ-NEXT-KEY returns the length of the record read and the
record number.

Notes
• READ-NEXT-KEY updates a file’s sequential and key record positions. For more

information about file positioning, refer to Chapter 3, “File Positioning.”

• To perform READ-NEXT-KEY, the MODE in the OPEN-VRAM call must be set
to UPDATE or READ. The ACCESS-METHOD must include KEYED.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 610-READ-KEYED
SGI, Corp. Callable Interface Programmer’s Guide 5-49

Callable Interface Functions
WRITE5
WRITE
WRITE sends a record to StorHouse. WRITE requires the StorHouse standard
features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 WRITE PIC X(16) VALUE 'WRITE'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC X(buffer-size).
01 RECORD-LENGTH PIC S9(8) COMP SYNC.
01 RETURN-REC-NUM PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER Buffer containing the record to be written to StorHouse.

RECORD-LENGTH An integer value containing the length, in bytes, of the record written to StorHouse.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING WRITE,O-TOKEN,R-CODE,BUFFER,
RECORD-LENGTH,RETURN-REC-NUM.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
WRITE,O-TOKEN,R-CODE,BUFFER,
RECORD-LENGTH,RETURN-REC-NUM.
5-50 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
WRITE 5
RETURN-REC-
NUM

An integer value set by the StorHouse software containing the record number of the
record written.

Return Codes

2210 This is a warning that the record is too short. For a KEYED file, this warning is
returned if the record is too short to contain all of its key fields.

Any Other Non-Zero
Value

The record was not written to StorHouse.

Detailed Function Description
WRITE allows a user to send a record to a file on StorHouse previously opened with
OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

For non-VRAM files, the file is identified by the O-TOKEN returned by OPEN-SEQ.
For VRAM files, the file is identified by the O-TOKEN returned by OPEN-VRAM or
CREATE-OPEN.

The record is sent from the user-supplied buffer to StorHouse. The record written is
the next sequential record in the file.

Notes
• WRITE moves data from the user record area (BUFFER) to internal buffers

controlled by the Callable Interface. WRITE may return to the caller without
actually transferring all user data to StorHouse. Therefore, you can guarantee
that the data is stored in StorHouse only after a successful CLOSE or
CHECKPOINT.

• Any insufficient space error during a write to a VRAM file leaves the file software
disabled. Any data that was written to the file is lost.

• To perform WRITE on a VRAM file, you first must call either OPEN-VRAM with
MODE set to APPEND and ACCESS-METHOD set to any valid value or call
CREATE-OPEN. To perform WRITE on a non-VRAM file, call OPEN-SEQ with
MODE set to WRITE.

• WRITE and WRITE-KEY can be used in the same session.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1200-WRITE-TO-SM
SGI, Corp. Callable Interface Programmer’s Guide 5-51

Callable Interface Functions
WRITE-KEY5
WRITE-KEY
WRITE-KEY transfers an external key record and a data record to StorHouse. WRITE-
KEY requires the StorHouse VRAM component and KRA feature.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 WRITE-KEY PIC X(16) VALUE 'WRITE-KEY'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC S9(8).
01 RECORD-LENGTH PIC S9(8).
01 KEY PIC X(key-length).
01 KEY-LENGTH PIC S9(8).
01 RETURN-REC-NUM PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM or CREATE-OPEN.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER The buffer containing the data record to be written to StorHouse.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING WRITE-KEY,O-TOKEN,R-CODE,BUFFER,
RECORD-LENGTH,KEY,KEY-LENGTH,
RETURN-REC-NUM.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
WRITE-KEY,O-TOKEN,R-CODE,BUFFER,
RECORD-LENGTH,KEY,KEY-LENGTH,
RETURN-REC-NUM.
5-52 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
WRITE-KEY 5
RECORD-LENGTH An integer value containing the length, in bytes, of the data record written to
StorHouse.

KEY The external key associated with the data record.

KEY-LENGTH The length, in bytes, of the external key.

RETURN-REC-
NUM

A returned integer value set to the record number associated with the data record.

Return Codes

2210 A warning indicating that the external key record is too short to contain all of its key
fields.

Any Other Non-Zero
Values

The record or external key was not written to StorHouse.

Detailed Function Description
WRITE-KEY writes an external key record and a data record to a StorHouse file that is
identified by the O-TOKEN returned by OPEN-VRAM or CREATE-OPEN. The file
must have been created either with the CREATE FILE command using the
/EXTERNAL modifier, or with CREATE-OPEN using a model file with external keys.
Refer to the Command Language Reference Manual for information about CREATE
FILE. The data record is sent from the user-supplied buffer to StorHouse and
becomes the next sequential record in the file.

Notes
• WRITE-KEY moves data from the user record area (BUFFER) to internal buffers

maintained by the Callable Interface. WRITE-KEY may return to the caller
without actually transferring all of the user data to StorHouse. Therefore, data
can only be guaranteed to be stored in StorHouse after a successful CLOSE or
CHECKPOINT.

• To perform WRITE-KEY, the file must be opened either using OPEN-VRAM with
a MODE of APPEND, or using CREATE-OPEN with a model file with external
keys.

• The Callable Interface considers a WRITE-KEY with a KEY-LENGTH of 0 the
same as a WRITE. WRITE and WRITE-KEY can be used in the same session.

• To write a data record and no external key record, specify a value of 0 for KEY-
LENGTH. For example, to write one external key record and five associated data
records, issue WRITE-KEY to write the external key record and the first data
SGI, Corp. Callable Interface Programmer’s Guide 5-53

Callable Interface Functions
WRITE-KEY5
record. Then issue WRITE-KEY four times with a specified KEY-LENGTH of 0 to
write the remaining four data records.

• The actual external key record cannot be accessed by an application. Key
information is extracted from the record and stored in a key data base on
StorHouse. Therefore, users cannot change an external key record once it is
written or read an external key file to determine the keys.

• By definition, external keys are external to, or not part of, the data record.
Therefore, data records associated with a given external key should contain
control information that allows an application to determine when it has
processed the last data record belonging to that external key.

• An insufficient space error during a write to a VRAM file leaves the file software
disabled. Any data that was written to the file is lost.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-54 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
DELETE 5
DELETE
DELETE deletes the last record read from a VRAM file. DELETE requires the
StorHouse VRAM component.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 DELETE PIC X(16) VALUE 'DELETE'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

Return Codes

2612 A return code of 2612 indicates that an attempt was made to delete a record without
reading the record first.

Any Non-Zero Value Any non-zero value indicates that a record was not deleted from StorHouse.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING DELETE,O-TOKEN,R-CODE.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
DELETE,O-TOKEN,R-CODE.
SGI, Corp. Callable Interface Programmer’s Guide 5-55

Callable Interface Functions
DELETE5
Detailed Function Description
DELETE allows a user to delete the last record read from a StorHouse file previously
opened with OPEN-VRAM. The VRAM file is identified by the O-TOKEN returned
by OPEN-VRAM.

Note
To perform DELETE, the MODE in the OPEN-VRAM call must be set to UPDATE.
For a more complete discussion of MODE and the associated ACCESS-METHOD
parameter, refer to the OPEN-VRAM function description.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-56 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CHANGE 5
CHANGE
CHANGE changes the last record read in a VRAM file. CHANGE requires the
StorHouse VRAM component.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 CHANGE PIC X(16) VALUE 'CHANGE'.
01 O-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 BUFFER PIC X(buffer-size).
01 RECORD-LENGTH PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier initialized by OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

BUFFER The buffer containing the change record to be written to StorHouse.

RECORD-LENGTH An integer value containing the length of the change record written to StorHouse.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING CHANGE,O-TOKEN,R-CODE,BUFFER,
RECORD-LENGTH.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
CHANGE,O-TOKEN,R-CODE,BUFFER,
RECORD-LENGTH.
SGI, Corp. Callable Interface Programmer’s Guide 5-57

Callable Interface Functions
CHANGE5
Return Codes

2612 An attempt was made to change a record without reading the record first.

Any Non-Zero Value A record was not changed.

Detailed Function Description
CHANGE allows a user to change the last record read from the VRAM file that was
previously opened with OPEN-VRAM. The VRAM file is identified by the O-TOKEN
returned by OPEN-VRAM.

Note
To perform CHANGE, the MODE in the OPEN-VRAM call must be set to UPDATE.
For a more complete discussion of MODE and the associated ACCESS-METHOD
parameter, refer to the OPEN-VRAM function description.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-58 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
StorHouse Command Submission 5
StorHouse Command Submission
There is one StorHouse command submission function: SM-CMD-INTF.
SM-CMD-INTF allows an application to:

• Send selected StorHouse Command Language commands to StorHouse and to
retrieve response text from those commands.

• Direct administrative operations from an application rather than from a user at a
terminal through the Interactive Interface.

SM-CMD-INTF is described in the following section.
SGI, Corp. Callable Interface Programmer’s Guide 5-59

Callable Interface Functions
SM-CMD-INTF5
SM-CMD-INTF
SM-CMD-INTF, the StorHouse Command Interface function, sends a text string to
StorHouse to be processed as a StorHouse command. SM-CMD-INTF requires
StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 SM-CMD-INTF PIC X(16) VALUE 'SM-CMD-INTF'.
01 C-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 CR-BUF PIC X(buffer-size).
01 CR-LEN PIC S9(8) COMP SYNC.
01 RESP-BUF PIC X(resp-bufsize).
01 RESP-BUFSIZE PIC S9(8) COMP SYNC VALUE IS nn2.
01 RESP-INFO.

05 RINFO-LIST-SIZE PIC S9(8) COMP SYNC VALUE 6.
05 RINFO-LENGTH PIC S9(8) COMP SYNC.
05 RINFO-STATUS PIC S9(8) COMP SYNC.
05 RINFO-SEVERITY PIC S9(8) COMP SYNC.
05 RINFO-CMD-ENDED PIC S9(8) COMP SYNC.
05 RINFO-PROMPT PIC S9(8) COMP SYNC.
05 RINFO-SUPPRESS PIC S9(8) COMP SYNC.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING SM-CMD-INTF,C-TOKEN,R-CODE,CR-BUF,
CR-LEN,RESP-BUF,RESP-BUFSIZE,
RESP-INFO.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
SM-CMD-INTF,C-TOKEN,R-CODE,CR-BUF,
CR-LEN,RESP-BUF,RESP-BUFSIZE,
RESP-INFO.
5-60 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
SM-CMD-INTF 5
Parameter Overview
C-TOKEN The session identifier set by CONNECT.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

CR-BUF A buffer containing the command/reply text that is sent to StorHouse. The
maximum length of this buffer is 255 bytes.

CR-LEN An integer value containing the length of the text in the buffer named by CR-BUF.

RESP-BUFFER The area where the response text from the StorHouse command is placed.

RESP-BUFSIZE An integer value giving the size of the response buffer. This value should be no
smaller than 132. If the response buffer is too small to contain the response text, then
the response is truncated to fit in the supplied buffer, and the return status indicates
an error.

RESP-BUFSIZE may not equal zero. A zero value causes a 3022 return code,
indicating that a zero buffer size was passed to a StorHouse read function.

RESP-INFO An array of 32-bit integers that provides detailed information about the length and
type of response text returned by StorHouse. The elements in the array are:

• RINFO-LIST-SIZE – the number of other elements in the RESP-INFO array. The
caller must set this entry to 6.

• RINFO-LENGTH – the length of the response text.

• RINFO-STATUS – the status code associated with execution of the command.
This code is returned only when command end is indicated. Note that RINFO-
STATUS refers to the StorHouse status, while R-CODE indicates host system
problems.

• RINFO-SEVERITY – the severity of the error indicated in RINFO-STATUS,
expressed as a value between 0 and 20; see “Return Codes.”

• RINFO-CMD-ENDED – a flag indicating (if 1) that the command has completed
execution.

• RINFO-PROMPT – a flag indicating (if 1) that the response text is actually a
prompt from StorHouse.

• RINFO-SUPPRESS – a flag indicating (if 1) that StorHouse suggests suppression
of printing or displaying the information supplied in response to a prompt. This
flag is valid only if RINFO-PROMPT is set.
SGI, Corp. Callable Interface Programmer’s Guide 5-61

Callable Interface Functions
SM-CMD-INTF5
Return Codes

Any Non-Zero Value A command text was not processed by StorHouse.

If R-CODE is non-zero, do not use RINFO-STATUS and RINFO-SEVERITY.

Zero Value Indicates that the command was successfully passed to StorHouse and that a response
was received.

RINFO-STATUS indicates the status associated with StorHouse’s execution of the
command. Use RINFO-SEVERITY to examine the general condition associated with
command execution without testing for specific status codes.

The severity codes are:

• 00 – normal; no errors detected.
• 04 – warning; results may not be as expected.
• 08 – error; results are probably incorrect, and corrective action may be required.
• 12 – severe errors occurred; corrective action is required.
• 16 – request could not be processed.
• 20 – hardware or system software error prevented command processing. (Partial

execution may have occurred, or StorHouse may have processed the command,
but responses have been lost.)

Detailed Function Description
SM-CMD-INTF allows direct user access to the StorHouse command processing
facilities by sending a text string in the CR-BUF to StorHouse. StorHouse then
processes the string as a StorHouse command. The session is identified by the O-
TOKEN returned by CONNECT. The command text is sent from the user-supplied
buffer.

SM-CMD-INTF returns the command response to the user-supplied response buffer.
RINFO-CMD-ENDED is set (non-zero) when no additional response information is
available for this command. If RINFO-CMD-ENDED is not set (zero), SM-CMD-
INTF must be called again to retrieve additional response text.

For a description of available commands, refer to the Command Language Reference
Manual.

SM-CMD-INTF is only intended for accessing informational commands, such as
SHOW FILE. The following commands cannot be issued from SM-CMD-INT:

• GET and PUT. A file-oriented OPEN must be used.

• SET USER to change session defaults.
5-62 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
SM-CMD-INTF 5
• Any command that creates or deletes files (for example, REMOVE FILE, CREATE
FILE, DELETE).

• Any command that changes passwords (for example, SET GROUP).

For more information about StorHouse Command Language commands that can be
accessed with SM-CMD-INTF, consult your StorHouse system administrator or your
SGI customer support representative.

When RINFO-PROMPT is set, StorHouse is requesting additional information to
complete execution of the submitted command. The response string in the RESP-
BUFFER is a prompt that indicates the type of information to be provided. Whenever
this occurs, SM-CMD-INTF must be called again with the reply to the prompt in
CR-BUF.

Note
Failure to call SM-CMD-INTF repeatedly until end of command is indicated causes
the session link to become unusable. Once SM-CMD-INTF has been called, other
functions cannot be called until end of command has been returned. The only
exceptions are CHECK, ECBADDR, EMSG, and ABORT. Whenever RINFO-
PROMPT is set, the next call to SM-CMD-INTF supplies a response. If CR-LEN is
zero, a null response is sent to StorHouse, which implies use of a default.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
SGI, Corp. Callable Interface Programmer’s Guide 5-63

Callable Interface Functions
General Usage Functions5
General Usage Functions
The general usage functions are:

• CHECK – waits for and tests the completion status of any asynchronous
operation.

• ECBADDR – returns the address of the ECB that is POSTed when the
asynchronous function last requested for the C-TOKEN or O-TOKEN completes.

• EMSG – retrieves indicative messages associated with a previous return code.

• ABORT – attempts to terminate the last asynchronous function started within a
session or the last asynchronous data transfer function. ABORT can also be used
to request termination of an SM-CMD-INTF sequence.

These functions are described in the following sections.
5-64 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
CHECK 5
CHECK
CHECK waits for and tests the completion status of any asynchronous operation.
CHECK requires StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 CHECK PIC X(16)VALUE 'CHECK'.
01 x-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.

Parameter Overview
C-TOKEN The session identifier returned by CONNECT.

O-TOKEN The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

Return Codes

The return code from CHECK is the code returned by the previous asynchronous
function.

2974 No asynchronous operations were outstanding at the time of CHECK for the
particular session or file.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING CHECK,{C-TOKEN|O-TOKEN},R-CODE.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
CHECK,{C-TOKEN|O-TOKEN},R-CODE.
SGI, Corp. Callable Interface Programmer’s Guide 5-65

Callable Interface Functions
CHECK5
Detailed Function Description
CHECK waits for and tests the completion status of a previous asynchronous
function. If a C-TOKEN is supplied, the CHECK applies to the last function started
on a session link. If an O-TOKEN is supplied, then the last asynchronous data
transfer function associated with that O-TOKEN is checked.

