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Abstract. This article briefly explores potential synergies between the fields of
virtual human and human-robot interaction research. We consider challenges in
advancing the effectiveness of human-robot teams makes recommendations for
enhancing this by facilitating synergies between robotics and virtual human
research.

1 Introduction

Advances in autonomy raise the potential for rich partnerships between humans and
machines. Human-robot teams are emerging across a range of high-stakes situations
including military operations, first-responders and caring for vulnerable populations.
To date, the preponderance of robotics research addresses the challenge of individual
robots interacting with the physical environment, yet teamwork involves navigating a
social environment. To address this gap, research on human-machine teams is
increasingly turning to the social sciences to inform the design of automation. For
example, the research into how to get users to trust automation increasingly builds on
theories of how trust arises between people [1, 2]. Similarly, research into
human-computer communication builds on theories of human verbal and nonverbal
communication, often incorporating into automation analogs of facial expressions or
bodily gestures [3, 4].

Whereas the robotics community is beginning to explore the role of social science
theory and anthropomorphic techniques, these elements are the raison d’être for the
field of virtual human research (e.g., see [5, 6] and the Intelligent Virtual Agent’s
conference series). Virtual humans are software artifacts that look like, act like and
interact with humans but exist in virtual environments. To achieve this, the virtual
humans must provide a sufficient illusion of human-like behavior that human users
interpret, respond, and learn from such virtual interactions much as they would react in
real-world social interactions. To this end, virtual humans must be responsive; that is,
they must respond to the human user and to the events surrounding them. They must be
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interpretable; the user must be able to interpret their response to situations, including
their dynamic cognitive and emotional state, using the same verbal and non-verbal cues
that people use to understand one another. Finally, they must evoke similar social
effects as are expected to occur in face-to-face interactions (e.g., social anxiety,
impression management, emotional contagion). Thus, the virtual humans cannot sim-
ply create an illusion of life through cleverly designed randomness in their behavior;
they are successful to the extent that they evoke responses from humans indistin-
guishable from how people would respond to another person.

In this article, we highlight the need for greater collaboration between robotics and
virtual human research. Virtual human research has placed a premium on how to
understand, model and simulate spoken language, how to recognize and utilize non-
verbal communication, and how to model and utilize social cognitive processes such as
intention recognition, collaborative decision-making, and even the role of emotion in
teams. Many of these capabilities are of relevance in human-robot interaction. Yet
collaboration is required to translate these findings to the domain of robotics. Virtual
human research is usually explored in “pristine” simulated or laboratory settings that
finesse many of the challenges of operating in complex real-world environments. More
fundamentally, the goal of much virtual human research is to literally replicate human
appearance and behavior, yet this is less possible, and potentially less desired within the
context of physical robots. Rather, a collaboration is required to understand which
approaches are relevant and which are relevant in an analogous, if not literal form.

Here, we recommend several potentially fruitful points of interaction between
virtual human and robotics research as it relates to the challenge of mixed
human-machine teams. These include 1) research into the potential benefits but also
pitfalls of incorporating anthropomorphic elements into robotic systems; 2) research
aimed at transitioning natural language and 3) nonverbal communication techniques
developed within the virtual human community into settings that involve
human-machine teams; and 4) research into technology for enhancing trust in
human-machine teams, including methods for automatically generating explanations of
machine decisions and establishing shared mental models. Each of these recommen-
dations are presented in the following sections of this article and are discussed in much
greater detail in a technical report [7].

2 Cost /Benefit ofAnthropomorphism inHuman-Robot Teams

A growing trend within robotics has focused on endowing robots with more
human-like characteristics, including human-like form, natural language and even
emotions. This interest is fueled by the assumption that human-robot and
human-computer interactions can be enhanced by bringing how we interact with
machines closer to how we interact with other people, thereby leveraging the vast
experience we have with human-human interaction. This assumption needs to be rig-
orously examined.

It is important to note that machines can be made more capable without necessarily
making them more “natural” or human-like. Interaction with robots could be explicitly
unnatural as naturalness might get in the way of efficiency (for example, communication
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with air-traffic controllers is highly scripted to be efficient while avoiding ambiguity).
Research on natural interfaces demonstrates that machines can be made more
human-like, but less research has considered if this benefits or harms human-machine
team performance. Indeed, a review of the literature illustrates several examples where
incorporating human-like qualities results in unintended and disruptive consequences.
Attempts to merely replicate human characteristics overlooks an opportunity to improve
on human-human interaction: might machines be designed to interact in different but
complementary ways that make them better than “natural” teammates?