Notes
• There is no asynchronous form of CHECK; that is, ASCHECK cannot be used.

• For applications that must WAIT for multiple, concurrent, asynchronous events,
the address of the ECB can be obtained. (See ECBADDR in Chapter 6, “Sample
Program.”) CHECK can then be called after the application has determined that
the original function has completed. The ECB complete bit must not be cleared
prior to calling CHECK.

• Important: CHECK must always be called. It is not sufficient just to WAIT for
the ECB to be POSTed.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-66 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
ECBADDR 5
ECBADDR
ECBADDR returns to the caller the address of the ECB that is POSTed when the
asynchronous function last requested for the C-TOKEN or O-TOKEN completes.
ECBADDR requires StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 ECBADDR PIC X(16) VALUE 'ECBADDR'.
01 x-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 RETURN-ECB-ADDRPIC S9(8) COMP SYNC.

Parameter Overview
C-TOKEN The session identifier returned by CONNECT.

O-TOKEN The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

RETURN-ECB-
ADDR

The address of the ECB that is POSTed when the asynchronous function last
requested for the C-TOKEN or O-TOKEN completes.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING ECBADDR,{C-TOKEN|O-TOKEN},R-CODE,
RETURN-ECB-ADDR.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
ECBADDR,{C-TOKEN|O-TOKEN},R-CODE,
RETURN-ECB-ADDR.
SGI, Corp. Callable Interface Programmer’s Guide 5-67

Callable Interface Functions
ECBADDR5
Return Codes

The return code from ECBADDR is always 0.

Detailed Function Description
For applications that must WAIT for multiple, concurrent, asynchronous events, the
address of the ECB can be obtained by using ECBADDR. If a C-TOKEN is supplied,
ECBADDR applies to the last function started on a session link. If an O-TOKEN is
supplied, then the last asynchronous data transfer function associated with that
O-TOKEN is checked.

Note
There is no asynchronous form of ECBADDR; that is, ASECBADDR cannot be used.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-68 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
EMSG 5
EMSG
EMSG retrieves indicative messages associated with a previous return code. EMSG
requires StorHouse standard features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 EMSG PIC X(16) VALUE 'EMSG'.
01 x-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.
01 MESSAGE-BUFFER PIC X(buffer-size).
01 MESSAGE-BUFFER-SIZE PIC S9(8) COMP SYNC VALUE IS nnn.
01 RETURNED-MESSAGE-LEN PIC S9(8) COMP SYNC.

Parameter Overview
C-TOKEN The session identifier set by CONNECT.

O-TOKEN The file identifier returned by an OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

R-CODE Final status from the requested operation; see the following section “Return Codes.”

MESSAGE-
BUFFER

The area into which the error message text will be moved.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING EMSG,{C-TOKEN|O-TOKEN},R-CODE,
MESSAGE-BUFFER,MESSAGE-BUFFER-SIZE,
RETURNED-MESSAGE-LEN.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
EMSG,{C-TOKEN|O-TOKEN},R-CODE,
MESSAGE-BUFFER,MESSAGE-BUFFER-SIZE,
RETURNED-MESSAGE-LEN.
SGI, Corp. Callable Interface Programmer’s Guide 5-69

Callable Interface Functions
EMSG5
MESSAGE-
BUFFER-SIZE

A user-specified integer value containing the size of the MESSAGE-BUFFER.

RETURNED-
MESSAGE-LEN

An integer value that is returned by EMSG containing the length of the retrieved error
message.

Return Codes

3065 There are no more messages in the message buffer for the previously called function.

Detailed Function Description
EMSG allows a user to retrieve indicative text messages associated with a previous
function call. If a C-TOKEN is supplied, EMSG returns the error message associated
with the return code from the last session-related command. If an O-TOKEN is
supplied, EMSG returns the text messages associated with the last file-related
command.

EMSG returns one message in the user-supplied buffer. The length of the message is
also returned.

Notes
• There is no asynchronous form of EMSG; that is, ASEMSG cannot be used.

• The maximum buffer length required to retrieve an error message is 132 bytes. If
the user-supplied buffer is shorter than 132 bytes, some messages may be
truncated when returned. Messages are padded with blanks to the full size of the
supplied buffer.

• If MESSAGE-FLAG was set for a CONNECT, OPEN-SEQ, CREATE-OPEN, or
OPEN-VRAM, then EMSG must be called after a DISCONNECT or CLOSE, or
after a failing CONNECT. EMSG must be called repeatedly until a return code of
3065, indicating no more messages, is received. Otherwise, dynamically allocated
memory used by the LSMCALL routine may not be released.

• The C-TOKEN is the correct token for an EMSG call following any type of open
request.

Cross-Reference to Sample Program
Refer to the sample COBOL program in Chapter 6, “Sample Program”:

PARAGRAPH 1510-CALL-EMSG, 1610-CALL-EMSG
5-70 Callable Interface Programmer’s Guide SGI, Corp.

Callable Interface Functions
ABORT 5
ABORT
ABORT attempts to terminate the last asynchronous function started within a session
or the last asynchronous data transfer function. ABORT can also be used to request
termination of an SM-CMD-INTF sequence. ABORT requires StorHouse standard
features.

Statement Format for COBOL

Working Storage Section for COBOL Program
01 ABORT PIC X(16) VALUE 'ABORT'.
01 x-TOKEN PIC S9(8) COMP SYNC.
01 R-CODE PIC S9(8) COMP SYNC.

Parameter Overview
O-TOKEN The file identifier returned by OPEN-SEQ, CREATE-OPEN, or OPEN-VRAM.

C-TOKEN The session identifier returned by CONNECT.

R-CODE Status from the abort requested; see “Return Codes.”

Return Codes

2989 Neither an asynchronous function nor an SM-CMD-INTF sequence was outstanding.

2990 The function to be aborted was CONNECT, which is not allowed.

TSO/Batch/IMS Environment

CALL ‘LSMCALL’ USING ABORT,{O-TOKEN|C-TOKEN},R-CODE.

CICS Environment

CALL ‘LSMCICS’ USING DFHEIBLK,COMMAREA,
ABORT,{O-TOKEN|C-TOKEN},R-CODE.
SGI, Corp. Callable Interface Programmer’s Guide 5-71

Callable Interface Functions
ABORT5
Zero is the only other return code from ABORT. CHECK must be issued to retrieve
the return code associated with the aborted function.

Detailed Function Description
ABORT unconditionally attempts to terminate the last function started on a session
or a data transfer function. If a C-TOKEN is supplied, the ABORT applies to the last
function started on a session link. If an O-TOKEN is supplied, then the last data
transfer function associated with that O-TOKEN is aborted.

Notes
• There is no asynchronous form of ABORT; that is, ASABORT cannot be used.

• ABORT can only request termination of a function. The function may have
already completed or may complete before the abort request is forwarded. The
return code associated with the original function must be analyzed to determine
the actual outcome of the abort attempt.

• ABORT is intended as a mechanism to terminate a pending asynchronous
operation for a data transfer or session, when that transfer or session is to be
subsequently terminated.

• For some operations, such as a sequential read or write, ABORT causes the entire
data transfer to fail.

• When ABORT is issued during an SM-CMD-INTF sequence, termination of
processing of the command by StorHouse is requested. However, the user must
continue calling SM-CMD-INTF until command-ended is indicated.

Cross-Reference to Sample Program
There is no cross-reference to the sample COBOL program contained in Chapter 6,
“Sample Program.”
5-72 Callable Interface Programmer’s Guide SGI, Corp.

Chapter
6

Sample Program

The sample program in this chapter illustrates the use of the standard IBM StorHouse
host Callable Interface. The sample program performs the following functions:

• Establishes a session with the StorHouse.
• Transfers a sequential file from the host to a non-VRAM file on StorHouse.
• Reads and prints all records in the non-VRAM file.
• Transfers the same host file to a VRAM file on StorHouse.
• Reads the VRAM file by relative record number.
• Reads the VRAM file by key.
• Ends a session with StorHouse.

If any errors occur, the program prints an error message (using EMSG), closes the
host files, and terminates.

Note This document reflects the name change from Storage Machine to StorHouse. The
code will be updated in a later release.
SGI, Corp. Callable Interface Programmer’s Guide 6-1

Sample Program
COBOL Sample Program6
COBOL Sample Program
IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPCOB.

* *
* THIS IS THE COBOL SAMPLE PROGRAM FOR SGI'S CALLABLE *
* INTERFACE. THIS PROGRAM DOES THE FOLLOWING: *
* *
* 1. CONNECTS TO STORHOUSE. *
* 2. TRANSFERS A HOST SEQUENTIAL FILE TO A NON-VRAM STORHOUSE FILE. *
* 3. READS AND PRINTS ALL RECORDS FROM THE NON-VRAM STORHOUSE FILE. *
* 4. TRANSFERS THE SAME HOST FILE TO A VRAM STORHOUSE FILE. *
* 5. PROCESSES THE VRAM FILE BY RELATIVE RECORD NUMBER. *
* 6. PROCESSES THE VRAM FILE BY KEY. *
* 7. DISCONNECTS FROM STORHOUSE. *
* *

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT HOST-FILE ASSIGN TO HOSTFILE
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

SELECT PRINT-FILE ASSIGN TO SYSPRINT
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.

*
* THE HOST SEQUENTIAL FILE CONTAINS 80-BYTE RECORDS. A SOCIAL SECURITY
* NUMBER IS IN POSITIONS 1 THRU 9.
*

FD HOST-FILE
LABEL RECORDS STANDARD
BLOCK CONTAINS 0 RECORDS
RECORDING MODE IS F
DATA RECORD IS HOST-RECORD.

01 HOST-RECORD.
05 HOST-RECORD-SSN PIC 9(9).
05 HOST-RECORD-DATA PIC X(71).

*
* PRINT-FILE IS USED TO PRINT ERROR MESSAGES AND DATA RECORDS.
*

FD PRINT-FILE
LABEL RECORDS STANDARD
BLOCK CONTAINS 0 RECORDS
RECORDING MODE IS F
DATA RECORD IS PRINT-RECORD.

01 PRINT-RECORD.
6-2 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
05 PRINT-RECORD-CC PIC X.
05 PRINT-RECORD-DATA PIC X(132).

WORKING-STORAGE SECTION.

*
* DEFINE THE STORHOUSE FUNCTION CHARACTER STRING IDENTIFIERS
*

01 SM1-FUNCTION-CONNECT PIC X(16) VALUE 'CONNECT'.
01 SM1-FUNCTION-DISCONNECT PIC X(16) VALUE 'DISCONNECT'.
01 SM1-FUNCTION-OPEN-SEQ PIC X(16) VALUE 'OPEN-SEQ'.
01 SM1-FUNCTION-OPEN-VRAM PIC X(16) VALUE 'OPEN-VRAM'.
01 SM1-FUNCTION-CLOSE PIC X(16) VALUE 'CLOSE'.
01 SM1-FUNCTION-EMSG PIC X(16) VALUE 'EMSG'.
01 SM1-FUNCTION-READ PIC X(16) VALUE 'READ'.
01 SM1-FUNCTION-READ-RECORD PIC X(16) VALUE 'READ-RECORD'.
01 SM1-FUNCTION-READ-NEXT-KEY PIC X(16) VALUE 'READ-NEXT-KEY'.
01 SM1-FUNCTION-WRITE PIC X(16) VALUE 'WRITE'.

*
* DEFINE THE STORHOUSE COMMAND AND TRANSFER LINK TOKEN IDENTIFIERS
*

01 SM1-CONNECT-TOKEN PIC S9(8) SYNC COMP.
01 SM1-OPEN-TOKEN PIC S9(8) SYNC COMP.

*
* DEFINE THE STORHOUSE RETURN CODE AREAS
*

01 SM1-RETURN-CODE PIC S9(8) SYNC COMP.
01 SM1-EMSG-RETURN-CODE PIC S9(8) SYNC COMP.

*
* DEFINE THE PARAMETERS SPECIFIC TO THE CONNECT FUNCTION
*

01 SM1-CMDLINK-EMSGFLAG PIC S9(8) SYNC COMP VALUE +1.
01 SM1-ACCOUNT PIC X(12) VALUE 'YOUR_ACCT'.
01 SM1-PASSWORD PIC X(32) VALUE 'YOUR_PSWD'.
01 SM1-LIBRARY-ID PIC X(6) VALUE SPACES.
01 SM1-SUBSYSTEM-ID PIC X(4) VALUE SPACES.

*
* THE DISCONNECT FUNCTION REQUIRES ONLY THE FUNCTION IDENTIFIER,
* CONNECT-TOKEN, AND RETURN-CODE PARAMETERS.

*
*
* DEFINE THE PARAMETERS SPECIFIC TO THE CLOSE FUNCTION
*

01 SM1-CLOSE-ABORT-FLAG PIC S9(8) SYNC COMP VALUE +0.

*
* DEFINE THE PARAMETERS SPECIFIC TO THE EMESSAGE FUNCTION
*

SGI, Corp. Callable Interface Programmer’s Guide 6-3

Sample Program
COBOL Sample Program6
01 SM1-EMSG-BUFFER PIC X(132) VALUE SPACES'.
01 SM1-EMSG-BUFFER-LENGTH PIC S9(8) COMP SYNC VALUE +132.
01 SM1-EMSG-MSG-LENGTH PIC S9(8) COMP SYNC VALUE +0.

*
* THE PARAMETERS FOR OPEN-SEQ AND OPEN-VRAM ARE NOW DEFINED
* IN THE FOLLOWING MANNER:
* 1)DEFINE THOSE PARAMETERS COMMON TO BOTH OPEN FUNCTIONS
* 2)DEFINE THOSE PARAMETERS SPECIFIC TO EACH FUNCTION
*
*

* COMMON PARAMETERS USED BY BOTH OPEN-SEQ AND OPEN-VRAM
*

01 SM1-XFRLINK-EMSGFLAG PIC S9(8) COMP SYNC VALUE +1.
01 SM1-FILE-MODE PIC X(6) VALUE SPACES.
01 SM1-FILE-PASSWORDS.

05 F-READ-PWD PIC X(8) VALUE SPACES.
05 F-WRITE-PWD PIC X(8) VALUE SPACES.

* NOTE: THE DELETE PASSWORD IS NOT USED BY OPEN-VRAM
05 F-DELETE-PWD PIC X(8) VALUE SPACES.

01 SM1-GROUP-NAME PIC X(8) VALUE SPACES.
01 SM1-GROUP-PASSWORDS.

05 G-READ-PWD PIC X(8) VALUE SPACES.
05 G-WRITE-PWD PIC X(8) VALUE SPACES.

* NOTE: THE DELETE PASSWORD IS NOT USED BY OPEN-VRAM
05 G-DELETE-PWD PIC X(8) VALUE SPACES.

*
* DEFINE THE FILE MODE CHARACTER STRINGS USED FOR OPENS.
*

01 SM1-MODE-APPEND PIC X(6) VALUE 'APPEND'.
01 SM1-MODE-READ PIC X(6) VALUE 'READ'.
01 SM1-MODE-WRITE PIC X(6) VALUE 'WRITE'.

*
* PARAMETERS SPECIFIC TO OPEN-SEQ
*

01 SM1-FILE-VERSION PIC S9(8) COMP SYNC VALUE +0.

*
* THE STORHOUSE FILENAME IS SPECIFIED ON THE "//SM1NVFIL" DD STATEMENT IN

THE JCL
*

01 SM1-NONVRAM-FILENAME PIC X(56) VALUE 'DD=SM1NVFIL'.

*
* SPECIFY BLANKS FOR THE FILE LOCATION (VOLUME AND FILE SETS)
* TO USE THE DEFAULTS

01 SM1-FILE-LOCATION.
05 SM1-VOLUME-SET PIC X(8) VALUE SPACES.
05 SM1-FILE-SET PIC X(8) VALUE SPACES.
6-4 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
*
* DEFINE THE FILE ATTRIBUTE LIST USED BY THE OPEN-SEQ FUNCTION
*

01 SM1-NONVRAM-FILE-ATTRIBUTES.

* THERE ARE 8 ITEMS IN THIS LIST
05 FATTR-LIST-SIZE PIC S9(8) COMP SYNC VALUE +8.

* THE FILE SIZE MUST BE SPECIFIED AND IS CALCULATED AS FOLLOWS:
* 100 80-BYTE RECORDS IN THE HOST FILE = 8000 BYTES
* A 5% OVERHEAD IS ADDED, THUS FILESIZE = 8400

05 FATTR-FILE-SIZE PIC S9(8) COMP SYNC VALUE +8400.

* THE RECORD LENGTH IS A MAXIMUM OF 80 BYTES
05 FATTR-MAX-RECORD-LEN PIC S9(8) COMP SYNC VALUE +80.

* THE STORHOUSE FILE IS TO BE TRANSPORTABLE ACROSS HOST SYSTEMS
05 FATTR-TRANSPORT-FL PIC S9(8) COMP SYNC VALUE +1.

* THE FILE IS TO BE STORED IN STORHOUSE IN ASCII FORMAT
05 FATTR-DATA-XLATE-FL PIC S9(8) COMP SYNC VALUE +1.

* THE FILE IS FIXED RECORD FORMAT
05 FATTR-FIXED-RECORD-FL PIC S9(8) COMP SYNC VALUE +1.

* THE FILE DOES NOT CONTAIN ANSI CONTROL CHARACTERS
05 FATTR-CC-ANSI-FL PIC S9(8) COMP SYNC VALUE +0.

* THE FILE DOES NOT CONTAIN MACHINE CONTROL CHARACTERS
05 FATTR-CC-MACH-FL PIC S9(8) COMP SYNC VALUE +0.

* A CROSS MEMORY BUFFER SIZE OF 64K IS TO BE USED
05 FATTR-BLOCK-SIZE PIC S9(8) COMP SYNC VALUE +65536.

*
* DEFINE THE FILE OPTIONS LIST USED BY THE OPEN-SEQ FUNCTION
*

01 SM1-NONVRAM-FILE-OPTIONS.

* THERE ARE 8 ITEMS IN THIS LIST
05 FOPTS-LIST-SIZE PIC S9(8) COMP SYNC VALUE +8.

* LOCK THE FILE ON WRITE
05 FOPTS-LOCK PIC S9(8) COMP SYNC VALUE +1.

* IF THE FILE IS LOCKED WHEN THIS PROGRAM ATTEMPTS ACCESS,
* DO NOT WAIT FOR THE LOCK TO BE RELEASED. INSTEAD,
* TERMINATE PROCESSING.

05 FOPTS-WAIT PIC S9(8) COMP SYNC VALUE +0.

* SPECIFY /ATF=2
05 FOPTS-ATF PIC S9(8) COMP SYNC VALUE +2.
SGI, Corp. Callable Interface Programmer’s Guide 6-5

Sample Program
COBOL Sample Program6
* SPECIFY THE DEFAULT EDC
05 FOPTS-EDC PIC S9(8) COMP SYNC VALUE +0.

* SPECIFY THE MAXIMUM VERSION LIMIT VALUE
05 FOPTS-LIMIT PIC S9(8) COMP SYNC VALUE +128.

* CREATE A NEW VERSION OF THE FILE BY SPECIFYING THAT THIS
* IS NOT A NEW FILE

05 FOPTS-NEW PIC S9(8) COMP SYNC VALUE +0.

* UNLOCK THE FILE AFTER WRITING
05 FOPTS-UNLOCK PIC S9(8) COMP SYNC VALUE +1.

* SPECIFY /VTF=NEXT
05 FOPTS-VTF PIC S9(8) COMP SYNC VALUE +2.

*
* PARAMETERS SPECIFIC TO THE OPEN-VRAM FUNCTION
*

01 SM1-FILE-REVISION PIC S9(8) COMP SYNC VALUE +0.

* THE STORHOUSE FILENAME IS SPECIFIED ON THE "//SM1VFIL" DD
* STATEMENT IN THE JCL

01 SM1-VRAM-FILENAME PIC X(56) VALUE 'DD=SM1VFIL'.

* THE VRAM FILE WILL BE PROCESSED BY RECORD NUMBER AND KEY

01 SM1-OPEN-METHOD PIC X(24) VALUE 'RECORD,KEYED'.

*
* DEFINE THE VRAM FILE ATTRIBUTE LIST
*

01 SM1-VRAM-FILE-ATTRIBUTES.

* THERE ARE 8 ITEMS IN A FULL-LENGTH ATTRIBUTE LIST. THIS PROGRAM
* DOES NOT USE THE VERSION OR THE CHECKPOINT FIELDS, SO THEY ARE
* OMITTED.

05 LIST-SIZE PIC S9(8) COMP SYNC VALUE +6.

* THE MAXIMUM RECORD LENGTH IS 80
05 MAX-RCD-LENGTH PIC S9(8) COMP SYNC VALUE +80.

* THE LAST PHYSICAL RECORD NUMBER IS RETURNED HERE BY OPEN
05 LAST-P-REC-NUM PIC S9(8) COMP SYNC VALUE +0.

* THE LAST LOGICAL RECORD NUMBER IS RETURNED HERE BY OPEN
05 LAST-L-REC-NUM PIC S9(8) COMP SYNC VALUE +0.

* THE CURRENT REVISION OF THE FILE
05 FILE-REVISION-NUMBER PIC S9(8) COMP SYNC VALUE +0.

* THE FILE TYPE IS RETURNED HERE
05 FILE-TYPE PIC S9(8) COMP SYNC VALUE +0.
6-6 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
* A CROSS MEMORY BUFFER SIZE OF 64K IS TO BE USED
05 BLOCK-SIZE PIC S9(8) COMP SYNC VALUE +65536.

*
* THE PARAMETERS FOR THE READS AND WRITES ARE NOW DEFINED
* IN THE FOLLOWING MANNER:
* 1)DEFINE THOSE PARAMETERS COMMON TO ALL FUNCTIONS
* 2)DEFINE THOSE PARAMETERS SPECIFIC TO EACH FUNCTION
*
*
* PARAMETERS USED FOR ALL READ AND WRITE OPERATIONS
*

* ALL DATA IS READ INTO OR WRITTEN FROM THIS AREA
01 SM1-FILE-BUFFER.

05 SM1-FILE-KEY PIC 9(9).
05 SM1-FILE-DATA PIC X(71).

* THE BUFFER IS 80 BYTES IN LENGTH
01 SM1-FILE-BUFFER-LENGTH PIC S9(8) COMP SYNC VALUE +80.

* THE RECORD LENGTH (SPECIFIED FOR WRITE, RETURNED BY READ)
01 SM1-RECORD-LENGTH PIC S9(8) COMP SYNC VALUE +80.

* THE RECORD NUMBER JUST WRITTEN (RETURNED BY WRITE)
01 SM1-RECORD-NUMBER PIC S9(8) COMP SYNC.

*
* PARAMETERS SPECIFIC TO THE VRAM READ FUNCTIONS
*

01 SM1-RECORD-KEY PIC 9(9).
01 SM1-KEY-NAME PIC X(56) VALUE 'SOCIAL-SECURITY-NUMBER'.
01 SM1-KEY-LENGTH PIC S9(8) COMP SYNC VALUE +9.
01 SM1-RELATIVE-RECORD PIC S9(8) COMP SYNC VALUE +0.

*
* MISCELLANEOUS STORAGE AREAS
*

01 COMP-WORK-AREAS COMP SYNC.
05 HOST-FILE-EOF PIC S9(8).
05 I PIC S9(8) VALUE +0.
05 K PIC S9(8) VALUE +0.

01 KEY-TABLE PIC 9(9) OCCURS 4.
01 PRINT-MESSAGES.

05 ERROR-RETURNED-FROM-SM.
10 FILLER PIC X(13) VALUE 'SM1 FUNCTION'.
10 ERROR-SM-FUNCTION PIC X(16).
10 FILLER PIC X(19) VALUE ' FAILED...RETURN ='.
10 ERROR-SM-RETURN PIC Z(4).

PROCEDURE DIVISION.

INITIAL-PROCESSING.
SGI, Corp. Callable Interface Programmer’s Guide 6-7

Sample Program
COBOL Sample Program6
OPEN OUTPUT PRINT-FILE.
MOVE SPACES TO PRINT-RECORD.

MAIN-PROCESSING.

* CONNECT TO STORHOUSE.

PERFORM 100-CONNECT-TO-SM THRU 100-EXIT.

* TRANSFER THE HOST FILE TO A NONVRAM STORHOUSE FILE.

PERFORM 200-TRANSFER-NOVRAM-FILE THRU 200-EXIT.

* RETRIEVE/PRINT ALL RECORDS FROM THE NEWLY CREATED STORHOUSE FILE.

PERFORM 300-RETRIEVE-NOVRAM-FILE THRU 300-EXIT.

* TRANSFER THE HOST FILE TO A VRAM STORHOUSE FILE.

PERFORM 400-TRANSFER-VRAM-FILE THRU 400-EXIT.

* READ AND PRINT RELATIVE RECORDS 2, 4, 6, AND 8.

PERFORM 500-PROCESS-RELATIVE-RECORDS THRU 500-EXIT.

* READ-KEYED AND PRINT RECORDS 2, 4, 6, AND 8;
* READ-NEXT-KEY AND PRINT RECORDS 3, 5, 7, AND 9.

PERFORM 600-PROCESS-KEYED-RECORDS THRU 600-EXIT.

* DISCONNECT FROM STORHOUSE.

PERFORM 700-DISCONNECT THRU 700-EXIT.

FINAL-PROCESSING.

CLOSE PRINT-FILE.
GOBACK.

100-CONNECT-TO-SM.
*
* CONNECT TO STORHOUSE.
*

CALL 'LSMCALL' USING SM1-FUNCTION-CONNECT
SM1-CONNECT-TOKEN
SM1-RETURN-CODE
SM1-CMDLINK-EMSGFLAG
SM1-ACCOUNT
SM1-PASSWORD
SM1-LIBRARY-ID
SM1-SUBSYSTEM-ID.

*
* USE THE EMESSAGE FUNCTION TO RETRIEVE ANY STORHOUSE MESSAGES.
*

6-8 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
PERFORM 1500-RETRIEVE-CMDLINK-EMSGS THRU 1500-EXIT.
*
* INSURE A SUCCESSFUL CONNECT TO STORHOUSE. TERMINATE PROCESSING
* IF THE CONNECT FAILED.
*

IF SM1-RETURN-CODE EQUAL ZERO NEXT SENTENCE
ELSE

MOVE SM1-FUNCTION-CONNECT TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
PERFORM FINAL-PROCESSING.

100-EXIT.
EXIT.

200-TRANSFER-NONVRAM-FILE.

* THIS ROUTINE TRANSFERS A HOST FILE TO STORHOUSE. THE STORHOUSE FILE
* IS CREATED IN TRANSPORTABLE, ASCII FORMAT.

* OPEN THE HOST FILE

OPEN INPUT HOST-FILE.

* SET THE STORHOUSE FILE OPTIONS TO LOCK AT OPEN, UNLOCK AT CLOSE.

MOVE +1 TO FOPTS-LOCK FOPTS-UNLOCK.

* SET THE STORHOUSE FILE MODE TO WRITE.

MOVE SM1-MODE-WRITE TO SM1-FILE-MODE.

* OPEN THE STORHOUSE FILE. IF THE OPEN FAILS, ALL PROCESSING IS
* TERMINATED BY THE 1000-OPEN-NONVRAM ROUTINE.

PERFORM 1000-OPEN-NONVRAM THRU 1000-EXIT.

* READ THE HOST FILE, AND WRITE TO STORHOUSE

MOVE +0 TO HOST-FILE-EOF.

PERFORM 210-READ-WRITE THRU 210-EXIT
UNTIL HOST-FILE-EOF NOT EQUAL ZERO.

* CLOSE THE HOST FILE AND THE STORHOUSE FILE.

CLOSE HOST-FILE

PERFORM 1300-CLOSE-SM-FILE THRU 1300-EXIT.

* TRANSFER IS COMPLETE.

200-EXIT.
EXIT.
SGI, Corp. Callable Interface Programmer’s Guide 6-9

Sample Program
COBOL Sample Program6
210-READ-WRITE.

* READ A RECORD FROM THE HOST FILE.

READ HOST-FILE INTO SM1-FILE-BUFFER
AT END MOVE +1 TO HOST-FILE-EOF.

* WRITE THE RECORD TO STORHOUSE. IF THE WRITE FAILS, ALL PROCESSING
* IS TERMINATED BY THE 1200-WRITE-TO-SM ROUTINE.

IF HOST-FILE-EOF EQUAL ZERO
PERFORM 1200-WRITE-TO-SM THRU 1200-EXIT.

210-EXIT.
EXIT.

300-RETRIEVE-NONVRAM-FILE.

* THIS ROUTINE RETRIEVES AND PRINTS EACH RECORD FROM STORHOUSE
* NONVRAM FILE JUST CREATED.

* SET THE STORHOUSE FILE OPTIONS FOR NO LOCK.

MOVE +0 TO FOPTS-LOCK.

* SET THE STORHOUSE FILE MODE TO READ.

MOVE SM1-MODE-READ TO SM1-FILE-MODE.

* OPEN THE STORHOUSE FILE. IF THE OPEN FAILS, ALL PROCESSING IS
* TERMINATED BY THE 1000-OPEN-NONVRAM ROUTINE.

PERFORM 1000-OPEN-NONVRAM THRU 1000-EXIT.

* READ THE STORHOUSE FILE UNTIL END OF FILE.

PERFORM 310-READ-SM THRU 310-EXIT
UNTIL SM1-RETURN-CODE NOT EQUAL ZERO.

* CLOSE THE STORHOUSE FILE.

PERFORM 1300-CLOSE-SM-FILE THRU 1300-EXIT.

* RETRIEVAL IS COMPLETE.

300-EXIT.
EXIT.

310-READ-SM.

* READ A RECORD FROM STORHOUSE AND PRINT THE RECORD.

CALL 'LSMCALL' USING SM1-FUNCTION-READ
SM1-OPEN-TOKEN
SM1-RETURN-CODE
SM1-FILE-BUFFER
6-10 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
SM1-FILE-BUFFER-LENGTH
SM1-RECORD-LENGTH.

* SM1-RETURN-CODE = 5650, THEN END-OF-FILE WAS ENCOUNTERED.
* ANY OTHER NON-ZERO RETURN IS AN ERROR CONDITION.

IF SM1-RETURN-CODE NOT EQUAL ZERO
IF SM1-RETURN-CODE NOT EQUAL +5650

MOVE SM1-FUNCTION-READ TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
PERFORM 1600-RETRIEVE-XFRLINK-EMSGS THRU 1600-EXIT

ELSE
NEXT SENTENCE

ELSE
PERFORM 2200-PRINT-SM-RECORD THRU 2200-EXIT.

310-EXIT.
EXIT.

400-TRANSFER-VRAM-FILE.

* THIS ROUTINE TRANSFERS A HOST FILE TO A STORHOUSE VRAM FILE.

* OPEN THE HOST FILE

OPEN INPUT HOST-FILE.

* SET THE STORHOUSE FILE MODE TO APPEND.

MOVE SM1-MODE-APPEND TO SM1-FILE-MODE.

* OPEN THE STORHOUSE FILE. IF THE OPEN FAILS, ALL PROCESSING IS
* TERMINATED BY THE 1100-OPEN-VRAM ROUTINE.

PERFORM 1100-OPEN-VRAM THRU 1100-EXIT.

* READ THE HOST FILE, AND WRITE TO STORHOUSE

MOVE +0 TO HOST-FILE-EOF.

PERFORM 410-READ-WRITE THRU 410-EXIT
UNTIL HOST-FILE-EOF NOT EQUAL ZERO.

* CLOSE THE HOST FILE AND THE STORHOUSE FILE.

CLOSE HOST-FILE.

PERFORM 1300-CLOSE-SM-FILE THRU 1300-EXIT.

* TRANSFER IS COMPLETE.

400-EXIT.
EXIT

410-READ-WRITE.
SGI, Corp. Callable Interface Programmer’s Guide 6-11

Sample Program
COBOL Sample Program6
* READ A RECORD FROM THE HOST FILE.

READ HOST-FILE INTO SM1-FILE-BUFFER
AT END MOVE +1 TO HOST-FILE-EOF.