Some research has emphasized the potential benefits of anthropomorphism. For
example, Gratch and colleagues have shown that a computer agent that incorporates
rapport-building behaviors can enhance feelings of engagement and lead to greater
self-disclosure in spoken interviews [8]. People favor human-like machines in eco-
nomic settings when they incorporate human-like features, such as offering more
money in a variety of economic games [9], and donating more money when asked by a
human-like robot [10]. People are more persuaded by machines that incorporate
human-like gestures [11] or humor [12]. Students have been shown to learn better when
automated tutors incorporate emotional feedback [13]. Other research has shown that
adding that adding human-like mental capabilities, like theory of mind, can improve
joint outcomes in social games [14]. Many of these findings have been replicated
within the context of human-robot interaction (e.g., [2, 15]).

Yet, other research has emphasized the potential harms of anthropomorphism.
People lie to human-like machines, they get emotional, they make “irrational” deci-
sions, and they evoke moral principles that get in the way of maximizing material
rewards. For example, in medicine, it is important for healthcare providers to solicit
honest information from their patients. Yet patients are more honest when being
interviewed by a computer compared with being interviewed by a person [16].
Anthropomorphism can undermine this benefit by evoking the social mechanism of
socially-desirable responding. Lucas, et al., showed a depression screening agent
elicited more truthful and more diagnostic information when its “computerness” was
made salient compared with an agent that emphasized its “humanness” [17]. In eco-
nomic settings, people often make financially disadvantageous decision with human
teammates [18] or human-like computers [9] when compared to decisions with a
machine. More generally, people engage in more emotion, moral and reactive
decision-making with other people compared to their interactions with computers,
leading to a host of negative outcomes, especially in conflict situations [19, 20].

Opportunities for Research: Incorporating natural and anthropomorphic character-
istics into robotic systems can have a strong impact on human-robot team effectiveness.
Unfortunately, these effects can be both beneficial and harmful depending on a variety
of task, contextual and individual factors. More research is needed regarding when and
how anthropomorphism benefits human-machine systems. Specifically, we recommend
research directed at selectively evoking social effects: In that human-like traits
unconsciously evoke human-like responses, and that some responses have benefits but
others harms, research is needed in how to distinguish and differentially evoke specific
social effects that lead to benefits, while avoiding the evocation of disruptive social
effects.
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3 NLP for Virtual Humans and Robots

Virtual humans and robots are both artificial, automated agents that can engage in
complex behavior and complex interaction with humans. Natural language is one of the
main ways that humans communicate with each other, particularly for abstract con-
cepts, processes, or objects that are not immediately visible or manipulable. By
engaging in natural language dialogue, automated agents can make it easier to com-
municate with people by making use of this same communication method. There is a
large degree of overlap in the kinds of tasks that robots and virtual humans can talk to
people about.

Many issues make natural language processing difficult for automation, including
noisy input, vagueness, and the contextual meaning of utterances. For most tasks, there
has been more progress with virtual humans than robots in overcoming these chal-
lenges – both because less effort must be spent in creating the basic interactive capa-
bility with animations rather than robots with complex physical components, and
because language generation in the virtual world finesses challenges with real
world-perception, using instead meta-data or virtual world databases for perceptual
information.

Much of the work on virtual human natural language dialogue can be adapted for
improving human-robot natural language dialogue. For example a key problem for both
domains is navigating through a complex environment and giving and understanding
directions. Some examples of virtual human work include virtual characters on a
mobile device who gives tours of a museum exhibit [21], and the GRUVE challenge on
generating instructions in an urban environment [22]. Another shared problem is the
Grounding problem, which involves coordination of interlocutors using multi-modal
dialogue interaction to increase confidence of shared understanding. The computational
models developed in [23] have been implemented and used within a number of virtual
human systems (e.g., [24]). Another point of intersection is runtime and support
software tools, authoring tools, and the development process that can be applied across
domains. For example, speech recognizers, parsers, statistical classifiers [25], dialogue
managers [26], language generators [27], and speech synthesizers [28], many freely
available through the virtual human toolkit [29].

Finally, the development process itself is an area where robotics can exploit work
pioneered in Virtual Human efforts. Natural language components need considerable
training data to achieve high performance, but gathering this data is challenging for
dialogue interaction, where the things people say to an artificial agent are determined
by what the agent says and does. Thus, in order to gather the appropriate data, one
already needs the system. The way out of this conundrum is a phased approach to data
collection: beginning with purely human interaction, next moving to “wizard of oz”
collection (where an agent is controlled by a human behind the curtain). Finally,
versions of an automated system can be deployed and improved. A number of virtual
human projects have followed this development path (e.g., [30, 31]).