* WRITE THE RECORD TO STORHOUSE. IF THE WRITE FAILS, ALL PROCESSING
* IS TERMINATED BY THE 1200-WRITE-TO-SM ROUTINE.

IF HOST-FILE-EOF EQUAL ZERO
PERFORM 1200-WRITE-TO-SM THRU 1200-EXIT.

410-EXIT.
EXIT.

500-PROCESS-RELATIVE-RECORDS.
*
* THIS ROUTINE WILL:
* OPEN THE STORHOUSE VRAM FILE JUST CREATED FOR READ PROCESSING
* READ BY RELATIVE RECORD NUMBER AND PRINT RECORDS 2, 4, 6, 8
* SAVE THE KEYS FOR THESE RECORDS FOR SUBSEQUENT READ-KEYED
* PROCESSING.

* OPEN THE VRAM FILE FOR READ PROCESSING.

MOVE SM-MODE-READ TO SM1-FILE-MODE.

PERFORM 1100-OPEN-VRAM THRU 1100-EXIT.

* READ AND PRINT RECORDS 2, 4, 6, AND 8. ALSO, SAVE THEIR KEYS.

PERFORM 510-READ-PRINT THRU 510-EXIT
VARYING SM1-RELATIVE-RECORD FROM +2 BY +2

UNTIL SM1-RELATIVE-RECORD > +8.

* RELATIVE RECORD PROCESSING COMPLETE.

500-EXIT.
EXIT.

510-READ-AND-PRINT.

CALL 'LSMCALL' USING SM1-FUNCTION-READ-RECORD
SM1-OPEN-TOKEN
SM1-RETURN-CODE
SM1-FILE-BUFFER
SM1-FILE-BUFFER-LENGTH
SM1-RECORD-LENGTH
SM1-RELATIVE-RECORD.

* IF THE RETURN CODE FROM THE READ-RECORD IS NOT 0,
* FORMAT AN ERROR MESSAGE, AND RETRIEVE AND PRINT ANY
* STORHOUSE PROVIDED EMESSAGES.

IF SM1-RETURN-CODE NOT EQUAL ZERO
MOVE SM1-FUNCTION-READ-RECORD TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
6-12 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
PERFORM 1600-RETRIEVE-XFRLINK-EMSGS THRU 1600-EXIT

* OTHERWISE, PRINT THE RECORD JUST READ AND SAVE ITS KEY.

ELSE
PERFORM 2200-PRINT-SM-RECORD THRU 2200-EXIT
ADD +1 TO I
MOVE SM1-FILE-KEY TO KEY-TABLE(I).

510-EXIT.
EXIT.

600-PROCESS-KEYED-RECORDS.
*
* THIS ROUTINE WILL:
* READ THE STORHOUSE VRAM FILE BY KEY, USING THE KEYS SAVED BY THE PREVIOUS
* RELATIVE RECORD PROCESSING, READ-NEXT-KEY FOR THE INTERVENING RECORDS,
* PRINT ALL RECORDS READ, AND CLOSE THE VRAM FILE.
*

PERFORM 610-READ-KEYED THRU 610-EXIT
VARYING K FROM +1 BY +1 UNTIL K > I.

* CLOSE THE VRAM FILE.
PERFORM 1300-CLOSE-SM-FILE THRU 1300-EXIT.

* KEYED PROCESSING COMPLETE.

600-EXIT.
EXIT.

610-READ-KEYED.
*
* READ THE STORHOUSE VRAM FILE BY KEY. KEYS WERE STORED IN KEY-TABLE.
*

MOVE KEY-TABLE(I) TO SM1-RECORD-KEY.

CALL 'LSMCALL' USING SM1-FUNCTION-READ-KEYED
SM1-OPEN-TOKEN
SM1-RETURN-CODE
SM1-FILE-BUFFER
SM1-FILE-BUFFER-LENGTH
SM1-RECORD-LENGTH
SM1-KEY-NAME
SM1-RECORD-KEY
SM1-KEY-LENGTH
SM1-RELATIVE-RECORD.

* IF THE RETURN CODE FROM THE READ-KEYED IS NOT 0, FORMAT AN ERROR MESSAGE
* AND RETRIEVE AND PRINT ANY STORHOUSE PROVIDED EMESSAGES.
*

IF SM1-RETURN-CODE NOT EQUAL ZERO
MOVE SM1-FUNCTION-READ-KEYED TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
PERFORM 1600-RETRIEVE-XFRLINK-EMSGS THRU 1600-EXIT

* IF THE RETURN CODE FROM THE READ-KEYED WAS 0,
SGI, Corp. Callable Interface Programmer’s Guide 6-13

Sample Program
COBOL Sample Program6
* PRINT THE RECORD JUST READ

ELSE

PERFORM 2200-PRINT-SM-RECORD THRU 2200-EXIT.

* NOW, EXECUTE A READ-NEXT-KEY FUNCTION

CALL 'LSMCALL' USING SM1-FUNCTION-READ-NEXT-KEY
SM1-OPEN-TOKEN
SM1-RETURN-CODE
SM1-FILE-BUFFER
SM1-FILE-BUFFER-LENGTH
SM1-RECORD-LENGTH
SM1-RELATIVE-RECORD.

* IF THE RETURN CODE FROM THE READ-NEXT-KEY IS NOT 0, FORMAT AN ERROR
* MESSAGE, AND RETRIEVE AND PRINT ANY STORHOUSE PROVIDED EMESSAGES.
*

IF SM1-RETURN-CODE NOT EQUAL ZERO
MOVE SM1-FUNCTION-READ-NEXT-KEY TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
PERFORM 1600-RETRIEVE-XFRLINK-EMSGS THRU 1600-EXIT

* OTHERWISE, PRINT THE RECORD JUST READ.

ELSE
PERFORM 2200-PRINT-SM-RECORD THRU 2200-EXIT.

610-EXIT.
EXIT.

700-DISCONNECT.
*
* DISCONNECT FROM STORHOUSE.
*
* NOTE:
*
* SINCE THE CONNECT FUNCTION SET THE EMSG FLAG TO 1, THIS ROUTINE WILL
* CALL THE EMSG FUNCTION TO ALLOW THE STORHOUSE INTERFACE MODULES TO PERFORM
* STORAGE CLEANUP.
*

CALL 'LSMCALL' USING SM1-FUNCTION-DISCONNECT
SM1-CONNECT-TOKEN
SM1-RETURN-CODE.

PERFORM 1500-RETRIEVE-CMDLINK-EMSGS THRU 1500-EXIT.

700-EXIT.
EXIT.

1000-OPEN-NONVRAM.
*

6-14 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
* OPEN THE STORHOUSE NONVRAM FILE.
*

CALL 'LSMCALL' USING SM1-FUNCTION-OPEN-SEQ
SM1-CONNECT-TOKEN
SM1-RETURN-CODE
SM1-XFRLINK-EMSGFLAG
SM1-OPEN-TOKEN
SM1-FILE-MODE
SM1-NONVRAM-FILENAME
SM1-FILE-VERSION
SM1-FILE-PASSWORDS
SM1-GROUP-NAME
SM1-GROUP-PASSWORDS
SM1-FILE-LOCATION
SM1-NONVRAM-FILE-ATTRIBUTES
SM1-NONVRAM-FILE-OPTIONS.

*
* CHECK FOR A SUCCESSFUL OPEN. IF THE OPEN FAILED, DISCONNECT
* FROM STORHOUSE AND TERMINATE PROCESSING.
*
* NOTE: DISCONNECT PROCESSING WILL RETRIEVE ANY STORHOUSE EMESSAGES.
*

IF SM1-RETURN-CODE EQUAL ZERO NEXT SENTENCE
ELSE

MOVE SM1-FUNCTION-OPEN-SEQ TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
PERFORM 700-DISCONNECT THRU 700-EXIT
PERFORM FINAL-PROCESSING.

1000-EXIT.
EXIT.

1100-OPEN-VRAM.
*
* OPEN THE STORHOUSE VRAM FILE.
*

CALL 'LSMCALL' USING SM1-FUNCTION-OPEN-VRAM
SM1-CONNECT-TOKEN
SM1-RETURN-CODE
SM1-XFRLINK-EMSGFLAG
SM1-OPEN-TOKEN
SM1-FILE-MODE
SM1-OPEN-METHOD
SM1-VRAM-FILENAME
SM1-FILE-REVISION
SM1-FILE-PASSWORDS
SM1-GROUP-NAME
SM1-GROUP-PASSWORDS
SM1-RELATIVE-RECORD
SM1-VRAM-FILE-ATTRIBUTES.

*
* CHECK FOR A SUCCESSFUL OPEN. IF THE OPEN FAILED, DISCONNECT
* FROM STORHOUSE AND TERMINATE PROCESSING.
*

SGI, Corp. Callable Interface Programmer’s Guide 6-15

Sample Program
COBOL Sample Program6
* NOTE: DISCONNECT PROCESSING WILL RETRIEVE ANY STORHOUSE EMESSAGES.
*

IF SM1-RETURN-CODE EQUAL ZERO NEXT SENTENCE
ELSE

MOVE SM1-FUNCTION-OPEN-VRAM TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
PERFORM 700-DISCONNECT THRU 700-EXIT
PERFORM FINAL-PROCESSING.

1100-EXIT.
EXIT.

1200-WRITE-TO-SM.
*
* THIS ROUTINE WILL USE STORHOUSE WRITE FUNCTION TO TRANSFER
* RECORDS TO A STORHOUSE FILE.

*
CALL 'LSMCALL' USING SM1-FUNCTION-WRITE

SM1-OPEN-TOKEN
SM1-RETURN-CODE
SM1-FILE-BUFFER
SM1-FILE-BUFFER-LENGTH
SM1-RECORD-NUMBER.

*
* CHECK FOR A SUCCESSFUL WRITE. IF IT FAILED, CLOSE THE FILE
* WITH THE ABORT FLAG SET TO 1, DISCONNECT FROM STORHOUSE, AND
* END ALL PROCESSING.
*
* NOTE: CLOSE PROCESSING WILL RETRIEVE ANY EMESSAGES.
*

IF SM1-RETURN-CODE EQUAL ZERO NEXT SENTENCE
ELSE

MOVE SM1-FUNCTION-WRITE TO ERROR-SM-FUNCTION
PERFORM 2100-PRINT-SM-ERROR THRU 2100-EXIT
MOVE +1 TO SM1-CLOSE-ABORT-FLAG
PERFORM 1300-CLOSE-SM-FILE THRU 1300-EXIT
PERFORM 700-DISCONNECT THRU 700-EXIT
PERFORM FINAL-PROCESSING.

1200-EXIT.
EXIT.

1300-CLOSE-SM-FILE.
*
* CLOSE THE STORHOUSE FILE.
*
* NOTE:
*
* SINCE THE OPEN FUNCTION SET THE EMSG FLAG TO 1, THIS ROUTINE WILL CALL
* EMSG TO ALLOW THE STORHOUSE INTERFACE MODULES TO PERFORM STORAGE CLEANUP.
*

CALL 'LSMCALL' USING SM1-FUNCTION-CLOSE
6-16 Callable Interface Programmer’s Guide SGI, Corp.

Sample Program
COBOL Sample Program 6
SM1-OPEN-TOKEN
SM1-RETURN-CODE
SM1-CLOSE-ABORT-FLAG.

PERFORM 1600-RETRIEVE-XFRLINK-EMSGS THRU 1600-EXIT.

1300-EXIT.
EXIT.

1500-RETRIEVE-CMDLINK-EMSGS.
*
* THIS ROUTINE WILL EXTRACT ALL MESSAGES RETURNED FROM STORHOUSE
* AT THE COMMAND LINK (SESSION) LEVEL. EACH RETURNED MESSAGE IS THEN
* PRINTED.
*

MOVE ZERO TO SM1-EMSG-RETURN-CODE.
PERFORM 1510-CALL-EMSG THRU 1510-EXIT

UNTIL SM1-EMSG-RETURN-CODE NOT EQUAL ZERO.

1500-EXIT.
EXIT.

1510-CALL-EMSG.
*
* USE THE EMESSAGE FUNCTION TO RETRIEVE ANY STORHOUSE MESSAGES.
*

CALL 'LSMCALL' USING SM1-FUNCTION-EMSG
SM1-CONNECT-TOKEN
SM1-EMSG-RETURN-CODE
SM1-EMSG-BUFFER
SM1-EMSG-BUFFER-LENGTH
SM1-EMSG-MSG-LENGTH.

* NOW PRINT THE RETRIEVED MESSAGE (IF EMSG RETURN CODE IS 0).

IF SM1-EMSG-RETURN-CODE EQUAL ZERO
PERFORM 2000-PRINT-EMSG THRU 2000-EXIT.

1510-EXIT.
EXIT.

1600-RETRIEVE-XFRLINK-EMSGS.
*
* THIS ROUTINE WILL EXTRACT ALL MESSAGES RETURNED FROM
* STORHOUSE AT THE TRANSFER LINK (DATA) LEVEL.
* EACH RETURNED MESSAGE IS THEN PRINTED.
*

MOVE ZERO TO SM1-EMSG-RETURN-CODE.
PERFORM 1610-CALL-EMSG THRU 1610-EXIT

UNTIL SM1-EMSG-RETURN-CODE NOT EQUAL ZERO.

1600-EXIT.
EXIT.

1610-CALL-EMSG.
SGI, Corp. Callable Interface Programmer’s Guide 6-17

Sample Program
COBOL Sample Program6
*
* USE THE EMESSAGE FUNCTION TO RETRIEVE ANY STORHOUSE MESSAGES.
*

CALL 'LSMCALL' USING SM1-FUNCTION-EMSG
SM1-OPEN-TOKEN
SM1-EMSG-RETURN-CODE
SM1-EMSG-BUFFER
SM1-EMSG-BUFFER-LENGTH
SM1-EMSG-MSG-LENGTH.

* NOW PRINT THE RETRIEVED MESSAGE (IF EMSG RETURN CODE IS 0).

IF SM1-EMSG-RETURN-CODE EQUAL ZERO
PERFORM 2000-PRINT-EMSG THRU 2000-EXIT.

1610-EXIT.
EXIT.

2000-PRINT-EMSG.

* THIS ROUTINE PRINTS STORHOUSE EMESSAGES.

MOVE SM1-EMSG-BUFFER TO PRINT-RECORD-DATA.
MOVE '0' TO PRINT-RECORD-CC.
WRITE PRINT-RECORD.
MOVE SPACES TO PRINT-RECORD.

2000-EXIT.
EXIT.

2100-PRINT-SM-ERROR.

* THIS ROUTINE PRINTS AN ERROR MESSAGE IF A STORHOUSE FUNCTION FAILS

MOVE SM1-RETURN-CODE TO ERROR-SM-RETURN.
MOVE ERROR-RETURNED-FROM-SM TO PRINT-RECORD-DATA.
MOVE '0' TO PRINT-RECORD-CC.
WRITE PRINT-RECORD.
MOVE SPACES TO PRINT-RECORD.

2100-EXIT.
EXIT.

2200-PRINT-SM-RECORD.

* THIS ROUTINE PRINTS A RECORD READ FROM STORHOUSE
MOVE SM1-FILE-BUFFER TO PRINT-RECORD-DATA.
MOVE ' ' TO PRINT-RECORD-CC.
WRITE PRINT-RECORD.
MOVE SPACES TO PRINT-RECORD.

2200-EXIT.
EXIT.
6-18 Callable Interface Programmer’s Guide SGI, Corp.

Appendix
A

Pass-Through Functions

Pass-through functions allow application programs direct access to StorHouse
capabilities by sending and receiving StorHouse ASCII messages. In this mode,
messages are passed directly from StorHouse to the application program without any
manipulation by the StorHouse Subsystem. This mode is intended primarily for use
by SGI-provided host utility software, such as the (TSO) Interactive Interface.

To use these functions, the application program must have access to message
structure definitions that are generally not distributed. The C language
implementation is available by special order only.

Installations can limit the use of pass-through functions to authorized programs.

The four pass-through functions are:

• PTOPEN
• PTWRTOSM
• PTRDFRSM
• CONFIG

These functions are described in the following sections.
SGI, Corp. Callable Interface Programmer’s Guide A-1

Pass-Through Functions
PTOPENA
PTOPEN
PTOPEN establishes a data transfer link between the user program and StorHouse
and sets the direction of the data flow. This function is used only for transfers of
complete files.

PTOPEN requires StorHouse standard features.

Statement Format for C
/*
 *Data Areas...
 */
char *ctoken ; /* C-Token returned by CONNECT */
char *otoken ; /* O-Token, set by PTOPEN */

long returncd ; /* Return-code */
long msgflag ; /* Messages Flag */
long direct[11] ; /* File Info list */

char sysid[8] ; /* Host-Id for XP for Data Link */
char link[8] ; /* Link-Id for Data Link */
char vcptopn[16] ; /* For function name */
char mode[6] ; /* Open Mode string */
char file_name[56];
char group_name[8];
struct
{

char volumeset_name[8];
char fileset_name[8];

}file_location;

longLSMCALL() ;

/*
 *Setup data areas prior to PTOPEN call
 */
strncpy(vcptopn, "PTOPEN ", (sizeof vcptopn)) ;
strncpy(mode, "READ ", (sizeof mode)) ;
msgflag = 1 ;/* Return Messages*/

/*
 * "sysid," "link" must be set up from data received from
 * the Storage Machine. Most of the direct list must also
 * be set from data received from the Storage Machine; only
 * the first and last entries are shown here.
 */
direct[0] = 10 ;/* Ten entries in list */
direct[10] = 0 ;/* Default buffering */

/*
A-2 Callable Interface Programmer’s Guide SGI, Corp.

Pass-Through Functions
PTOPEN A
 * The file name, group name, and file location information
 * must be set from the MIVGASG/MIVPASG message
 * "hs" structure members. This setup is not shown here.
 */
/*
 *PTOPEN Call
 */
LSMCALL(vcptopn, &ctoken, &returncd, &msgflag,

&otoken, mode, file_name, group_name,
&file_location, sysid, link, direct) ;

if (returncd ! = 0)
{
 /*
 *Error Handling
 */
}

Parameter Overview
CTOKEN The session identifier returned by CONNECT.

RETURNCD Final status from the requested operation; see “Return Codes.”

MSGFLAG An integer set to zero or non-zero. If non-zero, MSGFLAG indicates that the caller
requires text messages from all session errors, including PTOPEN/CLOSE function
errors. If set to zero, messages may not be retrievable if the session has terminated.

OTOKEN A variable set by PTOPEN to the file identifier. The application program should not
manipulate (in particular, not cause arithmetic conversion to) the result; it should
only be used as the OTOKEN parameter to other function calls for this file.

MODE A 6-byte character string that identifies the file reference mode. Valid modes are
READ and WRITE.

FILE_NAME A 56-byte character string that contains the StorHouse file name. This name is only
used to identify the file in SMF records.

GROUP_NAME An 8-byte character string that contains the group identifier. This field is only used to
identify the file in SMF records.

FILE_LOCATION An array of two 8-character strings that contain the volume set and file set names.
These fields are only used to identify the file in SMF records.

SYSID An 8-byte character string that provides the network identifier for the StorHouse
system being used. This information must be extracted from the MIVxFILE message
by the caller (x is P or G).
SGI, Corp. Callable Interface Programmer’s Guide A-3

Pass-Through Functions
PTOPENA
LINK An 8-byte character string that identifies the network OFFER name. This
information must be extracted from the MIVxFILE message by the caller.

DIRECT An array of variables that supply file characteristics that are kept in the StorHouse
directory entry for the file. The caller must supply these values for both read and
write operations. This information is used by the StorHouse Subsystem to assemble
and disassemble data frames.

Return Codes

Any Non-Zero Value The data link session was not established.

Detailed Function Description
PTOPEN directs the StorHouse Subsystem to establish a data link to StorHouse over
the network. The Subsystem manages the data link and exchanges blocks (frames)
with StorHouse. The transfer between the Subsystem and the user program is in
records, which may be any arbitrary unit of data that the user chooses.

The caller is responsible for initiating the transfer request to StorHouse and
processing the MIVxASG and MIVxFILE (x is P or G) messages from StorHouse. The
caller must have sent the MIVxASG response message to StorHouse. Network link
and file characteristics information in these messages are supplied to the Subsystem
through parameter values passed to PTOPEN. PTOPEN completes as soon as the
network data link is established. Standard sequential read and write can then be used
to transfer records. CLOSE should be called after all data has been transferred.

Notes
• Only one data transfer can be active at a time when PTOPEN is used.

• A session can be established in one task (under one TCB) and then used in
another task; however, only one session-related function can be performed at one
time for one session. Serialization between multiple tasks is the user’s
responsibility.

PTOPEN must be considered a session-related function.

• If a file is opened and closed under one TCB and read or written from another
TCB, the two tasks must share Subpool 0 storage. If one of these tasks is a subtask
of the other, this is accomplished by the SZERO=YES operand on the ATTACH
MACRO (this is the default value).

• Files transferred using PTOPEN can only be processed sequentially.
A-4 Callable Interface Programmer’s Guide SGI, Corp.

Pass-Through Functions
PTWRTOSM A
PTWRTOSM
PTWRTOSM sends an ASCII message to StorHouse.

PTWRTOSM requires StorHouse standard features.

Statement Format for C
/*
 *Data Areas...
 */
char *ctoken ; /* C-Token returned by CONNECT */
long returncd ; /* Return-code */
long smsglen ; /* Message length */
char ptwrtosm[16] ; /* For Function name */
char smessage[768] ;/* Message text string */

long LSMCALL() ;

/*
 * Setup data areas prior to PTWRTOSM call
 */
strncpy(ptwrtosm, "PTWRTOSM ", (sizeof ptwrtosm)) ;
smsglen = xxxx ; /* Set to actual msg length*/

/*
 *PTWRTOSM Call
 */
LSMCALL(ptwrtosm, &ctoken, &returncd, smessage, &smsglen);

if (returncd != 0)
{
 /*
 *Error Handling
 */
}

Parameter Overview
CTOKEN The session identifier returned by CONNECT.

RETURNCD Final status from the requested operation; see “Return Codes.”

MESSAGE The buffer containing the message to be sent to StorHouse.

SMSGLEN The length of the message in the MESSAGE buffer.
SGI, Corp. Callable Interface Programmer’s Guide A-5

Pass-Through Functions
PTWRTOSMA
Return Codes

Any Non-Zero Value PTWRTOSM was not processed by StorHouse.

Detailed Function Description
PTWRTOSM (WRite-TO-Storage-Machine) allows the application program to send a
StorHouse ASCII message (MIZxxx structure) to StorHouse. The actual code used in
the message must be EBCDIC; translation is performed by the Subsystem or network
so that the message received by StorHouse is in ASCII.

This function completes as soon as the Subsystem has queued the message for
delivery to StorHouse. To receive response messages from StorHouse, PTRDFRSM
must be used. (Refer to the function description section for PTRDFRSM.)

Notes
• The maximum length required to retrieve a response is 768 bytes. Any message

longer than this is rejected.

• This function is essentially an immediate operation and therefore has no
asynchronous form (ASPTWRTOSM).

• The formats of the messages are available as special order information. Ask your
system administrator to contact your SGI customer support representative.
A-6 Callable Interface Programmer’s Guide SGI, Corp.

Pass-Through Functions
PTRDFRSM A
PTRDFRSM
PTRDFRSM queues a request to receive the next ASCII message (structure) sent to
this session by StorHouse.

PTRDFRSM requires StorHouse standard features.

Statement Format for C
/*
 * Data Areas...
 */
char *ctoken ; /* C-Token returned by CONNECT */

long returncd ; /* Return-code */
long resbufsz ; /* Message length */
long ecb ; /* Event Control Block (IBM/MVS) */
char ptrdfrsm[16] ; /* For Function name */
char resbuf[772] ; /* Message input string */

long LSMCALL() ;

/*
 *Setup data areas prior to PTWRTOSM call
 */
strncpy(ptrdfrsm, "PTRDFRSM ", (sizeof ptrdfrsm)) ;
resbufsz = 772 ; /* Set to area size*/

/*
 * PTRDFRSM Call
 */
LSMCALL(ptrdfrsm, &ctoken, &returncd,

resbuff, &resbufsz, &ecb) ;

if (returncd != 0)
{
 /*
 *Error Handling
 */
}

Parameter Overview
CTOKEN The session identifier returned by CONNECT.

RETURNCD Final status from the requested operation; see “Return Codes.”
SGI, Corp. Callable Interface Programmer’s Guide A-7

Pass-Through Functions
PTRDFRSMA
RESBUFF The buffer into which the message from StorHouse is copied. The first four bytes of
this area are the actual length of the message. The message follows at the fifth byte.

RESBUFSZ The size of the RESBUFF buffer.

ECB The Event Control Block that is POSTed when a message has been copied to
RESBUFF.

Return Codes

Any Non-Zero Value PTRDFRSM was not processed by the Subsystem.

Detailed Function Description
PTRDFRSM (ReaD-FRom-Storage-Machine) allows the application program to
receive an ASCII message from StorHouse. The code used in the message is EBCDIC.
Translation from ASCII is performed by the Subsystem or network prior to delivery of
the message to the caller’s buffer.

This function completes as soon as the Subsystem has queued the request. The ECB
supplied is POSTed when the message has been copied. The caller should not modify
or reference the buffer area until after this POST.

Notes
• The maximum length required to retrieve a response is 772 bytes. The longest

message is 768 bytes. The first four bytes are required for the length. PTRDFRSM
will fail if a smaller buffer is supplied. However, a larger buffer can be supplied.

• PTRDFRSM is essentially an immediate operation. There is no asynchronous
form (ASPTRDFRSM). Also, because the function completes immediately,
ABORT cannot be used to cancel this operation. If the session is signed-off while
a read request is still active, the request is canceled, and the caller can free the
buffer area as soon as DISCONNECT completes.

• The formats of the messages are available as special order information. Ask your
system administrator to contact your SGI customer support representative.
A-8 Callable Interface Programmer’s Guide SGI, Corp.

Pass-Through Functions
CONFIG A
CONFIG
CONFIG allows retrieval of the configuration parameters used by the StorHouse
Subsystem.

CONFIG requires StorHouse standard features.

Statement Format for C
/*
 * Data Areas...
 */
char *ctoken;/* C-Token returned by CONNECT */

long returncd; /* Return-code */
char config[16]; /* For Function name */
char conval[1024]; /* Configuration Table area */

long LSMCALL() ;

/*
 *Setup data areas prior to CONFIG call
 */
strncpy(config, "CONFIG ", (sizeof config)) ;

/*
 * CONFIG Call
 */
LSMCALL(config, &ctoken, &returncd, conval) ;

if (returncd != 0)
{
 /*
 *Error Handling
 */
}

Parameter Overview
CTOKEN The session identifier returned by CONNECT.

RETURNCD Final status from the requested operation; see “Return Codes.”

CONVAL The buffer into which the configuration structure is copied.
SGI, Corp. Callable Interface Programmer’s Guide A-9

Pass-Through Functions
CONFIGA
Return Codes

Any Non-Zero Value CONFIG was not processed by the StorHouse Subsystem.

Detailed Function Description
CONFIG copies the StorHouse Subsystem host configuration parameters to a caller-
defined area.

Note
The format of the configuration area is available in the form of a C language
“typedef” statement. This is special order information. Ask your system administrator
to contact your SGI customer support representative.
A-10 Callable Interface Programmer’s Guide SGI, Corp.

Appendix
B

ALC Macro Definition

This appendix provides documentation for accessing the Callable Interface from
programs coded in IBM Assembler language. The assumed operating system
environment is MVS, either SP1.3 or SP2.X.

This appendix is divided into two sections. The first section documents the
Assembler MACRO LSMCALL, which facilitates construction of parameter lists and
calling sequences. The second section provides an example of a specific call, both
with the MACRO and with the standard assembler CALL statement.

LSMCALL – Call the Callable Interface Program
LSMCALL builds the parameter list required for a call to the LSMCALL program,
which is the single entry point for all function requests to the StorHouse Callable
Interface. LSMCALL also generates the instructions to set up register 1 (pointer to the
parameter list) and register 15 (LSMCALL entry point address) and to issue the
branch to LSMCALL.
SGI, Corp. Callable Interface Programmer’s Guide B-1

ALC Macro Definition
LSMCALL – Call the Callable Interface ProgramB
The three forms of the LSMCALL macro instruction (standard, list, and execute) are
written as follows in Table B-1.

Table B-1: LSMCALL Macro Instruction

name symbol. Begin name in column 1.

b One or more blanks must precede LSMCALL

LSMCALL

b One or more blanks must follow LSMCALL

function any valid function code, see Chapter 5, “Callable
Interface Functions.”

,CTOKEN=c-token
,OTOKEN=o-token

x-token: RX-type address, or
register (2) - (12)

,RC=return-code addr return-code addr: RX-type address,
or register (2) - (12)

,TYPE=SYNC
,TYPE=ASYNC

DEFAULT: TYPE=SYNC

Additional keyword operand requirements are dictated by the value of the function
parameter. For information about these requirements, refer to Chapter 5, “Callable
Interface Functions.”

,keyword=value addr value addr: RX-type address, or register (2) - (12)

... additional keyword/value entries

,MF=L
,MF=(E,ctrl prog)
,MF=S

ctrl prog: RX-type address, or
register (2) - (12)
DEFAULT: MF=S
B-2 Callable Interface Programmer’s Guide SGI, Corp.

ALC Macro Definition
LSMCALL – Call the Callable Interface Program B
Required Parameters
The first three parameters are required for all uses of LSMCALL. These parameters
are:

• Function code
• C-TOKEN or O-TOKEN
• Return code.

These parameters are described below.

function Specifies an identifier that is one of the function names documented in Chapter 5,
“Callable Interface Functions.” The identifier is a string written in uppercase (but
including any characters). For example, the function value to open a VRAM file is
OPEN-VRAM.

CTOKEN=c-token Specifies the location of a fullword to be used as the connect token. CONNECT
places the C-TOKEN value in this fullword; all other session-type calls require the
address of a fullword containing the value returned by CONNECT.

OTOKEN=o-token Specifies the location of a fullword to be used as the open token. OPEN-SEQ, OPEN-
VRAM, or PTOPEN places the O-TOKEN value in this fullword; all other data
transfer-type calls require the address of a fullword containing the value returned by
OPEN.

RC=return-code
addr

Specifies the location of a fullword to be used to receive the return code from the
requested function.

Optional Parameters
TYPE

TYPE=SYNC
TYPE=ASYNC

Specifies that the function is to be performed synchronously (TYPE=SYNC) with
control returned to the caller only when the operation has been completed or that the
function is to be performed asynchronously (TYPE=ASYNC) with control returned to
the caller as soon as the request is queued. (See Chapter 5, “Callable Interface
Functions.”)

TYPE is used for all function codes but can assume its default value. Before coding
TYPE=ASYNC, check the function description in Chapter 5 to ensure that the
particular function supports asynchronous requests. Note that the macro builds the
function name string with AS prefixed, so the function parameter should not include
the leading AS designation.

MF
MF=S
MF=L

MF=(E,ctrl addr)

Specifies the type of parameter list to be generated by this execution of the macro.

• MF=S builds a non-reentrant parameter list in-line.

• MF=L defines the data area to be used as a parameter list by the execute (MF=E)
form of the macro.
SGI, Corp. Callable Interface Programmer’s Guide B-3

ALC Macro Definition
LSMCALL – Call the Callable Interface ProgramB
• MF=E builds a re-entrant parameter list using the data area built by the list
(MF=L) form of the macro. The name of the area built by the list form of the
macro must be specified as the second subparameter of this operand. If MF=L is
coded, any parameters specified are ignored, and all required parameters must be
specified on the MF=E form of the macro.

The Macro Form parameter allows standard in-line call and parameter list
generation (which is not re-entrant) or allows remote parameter list generation to
build re-entrant parameter lists. MF can be used for all functions.

Remaining Keywords
The remaining keywords are listed in alphabetical order below. The specific
keyword/value specifications required for a function call can be determined from the
function definition in Chapter 5, “Callable Interface Functions.”

ABORTFL=xfer-
abort-flag addr

Specifies the location of a fullword whose contents are used to indicate whether the
file transfer associated with the CLOSE is to be aborted. The caller must preset that
fullword to zero for a normal CLOSE or to any non-zero value to indicate a transfer-
abort condition.