Several challenges confront the use of virtual human technology in robotic systems.
One of the greatest strengths for natural language processing for virtual humans in the
virtual world is the ability to simplify the non-linguistic issues, such as perception,
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locomotion and manipulation. However, this simplification can also become a limita-
tion, since it may not be straightforward to adapt algorithms tuned to the simplified
environment to work in the real environment. Another challenge is that the roles for
virtual humans and robots may tend to diverge, which, in turn, may tend to cause a
divergence in the kinds of language used, and thus the best algorithms and tools.
Virtual humans are generally meant to take the place of a real human in a social
interaction, so communication is generally using the “agent as human” metaphor for
communication. In cases where a robot is very non-human in appearance, perception
and manipulation capabilities, and purpose, this metaphor may tend to break down
when communication with some robots may be more like communication with animals
than like people.

Opportunities for Research: From this review, we identify a number of opportunities
to enhance the effectiveness of human-robot teams by adapting research capabilities
already developed within the context of virtual human systems. This includes 1)
adapting virtual human dialogue authoring and run-time tools for use with robotics
applications; 2) using empirical methods for data collection and training of natural
language processing components; 3) incorporating advanced dialogue management
techniques, and 4) adapting virtual world efforts on object and route descriptions,
particularly from the direction-giving challenges.

4 Nonverbal Communication

Face-to-face communication is a highly interactive process where participants mutually
exchange and interpret linguistic and gestural signals. Communication dynamics rep-
resent the temporal relationship between these signals. Even when only one person
speaks at a time, other participants exchange information continuously amongst
themselves and with the speaker through gesture, gaze, posture and facial expressions.
The transactional view of human communication shows an important dynamic between
communicative behaviors where each person serves simultaneously as speaker and
listener [32]. At the same time you send a message, you also receive messages from
your own communications (individual dynamics) as well as from the reactions of the
other person(s) (interpersonal dynamics).

Individual and interpersonal dynamics play a key role when a teacher automatically
adjusts his/her explanations based on the student nonverbal behaviors, when a doctor
diagnoses a disorder such as autism, or when a negotiator detects deception. An
important challenge for artificial intelligence researchers is creating socially intelligent
robots and computers, able to recognize, predict and analyze verbal and nonverbal
dynamics during face-to-face communication. This will not only open up new avenues
for human-computer interactions but create new computational tools for social and
behavior researchers–software able to automatically analyze human social and non-
verbal behaviors, and extract important interaction patterns.

Nonverbal communicative behavior analysis is a growing field with a large number
of applications and especially within the field of virtual human research, where sensing
is often simplified through the interaction of a seated person in a well-lit room where all
interesting characters and environmental events exist with a fixed computer screen
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(e.g., see [33]). Over the past two decades, a first generation of multimodal approaches
have been applied in many areas, including audio-visual speech recognition, multi-
modal object tracking, biometrics, human-computer interaction and multimedia anal-
ysis. Also related to this line of research is the research done on audio-visual emotion
analysis. Several researchers used prosody (i.e., pitch, speaking rate, etc.) for speech
based emotion recognition [34]. Some studies analyzed visual cues, such as facial
expressions and body movements [35].

More recently, challenges have been organized focusing on the recognition of
emotions using audio and visual cues (e.g., [36]) and drew the participation of many
teams from around the world. Note however that all the previous work on audio-visual
emotion analysis and multimodal perception was performed on dataset recorded in the
laboratory. Also, most of these analyses focus on a generalization of behaviors over a
large population, ignoring the idiosyncratic and cultural-specific behaviors of the
participants.

Several challenges confront the immediate adoption of this technology to
human-robot teams. A robot needs to not only understand the facial expression, body
gestures and voice patterns, but it needs to put them in the context of the interactions in
the external world, taking into account the multiple human participants, their indi-
viduality in expressing personality and emotions and events in the real world. Much of
the virtual human research has also focused on dyadic interactions with a very abstract
environment (such as a game or simple computer tasks). Rather, human-machine teams
demand a focus on more complex interactions involving possibly multiple parties and
complex relationships between these entities and environmental events. This will likely
require extensions to standardized perception frameworks developed within the mul-
timodal perception community.

Opportunities for Research: From this review, we identify a number of opportunities
to enhance the effectiveness of human-robot teams by adapting research capabilities
already developed within the context of virtual human systems. This includes
(1) learning from readily available data from online website such YouTube, Twitter and
Facebook where people are posting a large array of videos with multimodal behaviors
and emotions; (2) multimodal deep learning, building on recent achievements in deep
neural network modeling to learn the complementarity and synchrony between com-
municative modalities, and (3) context-based multimodal dialogue, that explicitly
models nonverbal behaviors in the shared environment.