ACCT=account
addr

Specifies the location of a 12-byte character string containing the StorHouse account
identifier for the session to be connected.

ACCTPW=
password add

Specifies the location of a 32-byte character string containing the password associated
with the StorHouse account identifier.

ATTRIBS=file-attrib
addr

Specifies the location of an array of fullwords that specify the attributes for the file
being opened.

BUFFER=buffer
addr

Specifies the location of the data buffer to be used in a StorHouse data transfer
operation.

BUFFERL=buffer-
size addr

Specifies the location of a fullword that contains the length in bytes of the data buffer
specified by the BUFFER operand.

CHECKPOINT=
checkpoint addr

Specifies the location of a fullword that contains the checkpoint number where
OPEN-VRAM will restart the file append operation.

CHKPT=checkpoint
addr

Specifies the location of a fullword to receive the checkpoint number.

CMND=command-
string addr

Specifies the location of a character string, a maximum of 255 bytes long, containing
a StorHouse command or a response to a StorHouse Prompt and Read, to be
executed by SM-CMD-INTF.

CMNDL=string-
length addr

Specifies the location of a fullword containing the length of the data in the command
buffer identified by the CMND=operand.
B-4 Callable Interface Programmer’s Guide SGI, Corp.

ALC Macro Definition
LSMCALL – Call the Callable Interface Program B
ECBA=return-ecb-
addr

Specifies the location of a fullword to receive the address of the Event Control Block
(ECB) returned by ECBADDR.

FILE=file-name
addr

Specifies the location of a 56-byte character string that contains the StorHouse file
name.

FILEPW=file-
passwords addr

Specifies the location of an array containing three (OPEN or OPEN-SEQ), or two
(OPEN-VRAM) 8-byte entries, where each entry contains a read, write, or delete
password for the file specified by the FILE operand.

GROUP=group-
name addr

Specifies the location of an 8-byte character string that contains the StorHouse group
name.

GROUPPW=group-
passwords addr

Specifies the location of a array containing three (OPEN or OPEN-SEQ), or two
(OPEN-VRAM) 8-byte entries, where each entry contains a read, write, or delete
password for the group specified by the GROUP operand.

KEY=index-name
addr

Specifies the location of the 56-byte character string that contains the name of the
key index to be used.

KEYL=key-length
addr

Specifies the location of a fullword that contains the length of the key value specified
by the KEY operand.

KEYV=key-value
addr

Specifies the location of a character string that contains the value of the key to be
used for the record search. The length of the key value is given by the KEYL operand
(the maximum length is 254 bytes).

METHOD=access-
method addr

Specifies the location of a 24-byte character string that contains the processing
method specification for the data transfer operation being opened.

MODE=mode addr Specifies the location of a 6-byte character string that contains the data transfer mode
specification.

MSGFLAG=
message-flag addr

Specifies the location of a fullword. The contents of that fullword are used to indicate
whether messages will be retrieved (using EMSG) following a CLOSE or an OPEN
that returns a failure code. The caller must preset that fullword to zero if messages
need not be retained after CLOSE/abnormal OPEN or to any non-zero value to
indicate that messages must be retained for subsequent retrieval.

MSGL=returned-
message-length

addr

Specifies the location of a fullword to receive the length of the message returned by
EMSG.

OPTS=command-
options addr (when

using function:
OPEN)

Specifies the location of a 255-byte character string that contains options to be
supplied to OPEN.
SGI, Corp. Callable Interface Programmer’s Guide B-5

ALC Macro Definition
Assembly Language Standard CallB
OPTSL=command-
opt-length addr

(when using
function: OPEN)

Specifies the location of a fullword that contains the length of the string specified by
the OPTS operand.

OPTS=file-options
array addr (when

using function:
OPEN-SEQ)

Specifies the location of an array of 32-bit integers providing file options
corresponding with modifiers available for the StorHouse GET and PUT file
operations.

RCHKPT=
checkpoint-num

addr

Specifies the location of a fullword that contains the number of the checkpoint at
which the restart operation should begin.

RECORDL=return-
rec-len addr

Specifies the location of a fullword to receive the length of the record placed in the
buffer specified by the BUFFER operand.

RECORDN=rel-rec-
num addr

Specifies the location of a fullword that contains the relative record number for the
requested record.

REVISION=revision
addr

Specifies the location of a fullword that contains the revision number of the file
version.

SMID=sm-identifier
addr

Specifies the location of a 6-byte character string that contains the StorHouse
identifier.

SSN=subsystem-
identifier addr

Specifies the location of a 4-byte character string that contains the StorHouse
Subsystem name.

VERSION=version
addr

Specifies the location of a fullword that contains the version number of the file
identified by the FILE operand.

Assembly Language Standard Call
Note the following when using the standard CALL macro to build the calling
sequence for the LSMCALL routine or when writing open code to accomplish this
call:

• Parameter list entries are always an address, never a value.

• The parameter list address must be passed in register 1.

• The parameter list is an array of fullwords.

• The areas addressed by the addresses in the parameter list are either character
strings or fullword integers.
B-6 Callable Interface Programmer’s Guide SGI, Corp.

ALC Macro Definition
Assembly Language Standard Call B
• The last fullword in the parameter does not have to be flagged (by setting the
high-order bit) but can be, if desired.

• The entry point address for LSMCALL must be in register 15.

• The return address must be in register 14.

Because the Interface is usually called from high-level languages that generate
parameter lists and calling sequences that always conform to the above, the contents
of register 1 and the parameter list are not checked to see if they contain reasonable
addresses. If errors are made in these areas, the usual result will be an S0C4 ABEND.

Example: CALL Macro
The following example in Table B-2 shows the CALL macro and data areas for OPEN-
VRAM. The file is opened for append processing with keyed records. Note that the
file name, group name, and passwords are explicitly coded. Usually, these values are
set from information supplied to the program.

The data areas for the CALL macro are:

*
* DATA AREAS...
*
OPENVRAM DC CL16'OPEN-VRAM'
CTOKEN DS F BUILT BY CONNECT
RETURNCD DS F RETURNED VALUE
MSGFLAG DC F'1' GET MESSAGES
OTOKEN DS F RETURNED VALUE
MODE DC CL6'APPEND'
METHOD DC CL24'SEQUENTIAL,KEYED'
REVISION DC F'0' USING CURRENT REVISION
FILEPWS DC CL8'READ-PW'

DC CL8'WRITE-PW'
GROUP DC CL8' ' DEFAULT GROUP
GROUPPWS DC CL8' '

DC CL8' '
RELREC DC F'0' DON'T-CARE FOR WRITE
ATTRIB DC F'8' EIGHT ENTRIES IN LIST

DS F RETURNED MAXIMUM RECORD LENGTH
DS F RETURNED LAST PHYSICAL RECORD NUM

Table B-2: CALL Macro

CALL Macro

CALL LSMCALL,(OPENVRAM,CTOKEN,RETURNCD, X
MSGFLAG,OTOKEN,MODE,METHOD,FILE, X
REVISION,FILEPWS,GROUP,GROUPWS, X
RELREC.ATTRIB),VL
SGI, Corp. Callable Interface Programmer’s Guide B-7

ALC Macro Definition
Assembly Language Standard CallB
DS F RETURNED LAST LOGICAL RECORD NUM
DS F RETURNED FILE REVISION NUMBER
DS F RETURNED FILE TYPE
DC F'1' NO XM BLOCKING
DC F'0' USING CURRENT VERSION
DC F'0' USING NO CHECKPOINT NUMBER

Example: LSMCALL Macro
The LSMCALL macro can be used instead of the standard CALL macro. The data
areas used above remain the same (except OPEN-VRAM, which is not required). Table
B-3 shows the executable code.

The LSMCALL macro can be used to obtain a help listing of the parameters that are
required for each function. You can do this by coding 'LSMCALL HELP'.

Table B-3: LSMCALL Macro

LSMCALL Macro

LSMCALL OPEN-VRAM,CTOKEN=CTOKEN,RC=RETURNCD, X
MSGFLAG=MSGFLAG,OTOKEN=OTOKEN, X
MODE=MODE,METHOD=METHOD, X
FILE=FILE,REVISION=REVISION, X
FILEPW=FILEPWS,GROUP=GROUP, X
GROUPPW=GROUPPWS,RECORDN=RELREC, X
ATTRIBS=ATTRIB,MF=S
B-8 Callable Interface Programmer’s Guide SGI, Corp.

Appendix
C

Checkpoint/Restart and Programming
Guidelines

Appendix C contains additional technical information about programming with the
Callable Interface. Information is presented in two sections:

• Checkpoint/Restart
• Programming Guidelines.

The intent of these sections is to provide additional examples and programming tips.

Checkpoint/Restart
CHECKPOINT can only be issued during VRAM, MODE=APPEND data transfer
operations. A successful CHECKPOINT guarantees that all data written up to the
time of the checkpoint has been received and processed by StorHouse.

Only the current (most recent) revision of a file version, either accessible or software
disabled, can be opened at a checkpoint. Opening a file at a checkpoint is referred to
as a restart.

Examples
This section contains four examples that use OPEN-VRAM and CHECKPOINT. The
examples assume that the current version of the VRAM file DATAFILE has three
revisions. Revisions 1 and 2 contain no checkpoints. Revision 3 contains three
checkpoints, which are referenced here as checkpoints a, b, and c.
SGI, Corp. Callable Interface Programmer’s Guide C-1

Checkpoint/Restart and Programming Guidelines
Checkpoint/RestartC
Note Actual checkpoints are binary numbers, not alphanumeric characters. The caller
should keep track of checkpoint numbers and make no assumptions about their
value.) Refer to Table C-1.

Revisions 1 and 2 can be opened in any MODE. Revision 3 can be opened without
supplying a checkpoint in any MODE or in MODE=APPEND at checkpoint a, b, or c.

Example 1
In Example 1, the caller opens Revision 3 shown above with MODE=APPEND at
checkpoint a and issues CHECKPOINT and CLOSE. The resulting revisions and their
checkpoints are:

Checkpoints b and c in the original revision 3 are no longer accessible. The last
checkpoint in the current revision 3 is checkpoint d.

Example 2
In Example 2, the caller opens revision 3, generated in Example 1, with
MODE=UPDATE and issues CHANGE, DELETE, and CLOSE. The resulting
revisions are:

Table C-1: DATAFILE Revisions

Revision Number Checkpoint Open

1 None OPEN-VRAM, any MODE

2 None OPEN-VRAM, any MODE

3 a,b,c OPEN-VRAM, any MODE or
OPEN-VRAM,
MODE=APPEND at any
checkpoint

Revision Number Checkpoint

OPEN-VRAM
MODE=APPEND

1 None

CHECKPOINT 2 None

CLOSE 3 a,d

Revision Number Checkpoint

OPEN-VRAM
MODE=UPDATE

1 None

CHANGE 2 None
C-2 Callable Interface Programmer’s Guide SGI, Corp.

Checkpoint/Restart and Programming Guidelines
Checkpoint/Restart C
There are now four revisions. Any previous checkpoints are no longer accessible.
Checkpoints are only accessible in the current revision.

Example 3
In Example 3, the caller opens revision 3, generated in Example 2, using
MODE=APPEND and issues WRITE, CHECKPOINT, WRITE, CHECKPOINT, and
ABORT. The resulting revisions are:

There are now five revisions. Revision 5 has two checkpoints, a and b, and is marked
as software disabled because of the ABORT.

If the caller opens revision 5 in MODE=APPEND and supplies a checkpoint of 0 or
no checkpoint number, StorHouse returns a status code of 2630 and the last
checkpoint number, in this case checkpoint b.

Example 4
In Example 4, the caller opens revision 4 (from Example 3) with MODE=APPEND
and issues WRITE and CLOSE. The resulting revisions are:

DELETE 3 None

CLOSE 4 None

Revision Number Checkpoint

Revision Number Checkpoint

OPEN-VRAM
MODE=APPEND

1 None

WRITE
CHECKPOINT

2 None

WRITE
CHECKPOINT

3 None

ABORT 4 None

5 a, b (software disabled)

Revision Number Checkpoint

OPEN-VRAM
MODE=APPEND

1 None

WRITE 2 None

CLOSE 3 None
SGI, Corp. Callable Interface Programmer’s Guide C-3

Checkpoint/Restart and Programming Guidelines
Programming GuidelinesC
In this example, the user opened an older, accessible revision of the file to roll back the
current revision, which was software disabled. A new revision 5 containing the
appended data now supersedes the software disabled revision 5 from Example 3.

Programming Guidelines
The guidelines in this section apply to programs that use:

• OPEN-SEQ

• OPEN-VRAM with the StorHouse system parameter VRAM_FILE_OPEN set to
true, and any mode and access method

• OPEN-VRAM with VRAM_FILE_OPEN set to false, a mode of READ, and an
access method of SEQUENTIAL

• OPEN-VRAM with VRAM_FILE_OPEN set to false and a mode of APPEND or
UPDATE

• CREATE-OPEN.

A program using one or more of the types of access listed above will never run to
completion if the program attempts to have open at the same time files that require
use of the same resource.

Defining Resources
Resources include:

• Optical volumes (for write)
• Optical disk drives (ODU)
• Transfer Manager processes.

The system parameter XFR_COUNT limits the number of Transfer Manager
processes.

4 None

5 None

Revision Number Checkpoint
C-4 Callable Interface Programmer’s Guide SGI, Corp.

Checkpoint/Restart and Programming Guidelines
Programming Guidelines C
The following situations require use of the same resource:

• Attempting to have files open on more level L volumes than available level L
drives

• Attempting to have open for write two or more files that are on the same optical
volume

• Attempting to have open more files than the value of XFR_COUNT.

Examples
The two examples in Table C-2 illustrate what can happen when open statements
require the use of the same resource. Both examples assume that:

• There are two available optical disk drives.
• All files reside on different optical disks.
• Files are opened using OPEN-SEQ with a mode of READ or OPEN-VRAM with a

mode of READ and an access method of SEQUENTIAL:

Example 1 executes successfully because an ODU is always available to satisfy each
OPEN-SEQ request. Because the close statement for each file releases an ODU, there
are no conflicts for shared resources.

In contrast, Example 2 will not run to completion. It attempts to have three level L
files open at the same time when there are only two available optical disk drives.

Example 2 will wait indefinitely for an available ODU to satisfy the OPEN FILE3
request. In Example 2, the optical drive is the resource causing the problem.

Table C-2: Example of Open Statements Requiring the Same Resource

Example 1 Example 2

OPEN FILE1 OPEN FILE1

READ FILE1 OPEN FILE2

CLOSE FILE1 OPEN FILE3

OPEN FILE2 READ FILE1

READ FILE2 READ FILE2

CLOSE FILE2 READ FILE3

OPEN FILE3 CLOSE FILE1

READ FILE3 CLOSE FILE2

CLOSE FILE3 CLOSE FILE3
SGI, Corp. Callable Interface Programmer’s Guide C-5

Checkpoint/Restart and Programming Guidelines
Programming GuidelinesC
User Guidelines
Applications and files should be set up to avoid resource conflicts.

• Do not plan to write to files that are in the same volume set at the same time.

• If you must read files concurrently, ensure that there are enough optical drives
configured in the system to handle the read requests. If there are enough drives,
understand that your application may not run if a drive goes down.

• To prevent problems resulting from an insufficient number of Transfer Manager
processes, use the interactive SHOW SYSTEM command to display the value of
XFR_COUNT. If more files must be open at the same time than the value of
XFR_COUNT, refer the problem to your system administrator.

Permanent Fixes
The following suggestions are permanent fixes to a resource conflict involving optical
drives. They should not be used as a temporary solution for a resource conflict caused
by a drive that goes down.

• To prevent problems resulting from an insufficient number of optical drives
when level L files that must be open at the same time reside on different optical
volumes, verify that there are at least as many optical drives available as level L
files. If there are not enough available optical drives, RELOCATE, or move, some
of the level L files to a level F file set.

Note RELOCATE is a permanent move that deletes the source. Do not RELOCATE to
level F unless you are willing to lose your original level L copy.

• To prevent problems resulting from writing to files residing on the same level L
volume, ensure that all level L files that must be open for write at the same time
are in different volume sets. If files belong to the same volume set(s):

• RELOCATE one or more files to a different volume set(s).

• Write one or more files to the performance buffer rather than directly to a
level L volume set. In other words, do not use VTF=DIRECT.
C-6 Callable Interface Programmer’s Guide SGI, Corp.

Index
Index

A

ABORT general usage function
C-TOKEN parameter 5-71
description 5-72
O-TOKEN parameter 5-71
overview 5-71
R-CODE parameter 5-71
return codes 5-71

ABORTFL keyword B-4

access privilege 2-2

ACCESS-METHOD parameter 5-28

account 2-1

account identification code (AID) 2-2

ACCOUNT parameter 5-7

account password 2-2

ACCT keyword B-4

ACCTPW keyword B-4

AID (account identification code) 2-2

ALC (assembly language) 1-1

ASCII
character stream 2-6
characters, printable 2-3

assembly language (ALC) 1-1

Assembly Language standard call B-6

asynchronous form for functions 5-4
SGI, Corp. Callable Interfa
ATTRIBS keyword B-4

B

binary file data representation 2-6

BUFFER keyword B-4

BUFFER parameter
CHANGE data transfer control function 5-57
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-46
READ-NEXT-KEY data transfer control function 5-

48
READ-RECORD data transfer control function 5-43
READ-SEQ data transfer control function 5-41
WRITE-KEY data transfer control function 5-52

BUFFERL keyword B-4

BUFFER-SIZE parameter
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-46
READ-NEXT-KEY data transfer control function 5-

48
READ-RECORD data transfer control function 5-43
READ-SEQ data transfer control function 5-41

C

C language 1-1

CALL macro, example B-7

Callable Interface entry points
LSMCALL 5-1
LSMCICS 5-1

Callable Interface for StorHouse
function 1-1
function hierarchy 1-2
languages invoked from 1-1
ce Programmer’s Guide Index-1

Index
operating environment 1-1

CHANGE data transfer control function
BUFFER parameter 5-57
description 5-58
O-TOKEN parameter 5-57
overview 5-57
R-CODE parameter 5-57
RECORD-LENGTH parameter 5-57
return codes 5-58

character strings, requirements 4-1

CHECK general usage function
C-TOKEN parameter 5-65
description 5-66
O-TOKEN parameter 5-65
overview 5-65
R-CODE parameter 5-65
return codes 5-65

CHECKPOINT file operation function
description 5-34
O-TOKEN parameter 5-33
overview 1-3, 5-33
R-CODE parameter 5-33
return codes 5-34
RETURN-CKPT-NUM parameter 5-33

CHECKPOINT keyword B-4

checkpoint/restart
description C-1
example C-2, C-3

CHKPT keyword B-4

CICS
Interface programs 5-2
restrictions 5-3

CLOSE file operation function
description 5-36
O-TOKEN parameter 5-35
overview 1-3, 5-35
R-CODE parameter 5-35
return codes 5-36
XFER-ABORT-FLAG parameter 5-35

CMND keyword B-4

CMNDL keyword B-4

COBOL
function statement format 5-5
language 1-1

command privilege, StorHouse 2-3

CONFIG pass-through function
CONVAL parameter A-9
CTOKEN parameter A-9
description A-10
overview A-9
return codes A-10

CONNECT session control function
ACCOUNT parameter 5-7
C-TOKEN parameter 5-6
description 5-7
MESSAGE-FLAG parameter 5-7
overview 1-3, 5-6
PASSWORD parameter 5-7
R-CODE parameter 5-6
return codes 5-7
SM-IDENTIFIER parameter 5-7
SUBSYSTEM-IDENTIFIER parameter 5-7

CONVAL parameter A-9

CR-BUF parameter 5-61

CREATE-OPEN file operation function
C-TOKEN parameter 5-21
description 5-25
FILE-ATTRIB parameter 5-22
FILE-LOCATION parameter 5-22
FILE-NAME parameter 5-21
FILE-PASSWORD parameter 5-21
GROUP-NAME parameter 5-22
GROUP-PASSWORD parameter 5-22
MESSAGE-FLAG parameter 5-21
MODEL-FILE-NAME parameter 5-22
O-TOKEN parameter 5-21
overview 1-3, 5-20
programming guidelines C-4
R-CODE parameter 5-21
return codes 5-24

CR-LEN parameter 5-61

C-TOKEN parameter
ABORT general usage function 5-71
CHECK general usage function 5-65
CONNECT session control function 5-6
CREATE-OPEN file operation function 5-21
DISCONNECT session control function 5-9
ECBADDR general usage function 5-67
EMSG general usage function 5-69
OPEN-SEQ file operation function 5-14
Index-2 Callable Interface Programmer’s Guide SGI, Corp.

Index
OPEN-VRAM file operation function 5-28
SM-CMD-INTF StorHouse command submission

function 5-61

CTOKEN parameter
CONFIG pass-through function A-9
LSMCALL Assembler MACRO B-3
PTOPEN pass-through function A-3
PTRDFRSM pass-through function A-7
PTWRTOSM pass-through function A-5

current record position
key 3-2
sequential 3-2

D

data transfer control functions
CHANGE 5-57
DELETE 5-55
READ 5-39
READ-KEYED 5-45
READ-NEXT-KEY 5-48
READ-RECORD 5-43
READ-SEQ 5-41
WRITE 5-50
WRITE-KEY 5-52

data transfer link identifier 2-1

default access group 2-2

default access rights 2-2

definitions
account 2-1
account identification code (AID) 2-2
account password 2-2
asynchronous form for functions 5-4
default access group 2-2
default access rights 2-2
entry sequence 3-1
file 2-3
file access group 2-4
file name 2-3
file passwords 2-5
file revision 2-6
file version 2-5
group passwords 2-4
key sequence 3-1
return code 4-2
synchronous form for functions 5-4

DELETE data transfer control function
description 5-56
O-TOKEN parameter 5-55
overview 5-55
R-CODE parameter 5-55
return codes 5-55

DIRECT parameter A-4

DISCONNECT session control function
C-TOKEN parameter 5-9
description 5-10
overview 1-3, 5-9
R-CODE parameter 5-9
return codes 5-9

E

ECB parameter A-8

ECBA keyword B-5

ECBADDR general usage function
C-TOKEN parameter 5-67
description 5-68
O-TOKEN parameter 5-67
overview 5-67
R-CODE parameter 5-67
return codes 5-68
RETURN-ECB-ADDR parameter 5-67

EMSG general usage function
C-TOKEN parameter 5-69
description 5-70
MESSAGE-BUFFER parameter 5-69
MESSAGE-BUFFER-SIZE parameter 5-70
O-TOKEN parameter 5-69
overview 5-69
R-CODE parameter 5-69
return codes 5-70
RETURNED-MESSAGE-LEN parameter 5-70

entry points for Callable Interface
LSMCALL 5-1
LSMCICS 5-1

entry sequenced records 3-1

error handling 5-3

examples
CALL macro B-7
checkpoint/restart C-2, C-3
SGI, Corp. Callable Interface Programmer’s Guide Index-3

Index
LSMCALL macro B-8

externally specified parameters, requirements 4-1

F

file 2-3

file access group 2-4

file data representations
ASCII character stream 2-6
binary 2-6

FILE keyword B-5

file name 2-3

file operation functions
CHECKPOINT 1-3, 5-33
CLOSE 1-3, 5-35
CREATE-OPEN 1-3, 5-20
OPEN-SEQ 1-3, 5-13
OPEN-VRAM 1-3, 5-27

file passwords 2-5

file revision 2-6

file version 2-5

FILE_LOCATION parameter A-3

FILE_NAME parameter A-3

FILE-ATTRIB parameter
CREATE-OPEN file operation function 5-22
elements 5-15, 5-23, 5-29
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-29

FILE-LOCATION parameter
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15

FILE-NAME parameter
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28

FILE-OPTIONS parameter
elements 5-17
OPEN-SEQ file operation function 5-17

FILE-PASSWORD parameter 5-21

FILE-PASSWORDS parameter
OPEN-SEQ file operation function 5-15

OPEN-VRAM file operation function 5-29

FILEPW keyword B-5

forms for functions
asynchronous 5-4
synchronous 5-4

FORTRAN language 1-1

function parameter B-3

function statement format for COBOL 5-5

functions
data transfer control 1-3, 5-38
file operation 1-3, 5-11
general usage 5-64
session control 1-2, 5-5
StorHouse command 1-4
StorHouse command submission 5-59

G

general usage functions
ABORT 5-71
CHECK 5-65
ECBADDR 5-67
EMSG 5-69

GROUP keyword B-5

group passwords 2-4

GROUP_NAME parameter A-3

GROUP-NAME parameter
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-29

GROUP-PASSWORD parameter 5-22

GROUP-PASSWORDS parameter
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-29

GROUPPW keyword B-5

I

indicative text messages 4-2
Index-4 Callable Interface Programmer’s Guide SGI, Corp.

Index
K

KEY
keyword B-5
parameter 5-53

key record position 3-2

key sequenced records 3-1

KEYL keyword B-5

KEY-LENGTH parameter
READ-KEYED data transfer control function 5-46
WRITE-KEY data transfer control function 5-53

KEY-NAME parameter 5-46

KEYV keyword B-5

KEY-VALUE parameter 5-46

keywords
ABORTFL B-4
ACCT B-4
ACCTPW B-4
ATTRIBS B-4
BUFFER B-4
BUFFERL B-4
CHECKPOINT B-4
CHKPT B-4
CMND B-4
CMNDL B-4
ECBA B-5
FILE B-5
FILEPW B-5
GROUP B-5
GROUPPW B-5
KEY B-5
KEYL B-5
KEYV B-5
METHOD B-5
MODE B-5
MSGFLAG B-5
MSGL B-5
OPTS (command) B-5
OPTS (file) B-6
OPTSL B-6
RCHKPT B-6
RECORDL B-6
RECORDN B-6
REVISION B-6
SMID B-6

SSN B-6
VERSION B-6

L

link identifiers
data transfer 2-1
session 2-1

LINK parameter A-4

LSMCALL
function, Callable Interface entry point 5-1
macro, example B-8

LSMCALL Assembler MACRO
ABORTFL keyword B-4
ACCT keyword B-4
ACCTPW keyword B-4
ATTRIBS keyword B-4
BUFFER keyword B-4
BUFFERL keyword B-4
CHECKPOINT keyword B-4
CHKPT keyword B-4
CMND keyword B-4
CMNDL keyword B-4
CTOKEN parameter B-3
description B-1
ECBA keyword B-5
FILE keyword B-5
FILEPW keyword B-5
function parameter B-3
GROUP keyword B-5
GROUPPW keyword B-5
KEY keyword B-5
KEYL keyword B-5
KEYV keyword B-5
METHOD keyword B-5
MF parameter B-3
MODE keyword B-5
MSGFLAG keyword B-5
MSGL keyword B-5
OPTS keyword (command) B-5
OPTS keyword (file) B-6
OPTSL keyword B-6
OTOKEN parameter B-3
RC parameter B-3
RCHKPT keyword B-6
RECORDL keyword B-6
RECORDN keyword B-6
SGI, Corp. Callable Interface Programmer’s Guide Index-5

Index
REVISION keyword B-6
SMID keyword B-6
SSN keyword B-6
TYPE parameter B-3
VERSION keyword B-6

LSMCICS function, Callable Interface entry point 5-1

M

MESSAGE parameter A-5

MESSAGE-BUFFER parameter 5-69

MESSAGE-BUFFER-SIZE parameter 5-70

MESSAGE-FLAG parameter
CONNECT session control function 5-7
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28

METHOD keyword B-5

MF parameter B-3

MODE keyword B-5

MODE parameter
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28
PTOPEN pass-through function A-3

MODEL-FILE-NAME parameter 5-22

MSGFLAG
keyword B-5
parameter A-3

MSGL keyword B-5

multitasking in sessions 1-4

MVS/SP environment for Callable Interface 1-1

MVS/XA environment for Callable Interface 1-1

O

OPEN file operation function (obsolete) 5-12

OPEN-SEQ file operation function
C-TOKEN parameter 5-14
description 5-18
FILE-ATTRIB parameter 5-15
FILE-LOCATION parameter 5-15

FILE-NAME parameter 5-15
FILE-OPTIONS parameter 5-17
FILE-PASSWORDS parameter 5-15
GROUP-NAME parameter 5-15
GROUP-PASSWORDS parameter 5-15
MESSAGE-FLAG parameter 5-14
MODE parameter 5-14
O-TOKEN parameter 5-14
overview 1-3, 5-13
programming guidelines C-4
R-CODE parameter 5-14
return codes 5-18
VERSION parameter 5-15

OPEN-VRAM file operation function
ACCESS-METHOD parameter 5-28
C-TOKEN parameter 5-28
description 5-31
FILE-ATTRIB parameter 5-29
FILE-NAME parameter 5-28
FILE-PASSWORDS parameter 5-29
GROUP-NAME parameter 5-29
GROUP-PASSWORDS parameter 5-29
MESSAGE-FLAG parameter 5-28
MODE parameter 5-28
O-TOKEN parameter 5-28
overview 1-3, 5-27
programming guidelines C-4
R-CODE parameter 5-28
REL-REC-NUM parameter 5-29
return codes 5-30
REVISION parameter 5-28

OPTS keyword (command) B-5

OPTS keyword (file) B-6

OPTSL keyword B-6

O-TOKEN parameter
ABORT general usage function 5-71
BUFFER data transfer control function 5-50
CHANGE data transfer control function 5-57
CHECK general usage function 5-65
CHECKPOINT file operation function 5-33
CLOSE file operation function 5-35
CREATE-OPEN file operation function 5-21
DELETE data transfer control function 5-55
ECBADDR general usage function 5-67
EMSG general usage function 5-69
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28
Index-6 Callable Interface Programmer’s Guide SGI, Corp.

Index
R-CODE data transfer control function 5-50
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-45
READ-NEXT-KEY data transfer control function 5-

48
READ-RECORD data transfer control function 5-43
READ-SEQ data transfer control function 5-41
RECORD-LENGTH data transfer control function

5-50
RETURN-REC-NUM data transfer control function

5-51
WRITE data transfer control function 5-50
WRITE-KEY data transfer control function 5-52

OTOKEN parameter
LSMCALL Assembler MACRO B-3
PTOPEN pass-through function A-3

P

parameter values, specified by
character strings 4-1
JCL statements 4-1

parameters
ACCESS-METHOD 5-28
ACCOUNT 5-7
BUFFER

CHANGE data transfer control function 5-57
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-

46
READ-NEXT-KEY data transfer control

function 5-48
READ-RECORD data transfer control function

5-43
READ-SEQ data transfer control function 5-41
WRITE data transfer control function 5-50
WRITE-KEY data transfer control function 5-

52
BUFFER-SIZE

READ data transfer control function 5-39
READ-KEYED data transfer control function 5-

46
READ-NEXT-KEY data transfer control

function 5-48
READ-RECORD data transfer control function

5-43
READ-SEQ data transfer control function 5-41

CONVAL A-9
CR-BUF 5-61
CR-LEN 5-61
C-TOKEN

ABORT general usage function 5-71
CHECK general usage function 5-65
CONNECT session control function 5-6
CREATE-OPEN file operation function 5-21
DISCONNECT session control function 5-9
ECBADDR general usage function 5-67
EMSG general usage function 5-69
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28
SM-CMD-INTF StorHouse command

submission function 5-61
CTOKEN

CONFIG pass-through function A-9
LSMCALL parameter B-3
PTOPEN pass-through function A-3
PTRDFRSM pass-through function A-7
PTWRTOSM pass-through function A-5

DIRECT A-4
ECB A-8
FILE_LOCATION A-3
FILE_NAME A-3
FILE-ATTRIB

CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-29

FILE-LOCATION
CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15

FILE-NAME
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28

FILE-OPTIONS 5-17
FILE-PASSWORD 5-21
FILE-PASSWORDS

OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-29

function B-3
GROUP_NAME A-3
GROUP-NAME

CREATE-OPEN file operation function 5-22
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-29

GROUP-PASSWORD 5-22
GROUP-PASSWORDS
SGI, Corp. Callable Interface Programmer’s Guide Index-7

Index
OPEN-SEQ file operation function 5-15
OPEN-VRAM file operation function 5-29

KEY 5-53
KEY-LENGTH

READ-KEYED data transfer control function 5-
46

WRITE-KEY data transfer control function 5-
53

KEY-NAME 5-46
KEY-VALUE 5-46
LINK A-4
MESSAGE

PTOPEN pass-through function A-3
PTWRTOSM pass-through function A-5

MESSAGE-BUFFER 5-69
MESSAGE-BUFFER-SIZE 5-70
MESSAGE-FLAG

CONNECT session control function 5-7
CREATE-OPEN file operation function 5-21
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28

MF B-3
MODE

OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28
PTOPEN pass-through function A-3

MODEL-FILE-NAME 5-22
O-TOKEN

ABORT general usage function 5-71
CHANGE data transfer control function 5-57
CHECK general usage function 5-65
CHECKPOINT file operation function 5-33
CLOSE file operation function 5-35
CREATE-OPEN file operation function 5-21
DELETE data transfer control function 5-55
ECBADDR general usage function 5-67
EMSG general usage function 5-69
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-

45
READ-NEXT-KEY data transfer control

function 5-48
READ-RECORD data transfer control function

5-43
READ-SEQ data transfer control function 5-41
WRITE data transfer control function 5-50
WRITE-KEY data transfer control function 5-

52
OTOKEN A-3, B-3
PASSWORD 5-7
RC B-3
R-CODE

ABORT general usage function 5-71
CHANGE data transfer control function 5-57
CHECK general usage function 5-65
CHECKPOINT file operation function 5-33
CLOSE file operation function 5-35
CONNECT session control function 5-6
CREATE-OPEN file operation function 5-21
DELETE data transfer control function 5-55
DISCONNECT session control function 5-9
ECBADDR general usage function 5-67
EMSG general usage function 5-69
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-

45
READ-NEXT-KEY data transfer control

function 5-48
READ-RECORD data transfer control function

5-43
READ-SEQ data transfer control function 5-41
SM-CMD-INTF StorHouse command

submission function 5-61
WRITE data transfer control function 5-50
WRITE-KEY data transfer control function 5-

52
RECORD-LENGTH

CHANGE data transfer control function 5-57
WRITE data transfer control function 5-50
WRITE-KEY data transfer control function 5-

53
REL-REC-NUM

OPEN-VRAM file operation function 5-29
READ-RECORD data transfer control function

5-44
RESBUFF A-8
RESBUFSZ A-8
RESP-BUFFER 5-61
RESP-BUFSIZE 5-61
RESP-INFO 5-61
RETURNCD

CONFIG pass-through function A-9
PTOPEN pass-through function A-3
PTRDFRSM pass-through function A-7
Index-8 Callable Interface Programmer’s Guide SGI, Corp.