5 Trust and Theory of Mind

The increasing capability of autonomous systems has rarely translated into a similar
increase in the capability of the human-machine team unit [37]. Studies have identified
many causes underlying this phenomenon, but have also shown that simply increasing
the capability of the automation in isolation will not suffice [38]. We must instead
improve the quality of the interaction between automation and its human operators.

A critical aspect of this interaction is trust [1]. If an autonomous system is better
than the human operator at a certain task, then we want the operator to trust the system,
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but if the system is worse, we want the operator to distrust it and perform the task
manually. Failure to do so results in disuse of automation in the former case and misuse
in the latter. Real-world case studies and laboratory experiments show that failures in
both cases are common. To achieve proper use of automation, we must better under-
stand why these trust failures occur and what steps we can take to avoid them.

An operator may be willing to trust an autonomous system that has never made a
mistake, but it is also important that the operator not overreact to the mistakes that the
system will inevitably make. Errors by an autonomous system often have a greater
impact on trust than those made by human assistants [39]. Researcher has shown that
human operators will more accurately trust an autonomous system if they have a more
accurate understanding of its decision-making process and that explaining possible
causes of errors can allow an autonomous system to maintain users’ trust in the face of
such errors [40].

It is thus clear that the transparency of the autonomous system is an important
factor in earning appropriate trust. The need for such transparency has motivated
researchers in artificial intelligence to develop autonomous agents capable of auto-
matically explaining their decisions [41]. While such transparency certainly increases
trust, it also generates a cost to human users in that they must divert attention to
communication with an autonomous system. To best manage this cost/benefit tradeoff,
the agent literature has framed the problem in terms of the impact of communication on
team performance. Teammates communicate so that they can achieve a shared mental
model that allows them to perform joint tasks in a coordinated fashion [42]. By
weighing the cost of communication against its positive impact in achieving such
shared models, agents can optimize their communication strategies to maximize team
performance [43].

Transparency through team-oriented communication can help foster trust, but what
an autonomous system says may not have as big an impact as what it does. It is thus
also important that such systems make good decisions not just in communication, but
also in choosing which tasks they do themselves, and which are better left to their
teammates. Human-machine teams rely on this adjustable autonomy to flexibly assign
different tasks to the most appropriate members, based on capability and situation [44].
Agent researchers have developed algorithms that can optimize the transfers of control
that dynamically assign tasks among team members, both human and machine [45].
Combining these existing frameworks for both communication and adjustable auton-
omy allows researchers to model mixed teams of people, agents, and robots. More
recently, we have extended this teamwork model into an agent-based representation of
Theory of Mind reasoning [46], allowing agents to model the impact of their decisions
on the mental models of their human teammates.

Like human-agent teams, human-robot teams also exhibit a need for trust, shared
mental models, and adjustable autonomy. Unfortunately, there remains a sizeable gap
between the human-subject studies that quantify human-robot team performance and
existing agent-based coordination mechanisms. While the cited agent-based systems all
derived better coordination with human users from their communication capability,
there has been little quantitative evaluation of the effect (if any) this new capability had
on their trust relationship with users. Furthermore, while there has been preliminary
work on measuring this effect in virtual simulations of human-robot interaction [47],
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none of these agent coordination algorithms have been evaluated in a mixed team
combining both human users with physical robots. It thus remains an open question as
to the degree that existing human-agent algorithms can benefit human-robot teams.

Opportunities for Research: We see a large opportunity for enhancing the effec-
tiveness of robot-human teams through the use of technology that enhances trust. We
have also identified a number of gaps between existing algorithms and HRI needs, as
well as algorithmic refinement to close that the gaps found. Such a cycle can support
the adaptation of existing agent algorithms to the specific needs of human-robot teams.
Specifically, we recommend basic and applied research that addresses (1) automatic
explanation algorithms for human-robot trust; (2) domain-independent frameworks for
establishing shared mental models in human-robot teams; (3) transfer-of-control
strategies for adjustable autonomy for robots to maximize the capabilities of both their
human teammates and themselves, and (4) Theory of Mind for robots to adapt to the
individual differences across their human teammates.

6 Summary

To conclude, this article identified several points of profitable interaction between
research on virtual humans and research on human-robot interaction. These include a
focus on core technology shared by both domains – i.e., natural language processing,
nonverbal communication – as well as research on how to replicate human interper-
sonal processes – such as interpersonal trust – within the context of human-machine
teams. Finally, we suggest the importance of not blindly assuming that more
human-like machines will necessarily yield better teammates, and research is required
on which set of interpersonal processes benefit, as opposed to undermine, effective
human-machine teams. These recommendations are explained in greater detail in the
following technical report: [7].
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