Index
PTWRTOSM pass-through function A-5
RETURN-CKPT-NUM 5-33
RETURN-ECB-ADDR 5-67
RETURNED-MESSAGE-LEN 5-70
RETURN-REC-LEN

READ data transfer control function 5-39
READ-KEYED data transfer control function 5-

46
READ-NEXT-KEY data transfer control

function 5-49
READ-RECORD data transfer control function

5-44
READ-SEQ data transfer control function 5-42

RETURN-REC-NUM
READ-KEYED data transfer control function 5-

46
READ-NEXT-KEY data transfer control

function 5-49
READ-SEQ data transfer control function 5-42
WRITE data transfer control function 5-51
WRITE-KEY data transfer control function 5-

53
REVISION 5-28
SM-IDENTIFIER 5-7
SMSGLEN A-5
SUBSYSTEM-IDENTIFIER 5-7
SYSID A-3
TYPE B-3
VERSION 5-15
XFER-ABORT-FLAG 5-35

pass-through functions
CONFIG A-9
description A-1
PTOPEN A-2
PTRDFRSM A-7
PTWRTOSM A-5

PASSWORD parameter 5-7

passwords, StorHouse
file 2-5
group 2-4

PL/1 language 1-1

printable ASCII characters 2-3

privileges, StorHouse
access 2-2
command 2-3

programming guidelines

CREATE-OPEN C-4
OPEN-SEQ C-4
OPEN-VRAM C-4

programs for CICS Interface 5-2

PTOPEN pass-through function
CTOKEN parameter A-3
description A-4
DIRECT parameter A-4
FILE_LOCATION parameter A-3
FILE_NAME parameter A-3
GROUP_NAME parameter A-3
LINK parameter A-4
MODE parameter A-3
MSGFLAG parameter A-3
OTOKEN parameter A-3
overview A-2
return codes A-4
RETURNCD parameter A-3
SYSID parameter A-3

PTRDFRSM pass-through function
CTOKEN parameter A-7
description A-8
ECB parameter A-8
overview A-7
RESBUFF parameter A-8
RESBUFSZ parameter A-8
return codes A-8
RETURNCD parameter A-7

PTWRTOSM pass-through function
CTOKEN parameter A-5
description A-6
MESSAGE parameter A-5
overview A-5
return codes A-6
RETURNCD parameter A-5
SMSGLEN parameter A-5

R

RC parameter B-3

RCHKPT keyword B-6

R-CODE parameter
ABORT general usage function 5-71
CHANGE data transfer control function 5-57
CHECK general usage function 5-65
CHECKPOINT file operation function 5-33
SGI, Corp. Callable Interface Programmer’s Guide Index-9

Index
CLOSE file operation function 5-35
CONNECT session control function 5-6
CREATE-OPEN file operation function 5-21
DELETE data transfer control function 5-55
DISCONNECT session control function 5-9
ECBADDR general usage function 5-67
EMSG general usage function 5-69
OPEN-SEQ file operation function 5-14
OPEN-VRAM file operation function 5-28
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-45
READ-NEXT-KEY data transfer control function 5-

48
READ-RECORD data transfer control function 5-43
READ-SEQ data transfer control function 5-41
SM-CMD-INTF StorHouse command submission

function 5-61
WRITE-KEY data transfer control function 5-52

READ data transfer control function
BUFFER parameter 5-39
BUFFER-SIZE parameter 5-39
description 5-40
O-TOKEN parameter 5-39
overview 5-39
R-CODE parameter 5-39
return codes 5-40
RETURN-REC-LEN parameter 5-39

read functions for VRAM files
READ-KEYED 3-2
READ-NEXT-KEY 3-2
READ-RECORD 3-2
READ-SEQ 3-2

READ-KEYED data transfer control function
BUFFER parameter 5-46
BUFFER-SIZE parameter 5-46
description 5-46
KEY-LENGTH parameter 5-46
KEY-NAME parameter 5-46
KEY-VALUE parameter 5-46
O-TOKEN parameter 5-45
overview 5-45
R-CODE parameter 5-45
return codes 5-46
RETURN-REC-LEN parameter 5-46
RETURN-REC-NUM parameter 5-46

READ-KEYED read function 3-2

READ-NEXT-KEY data transfer control function

BUFFER parameter 5-48
BUFFER-SIZE parameter 5-48
description 5-49
O-TOKEN parameter 5-48
overview 5-48
R-CODE parameter 5-48
return codes 5-49
RETURN-REC-LEN parameter 5-49
RETURN-REC-NUM parameter 5-49

READ-NEXT-KEY read function 3-2

READ-RECORD data transfer control function
BUFFER parameter 5-43
BUFFER-SIZE parameter 5-43
description 5-44
O-TOKEN parameter 5-43
overview 5-43
R-CODE parameter 5-43
REL-REC-NUM parameter 5-44
return codes 5-44
RETURN-REC-LEN parameter 5-44

READ-RECORD read function 3-2

READ-SEQ data transfer control function
BUFFER parameter 5-41
BUFFER-SIZE parameter 5-41
description 5-42
O-TOKEN parameter 5-41
overview 5-41
R-CODE parameter 5-41
return codes 5-42
RETURN-REC-LEN parameter 5-42
RETURN-REC-NUM parameter 5-42

READ-SEQ read function 3-2

record sequencing
by entry 3-1
by key 3-1
example 3-2

RECORDL keyword B-6

RECORD-LENGTH parameter
CHANGE data transfer control function 5-57
WRITE-KEY data transfer control function 5-53

RECORDN keyword B-6

REL-REC-NUM parameter
OPEN-VRAM file operation function 5-29
READ-RECORD data transfer control function 5-44

RESBUFF parameter A-8
Index-10 Callable Interface Programmer’s Guide SGI, Corp.

Index
RESBUFSZ parameter A-8

resource conflicts with optical drives C-6

RESP-BUFFER parameter 5-61

RESP-BUFSIZE parameter 5-61

RESP-INFO parameter
elements 5-61
SM-CMD-INTF StorHouse command submission

function 5-61

return code, definition 4-2

return codes
ABORT general usage function 5-71
CHANGE data transfer control function 5-58
CHECK general usage function 5-65
CHECKPOINT file operation function 5-34
CLOSE file operation function 5-36
CONFIG pass-through function A-10
CONNECT session control function 5-7
CREATE-OPEN file operation function 5-24
DELETE data transfer control function 5-55
DISCONNECT session control function 5-9
ECBADDR general usage function 5-68
EMSG general usage function 5-70
OPEN-SEQ file operation function 5-18
OPEN-VRAM file operation function 5-30
PTOPEN pass-through function A-4
PTRDFRSM pass-through function A-8
PTWRTOSM pass-through function A-6
READ data transfer control function 5-40
READ-KEYED data transfer control function 5-46
READ-NEXT-KEY data transfer control function 5-

49
READ-RECORD data transfer control function 5-44
READ-SEQ data transfer control function 5-42
SM-CMD-INTF StorHouse command submission

function 5-62
WRITE data transfer control function 5-51
WRITE-KEY data transfer control function 5-53

RETURNCD parameter
CONFIG pass-through function A-9
PTOPEN pass-through function A-3
PTRDFRSM pass-through function A-7
PTWRTOSM pass-through function A-5

RETURN-CKPT-NUM parameter 5-33

RETURN-ECB-ADDR parameter 5-67

RETURNED-MESSAGE-LEN parameter 5-70

RETURN-REC-LEN parameter
READ data transfer control function 5-39
READ-KEYED data transfer control function 5-46
READ-NEXT-KEY data transfer control function 5-

49
READ-RECORD data transfer control function 5-44
READ-SEQ data transfer control function 5-42

RETURN-REC-NUM parameter
READ-KEYED data transfer control function 5-46
READ-NEXT-KEY data transfer control function 5-

49
READ-SEQ data transfer control function 5-42
WRITE-KEY data transfer control function 5-53

REVISION
keyword B-6
parameter 5-28

S

sequential record position 3-2

session control functions
CONNECT 1-3, 5-6
DISCONNECT 1-3, 5-9

session link identifier 2-1

sessions and multitasking 1-4

SM-CMD-INTF StorHouse command submission
function

CR-BUF parameter 5-61
CR-LEN parameter 5-61
C-TOKEN parameter 5-61
description 5-62
overview 5-60
R-CODE parameter 5-61
RESP-BUFFER parameter 5-61
RESP-BUFSIZE parameter 5-61
RESP-INFO parameter 5-61
return codes 5-62

SMID keyword B-6

SM-IDENTIFIER parameter 5-7

SMSGLEN parameter A-5

SSN keyword B-6

StorHouse
account 2-1
account identification code (AID) 2-2
SGI, Corp. Callable Interface Programmer’s Guide Index-11

Index
account password 2-2
default access group 2-2
default access rights 2-2
file 2-3
file access group 2-4
file name 2-3
file passwords 2-5
file revision 2-6
file version 2-5
group passwords 2-4
privileges 2-2

StorHouse Callable Interface
function 1-1
function hierarchy 1-2
languages invoked from 1-1
operating environment 1-1

StorHouse command submission function, SM-CMD-
INTF 5-60

SUBSYSTEM-IDENTIFIER parameter 5-7

synchronous form for functions 5-4

SYSID parameter A-3

T

Task Control Block (TCB) 1-4

text messages 4-2

TYPE parameter B-3

V

VERSION
keyword B-6
parameter 5-15

W

WRITE data transfer control function
BUFFER parameter 5-50
description 5-51
O-TOKEN parameter 5-50
overview 5-50
R-CODE parameter 5-50
RECORD-LENGTH parameter 5-50

return codes 5-51
RETURN-REC-NUM parameter 5-51

WRITE-KEY data transfer control function
BUFFER parameter 5-52
description 5-53
KEY parameter 5-53
KEY-LENGTH parameter 5-53
O-TOKEN parameter 5-52
overview 5-52
R-CODE parameter 5-52
RECORD-LENGTH parameter 5-53
return codes 5-53
RETURN-REC-NUM parameter 5-53

X

XFER-ABORT-FLAG parameter 5-35
Index-12 Callable Interface Programmer’s Guide SGI, Corp.

	Contents
	Figures xi
	Tables xi
	Welcome xiii
	Chapter 1: Introduction 1-1
	Chapter 2: StorHouse Parameters and Data Descriptions 2-1
	Chapter 3: File Positioning 3-1
	Chapter 4: Control Structures 4-1
	Chapter 5: Callable Interface Functions 5-1
	Chapter 6: Sample Program 6-1
	Appendix A: Pass-Through Functions A-1
	Appendix B: ALC Macro Definition B-1
	Chapter 3: Checkpoint/Restart and Programming Guidelines 1
	Index Index-1

	Figures
	Figure 1-1:� Callable Interface Function Hierarchy 1-2

	Tables
	Table 2-1:� Printable ASCII Characters 2-3
	Table 2-2:� File System Types 2-7
	Table B-1:� LSMCALL Macro Instruction B-2
	Table B-2:� CALL Macro B-7
	Table B-3:� LSMCALL Macro B-8
	Table C-1:� DATAFILE Revisions C-2
	Table C-2:� Example of Open Statements Requiring the Same Resource C-5

	Welcome
	Purpose of This Document
	Intended Audience
	Contents
	Related Documentation
	Notational Conventions

	Introduction
	Operating Environment
	Callable Interface Function Hierarchy
	Session Control Functions
	File Operation Functions
	Data Transfer Control Functions
	StorHouse Command Functions

	Notes on Multitasking

	StorHouse Parameters and Data Descriptions
	Session and Data Transfer Link Identifiers
	StorHouse Accounts
	Account Identification Code
	Account Password
	Default Access Groups and Rights
	StorHouse Privileges

	StorHouse Files and File Access Groups
	StorHouse File Names
	File Access Groups
	Group and File Access Passwords
	Group Passwords
	File Passwords

	File Versions
	File Revisions
	File Data Representation
	Directory Information

	File Positioning
	Record Sequencing
	Entry Sequence
	Key Sequence

	Current Record Position
	Read Functions and Current Record Position
	Record Sequencing Example

	Control Structures
	Parameter Values
	Character Strings
	Externally Specified Parameters

	Return Codes
	Indicative Text Messages

	Callable Interface Functions
	Callable Interface Entry Point Names
	Special Considerations for CICS Programmers
	Defining the CICS Interface Programs
	Error Handling
	Restrictions

	Synchronous and Asynchronous Functions
	Synchronous Form
	Asynchronous Form

	Function Statement Format
	Session Control Functions
	CONNECT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	DISCONNECT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	File Operation Functions
	OPEN
	OPEN-SEQ
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	CREATE-OPEN
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	OPEN-VRAM
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	CHECKPOINT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	CLOSE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	Data Transfer Control Functions
	READ
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-SEQ
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-RECORD
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-KEYED
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	READ-NEXT-KEY
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	WRITE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	WRITE-KEY
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	DELETE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	CHANGE
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	StorHouse Command Submission
	SM-CMD-INTF
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	General Usage Functions
	CHECK
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	ECBADDR
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note
	Cross-Reference to Sample Program

	EMSG
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	ABORT
	Statement Format for COBOL
	Working Storage Section for COBOL Program
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes
	Cross-Reference to Sample Program

	Sample Program
	COBOL Sample Program

	Pass-Through Functions
	PTOPEN
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes

	PTWRTOSM
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes

	PTRDFRSM
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Notes

	CONFIG
	Statement Format for C
	Parameter Overview
	Return Codes
	Detailed Function Description
	Note

	ALC Macro Definition
	LSMCALL – Call the Callable Interface Program
	Required Parameters
	Optional Parameters
	Remaining Keywords

	Assembly Language Standard Call
	Example: CALL Macro
	Example: LSMCALL Macro

	Checkpoint/Restart and Programming Guidelines
	Checkpoint/Restart
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Programming Guidelines
	Defining Resources
	Examples
	User Guidelines
	Permanent Fixes

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	O
	P
	R
	S
	T
	V
	W
	X

